linux/arch/blackfin/Makefile

109 lines
3.0 KiB
Makefile
Raw Normal View History

blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-06 21:50:22 +00:00
#
# arch/blackfin/Makefile
#
# This file is subject to the terms and conditions of the GNU General Public
# License. See the file "COPYING" in the main directory of this archive
# for more details.
#
CROSS_COMPILE ?= bfin-uclinux-
LDFLAGS_vmlinux := -X
OBJCOPYFLAGS := -O binary -R .note -R .comment -S
GZFLAGS := -9
CFLAGS_MODULE += -mlong-calls
KALLSYMS += --symbol-prefix=_
KBUILD_DEFCONFIG := BF537-STAMP_defconfig
blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-06 21:50:22 +00:00
# setup the machine name and the machine dependent settings
machine-$(CONFIG_BF531) := bf533
machine-$(CONFIG_BF532) := bf533
machine-$(CONFIG_BF533) := bf533
machine-$(CONFIG_BF534) := bf537
machine-$(CONFIG_BF536) := bf537
machine-$(CONFIG_BF537) := bf537
machine-$(CONFIG_BF542) := bf548
machine-$(CONFIG_BF544) := bf548
machine-$(CONFIG_BF548) := bf548
machine-$(CONFIG_BF549) := bf548
blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-06 21:50:22 +00:00
machine-$(CONFIG_BF561) := bf561
MACHINE := $(machine-y)
export MACHINE
cpu-$(CONFIG_BF531) := bf531
cpu-$(CONFIG_BF532) := bf532
cpu-$(CONFIG_BF533) := bf533
cpu-$(CONFIG_BF534) := bf534
cpu-$(CONFIG_BF536) := bf536
cpu-$(CONFIG_BF537) := bf537
cpu-$(CONFIG_BF542) := bf542
cpu-$(CONFIG_BF544) := bf544
cpu-$(CONFIG_BF548) := bf548
cpu-$(CONFIG_BF549) := bf549
cpu-$(CONFIG_BF561) := bf561
rev-$(CONFIG_BF_REV_0_0) := 0.0
rev-$(CONFIG_BF_REV_0_1) := 0.1
rev-$(CONFIG_BF_REV_0_2) := 0.2
rev-$(CONFIG_BF_REV_0_3) := 0.3
rev-$(CONFIG_BF_REV_0_4) := 0.4
rev-$(CONFIG_BF_REV_0_5) := 0.5
rev-$(CONFIG_BF_REV_NONE) := none
rev-$(CONFIG_BF_REV_ANY) := any
CFLAGS += -mcpu=$(cpu-y)-$(rev-y)
AFLAGS += -mcpu=$(cpu-y)-$(rev-y)
blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-06 21:50:22 +00:00
head-y := arch/$(ARCH)/mach-$(MACHINE)/head.o arch/$(ARCH)/kernel/init_task.o
core-y += arch/$(ARCH)/kernel/ arch/$(ARCH)/mm/ arch/$(ARCH)/mach-common/
# If we have a machine-specific directory, then include it in the build.
ifneq ($(machine-y),)
core-y += arch/$(ARCH)/mach-$(MACHINE)/
core-y += arch/$(ARCH)/mach-$(MACHINE)/boards/
endif
libs-y += arch/$(ARCH)/lib/
drivers-$(CONFIG_OPROFILE) += arch/$(ARCH)/oprofile/
# Update machine arch symlinks if something which affects
# them changed. We use .mach to indicate when they were updated
# last, otherwise make uses the target directory mtime.
include/asm-blackfin/.mach: $(wildcard include/config/arch/*.h) include/config/auto.conf
@echo ' SYMLINK include/asm-$(ARCH)/mach-$(MACHINE) -> include/asm-$(ARCH)/mach'
ifneq ($(KBUILD_SRC),)
$(Q)mkdir -p include/asm-$(ARCH)
$(Q)ln -fsn $(srctree)/include/asm-$(ARCH)/mach-$(MACHINE) include/asm-$(ARCH)/mach
else
$(Q)ln -fsn mach-$(MACHINE) include/asm-$(ARCH)/mach
endif
@touch $@
CLEAN_FILES += \
include/asm-$(ARCH)/asm-offsets.h \
arch/$(ARCH)/kernel/asm-offsets.s \
include/asm-$(ARCH)/mach \
include/asm-$(ARCH)/.mach
archprepare: include/asm-blackfin/.mach
archclean:
$(Q)$(MAKE) $(clean)=$(boot)
all: vmImage
boot := arch/$(ARCH)/boot
BOOT_TARGETS = vmImage
.PHONY: $(BOOT_TARGETS)
$(BOOT_TARGETS): vmlinux
$(Q)$(MAKE) $(build)=$(boot) $(boot)/$@
define archhelp
echo '* vmImage - Kernel-only image for U-Boot (arch/$(ARCH)/boot/vmImage)'
endef