2005-04-16 22:20:36 +00:00
|
|
|
#
|
|
|
|
# ACPI Configuration
|
|
|
|
#
|
|
|
|
|
2007-07-03 05:40:59 +00:00
|
|
|
menuconfig ACPI
|
2007-10-29 21:20:38 +00:00
|
|
|
bool "ACPI (Advanced Configuration and Power Interface) Support"
|
2005-04-16 22:20:36 +00:00
|
|
|
depends on !IA64_HP_SIM
|
2015-03-24 14:02:53 +00:00
|
|
|
depends on IA64 || X86 || (ARM64 && EXPERT)
|
2006-03-28 22:04:00 +00:00
|
|
|
depends on PCI
|
2007-02-16 03:34:36 +00:00
|
|
|
select PNP
|
2005-04-16 22:20:36 +00:00
|
|
|
default y
|
2009-02-19 21:45:47 +00:00
|
|
|
help
|
2005-04-16 22:20:36 +00:00
|
|
|
Advanced Configuration and Power Interface (ACPI) support for
|
2009-02-19 21:45:47 +00:00
|
|
|
Linux requires an ACPI-compliant platform (hardware/firmware),
|
2005-04-16 22:20:36 +00:00
|
|
|
and assumes the presence of OS-directed configuration and power
|
|
|
|
management (OSPM) software. This option will enlarge your
|
|
|
|
kernel by about 70K.
|
|
|
|
|
|
|
|
Linux ACPI provides a robust functional replacement for several
|
|
|
|
legacy configuration and power management interfaces, including
|
|
|
|
the Plug-and-Play BIOS specification (PnP BIOS), the
|
|
|
|
MultiProcessor Specification (MPS), and the Advanced Power
|
|
|
|
Management (APM) specification. If both ACPI and APM support
|
2009-02-19 21:45:47 +00:00
|
|
|
are configured, ACPI is used.
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2009-02-19 21:45:47 +00:00
|
|
|
The project home page for the Linux ACPI subsystem is here:
|
2013-10-10 21:25:58 +00:00
|
|
|
<https://01.org/linux-acpi>
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
Linux support for ACPI is based on Intel Corporation's ACPI
|
2009-02-19 21:45:47 +00:00
|
|
|
Component Architecture (ACPI CA). For more information on the
|
|
|
|
ACPI CA, see:
|
|
|
|
<http://acpica.org/>
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2014-04-08 12:59:48 +00:00
|
|
|
ACPI is an open industry specification originally co-developed by
|
|
|
|
Hewlett-Packard, Intel, Microsoft, Phoenix, and Toshiba. Currently,
|
|
|
|
it is developed by the ACPI Specification Working Group (ASWG) under
|
|
|
|
the UEFI Forum and any UEFI member can join the ASWG and contribute
|
|
|
|
to the ACPI specification.
|
2009-02-19 21:45:47 +00:00
|
|
|
The specification is available at:
|
2005-04-16 22:20:36 +00:00
|
|
|
<http://www.acpi.info>
|
2014-04-08 12:59:48 +00:00
|
|
|
<http://www.uefi.org/acpi/specs>
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2005-05-27 08:53:27 +00:00
|
|
|
if ACPI
|
|
|
|
|
2014-07-18 10:02:52 +00:00
|
|
|
config ACPI_LEGACY_TABLES_LOOKUP
|
|
|
|
bool
|
|
|
|
|
2014-07-18 10:02:54 +00:00
|
|
|
config ARCH_MIGHT_HAVE_ACPI_PDC
|
|
|
|
bool
|
|
|
|
|
2015-03-24 17:58:51 +00:00
|
|
|
config ACPI_GENERIC_GSI
|
|
|
|
bool
|
|
|
|
|
2015-03-24 14:02:39 +00:00
|
|
|
config ACPI_SYSTEM_POWER_STATES_SUPPORT
|
|
|
|
bool
|
|
|
|
|
2015-06-10 16:08:52 +00:00
|
|
|
config ACPI_CCA_REQUIRED
|
|
|
|
bool
|
|
|
|
|
2015-10-19 02:25:56 +00:00
|
|
|
config ACPI_DEBUGGER
|
2015-12-03 02:43:00 +00:00
|
|
|
bool "AML debugger interface"
|
2015-10-19 02:25:56 +00:00
|
|
|
select ACPI_DEBUG
|
|
|
|
help
|
2015-12-03 02:43:14 +00:00
|
|
|
Enable in-kernel debugging of AML facilities: statistics,
|
|
|
|
internal object dump, single step control method execution.
|
2015-10-19 02:25:56 +00:00
|
|
|
This is still under development, currently enabling this only
|
|
|
|
results in the compilation of the ACPICA debugger files.
|
|
|
|
|
2015-12-03 02:43:14 +00:00
|
|
|
if ACPI_DEBUGGER
|
|
|
|
|
|
|
|
config ACPI_DEBUGGER_USER
|
|
|
|
tristate "Userspace debugger accessiblity"
|
|
|
|
depends on DEBUG_FS
|
|
|
|
help
|
|
|
|
Export /sys/kernel/debug/acpi/acpidbg for userspace utilities
|
|
|
|
to access the debugger functionalities.
|
|
|
|
|
|
|
|
endif
|
|
|
|
|
2007-07-28 07:33:16 +00:00
|
|
|
config ACPI_SLEEP
|
|
|
|
bool
|
2008-10-22 18:58:43 +00:00
|
|
|
depends on SUSPEND || HIBERNATION
|
2015-03-24 14:02:39 +00:00
|
|
|
depends on ACPI_SYSTEM_POWER_STATES_SUPPORT
|
2007-07-28 07:33:16 +00:00
|
|
|
default y
|
|
|
|
|
2014-05-04 03:07:24 +00:00
|
|
|
config ACPI_PROCFS_POWER
|
|
|
|
bool "Deprecated power /proc/acpi directories"
|
2015-05-01 10:27:01 +00:00
|
|
|
depends on X86 && PROC_FS
|
2014-05-04 03:07:24 +00:00
|
|
|
help
|
|
|
|
For backwards compatibility, this option allows
|
|
|
|
deprecated power /proc/acpi/ directories to exist, even when
|
|
|
|
they have been replaced by functions in /sys.
|
|
|
|
The deprecated directories (and their replacements) include:
|
|
|
|
/proc/acpi/battery/* (/sys/class/power_supply/*)
|
|
|
|
/proc/acpi/ac_adapter/* (sys/class/power_supply/*)
|
|
|
|
This option has no effect on /proc/acpi/ directories
|
|
|
|
and functions, which do not yet exist in /sys
|
|
|
|
This option, together with the proc directories, will be
|
2014-05-10 11:51:36 +00:00
|
|
|
deleted in the future.
|
2014-05-04 03:07:24 +00:00
|
|
|
|
|
|
|
Say N to delete power /proc/acpi/ directories that have moved to /sys/
|
|
|
|
|
2015-07-02 23:06:00 +00:00
|
|
|
config ACPI_REV_OVERRIDE_POSSIBLE
|
|
|
|
bool "Allow supported ACPI revision to be overriden"
|
|
|
|
depends on X86
|
|
|
|
default y
|
|
|
|
help
|
|
|
|
The platform firmware on some systems expects Linux to return "5" as
|
|
|
|
the supported ACPI revision which makes it expose system configuration
|
|
|
|
information in a special way.
|
|
|
|
|
|
|
|
For example, based on what ACPI exports as the supported revision,
|
|
|
|
Dell XPS 13 (2015) configures its audio device to either work in HDA
|
|
|
|
mode or in I2S mode, where the former is supposed to be used on Linux
|
|
|
|
until the latter is fully supported (in the kernel as well as in user
|
|
|
|
space).
|
|
|
|
|
|
|
|
This option enables a DMI-based quirk for the above Dell machine (so
|
|
|
|
that HDA audio is exposed by the platform firmware to the kernel) and
|
|
|
|
makes it possible to force the kernel to return "5" as the supported
|
|
|
|
ACPI revision via the "acpi_rev_override" command line switch.
|
|
|
|
|
2010-07-16 11:11:31 +00:00
|
|
|
config ACPI_EC_DEBUGFS
|
|
|
|
tristate "EC read/write access through /sys/kernel/debug/ec"
|
2010-07-29 20:30:24 +00:00
|
|
|
default n
|
2010-07-16 11:11:31 +00:00
|
|
|
help
|
|
|
|
Say N to disable Embedded Controller /sys/kernel/debug interface
|
|
|
|
|
2010-07-29 20:30:24 +00:00
|
|
|
Be aware that using this interface can confuse your Embedded
|
|
|
|
Controller in a way that a normal reboot is not enough. You then
|
2010-08-18 13:22:10 +00:00
|
|
|
have to power off your system, and remove the laptop battery for
|
2010-07-29 20:30:24 +00:00
|
|
|
some seconds.
|
2010-07-16 11:11:31 +00:00
|
|
|
An Embedded Controller typically is available on laptops and reads
|
|
|
|
sensor values like battery state and temperature.
|
2010-07-29 20:30:24 +00:00
|
|
|
The kernel accesses the EC through ACPI parsed code provided by BIOS
|
|
|
|
tables. This option allows to access the EC directly without ACPI
|
|
|
|
code being involved.
|
2010-07-16 11:11:31 +00:00
|
|
|
Thus this option is a debug option that helps to write ACPI drivers
|
|
|
|
and can be used to identify ACPI code or EC firmware bugs.
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
config ACPI_AC
|
|
|
|
tristate "AC Adapter"
|
2007-10-29 21:08:59 +00:00
|
|
|
depends on X86
|
2010-10-08 05:54:57 +00:00
|
|
|
select POWER_SUPPLY
|
2005-08-25 16:22:04 +00:00
|
|
|
default y
|
2005-04-16 22:20:36 +00:00
|
|
|
help
|
2009-02-19 21:45:47 +00:00
|
|
|
This driver supports the AC Adapter object, which indicates
|
|
|
|
whether a system is on AC or not. If you have a system that can
|
2005-08-25 16:22:04 +00:00
|
|
|
switch between A/C and battery, say Y.
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2009-02-19 21:45:47 +00:00
|
|
|
To compile this driver as a module, choose M here:
|
|
|
|
the module will be called ac.
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
config ACPI_BATTERY
|
|
|
|
tristate "Battery"
|
2007-10-29 21:08:59 +00:00
|
|
|
depends on X86
|
2010-10-08 05:54:57 +00:00
|
|
|
select POWER_SUPPLY
|
2005-08-25 16:22:04 +00:00
|
|
|
default y
|
2005-04-16 22:20:36 +00:00
|
|
|
help
|
|
|
|
This driver adds support for battery information through
|
|
|
|
/proc/acpi/battery. If you have a mobile system with a battery,
|
|
|
|
say Y.
|
|
|
|
|
2009-02-19 21:45:47 +00:00
|
|
|
To compile this driver as a module, choose M here:
|
|
|
|
the module will be called battery.
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
config ACPI_BUTTON
|
|
|
|
tristate "Button"
|
2006-11-09 05:40:13 +00:00
|
|
|
depends on INPUT
|
2005-08-25 16:22:04 +00:00
|
|
|
default y
|
2005-04-16 22:20:36 +00:00
|
|
|
help
|
2009-02-19 21:45:47 +00:00
|
|
|
This driver handles events on the power, sleep, and lid buttons.
|
2013-10-12 22:11:00 +00:00
|
|
|
A daemon reads events from input devices or via netlink and
|
|
|
|
performs user-defined actions such as shutting down the system.
|
|
|
|
This is necessary for software-controlled poweroff.
|
2009-02-19 21:45:47 +00:00
|
|
|
|
|
|
|
To compile this driver as a module, choose M here:
|
|
|
|
the module will be called button.
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
config ACPI_VIDEO
|
|
|
|
tristate "Video"
|
2014-03-17 14:46:44 +00:00
|
|
|
depends on X86 && BACKLIGHT_CLASS_DEVICE
|
2007-09-17 21:41:05 +00:00
|
|
|
depends on INPUT
|
2008-04-21 08:07:13 +00:00
|
|
|
select THERMAL
|
2005-04-16 22:20:36 +00:00
|
|
|
help
|
2009-02-19 21:45:47 +00:00
|
|
|
This driver implements the ACPI Extensions For Display Adapters
|
2005-04-16 22:20:36 +00:00
|
|
|
for integrated graphics devices on motherboard, as specified in
|
2009-02-19 21:45:47 +00:00
|
|
|
ACPI 2.0 Specification, Appendix B. This supports basic operations
|
|
|
|
such as defining the video POST device, retrieving EDID information,
|
|
|
|
and setting up a video output.
|
|
|
|
|
|
|
|
To compile this driver as a module, choose M here:
|
|
|
|
the module will be called video.
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
config ACPI_FAN
|
|
|
|
tristate "Fan"
|
2014-06-19 07:43:29 +00:00
|
|
|
depends on THERMAL
|
2005-08-25 16:22:04 +00:00
|
|
|
default y
|
2005-04-16 22:20:36 +00:00
|
|
|
help
|
2009-02-19 21:45:47 +00:00
|
|
|
This driver supports ACPI fan devices, allowing user-mode
|
2005-04-16 22:20:36 +00:00
|
|
|
applications to perform basic fan control (on, off, status).
|
|
|
|
|
2009-02-19 21:45:47 +00:00
|
|
|
To compile this driver as a module, choose M here:
|
|
|
|
the module will be called fan.
|
|
|
|
|
2006-07-09 21:22:28 +00:00
|
|
|
config ACPI_DOCK
|
2008-09-27 03:10:28 +00:00
|
|
|
bool "Dock"
|
2006-07-09 21:22:28 +00:00
|
|
|
help
|
2009-02-19 21:45:47 +00:00
|
|
|
This driver supports ACPI-controlled docking stations and removable
|
|
|
|
drive bays such as the IBM Ultrabay and the Dell Module Bay.
|
2006-10-20 21:30:25 +00:00
|
|
|
|
2015-08-05 13:40:25 +00:00
|
|
|
config ACPI_CPU_FREQ_PSS
|
|
|
|
bool
|
|
|
|
select THERMAL
|
|
|
|
|
2015-08-05 13:40:26 +00:00
|
|
|
config ACPI_PROCESSOR_IDLE
|
|
|
|
bool
|
|
|
|
select CPU_IDLE
|
|
|
|
|
2015-10-02 14:01:19 +00:00
|
|
|
config ACPI_CPPC_LIB
|
|
|
|
bool
|
|
|
|
depends on ACPI_PROCESSOR
|
|
|
|
depends on !ACPI_CPU_FREQ_PSS
|
|
|
|
select MAILBOX
|
|
|
|
select PCC
|
|
|
|
help
|
|
|
|
If this option is enabled, this file implements common functionality
|
|
|
|
to parse CPPC tables as described in the ACPI 5.1+ spec. The
|
|
|
|
routines implemented are meant to be used by other
|
|
|
|
drivers to control CPU performance using CPPC semantics.
|
|
|
|
If your platform does not support CPPC in firmware,
|
|
|
|
leave this option disabled.
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
config ACPI_PROCESSOR
|
|
|
|
tristate "Processor"
|
2015-09-09 20:27:08 +00:00
|
|
|
depends on X86 || IA64 || ARM64
|
|
|
|
select ACPI_PROCESSOR_IDLE if X86 || IA64
|
|
|
|
select ACPI_CPU_FREQ_PSS if X86 || IA64
|
2005-08-25 16:22:04 +00:00
|
|
|
default y
|
2005-04-16 22:20:36 +00:00
|
|
|
help
|
2015-08-05 13:40:25 +00:00
|
|
|
This driver adds support for the ACPI Processor package. It is required
|
|
|
|
by several flavors of cpufreq performance-state, thermal, throttling and
|
|
|
|
idle drivers.
|
2009-02-19 21:45:47 +00:00
|
|
|
|
|
|
|
To compile this driver as a module, choose M here:
|
|
|
|
the module will be called processor.
|
2013-09-13 05:14:51 +00:00
|
|
|
|
2010-12-08 02:10:18 +00:00
|
|
|
config ACPI_IPMI
|
|
|
|
tristate "IPMI"
|
2013-09-13 05:14:51 +00:00
|
|
|
depends on IPMI_SI
|
2010-12-08 02:10:18 +00:00
|
|
|
default n
|
|
|
|
help
|
|
|
|
This driver enables the ACPI to access the BMC controller. And it
|
|
|
|
uses the IPMI request/response message to communicate with BMC
|
|
|
|
controller, which can be found on on the server.
|
|
|
|
|
|
|
|
To compile this driver as a module, choose M here:
|
|
|
|
the module will be called as acpi_ipmi.
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
config ACPI_HOTPLUG_CPU
|
2005-07-30 08:18:00 +00:00
|
|
|
bool
|
2013-01-17 02:53:28 +00:00
|
|
|
depends on ACPI_PROCESSOR && HOTPLUG_CPU
|
2005-04-16 22:20:36 +00:00
|
|
|
select ACPI_CONTAINER
|
2005-07-30 08:18:00 +00:00
|
|
|
default y
|
2005-04-16 22:20:36 +00:00
|
|
|
|
ACPI: create Processor Aggregator Device driver
ACPI 4.0 created the logical "processor aggregator device" as
a mechinism for platforms to ask the OS to force otherwise busy
processors to enter (power saving) idle.
The intent is to lower power consumption to ride-out
transient electrical and thermal emergencies,
rather than powering off the server.
On platforms that can save more power/performance via P-states,
the platform will first exhaust P-states before forcing idle.
However, the relative benefit of P-states vs. idle states
is platform dependent, and thus this driver need not know
or care about it.
This driver does not use the kernel's CPU hot-plug mechanism
because after the transient emergency is over, the system must
be returned to its normal state, and hotplug would permanently
break both cpusets and binding.
So to force idle, the driver creates a power saving thread.
The scheduler will migrate the thread to the preferred CPU.
The thread has max priority and has SCHED_RR policy,
so it can occupy one CPU. To save power, the thread will
invoke the deep C-state entry instructions.
To avoid starvation, the thread will sleep 5% of the time
time for every second (current RT scheduler has threshold
to avoid starvation, but if other CPUs are idle,
the CPU can borrow CPU timer from other,
which makes the mechanism not work here)
Vaidyanathan Srinivasan has proposed scheduler enhancements
to allow injecting idle time into the system. This driver doesn't
depend on those enhancements, but could cut over to them
when they are available.
Peter Z. does not favor upstreaming this driver until
the those scheduler enhancements are in place. However,
we favor upstreaming this driver now because it is useful
now, and can be enhanced over time.
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
NACKed-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2009-07-27 22:11:02 +00:00
|
|
|
config ACPI_PROCESSOR_AGGREGATOR
|
|
|
|
tristate "Processor Aggregator"
|
|
|
|
depends on ACPI_PROCESSOR
|
2009-09-27 06:35:55 +00:00
|
|
|
depends on X86
|
ACPI: create Processor Aggregator Device driver
ACPI 4.0 created the logical "processor aggregator device" as
a mechinism for platforms to ask the OS to force otherwise busy
processors to enter (power saving) idle.
The intent is to lower power consumption to ride-out
transient electrical and thermal emergencies,
rather than powering off the server.
On platforms that can save more power/performance via P-states,
the platform will first exhaust P-states before forcing idle.
However, the relative benefit of P-states vs. idle states
is platform dependent, and thus this driver need not know
or care about it.
This driver does not use the kernel's CPU hot-plug mechanism
because after the transient emergency is over, the system must
be returned to its normal state, and hotplug would permanently
break both cpusets and binding.
So to force idle, the driver creates a power saving thread.
The scheduler will migrate the thread to the preferred CPU.
The thread has max priority and has SCHED_RR policy,
so it can occupy one CPU. To save power, the thread will
invoke the deep C-state entry instructions.
To avoid starvation, the thread will sleep 5% of the time
time for every second (current RT scheduler has threshold
to avoid starvation, but if other CPUs are idle,
the CPU can borrow CPU timer from other,
which makes the mechanism not work here)
Vaidyanathan Srinivasan has proposed scheduler enhancements
to allow injecting idle time into the system. This driver doesn't
depend on those enhancements, but could cut over to them
when they are available.
Peter Z. does not favor upstreaming this driver until
the those scheduler enhancements are in place. However,
we favor upstreaming this driver now because it is useful
now, and can be enhanced over time.
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
NACKed-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2009-07-27 22:11:02 +00:00
|
|
|
help
|
|
|
|
ACPI 4.0 defines processor Aggregator, which enables OS to perform
|
2009-10-09 13:53:24 +00:00
|
|
|
specific processor configuration and control that applies to all
|
ACPI: create Processor Aggregator Device driver
ACPI 4.0 created the logical "processor aggregator device" as
a mechinism for platforms to ask the OS to force otherwise busy
processors to enter (power saving) idle.
The intent is to lower power consumption to ride-out
transient electrical and thermal emergencies,
rather than powering off the server.
On platforms that can save more power/performance via P-states,
the platform will first exhaust P-states before forcing idle.
However, the relative benefit of P-states vs. idle states
is platform dependent, and thus this driver need not know
or care about it.
This driver does not use the kernel's CPU hot-plug mechanism
because after the transient emergency is over, the system must
be returned to its normal state, and hotplug would permanently
break both cpusets and binding.
So to force idle, the driver creates a power saving thread.
The scheduler will migrate the thread to the preferred CPU.
The thread has max priority and has SCHED_RR policy,
so it can occupy one CPU. To save power, the thread will
invoke the deep C-state entry instructions.
To avoid starvation, the thread will sleep 5% of the time
time for every second (current RT scheduler has threshold
to avoid starvation, but if other CPUs are idle,
the CPU can borrow CPU timer from other,
which makes the mechanism not work here)
Vaidyanathan Srinivasan has proposed scheduler enhancements
to allow injecting idle time into the system. This driver doesn't
depend on those enhancements, but could cut over to them
when they are available.
Peter Z. does not favor upstreaming this driver until
the those scheduler enhancements are in place. However,
we favor upstreaming this driver now because it is useful
now, and can be enhanced over time.
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
NACKed-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2009-07-27 22:11:02 +00:00
|
|
|
processors in the platform. Currently only logical processor idling
|
|
|
|
is defined, which is to reduce power consumption. This driver
|
2009-10-09 13:53:24 +00:00
|
|
|
supports the new device.
|
ACPI: create Processor Aggregator Device driver
ACPI 4.0 created the logical "processor aggregator device" as
a mechinism for platforms to ask the OS to force otherwise busy
processors to enter (power saving) idle.
The intent is to lower power consumption to ride-out
transient electrical and thermal emergencies,
rather than powering off the server.
On platforms that can save more power/performance via P-states,
the platform will first exhaust P-states before forcing idle.
However, the relative benefit of P-states vs. idle states
is platform dependent, and thus this driver need not know
or care about it.
This driver does not use the kernel's CPU hot-plug mechanism
because after the transient emergency is over, the system must
be returned to its normal state, and hotplug would permanently
break both cpusets and binding.
So to force idle, the driver creates a power saving thread.
The scheduler will migrate the thread to the preferred CPU.
The thread has max priority and has SCHED_RR policy,
so it can occupy one CPU. To save power, the thread will
invoke the deep C-state entry instructions.
To avoid starvation, the thread will sleep 5% of the time
time for every second (current RT scheduler has threshold
to avoid starvation, but if other CPUs are idle,
the CPU can borrow CPU timer from other,
which makes the mechanism not work here)
Vaidyanathan Srinivasan has proposed scheduler enhancements
to allow injecting idle time into the system. This driver doesn't
depend on those enhancements, but could cut over to them
when they are available.
Peter Z. does not favor upstreaming this driver until
the those scheduler enhancements are in place. However,
we favor upstreaming this driver now because it is useful
now, and can be enhanced over time.
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
NACKed-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2009-07-27 22:11:02 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
config ACPI_THERMAL
|
|
|
|
tristate "Thermal Zone"
|
|
|
|
depends on ACPI_PROCESSOR
|
2008-01-17 07:51:11 +00:00
|
|
|
select THERMAL
|
2005-08-25 16:22:04 +00:00
|
|
|
default y
|
2005-04-16 22:20:36 +00:00
|
|
|
help
|
2009-02-19 21:45:47 +00:00
|
|
|
This driver supports ACPI thermal zones. Most mobile and
|
2005-04-16 22:20:36 +00:00
|
|
|
some desktop systems support ACPI thermal zones. It is HIGHLY
|
|
|
|
recommended that this option be enabled, as your processor(s)
|
|
|
|
may be damaged without it.
|
|
|
|
|
2009-02-19 21:45:47 +00:00
|
|
|
To compile this driver as a module, choose M here:
|
|
|
|
the module will be called thermal.
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
config ACPI_NUMA
|
|
|
|
bool "NUMA support"
|
|
|
|
depends on NUMA
|
2006-06-23 09:03:19 +00:00
|
|
|
depends on (X86 || IA64)
|
2005-04-16 22:20:36 +00:00
|
|
|
default y if IA64_GENERIC || IA64_SGI_SN2
|
|
|
|
|
2008-02-22 19:25:04 +00:00
|
|
|
config ACPI_CUSTOM_DSDT_FILE
|
|
|
|
string "Custom DSDT Table file to include"
|
|
|
|
default ""
|
2005-04-16 22:20:36 +00:00
|
|
|
depends on !STANDALONE
|
|
|
|
help
|
2008-02-07 00:28:02 +00:00
|
|
|
This option supports a custom DSDT by linking it into the kernel.
|
|
|
|
See Documentation/acpi/dsdt-override.txt
|
|
|
|
|
2006-03-24 17:23:14 +00:00
|
|
|
Enter the full path name to the file which includes the AmlCode
|
|
|
|
declaration.
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-02-22 19:25:04 +00:00
|
|
|
If unsure, don't enter a file name.
|
|
|
|
|
|
|
|
config ACPI_CUSTOM_DSDT
|
|
|
|
bool
|
|
|
|
default ACPI_CUSTOM_DSDT_FILE != ""
|
|
|
|
|
2012-09-30 22:23:54 +00:00
|
|
|
config ACPI_INITRD_TABLE_OVERRIDE
|
2013-02-22 13:12:22 +00:00
|
|
|
bool "ACPI tables override via initrd"
|
|
|
|
depends on BLK_DEV_INITRD && X86
|
2012-09-30 22:23:54 +00:00
|
|
|
default n
|
|
|
|
help
|
|
|
|
This option provides functionality to override arbitrary ACPI tables
|
|
|
|
via initrd. No functional change if no ACPI tables are passed via
|
|
|
|
initrd, therefore it's safe to say Y.
|
|
|
|
See Documentation/acpi/initrd_table_override.txt for details
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
config ACPI_DEBUG
|
|
|
|
bool "Debug Statements"
|
|
|
|
default n
|
|
|
|
help
|
2008-11-07 23:58:05 +00:00
|
|
|
The ACPI subsystem can produce debug output. Saying Y enables this
|
|
|
|
output and increases the kernel size by around 50K.
|
|
|
|
|
|
|
|
Use the acpi.debug_layer and acpi.debug_level kernel command-line
|
|
|
|
parameters documented in Documentation/acpi/debug.txt and
|
|
|
|
Documentation/kernel-parameters.txt to control the type and
|
|
|
|
amount of debug output.
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-06-10 21:30:42 +00:00
|
|
|
config ACPI_PCI_SLOT
|
2013-01-18 16:07:42 +00:00
|
|
|
bool "PCI slot detection driver"
|
2009-06-18 01:03:57 +00:00
|
|
|
depends on SYSFS
|
2008-06-10 21:30:42 +00:00
|
|
|
default n
|
|
|
|
help
|
2009-02-19 21:45:47 +00:00
|
|
|
This driver creates entries in /sys/bus/pci/slots/ for all PCI
|
|
|
|
slots in the system. This can help correlate PCI bus addresses,
|
|
|
|
i.e., segment/bus/device/function tuples, with physical slots in
|
|
|
|
the system. If you are unsure, say N.
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
config X86_PM_TIMER
|
2011-01-20 22:44:16 +00:00
|
|
|
bool "Power Management Timer Support" if EXPERT
|
2005-04-16 22:20:36 +00:00
|
|
|
depends on X86
|
2005-08-25 16:22:04 +00:00
|
|
|
default y
|
2005-04-16 22:20:36 +00:00
|
|
|
help
|
|
|
|
The Power Management Timer is available on all ACPI-capable,
|
|
|
|
in most cases even if ACPI is unusable or blacklisted.
|
|
|
|
|
2006-10-03 20:24:43 +00:00
|
|
|
This timing source is not affected by power management features
|
2005-04-16 22:20:36 +00:00
|
|
|
like aggressive processor idling, throttling, frequency and/or
|
|
|
|
voltage scaling, unlike the commonly used Time Stamp Counter
|
|
|
|
(TSC) timing source.
|
|
|
|
|
2006-02-26 03:18:37 +00:00
|
|
|
You should nearly always say Y here because many modern
|
|
|
|
systems require this timer.
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
config ACPI_CONTAINER
|
2013-02-21 20:05:51 +00:00
|
|
|
bool "Container and Module Devices"
|
2013-03-11 10:53:48 +00:00
|
|
|
default (ACPI_HOTPLUG_MEMORY || ACPI_HOTPLUG_CPU)
|
2009-02-19 21:45:47 +00:00
|
|
|
help
|
|
|
|
This driver supports ACPI Container and Module devices (IDs
|
|
|
|
ACPI0004, PNP0A05, and PNP0A06).
|
2005-03-02 05:00:00 +00:00
|
|
|
|
2009-02-19 21:45:47 +00:00
|
|
|
This helps support hotplug of nodes, CPUs, and memory.
|
|
|
|
|
|
|
|
To compile this driver as a module, choose M here:
|
|
|
|
the module will be called container.
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
config ACPI_HOTPLUG_MEMORY
|
2013-03-03 22:18:03 +00:00
|
|
|
bool "Memory Hotplug"
|
2006-06-27 09:53:30 +00:00
|
|
|
depends on MEMORY_HOTPLUG
|
2005-04-16 22:20:36 +00:00
|
|
|
help
|
2009-02-19 21:45:47 +00:00
|
|
|
This driver supports ACPI memory hotplug. The driver
|
|
|
|
fields notifications on ACPI memory devices (PNP0C80),
|
|
|
|
which represent memory ranges that may be onlined or
|
|
|
|
offlined during runtime.
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2009-02-19 21:45:47 +00:00
|
|
|
If your hardware and firmware do not support adding or
|
|
|
|
removing memory devices at runtime, you need not enable
|
|
|
|
this driver.
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2009-02-19 21:45:47 +00:00
|
|
|
To compile this driver as a module, choose M here:
|
|
|
|
the module will be called acpi_memhotplug.
|
2006-07-01 15:36:54 +00:00
|
|
|
|
2015-02-05 05:44:49 +00:00
|
|
|
config ACPI_HOTPLUG_IOAPIC
|
|
|
|
bool
|
|
|
|
depends on PCI
|
|
|
|
depends on X86_IO_APIC
|
|
|
|
default y
|
|
|
|
|
2006-07-01 15:36:54 +00:00
|
|
|
config ACPI_SBS
|
2007-09-26 15:43:48 +00:00
|
|
|
tristate "Smart Battery System"
|
2007-03-19 14:45:50 +00:00
|
|
|
depends on X86
|
2010-10-08 05:54:57 +00:00
|
|
|
select POWER_SUPPLY
|
2006-07-01 15:36:54 +00:00
|
|
|
help
|
2009-02-19 21:45:47 +00:00
|
|
|
This driver supports the Smart Battery System, another
|
2007-09-26 15:43:48 +00:00
|
|
|
type of access to battery information, found on some laptops.
|
2006-07-01 15:36:54 +00:00
|
|
|
|
2009-02-19 21:45:47 +00:00
|
|
|
To compile this driver as a module, choose M here:
|
|
|
|
the modules will be called sbs and sbshc.
|
|
|
|
|
2010-05-18 06:35:17 +00:00
|
|
|
config ACPI_HED
|
|
|
|
tristate "Hardware Error Device"
|
|
|
|
help
|
|
|
|
This driver supports the Hardware Error Device (PNP0C33),
|
|
|
|
which is used to report some hardware errors notified via
|
|
|
|
SCI, mainly the corrected errors.
|
|
|
|
|
2011-05-26 10:26:24 +00:00
|
|
|
config ACPI_CUSTOM_METHOD
|
|
|
|
tristate "Allow ACPI methods to be inserted/replaced at run time"
|
|
|
|
depends on DEBUG_FS
|
|
|
|
default n
|
|
|
|
help
|
2012-01-03 16:49:48 +00:00
|
|
|
This debug facility allows ACPI AML methods to be inserted and/or
|
2011-05-26 10:26:24 +00:00
|
|
|
replaced without rebooting the system. For details refer to:
|
|
|
|
Documentation/acpi/method-customizing.txt.
|
|
|
|
|
|
|
|
NOTE: This option is security sensitive, because it allows arbitrary
|
|
|
|
kernel memory to be written to by root (uid=0) users, allowing them
|
|
|
|
to bypass certain security measures (e.g. if root is not allowed to
|
|
|
|
load additional kernel modules after boot, this feature may be used
|
|
|
|
to override that restriction).
|
|
|
|
|
2012-01-31 18:19:20 +00:00
|
|
|
config ACPI_BGRT
|
2012-09-29 00:57:05 +00:00
|
|
|
bool "Boottime Graphics Resource Table support"
|
2013-04-03 11:17:20 +00:00
|
|
|
depends on EFI && X86
|
2012-01-31 18:19:20 +00:00
|
|
|
help
|
|
|
|
This driver adds support for exposing the ACPI Boottime Graphics
|
|
|
|
Resource Table, which allows the operating system to obtain
|
|
|
|
data from the firmware boot splash. It will appear under
|
|
|
|
/sys/firmware/acpi/bgrt/ .
|
|
|
|
|
2014-01-17 18:51:30 +00:00
|
|
|
config ACPI_REDUCED_HARDWARE_ONLY
|
|
|
|
bool "Hardware-reduced ACPI support only" if EXPERT
|
|
|
|
def_bool n
|
|
|
|
help
|
2014-11-14 09:44:07 +00:00
|
|
|
This config item changes the way the ACPI code is built. When this
|
|
|
|
option is selected, the kernel will use a specialized version of
|
|
|
|
ACPICA that ONLY supports the ACPI "reduced hardware" mode. The
|
|
|
|
resulting kernel will be smaller but it will also be restricted to
|
|
|
|
running in ACPI reduced hardware mode ONLY.
|
2014-01-17 18:51:30 +00:00
|
|
|
|
2014-11-14 09:44:07 +00:00
|
|
|
If you are unsure what to do, do not enable this option.
|
2014-01-17 18:51:30 +00:00
|
|
|
|
2015-05-20 02:54:31 +00:00
|
|
|
config ACPI_NFIT
|
|
|
|
tristate "ACPI NVDIMM Firmware Interface Table (NFIT)"
|
|
|
|
depends on PHYS_ADDR_T_64BIT
|
|
|
|
depends on BLK_DEV
|
nd_blk: change aperture mapping from WC to WB
This should result in a pretty sizeable performance gain for reads. For
rough comparison I did some simple read testing using PMEM to compare
reads of write combining (WC) mappings vs write-back (WB). This was
done on a random lab machine.
PMEM reads from a write combining mapping:
# dd of=/dev/null if=/dev/pmem0 bs=4096 count=100000
100000+0 records in
100000+0 records out
409600000 bytes (410 MB) copied, 9.2855 s, 44.1 MB/s
PMEM reads from a write-back mapping:
# dd of=/dev/null if=/dev/pmem0 bs=4096 count=1000000
1000000+0 records in
1000000+0 records out
4096000000 bytes (4.1 GB) copied, 3.44034 s, 1.2 GB/s
To be able to safely support a write-back aperture I needed to add
support for the "read flush" _DSM flag, as outlined in the DSM spec:
http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
This flag tells the ND BLK driver that it needs to flush the cache lines
associated with the aperture after the aperture is moved but before any
new data is read. This ensures that any stale cache lines from the
previous contents of the aperture will be discarded from the processor
cache, and the new data will be read properly from the DIMM. We know
that the cache lines are clean and will be discarded without any
writeback because either a) the previous aperture operation was a read,
and we never modified the contents of the aperture, or b) the previous
aperture operation was a write and we must have written back the dirtied
contents of the aperture to the DIMM before the I/O was completed.
In order to add support for the "read flush" flag I needed to add a
generic routine to invalidate cache lines, mmio_flush_range(). This is
protected by the ARCH_HAS_MMIO_FLUSH Kconfig variable, and is currently
only supported on x86.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-08-27 19:14:20 +00:00
|
|
|
depends on ARCH_HAS_MMIO_FLUSH
|
2015-05-20 02:54:31 +00:00
|
|
|
select LIBNVDIMM
|
|
|
|
help
|
|
|
|
Infrastructure to probe ACPI 6 compliant platforms for
|
|
|
|
NVDIMMs (NFIT) and register a libnvdimm device tree. In
|
|
|
|
addition to storage devices this also enables libnvdimm to pass
|
|
|
|
ACPI._DSM messages for platform/dimm configuration.
|
|
|
|
|
|
|
|
To compile this driver as a module, choose M here:
|
|
|
|
the module will be called nfit.
|
|
|
|
|
2015-06-08 18:27:06 +00:00
|
|
|
config ACPI_NFIT_DEBUG
|
|
|
|
bool "NFIT DSM debug"
|
|
|
|
depends on ACPI_NFIT
|
|
|
|
depends on DYNAMIC_DEBUG
|
|
|
|
default n
|
|
|
|
help
|
|
|
|
Enabling this option causes the nfit driver to dump the
|
|
|
|
input and output buffers of _DSM operations on the ACPI0012
|
|
|
|
device and its children. This can be very verbose, so leave
|
|
|
|
it disabled unless you are debugging a hardware / firmware
|
|
|
|
issue.
|
|
|
|
|
2010-05-18 06:35:12 +00:00
|
|
|
source "drivers/acpi/apei/Kconfig"
|
|
|
|
|
2013-10-21 21:29:25 +00:00
|
|
|
config ACPI_EXTLOG
|
|
|
|
tristate "Extended Error Log support"
|
2013-11-08 22:03:33 +00:00
|
|
|
depends on X86_MCE && X86_LOCAL_APIC
|
2013-10-28 21:06:55 +00:00
|
|
|
select UEFI_CPER
|
2014-06-18 02:33:07 +00:00
|
|
|
select RAS
|
2013-10-21 21:29:25 +00:00
|
|
|
default n
|
|
|
|
help
|
|
|
|
Certain usages such as Predictive Failure Analysis (PFA) require
|
|
|
|
more information about the error than what can be described in
|
|
|
|
processor machine check banks. Most server processors log
|
|
|
|
additional information about the error in processor uncore
|
|
|
|
registers. Since the addresses and layout of these registers vary
|
|
|
|
widely from one processor to another, system software cannot
|
|
|
|
readily make use of them. To complicate matters further, some of
|
|
|
|
the additional error information cannot be constructed without
|
|
|
|
detailed knowledge about platform topology.
|
|
|
|
|
|
|
|
Enhanced MCA Logging allows firmware to provide additional error
|
|
|
|
information to system software, synchronous with MCE or CMCI. This
|
2014-06-18 02:33:07 +00:00
|
|
|
driver adds support for that functionality with corresponding
|
|
|
|
tracepoint which carries that information to userspace.
|
2013-10-21 21:29:25 +00:00
|
|
|
|
2014-11-24 09:21:54 +00:00
|
|
|
menuconfig PMIC_OPREGION
|
|
|
|
bool "PMIC (Power Management Integrated Circuit) operation region support"
|
|
|
|
help
|
|
|
|
Select this option to enable support for ACPI operation
|
|
|
|
region of the PMIC chip. The operation region can be used
|
|
|
|
to control power rails and sensor reading/writing on the
|
|
|
|
PMIC chip.
|
|
|
|
|
|
|
|
if PMIC_OPREGION
|
|
|
|
config CRC_PMIC_OPREGION
|
|
|
|
bool "ACPI operation region support for CrystalCove PMIC"
|
|
|
|
depends on INTEL_SOC_PMIC
|
|
|
|
help
|
|
|
|
This config adds ACPI operation region support for CrystalCove PMIC.
|
|
|
|
|
2014-11-24 09:24:47 +00:00
|
|
|
config XPOWER_PMIC_OPREGION
|
|
|
|
bool "ACPI operation region support for XPower AXP288 PMIC"
|
|
|
|
depends on AXP288_ADC = y
|
|
|
|
help
|
|
|
|
This config adds ACPI operation region support for XPower AXP288 PMIC.
|
|
|
|
|
2014-11-24 09:21:54 +00:00
|
|
|
endif
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
endif # ACPI
|