linux/fs/kernfs/kernfs-internal.h

168 lines
4.4 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* fs/kernfs/kernfs-internal.h - kernfs internal header file
*
* Copyright (c) 2001-3 Patrick Mochel
* Copyright (c) 2007 SUSE Linux Products GmbH
* Copyright (c) 2007, 2013 Tejun Heo <teheo@suse.de>
*/
#ifndef __KERNFS_INTERNAL_H
#define __KERNFS_INTERNAL_H
#include <linux/lockdep.h>
#include <linux/fs.h>
#include <linux/mutex.h>
#include <linux/rwsem.h>
#include <linux/xattr.h>
#include <linux/kernfs.h>
kernfs, sysfs, cgroup, intel_rdt: Support fs_context Make kernfs support superblock creation/mount/remount with fs_context. This requires that sysfs, cgroup and intel_rdt, which are built on kernfs, be made to support fs_context also. Notes: (1) A kernfs_fs_context struct is created to wrap fs_context and the kernfs mount parameters are moved in here (or are in fs_context). (2) kernfs_mount{,_ns}() are made into kernfs_get_tree(). The extra namespace tag parameter is passed in the context if desired (3) kernfs_free_fs_context() is provided as a destructor for the kernfs_fs_context struct, but for the moment it does nothing except get called in the right places. (4) sysfs doesn't wrap kernfs_fs_context since it has no parameters to pass, but possibly this should be done anyway in case someone wants to add a parameter in future. (5) A cgroup_fs_context struct is created to wrap kernfs_fs_context and the cgroup v1 and v2 mount parameters are all moved there. (6) cgroup1 parameter parsing error messages are now handled by invalf(), which allows userspace to collect them directly. (7) cgroup1 parameter cleanup is now done in the context destructor rather than in the mount/get_tree and remount functions. Weirdies: (*) cgroup_do_get_tree() calls cset_cgroup_from_root() with locks held, but then uses the resulting pointer after dropping the locks. I'm told this is okay and needs commenting. (*) The cgroup refcount web. This really needs documenting. (*) cgroup2 only has one root? Add a suggestion from Thomas Gleixner in which the RDT enablement code is placed into its own function. [folded a leak fix from Andrey Vagin] Signed-off-by: David Howells <dhowells@redhat.com> cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> cc: Tejun Heo <tj@kernel.org> cc: Li Zefan <lizefan@huawei.com> cc: Johannes Weiner <hannes@cmpxchg.org> cc: cgroups@vger.kernel.org cc: fenghua.yu@intel.com Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-11-01 23:07:26 +00:00
#include <linux/fs_context.h>
struct kernfs_iattrs {
kuid_t ia_uid;
kgid_t ia_gid;
struct timespec64 ia_atime;
struct timespec64 ia_mtime;
struct timespec64 ia_ctime;
struct simple_xattrs xattrs;
atomic_t nr_user_xattrs;
atomic_t user_xattr_size;
};
struct kernfs_root {
/* published fields */
struct kernfs_node *kn;
unsigned int flags; /* KERNFS_ROOT_* flags */
/* private fields, do not use outside kernfs proper */
struct idr ino_idr;
u32 last_id_lowbits;
u32 id_highbits;
struct kernfs_syscall_ops *syscall_ops;
/* list of kernfs_super_info of this root, protected by kernfs_rwsem */
struct list_head supers;
wait_queue_head_t deactivate_waitq;
struct rw_semaphore kernfs_rwsem;
};
kernfs: remove KERNFS_REMOVED KERNFS_REMOVED is used to mark half-initialized and dying nodes so that they don't show up in lookups and deny adding new nodes under or renaming it; however, its role overlaps that of deactivation. It's necessary to deny addition of new children while removal is in progress; however, this role considerably intersects with deactivation - KERNFS_REMOVED prevents new children while deactivation prevents new file operations. There's no reason to have them separate making things more complex than necessary. This patch removes KERNFS_REMOVED. * Instead of KERNFS_REMOVED, each node now starts its life deactivated. This means that we now use both atomic_add() and atomic_sub() on KN_DEACTIVATED_BIAS, which is INT_MIN. The compiler generates an overflow warnings when negating INT_MIN as the negation can't be represented as a positive number. Nothing is actually broken but let's bump BIAS by one to avoid the warnings for archs which negates the subtrahend.. * A new helper kernfs_active() which tests whether kn->active >= 0 is added for convenience and lockdep annotation. All KERNFS_REMOVED tests are replaced with negated kernfs_active() tests. * __kernfs_remove() is updated to deactivate, but not drain, all nodes in the subtree instead of setting KERNFS_REMOVED. This removes deactivation from kernfs_deactivate(), which is now renamed to kernfs_drain(). * Sanity check on KERNFS_REMOVED in kernfs_put() is replaced with checks on the active ref. * Some comment style updates in the affected area. v2: Reordered before removal path restructuring. kernfs_active() dropped and kernfs_get/put_active() used instead. RB_EMPTY_NODE() used in the lookup paths. v3: Reverted most of v2 except for creating a new node with KN_DEACTIVATED_BIAS. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-03 19:03:00 +00:00
/* +1 to avoid triggering overflow warning when negating it */
#define KN_DEACTIVATED_BIAS (INT_MIN + 1)
/* KERNFS_TYPE_MASK and types are defined in include/linux/kernfs.h */
sysfs, kernfs: implement kernfs_create/destroy_root() There currently is single kernfs hierarchy in the whole system which is used for sysfs. kernfs needs to support multiple hierarchies to allow other users. This patch introduces struct kernfs_root which serves as the root of each kernfs hierarchy and implements kernfs_create/destroy_root(). * Each kernfs_root is associated with a root sd (sysfs_dentry). The root is freed when the root sd is released and kernfs_destory_root() simply invokes kernfs_remove() on the root sd. sysfs_remove_one() is updated to handle release of the root sd. Note that ps_iattr update in sysfs_remove_one() is trivially updated for readability. * Root sd's are now dynamically allocated using sysfs_new_dirent(). Update sysfs_alloc_ino() so that it gives out ino from 1 so that the root sd still gets ino 1. * While kernfs currently only points to the root sd, it'll soon grow fields which are specific to each hierarchy. As determining a given sd's root will be necessary, sd->s_dir.root is added. This backlink fits better as a separate field in sd; however, sd->s_dir is inside union with space to spare, so use it to save space and provide kernfs_root() accessor to determine the root sd. * As hierarchies may be destroyed now, each mount needs to hold onto the hierarchy it's attached to. Update sysfs_fill_super() and sysfs_kill_sb() so that they get and put the kernfs_root respectively. * sysfs_root is replaced with kernfs_root which is dynamically created by invoking kernfs_create_root() from sysfs_init(). This patch doesn't introduce any visible behavior changes. v2: kernfs_create_root() forgot to set @sd->priv. Fixed. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-28 19:54:40 +00:00
/**
* kernfs_root - find out the kernfs_root a kernfs_node belongs to
* @kn: kernfs_node of interest
sysfs, kernfs: implement kernfs_create/destroy_root() There currently is single kernfs hierarchy in the whole system which is used for sysfs. kernfs needs to support multiple hierarchies to allow other users. This patch introduces struct kernfs_root which serves as the root of each kernfs hierarchy and implements kernfs_create/destroy_root(). * Each kernfs_root is associated with a root sd (sysfs_dentry). The root is freed when the root sd is released and kernfs_destory_root() simply invokes kernfs_remove() on the root sd. sysfs_remove_one() is updated to handle release of the root sd. Note that ps_iattr update in sysfs_remove_one() is trivially updated for readability. * Root sd's are now dynamically allocated using sysfs_new_dirent(). Update sysfs_alloc_ino() so that it gives out ino from 1 so that the root sd still gets ino 1. * While kernfs currently only points to the root sd, it'll soon grow fields which are specific to each hierarchy. As determining a given sd's root will be necessary, sd->s_dir.root is added. This backlink fits better as a separate field in sd; however, sd->s_dir is inside union with space to spare, so use it to save space and provide kernfs_root() accessor to determine the root sd. * As hierarchies may be destroyed now, each mount needs to hold onto the hierarchy it's attached to. Update sysfs_fill_super() and sysfs_kill_sb() so that they get and put the kernfs_root respectively. * sysfs_root is replaced with kernfs_root which is dynamically created by invoking kernfs_create_root() from sysfs_init(). This patch doesn't introduce any visible behavior changes. v2: kernfs_create_root() forgot to set @sd->priv. Fixed. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-28 19:54:40 +00:00
*
* Return the kernfs_root @kn belongs to.
sysfs, kernfs: implement kernfs_create/destroy_root() There currently is single kernfs hierarchy in the whole system which is used for sysfs. kernfs needs to support multiple hierarchies to allow other users. This patch introduces struct kernfs_root which serves as the root of each kernfs hierarchy and implements kernfs_create/destroy_root(). * Each kernfs_root is associated with a root sd (sysfs_dentry). The root is freed when the root sd is released and kernfs_destory_root() simply invokes kernfs_remove() on the root sd. sysfs_remove_one() is updated to handle release of the root sd. Note that ps_iattr update in sysfs_remove_one() is trivially updated for readability. * Root sd's are now dynamically allocated using sysfs_new_dirent(). Update sysfs_alloc_ino() so that it gives out ino from 1 so that the root sd still gets ino 1. * While kernfs currently only points to the root sd, it'll soon grow fields which are specific to each hierarchy. As determining a given sd's root will be necessary, sd->s_dir.root is added. This backlink fits better as a separate field in sd; however, sd->s_dir is inside union with space to spare, so use it to save space and provide kernfs_root() accessor to determine the root sd. * As hierarchies may be destroyed now, each mount needs to hold onto the hierarchy it's attached to. Update sysfs_fill_super() and sysfs_kill_sb() so that they get and put the kernfs_root respectively. * sysfs_root is replaced with kernfs_root which is dynamically created by invoking kernfs_create_root() from sysfs_init(). This patch doesn't introduce any visible behavior changes. v2: kernfs_create_root() forgot to set @sd->priv. Fixed. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-28 19:54:40 +00:00
*/
static inline struct kernfs_root *kernfs_root(struct kernfs_node *kn)
sysfs, kernfs: implement kernfs_create/destroy_root() There currently is single kernfs hierarchy in the whole system which is used for sysfs. kernfs needs to support multiple hierarchies to allow other users. This patch introduces struct kernfs_root which serves as the root of each kernfs hierarchy and implements kernfs_create/destroy_root(). * Each kernfs_root is associated with a root sd (sysfs_dentry). The root is freed when the root sd is released and kernfs_destory_root() simply invokes kernfs_remove() on the root sd. sysfs_remove_one() is updated to handle release of the root sd. Note that ps_iattr update in sysfs_remove_one() is trivially updated for readability. * Root sd's are now dynamically allocated using sysfs_new_dirent(). Update sysfs_alloc_ino() so that it gives out ino from 1 so that the root sd still gets ino 1. * While kernfs currently only points to the root sd, it'll soon grow fields which are specific to each hierarchy. As determining a given sd's root will be necessary, sd->s_dir.root is added. This backlink fits better as a separate field in sd; however, sd->s_dir is inside union with space to spare, so use it to save space and provide kernfs_root() accessor to determine the root sd. * As hierarchies may be destroyed now, each mount needs to hold onto the hierarchy it's attached to. Update sysfs_fill_super() and sysfs_kill_sb() so that they get and put the kernfs_root respectively. * sysfs_root is replaced with kernfs_root which is dynamically created by invoking kernfs_create_root() from sysfs_init(). This patch doesn't introduce any visible behavior changes. v2: kernfs_create_root() forgot to set @sd->priv. Fixed. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-28 19:54:40 +00:00
{
/* if parent exists, it's always a dir; otherwise, @sd is a dir */
if (kn->parent)
kn = kn->parent;
return kn->dir.root;
sysfs, kernfs: implement kernfs_create/destroy_root() There currently is single kernfs hierarchy in the whole system which is used for sysfs. kernfs needs to support multiple hierarchies to allow other users. This patch introduces struct kernfs_root which serves as the root of each kernfs hierarchy and implements kernfs_create/destroy_root(). * Each kernfs_root is associated with a root sd (sysfs_dentry). The root is freed when the root sd is released and kernfs_destory_root() simply invokes kernfs_remove() on the root sd. sysfs_remove_one() is updated to handle release of the root sd. Note that ps_iattr update in sysfs_remove_one() is trivially updated for readability. * Root sd's are now dynamically allocated using sysfs_new_dirent(). Update sysfs_alloc_ino() so that it gives out ino from 1 so that the root sd still gets ino 1. * While kernfs currently only points to the root sd, it'll soon grow fields which are specific to each hierarchy. As determining a given sd's root will be necessary, sd->s_dir.root is added. This backlink fits better as a separate field in sd; however, sd->s_dir is inside union with space to spare, so use it to save space and provide kernfs_root() accessor to determine the root sd. * As hierarchies may be destroyed now, each mount needs to hold onto the hierarchy it's attached to. Update sysfs_fill_super() and sysfs_kill_sb() so that they get and put the kernfs_root respectively. * sysfs_root is replaced with kernfs_root which is dynamically created by invoking kernfs_create_root() from sysfs_init(). This patch doesn't introduce any visible behavior changes. v2: kernfs_create_root() forgot to set @sd->priv. Fixed. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-28 19:54:40 +00:00
}
/*
* mount.c
*/
struct kernfs_super_info {
struct super_block *sb;
/*
* The root associated with this super_block. Each super_block is
* identified by the root and ns it's associated with.
*/
struct kernfs_root *root;
/*
* Each sb is associated with one namespace tag, currently the
* network namespace of the task which mounted this kernfs
* instance. If multiple tags become necessary, make the following
* an array and compare kernfs_node tag against every entry.
*/
const void *ns;
/* anchored at kernfs_root->supers, protected by kernfs_rwsem */
struct list_head node;
};
#define kernfs_info(SB) ((struct kernfs_super_info *)(SB->s_fs_info))
static inline struct kernfs_node *kernfs_dentry_node(struct dentry *dentry)
{
if (d_really_is_negative(dentry))
return NULL;
return d_inode(dentry)->i_private;
}
static inline void kernfs_set_rev(struct kernfs_node *parent,
struct dentry *dentry)
{
dentry->d_time = parent->dir.rev;
}
static inline void kernfs_inc_rev(struct kernfs_node *parent)
{
parent->dir.rev++;
}
static inline bool kernfs_dir_changed(struct kernfs_node *parent,
struct dentry *dentry)
{
if (parent->dir.rev != dentry->d_time)
return true;
return false;
}
extern const struct super_operations kernfs_sops;
extern struct kmem_cache *kernfs_node_cache, *kernfs_iattrs_cache;
/*
* inode.c
*/
extern const struct xattr_handler *kernfs_xattr_handlers[];
void kernfs_evict_inode(struct inode *inode);
int kernfs_iop_permission(struct user_namespace *mnt_userns,
struct inode *inode, int mask);
int kernfs_iop_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
struct iattr *iattr);
int kernfs_iop_getattr(struct user_namespace *mnt_userns,
const struct path *path, struct kstat *stat,
statx: Add a system call to make enhanced file info available Add a system call to make extended file information available, including file creation and some attribute flags where available through the underlying filesystem. The getattr inode operation is altered to take two additional arguments: a u32 request_mask and an unsigned int flags that indicate the synchronisation mode. This change is propagated to the vfs_getattr*() function. Functions like vfs_stat() are now inline wrappers around new functions vfs_statx() and vfs_statx_fd() to reduce stack usage. ======== OVERVIEW ======== The idea was initially proposed as a set of xattrs that could be retrieved with getxattr(), but the general preference proved to be for a new syscall with an extended stat structure. A number of requests were gathered for features to be included. The following have been included: (1) Make the fields a consistent size on all arches and make them large. (2) Spare space, request flags and information flags are provided for future expansion. (3) Better support for the y2038 problem [Arnd Bergmann] (tv_sec is an __s64). (4) Creation time: The SMB protocol carries the creation time, which could be exported by Samba, which will in turn help CIFS make use of FS-Cache as that can be used for coherency data (stx_btime). This is also specified in NFSv4 as a recommended attribute and could be exported by NFSD [Steve French]. (5) Lightweight stat: Ask for just those details of interest, and allow a netfs (such as NFS) to approximate anything not of interest, possibly without going to the server [Trond Myklebust, Ulrich Drepper, Andreas Dilger] (AT_STATX_DONT_SYNC). (6) Heavyweight stat: Force a netfs to go to the server, even if it thinks its cached attributes are up to date [Trond Myklebust] (AT_STATX_FORCE_SYNC). And the following have been left out for future extension: (7) Data version number: Could be used by userspace NFS servers [Aneesh Kumar]. Can also be used to modify fill_post_wcc() in NFSD which retrieves i_version directly, but has just called vfs_getattr(). It could get it from the kstat struct if it used vfs_xgetattr() instead. (There's disagreement on the exact semantics of a single field, since not all filesystems do this the same way). (8) BSD stat compatibility: Including more fields from the BSD stat such as creation time (st_btime) and inode generation number (st_gen) [Jeremy Allison, Bernd Schubert]. (9) Inode generation number: Useful for FUSE and userspace NFS servers [Bernd Schubert]. (This was asked for but later deemed unnecessary with the open-by-handle capability available and caused disagreement as to whether it's a security hole or not). (10) Extra coherency data may be useful in making backups [Andreas Dilger]. (No particular data were offered, but things like last backup timestamp, the data version number and the DOS archive bit would come into this category). (11) Allow the filesystem to indicate what it can/cannot provide: A filesystem can now say it doesn't support a standard stat feature if that isn't available, so if, for instance, inode numbers or UIDs don't exist or are fabricated locally... (This requires a separate system call - I have an fsinfo() call idea for this). (12) Store a 16-byte volume ID in the superblock that can be returned in struct xstat [Steve French]. (Deferred to fsinfo). (13) Include granularity fields in the time data to indicate the granularity of each of the times (NFSv4 time_delta) [Steve French]. (Deferred to fsinfo). (14) FS_IOC_GETFLAGS value. These could be translated to BSD's st_flags. Note that the Linux IOC flags are a mess and filesystems such as Ext4 define flags that aren't in linux/fs.h, so translation in the kernel may be a necessity (or, possibly, we provide the filesystem type too). (Some attributes are made available in stx_attributes, but the general feeling was that the IOC flags were to ext[234]-specific and shouldn't be exposed through statx this way). (15) Mask of features available on file (eg: ACLs, seclabel) [Brad Boyer, Michael Kerrisk]. (Deferred, probably to fsinfo. Finding out if there's an ACL or seclabal might require extra filesystem operations). (16) Femtosecond-resolution timestamps [Dave Chinner]. (A __reserved field has been left in the statx_timestamp struct for this - if there proves to be a need). (17) A set multiple attributes syscall to go with this. =============== NEW SYSTEM CALL =============== The new system call is: int ret = statx(int dfd, const char *filename, unsigned int flags, unsigned int mask, struct statx *buffer); The dfd, filename and flags parameters indicate the file to query, in a similar way to fstatat(). There is no equivalent of lstat() as that can be emulated with statx() by passing AT_SYMLINK_NOFOLLOW in flags. There is also no equivalent of fstat() as that can be emulated by passing a NULL filename to statx() with the fd of interest in dfd. Whether or not statx() synchronises the attributes with the backing store can be controlled by OR'ing a value into the flags argument (this typically only affects network filesystems): (1) AT_STATX_SYNC_AS_STAT tells statx() to behave as stat() does in this respect. (2) AT_STATX_FORCE_SYNC will require a network filesystem to synchronise its attributes with the server - which might require data writeback to occur to get the timestamps correct. (3) AT_STATX_DONT_SYNC will suppress synchronisation with the server in a network filesystem. The resulting values should be considered approximate. mask is a bitmask indicating the fields in struct statx that are of interest to the caller. The user should set this to STATX_BASIC_STATS to get the basic set returned by stat(). It should be noted that asking for more information may entail extra I/O operations. buffer points to the destination for the data. This must be 256 bytes in size. ====================== MAIN ATTRIBUTES RECORD ====================== The following structures are defined in which to return the main attribute set: struct statx_timestamp { __s64 tv_sec; __s32 tv_nsec; __s32 __reserved; }; struct statx { __u32 stx_mask; __u32 stx_blksize; __u64 stx_attributes; __u32 stx_nlink; __u32 stx_uid; __u32 stx_gid; __u16 stx_mode; __u16 __spare0[1]; __u64 stx_ino; __u64 stx_size; __u64 stx_blocks; __u64 __spare1[1]; struct statx_timestamp stx_atime; struct statx_timestamp stx_btime; struct statx_timestamp stx_ctime; struct statx_timestamp stx_mtime; __u32 stx_rdev_major; __u32 stx_rdev_minor; __u32 stx_dev_major; __u32 stx_dev_minor; __u64 __spare2[14]; }; The defined bits in request_mask and stx_mask are: STATX_TYPE Want/got stx_mode & S_IFMT STATX_MODE Want/got stx_mode & ~S_IFMT STATX_NLINK Want/got stx_nlink STATX_UID Want/got stx_uid STATX_GID Want/got stx_gid STATX_ATIME Want/got stx_atime{,_ns} STATX_MTIME Want/got stx_mtime{,_ns} STATX_CTIME Want/got stx_ctime{,_ns} STATX_INO Want/got stx_ino STATX_SIZE Want/got stx_size STATX_BLOCKS Want/got stx_blocks STATX_BASIC_STATS [The stuff in the normal stat struct] STATX_BTIME Want/got stx_btime{,_ns} STATX_ALL [All currently available stuff] stx_btime is the file creation time, stx_mask is a bitmask indicating the data provided and __spares*[] are where as-yet undefined fields can be placed. Time fields are structures with separate seconds and nanoseconds fields plus a reserved field in case we want to add even finer resolution. Note that times will be negative if before 1970; in such a case, the nanosecond fields will also be negative if not zero. The bits defined in the stx_attributes field convey information about a file, how it is accessed, where it is and what it does. The following attributes map to FS_*_FL flags and are the same numerical value: STATX_ATTR_COMPRESSED File is compressed by the fs STATX_ATTR_IMMUTABLE File is marked immutable STATX_ATTR_APPEND File is append-only STATX_ATTR_NODUMP File is not to be dumped STATX_ATTR_ENCRYPTED File requires key to decrypt in fs Within the kernel, the supported flags are listed by: KSTAT_ATTR_FS_IOC_FLAGS [Are any other IOC flags of sufficient general interest to be exposed through this interface?] New flags include: STATX_ATTR_AUTOMOUNT Object is an automount trigger These are for the use of GUI tools that might want to mark files specially, depending on what they are. Fields in struct statx come in a number of classes: (0) stx_dev_*, stx_blksize. These are local system information and are always available. (1) stx_mode, stx_nlinks, stx_uid, stx_gid, stx_[amc]time, stx_ino, stx_size, stx_blocks. These will be returned whether the caller asks for them or not. The corresponding bits in stx_mask will be set to indicate whether they actually have valid values. If the caller didn't ask for them, then they may be approximated. For example, NFS won't waste any time updating them from the server, unless as a byproduct of updating something requested. If the values don't actually exist for the underlying object (such as UID or GID on a DOS file), then the bit won't be set in the stx_mask, even if the caller asked for the value. In such a case, the returned value will be a fabrication. Note that there are instances where the type might not be valid, for instance Windows reparse points. (2) stx_rdev_*. This will be set only if stx_mode indicates we're looking at a blockdev or a chardev, otherwise will be 0. (3) stx_btime. Similar to (1), except this will be set to 0 if it doesn't exist. ======= TESTING ======= The following test program can be used to test the statx system call: samples/statx/test-statx.c Just compile and run, passing it paths to the files you want to examine. The file is built automatically if CONFIG_SAMPLES is enabled. Here's some example output. Firstly, an NFS directory that crosses to another FSID. Note that the AUTOMOUNT attribute is set because transiting this directory will cause d_automount to be invoked by the VFS. [root@andromeda ~]# /tmp/test-statx -A /warthog/data statx(/warthog/data) = 0 results=7ff Size: 4096 Blocks: 8 IO Block: 1048576 directory Device: 00:26 Inode: 1703937 Links: 125 Access: (3777/drwxrwxrwx) Uid: 0 Gid: 4041 Access: 2016-11-24 09:02:12.219699527+0000 Modify: 2016-11-17 10:44:36.225653653+0000 Change: 2016-11-17 10:44:36.225653653+0000 Attributes: 0000000000001000 (-------- -------- -------- -------- -------- -------- ---m---- --------) Secondly, the result of automounting on that directory. [root@andromeda ~]# /tmp/test-statx /warthog/data statx(/warthog/data) = 0 results=7ff Size: 4096 Blocks: 8 IO Block: 1048576 directory Device: 00:27 Inode: 2 Links: 125 Access: (3777/drwxrwxrwx) Uid: 0 Gid: 4041 Access: 2016-11-24 09:02:12.219699527+0000 Modify: 2016-11-17 10:44:36.225653653+0000 Change: 2016-11-17 10:44:36.225653653+0000 Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2017-01-31 16:46:22 +00:00
u32 request_mask, unsigned int query_flags);
ssize_t kernfs_iop_listxattr(struct dentry *dentry, char *buf, size_t size);
int __kernfs_setattr(struct kernfs_node *kn, const struct iattr *iattr);
/*
* dir.c
*/
extern const struct dentry_operations kernfs_dops;
extern const struct file_operations kernfs_dir_fops;
extern const struct inode_operations kernfs_dir_iops;
struct kernfs_node *kernfs_get_active(struct kernfs_node *kn);
void kernfs_put_active(struct kernfs_node *kn);
int kernfs_add_one(struct kernfs_node *kn);
struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
const char *name, umode_t mode,
kuid_t uid, kgid_t gid,
unsigned flags);
/*
* file.c
*/
extern const struct file_operations kernfs_file_fops;
void kernfs_drain_open_files(struct kernfs_node *kn);
/*
* symlink.c
*/
extern const struct inode_operations kernfs_symlink_iops;
#endif /* __KERNFS_INTERNAL_H */