2007-07-06 09:20:49 +00:00
|
|
|
/*
|
|
|
|
* 8259 interrupt controller emulation
|
|
|
|
*
|
|
|
|
* Copyright (c) 2003-2004 Fabrice Bellard
|
|
|
|
* Copyright (c) 2007 Intel Corporation
|
2010-10-06 12:23:22 +00:00
|
|
|
* Copyright 2009 Red Hat, Inc. and/or its affiliates.
|
2007-07-06 09:20:49 +00:00
|
|
|
*
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
|
|
* in the Software without restriction, including without limitation the rights
|
|
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
|
|
* furnished to do so, subject to the following conditions:
|
|
|
|
*
|
|
|
|
* The above copyright notice and this permission notice shall be included in
|
|
|
|
* all copies or substantial portions of the Software.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
|
|
* THE SOFTWARE.
|
|
|
|
* Authors:
|
|
|
|
* Yaozu (Eddie) Dong <Eddie.dong@intel.com>
|
|
|
|
* Port from Qemu.
|
|
|
|
*/
|
KVM: x86: Unify pr_fmt to use module name for all KVM modules
Define pr_fmt using KBUILD_MODNAME for all KVM x86 code so that printks
use consistent formatting across common x86, Intel, and AMD code. In
addition to providing consistent print formatting, using KBUILD_MODNAME,
e.g. kvm_amd and kvm_intel, allows referencing SVM and VMX (and SEV and
SGX and ...) as technologies without generating weird messages, and
without causing naming conflicts with other kernel code, e.g. "SEV: ",
"tdx: ", "sgx: " etc.. are all used by the kernel for non-KVM subsystems.
Opportunistically move away from printk() for prints that need to be
modified anyways, e.g. to drop a manual "kvm: " prefix.
Opportunistically convert a few SGX WARNs that are similarly modified to
WARN_ONCE; in the very unlikely event that the WARNs fire, odds are good
that they would fire repeatedly and spam the kernel log without providing
unique information in each print.
Note, defining pr_fmt yields undesirable results for code that uses KVM's
printk wrappers, e.g. vcpu_unimpl(). But, that's a pre-existing problem
as SVM/kvm_amd already defines a pr_fmt, and thankfully use of KVM's
wrappers is relatively limited in KVM x86 code.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paul Durrant <paul@xen.org>
Message-Id: <20221130230934.1014142-35-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-30 23:09:18 +00:00
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
|
2007-07-06 09:20:49 +00:00
|
|
|
#include <linux/mm.h>
|
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
|
|
|
#include <linux/slab.h>
|
2008-12-21 20:48:32 +00:00
|
|
|
#include <linux/bitops.h>
|
2007-07-06 09:20:49 +00:00
|
|
|
#include "irq.h"
|
2007-12-16 09:02:48 +00:00
|
|
|
|
|
|
|
#include <linux/kvm_host.h>
|
2009-07-07 13:00:57 +00:00
|
|
|
#include "trace.h"
|
2007-07-06 09:20:49 +00:00
|
|
|
|
2011-09-12 09:26:22 +00:00
|
|
|
#define pr_pic_unimpl(fmt, ...) \
|
KVM: x86: Unify pr_fmt to use module name for all KVM modules
Define pr_fmt using KBUILD_MODNAME for all KVM x86 code so that printks
use consistent formatting across common x86, Intel, and AMD code. In
addition to providing consistent print formatting, using KBUILD_MODNAME,
e.g. kvm_amd and kvm_intel, allows referencing SVM and VMX (and SEV and
SGX and ...) as technologies without generating weird messages, and
without causing naming conflicts with other kernel code, e.g. "SEV: ",
"tdx: ", "sgx: " etc.. are all used by the kernel for non-KVM subsystems.
Opportunistically move away from printk() for prints that need to be
modified anyways, e.g. to drop a manual "kvm: " prefix.
Opportunistically convert a few SGX WARNs that are similarly modified to
WARN_ONCE; in the very unlikely event that the WARNs fire, odds are good
that they would fire repeatedly and spam the kernel log without providing
unique information in each print.
Note, defining pr_fmt yields undesirable results for code that uses KVM's
printk wrappers, e.g. vcpu_unimpl(). But, that's a pre-existing problem
as SVM/kvm_amd already defines a pr_fmt, and thankfully use of KVM's
wrappers is relatively limited in KVM x86 code.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paul Durrant <paul@xen.org>
Message-Id: <20221130230934.1014142-35-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-30 23:09:18 +00:00
|
|
|
pr_err_ratelimited("pic: " fmt, ## __VA_ARGS__)
|
2011-09-12 09:26:22 +00:00
|
|
|
|
2010-05-03 14:34:34 +00:00
|
|
|
static void pic_irq_request(struct kvm *kvm, int level);
|
|
|
|
|
2010-02-24 09:41:58 +00:00
|
|
|
static void pic_lock(struct kvm_pic *s)
|
|
|
|
__acquires(&s->lock)
|
|
|
|
{
|
2010-09-19 16:44:07 +00:00
|
|
|
spin_lock(&s->lock);
|
2010-02-24 09:41:58 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void pic_unlock(struct kvm_pic *s)
|
|
|
|
__releases(&s->lock)
|
|
|
|
{
|
|
|
|
bool wakeup = s->wakeup_needed;
|
2017-04-07 08:50:36 +00:00
|
|
|
struct kvm_vcpu *vcpu;
|
2021-11-16 16:04:02 +00:00
|
|
|
unsigned long i;
|
2010-02-24 09:41:58 +00:00
|
|
|
|
|
|
|
s->wakeup_needed = false;
|
|
|
|
|
2010-09-19 16:44:07 +00:00
|
|
|
spin_unlock(&s->lock);
|
2010-02-24 09:41:58 +00:00
|
|
|
|
|
|
|
if (wakeup) {
|
KVM: Search the LAPIC's for one that will accept a PIC interrupt
Older versions of 32-bit linux have a "Checking 'hlt' instruction"
test where they repeatedly call the 'hlt' instruction, and then
expect a timer interrupt to kick the CPU out of halt. This happens
before any LAPIC or IOAPIC setup happens, which means that all of
the APIC's are in virtual wire mode at this point. Unfortunately,
the current implementation of virtual wire mode is hardcoded to
only kick the BSP, so if a crash+kexec occurs on a different
vcpu, it will never get kicked.
This patch makes pic_unlock() do the equivalent of
kvm_irq_delivery_to_apic() for the IOAPIC code. That is, it runs
through all of the vcpus looking for one that is in virtual wire
mode. In the normal case where LAPICs and IOAPICs are configured,
this won't be used at all. In the bootstrap phase of a modern
OS, before the LAPICs and IOAPICs are configured, this will have
exactly the same behavior as today; VCPU0 is always looked at
first, so it will always get out of the loop after the first
iteration. This will only go through the loop more than once
during a kexec/kdump, in which case it will only do it a few times
until the kexec'ed kernel programs the LAPIC and IOAPIC.
Signed-off-by: Chris Lalancette <clalance@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2010-06-21 15:29:40 +00:00
|
|
|
kvm_for_each_vcpu(i, vcpu, s->kvm) {
|
|
|
|
if (kvm_apic_accept_pic_intr(vcpu)) {
|
2017-04-07 08:50:36 +00:00
|
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
|
|
kvm_vcpu_kick(vcpu);
|
|
|
|
return;
|
KVM: Search the LAPIC's for one that will accept a PIC interrupt
Older versions of 32-bit linux have a "Checking 'hlt' instruction"
test where they repeatedly call the 'hlt' instruction, and then
expect a timer interrupt to kick the CPU out of halt. This happens
before any LAPIC or IOAPIC setup happens, which means that all of
the APIC's are in virtual wire mode at this point. Unfortunately,
the current implementation of virtual wire mode is hardcoded to
only kick the BSP, so if a crash+kexec occurs on a different
vcpu, it will never get kicked.
This patch makes pic_unlock() do the equivalent of
kvm_irq_delivery_to_apic() for the IOAPIC code. That is, it runs
through all of the vcpus looking for one that is in virtual wire
mode. In the normal case where LAPICs and IOAPICs are configured,
this won't be used at all. In the bootstrap phase of a modern
OS, before the LAPICs and IOAPICs are configured, this will have
exactly the same behavior as today; VCPU0 is always looked at
first, so it will always get out of the loop after the first
iteration. This will only go through the loop more than once
during a kexec/kdump, in which case it will only do it a few times
until the kexec'ed kernel programs the LAPIC and IOAPIC.
Signed-off-by: Chris Lalancette <clalance@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2010-06-21 15:29:40 +00:00
|
|
|
}
|
|
|
|
}
|
2010-02-24 09:41:58 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-07-07 11:45:39 +00:00
|
|
|
static void pic_clear_isr(struct kvm_kpic_state *s, int irq)
|
|
|
|
{
|
|
|
|
s->isr &= ~(1 << irq);
|
2009-08-04 12:30:28 +00:00
|
|
|
if (s != &s->pics_state->pics[0])
|
|
|
|
irq += 8;
|
2009-08-24 08:54:25 +00:00
|
|
|
/*
|
|
|
|
* We are dropping lock while calling ack notifiers since ack
|
|
|
|
* notifier callbacks for assigned devices call into PIC recursively.
|
|
|
|
* Other interrupt may be delivered to PIC while lock is dropped but
|
|
|
|
* it should be safe since PIC state is already updated at this stage.
|
|
|
|
*/
|
2010-02-24 09:41:58 +00:00
|
|
|
pic_unlock(s->pics_state);
|
2009-08-04 12:30:28 +00:00
|
|
|
kvm_notify_acked_irq(s->pics_state->kvm, SELECT_PIC(irq), irq);
|
2010-02-24 09:41:58 +00:00
|
|
|
pic_lock(s->pics_state);
|
2008-09-24 23:28:34 +00:00
|
|
|
}
|
|
|
|
|
2007-07-06 09:20:49 +00:00
|
|
|
/*
|
|
|
|
* set irq level. If an edge is detected, then the IRR is set to 1
|
|
|
|
*/
|
2009-02-04 15:28:14 +00:00
|
|
|
static inline int pic_set_irq1(struct kvm_kpic_state *s, int irq, int level)
|
2007-07-06 09:20:49 +00:00
|
|
|
{
|
2009-02-04 15:28:14 +00:00
|
|
|
int mask, ret = 1;
|
2007-07-06 09:20:49 +00:00
|
|
|
mask = 1 << irq;
|
|
|
|
if (s->elcr & mask) /* level triggered */
|
|
|
|
if (level) {
|
2009-02-04 15:28:14 +00:00
|
|
|
ret = !(s->irr & mask);
|
2007-07-06 09:20:49 +00:00
|
|
|
s->irr |= mask;
|
|
|
|
s->last_irr |= mask;
|
|
|
|
} else {
|
|
|
|
s->irr &= ~mask;
|
|
|
|
s->last_irr &= ~mask;
|
|
|
|
}
|
|
|
|
else /* edge triggered */
|
|
|
|
if (level) {
|
2009-02-04 15:28:14 +00:00
|
|
|
if ((s->last_irr & mask) == 0) {
|
|
|
|
ret = !(s->irr & mask);
|
2007-07-06 09:20:49 +00:00
|
|
|
s->irr |= mask;
|
2009-02-04 15:28:14 +00:00
|
|
|
}
|
2007-07-06 09:20:49 +00:00
|
|
|
s->last_irr |= mask;
|
|
|
|
} else
|
|
|
|
s->last_irr &= ~mask;
|
2009-02-04 15:28:14 +00:00
|
|
|
|
|
|
|
return (s->imr & mask) ? -1 : ret;
|
2007-07-06 09:20:49 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* return the highest priority found in mask (highest = smallest
|
|
|
|
* number). Return 8 if no irq
|
|
|
|
*/
|
|
|
|
static inline int get_priority(struct kvm_kpic_state *s, int mask)
|
|
|
|
{
|
|
|
|
int priority;
|
|
|
|
if (mask == 0)
|
|
|
|
return 8;
|
|
|
|
priority = 0;
|
|
|
|
while ((mask & (1 << ((priority + s->priority_add) & 7))) == 0)
|
|
|
|
priority++;
|
|
|
|
return priority;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* return the pic wanted interrupt. return -1 if none
|
|
|
|
*/
|
|
|
|
static int pic_get_irq(struct kvm_kpic_state *s)
|
|
|
|
{
|
|
|
|
int mask, cur_priority, priority;
|
|
|
|
|
|
|
|
mask = s->irr & ~s->imr;
|
|
|
|
priority = get_priority(s, mask);
|
|
|
|
if (priority == 8)
|
|
|
|
return -1;
|
|
|
|
/*
|
|
|
|
* compute current priority. If special fully nested mode on the
|
|
|
|
* master, the IRQ coming from the slave is not taken into account
|
|
|
|
* for the priority computation.
|
|
|
|
*/
|
|
|
|
mask = s->isr;
|
|
|
|
if (s->special_fully_nested_mode && s == &s->pics_state->pics[0])
|
|
|
|
mask &= ~(1 << 2);
|
|
|
|
cur_priority = get_priority(s, mask);
|
|
|
|
if (priority < cur_priority)
|
|
|
|
/*
|
|
|
|
* higher priority found: an irq should be generated
|
|
|
|
*/
|
|
|
|
return (priority + s->priority_add) & 7;
|
|
|
|
else
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* raise irq to CPU if necessary. must be called every time the active
|
|
|
|
* irq may change
|
|
|
|
*/
|
|
|
|
static void pic_update_irq(struct kvm_pic *s)
|
|
|
|
{
|
|
|
|
int irq2, irq;
|
|
|
|
|
|
|
|
irq2 = pic_get_irq(&s->pics[1]);
|
|
|
|
if (irq2 >= 0) {
|
|
|
|
/*
|
|
|
|
* if irq request by slave pic, signal master PIC
|
|
|
|
*/
|
|
|
|
pic_set_irq1(&s->pics[0], 2, 1);
|
|
|
|
pic_set_irq1(&s->pics[0], 2, 0);
|
|
|
|
}
|
|
|
|
irq = pic_get_irq(&s->pics[0]);
|
2010-05-03 14:38:06 +00:00
|
|
|
pic_irq_request(s->kvm, irq >= 0);
|
2007-07-06 09:20:49 +00:00
|
|
|
}
|
|
|
|
|
2007-07-26 08:05:18 +00:00
|
|
|
void kvm_pic_update_irq(struct kvm_pic *s)
|
|
|
|
{
|
2010-02-24 09:41:58 +00:00
|
|
|
pic_lock(s);
|
2007-07-26 08:05:18 +00:00
|
|
|
pic_update_irq(s);
|
2010-02-24 09:41:58 +00:00
|
|
|
pic_unlock(s);
|
2007-07-26 08:05:18 +00:00
|
|
|
}
|
|
|
|
|
2012-07-19 10:45:20 +00:00
|
|
|
int kvm_pic_set_irq(struct kvm_pic *s, int irq, int irq_source_id, int level)
|
2007-07-06 09:20:49 +00:00
|
|
|
{
|
2012-08-14 16:20:28 +00:00
|
|
|
int ret, irq_level;
|
|
|
|
|
|
|
|
BUG_ON(irq < 0 || irq >= PIC_NUM_PINS);
|
2007-07-06 09:20:49 +00:00
|
|
|
|
2010-02-24 09:41:58 +00:00
|
|
|
pic_lock(s);
|
2012-08-14 16:20:28 +00:00
|
|
|
irq_level = __kvm_irq_line_state(&s->irq_states[irq],
|
|
|
|
irq_source_id, level);
|
|
|
|
ret = pic_set_irq1(&s->pics[irq >> 3], irq & 7, irq_level);
|
|
|
|
pic_update_irq(s);
|
|
|
|
trace_kvm_pic_set_irq(irq >> 3, irq & 7, s->pics[irq >> 3].elcr,
|
|
|
|
s->pics[irq >> 3].imr, ret == 0);
|
2010-02-24 09:41:58 +00:00
|
|
|
pic_unlock(s);
|
2009-02-04 15:28:14 +00:00
|
|
|
|
|
|
|
return ret;
|
2007-07-06 09:20:49 +00:00
|
|
|
}
|
|
|
|
|
2012-07-19 10:45:20 +00:00
|
|
|
void kvm_pic_clear_all(struct kvm_pic *s, int irq_source_id)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
pic_lock(s);
|
|
|
|
for (i = 0; i < PIC_NUM_PINS; i++)
|
|
|
|
__clear_bit(irq_source_id, &s->irq_states[i]);
|
|
|
|
pic_unlock(s);
|
|
|
|
}
|
|
|
|
|
2007-07-06 09:20:49 +00:00
|
|
|
/*
|
|
|
|
* acknowledge interrupt 'irq'
|
|
|
|
*/
|
|
|
|
static inline void pic_intack(struct kvm_kpic_state *s, int irq)
|
|
|
|
{
|
2008-07-07 11:45:39 +00:00
|
|
|
s->isr |= 1 << irq;
|
2007-07-06 09:20:49 +00:00
|
|
|
/*
|
|
|
|
* We don't clear a level sensitive interrupt here
|
|
|
|
*/
|
|
|
|
if (!(s->elcr & (1 << irq)))
|
|
|
|
s->irr &= ~(1 << irq);
|
2009-08-24 08:54:25 +00:00
|
|
|
|
|
|
|
if (s->auto_eoi) {
|
|
|
|
if (s->rotate_on_auto_eoi)
|
|
|
|
s->priority_add = (irq + 1) & 7;
|
|
|
|
pic_clear_isr(s, irq);
|
|
|
|
}
|
|
|
|
|
2007-07-06 09:20:49 +00:00
|
|
|
}
|
|
|
|
|
2008-07-26 20:01:00 +00:00
|
|
|
int kvm_pic_read_irq(struct kvm *kvm)
|
2007-07-06 09:20:49 +00:00
|
|
|
{
|
|
|
|
int irq, irq2, intno;
|
2017-04-07 08:50:23 +00:00
|
|
|
struct kvm_pic *s = kvm->arch.vpic;
|
2007-07-06 09:20:49 +00:00
|
|
|
|
2012-12-10 12:05:55 +00:00
|
|
|
s->output = 0;
|
|
|
|
|
2010-02-24 09:41:58 +00:00
|
|
|
pic_lock(s);
|
2007-07-06 09:20:49 +00:00
|
|
|
irq = pic_get_irq(&s->pics[0]);
|
|
|
|
if (irq >= 0) {
|
|
|
|
pic_intack(&s->pics[0], irq);
|
|
|
|
if (irq == 2) {
|
|
|
|
irq2 = pic_get_irq(&s->pics[1]);
|
|
|
|
if (irq2 >= 0)
|
|
|
|
pic_intack(&s->pics[1], irq2);
|
|
|
|
else
|
|
|
|
/*
|
|
|
|
* spurious IRQ on slave controller
|
|
|
|
*/
|
|
|
|
irq2 = 7;
|
|
|
|
intno = s->pics[1].irq_base + irq2;
|
|
|
|
} else
|
|
|
|
intno = s->pics[0].irq_base + irq;
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* spurious IRQ on host controller
|
|
|
|
*/
|
|
|
|
irq = 7;
|
|
|
|
intno = s->pics[0].irq_base + irq;
|
|
|
|
}
|
|
|
|
pic_update_irq(s);
|
2010-02-24 09:41:58 +00:00
|
|
|
pic_unlock(s);
|
2007-07-06 09:20:49 +00:00
|
|
|
|
|
|
|
return intno;
|
|
|
|
}
|
|
|
|
|
2017-04-07 08:50:37 +00:00
|
|
|
static void kvm_pic_reset(struct kvm_kpic_state *s)
|
2007-07-06 09:20:49 +00:00
|
|
|
{
|
2021-11-16 16:04:02 +00:00
|
|
|
int irq;
|
|
|
|
unsigned long i;
|
2011-12-15 10:38:40 +00:00
|
|
|
struct kvm_vcpu *vcpu;
|
2012-09-03 11:47:25 +00:00
|
|
|
u8 edge_irr = s->irr & ~s->elcr;
|
2011-12-15 10:38:40 +00:00
|
|
|
bool found = false;
|
2008-07-26 20:01:00 +00:00
|
|
|
|
2007-07-06 09:20:49 +00:00
|
|
|
s->last_irr = 0;
|
2012-09-03 11:47:25 +00:00
|
|
|
s->irr &= s->elcr;
|
2007-07-06 09:20:49 +00:00
|
|
|
s->imr = 0;
|
|
|
|
s->priority_add = 0;
|
|
|
|
s->special_mask = 0;
|
2012-09-03 11:47:25 +00:00
|
|
|
s->read_reg_select = 0;
|
|
|
|
if (!s->init4) {
|
|
|
|
s->special_fully_nested_mode = 0;
|
|
|
|
s->auto_eoi = 0;
|
|
|
|
}
|
|
|
|
s->init_state = 1;
|
2009-08-24 08:54:18 +00:00
|
|
|
|
2011-12-15 10:38:40 +00:00
|
|
|
kvm_for_each_vcpu(i, vcpu, s->pics_state->kvm)
|
|
|
|
if (kvm_apic_accept_pic_intr(vcpu)) {
|
|
|
|
found = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
if (!found)
|
|
|
|
return;
|
|
|
|
|
|
|
|
for (irq = 0; irq < PIC_NUM_PINS/2; irq++)
|
2012-09-03 11:47:25 +00:00
|
|
|
if (edge_irr & (1 << irq))
|
2011-12-15 10:38:40 +00:00
|
|
|
pic_clear_isr(s, irq);
|
2007-07-06 09:20:49 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void pic_ioport_write(void *opaque, u32 addr, u32 val)
|
|
|
|
{
|
|
|
|
struct kvm_kpic_state *s = opaque;
|
|
|
|
int priority, cmd, irq;
|
|
|
|
|
|
|
|
addr &= 1;
|
|
|
|
if (addr == 0) {
|
|
|
|
if (val & 0x10) {
|
|
|
|
s->init4 = val & 1;
|
|
|
|
if (val & 0x02)
|
2011-09-12 09:26:22 +00:00
|
|
|
pr_pic_unimpl("single mode not supported");
|
2007-07-06 09:20:49 +00:00
|
|
|
if (val & 0x08)
|
2011-09-12 09:26:22 +00:00
|
|
|
pr_pic_unimpl(
|
2012-09-03 11:47:25 +00:00
|
|
|
"level sensitive irq not supported");
|
|
|
|
kvm_pic_reset(s);
|
2007-07-06 09:20:49 +00:00
|
|
|
} else if (val & 0x08) {
|
|
|
|
if (val & 0x04)
|
|
|
|
s->poll = 1;
|
|
|
|
if (val & 0x02)
|
|
|
|
s->read_reg_select = val & 1;
|
|
|
|
if (val & 0x40)
|
|
|
|
s->special_mask = (val >> 5) & 1;
|
|
|
|
} else {
|
|
|
|
cmd = val >> 5;
|
|
|
|
switch (cmd) {
|
|
|
|
case 0:
|
|
|
|
case 4:
|
|
|
|
s->rotate_on_auto_eoi = cmd >> 2;
|
|
|
|
break;
|
|
|
|
case 1: /* end of interrupt */
|
|
|
|
case 5:
|
|
|
|
priority = get_priority(s, s->isr);
|
|
|
|
if (priority != 8) {
|
|
|
|
irq = (priority + s->priority_add) & 7;
|
|
|
|
if (cmd == 5)
|
|
|
|
s->priority_add = (irq + 1) & 7;
|
2009-08-24 08:54:25 +00:00
|
|
|
pic_clear_isr(s, irq);
|
2007-07-06 09:20:49 +00:00
|
|
|
pic_update_irq(s->pics_state);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 3:
|
|
|
|
irq = val & 7;
|
2008-07-07 11:45:39 +00:00
|
|
|
pic_clear_isr(s, irq);
|
2007-07-06 09:20:49 +00:00
|
|
|
pic_update_irq(s->pics_state);
|
|
|
|
break;
|
|
|
|
case 6:
|
|
|
|
s->priority_add = (val + 1) & 7;
|
|
|
|
pic_update_irq(s->pics_state);
|
|
|
|
break;
|
|
|
|
case 7:
|
|
|
|
irq = val & 7;
|
|
|
|
s->priority_add = (irq + 1) & 7;
|
2008-07-07 11:45:39 +00:00
|
|
|
pic_clear_isr(s, irq);
|
2007-07-06 09:20:49 +00:00
|
|
|
pic_update_irq(s->pics_state);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break; /* no operation */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else
|
|
|
|
switch (s->init_state) {
|
2010-07-15 09:24:37 +00:00
|
|
|
case 0: { /* normal mode */
|
|
|
|
u8 imr_diff = s->imr ^ val,
|
|
|
|
off = (s == &s->pics_state->pics[0]) ? 0 : 8;
|
2007-07-06 09:20:49 +00:00
|
|
|
s->imr = val;
|
2010-07-15 09:24:37 +00:00
|
|
|
for (irq = 0; irq < PIC_NUM_PINS/2; irq++)
|
|
|
|
if (imr_diff & (1 << irq))
|
|
|
|
kvm_fire_mask_notifiers(
|
|
|
|
s->pics_state->kvm,
|
|
|
|
SELECT_PIC(irq + off),
|
|
|
|
irq + off,
|
|
|
|
!!(s->imr & (1 << irq)));
|
2007-07-06 09:20:49 +00:00
|
|
|
pic_update_irq(s->pics_state);
|
|
|
|
break;
|
2010-07-15 09:24:37 +00:00
|
|
|
}
|
2007-07-06 09:20:49 +00:00
|
|
|
case 1:
|
|
|
|
s->irq_base = val & 0xf8;
|
|
|
|
s->init_state = 2;
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
if (s->init4)
|
|
|
|
s->init_state = 3;
|
|
|
|
else
|
|
|
|
s->init_state = 0;
|
|
|
|
break;
|
|
|
|
case 3:
|
|
|
|
s->special_fully_nested_mode = (val >> 4) & 1;
|
|
|
|
s->auto_eoi = (val >> 1) & 1;
|
|
|
|
s->init_state = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static u32 pic_poll_read(struct kvm_kpic_state *s, u32 addr1)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = pic_get_irq(s);
|
|
|
|
if (ret >= 0) {
|
|
|
|
if (addr1 >> 7) {
|
|
|
|
s->pics_state->pics[0].isr &= ~(1 << 2);
|
|
|
|
s->pics_state->pics[0].irr &= ~(1 << 2);
|
|
|
|
}
|
|
|
|
s->irr &= ~(1 << ret);
|
2008-07-07 11:45:39 +00:00
|
|
|
pic_clear_isr(s, ret);
|
2007-07-06 09:20:49 +00:00
|
|
|
if (addr1 >> 7 || ret != 2)
|
|
|
|
pic_update_irq(s->pics_state);
|
|
|
|
} else {
|
|
|
|
ret = 0x07;
|
|
|
|
pic_update_irq(s->pics_state);
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2017-04-07 08:50:40 +00:00
|
|
|
static u32 pic_ioport_read(void *opaque, u32 addr)
|
2007-07-06 09:20:49 +00:00
|
|
|
{
|
|
|
|
struct kvm_kpic_state *s = opaque;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (s->poll) {
|
2017-04-07 08:50:40 +00:00
|
|
|
ret = pic_poll_read(s, addr);
|
2007-07-06 09:20:49 +00:00
|
|
|
s->poll = 0;
|
|
|
|
} else
|
2017-04-07 08:50:40 +00:00
|
|
|
if ((addr & 1) == 0)
|
2007-07-06 09:20:49 +00:00
|
|
|
if (s->read_reg_select)
|
|
|
|
ret = s->isr;
|
|
|
|
else
|
|
|
|
ret = s->irr;
|
|
|
|
else
|
|
|
|
ret = s->imr;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2022-01-25 09:59:02 +00:00
|
|
|
static void elcr_ioport_write(void *opaque, u32 val)
|
2007-07-06 09:20:49 +00:00
|
|
|
{
|
|
|
|
struct kvm_kpic_state *s = opaque;
|
|
|
|
s->elcr = val & s->elcr_mask;
|
|
|
|
}
|
|
|
|
|
2022-01-25 09:59:02 +00:00
|
|
|
static u32 elcr_ioport_read(void *opaque)
|
2007-07-06 09:20:49 +00:00
|
|
|
{
|
|
|
|
struct kvm_kpic_state *s = opaque;
|
|
|
|
return s->elcr;
|
|
|
|
}
|
|
|
|
|
2011-07-27 13:00:48 +00:00
|
|
|
static int picdev_write(struct kvm_pic *s,
|
2007-07-06 09:20:49 +00:00
|
|
|
gpa_t addr, int len, const void *val)
|
|
|
|
{
|
|
|
|
unsigned char data = *(unsigned char *)val;
|
|
|
|
|
|
|
|
if (len != 1) {
|
2011-09-12 09:26:22 +00:00
|
|
|
pr_pic_unimpl("non byte write\n");
|
2009-06-29 19:24:32 +00:00
|
|
|
return 0;
|
2007-07-06 09:20:49 +00:00
|
|
|
}
|
|
|
|
switch (addr) {
|
|
|
|
case 0x20:
|
|
|
|
case 0x21:
|
2019-12-11 20:47:43 +00:00
|
|
|
pic_lock(s);
|
|
|
|
pic_ioport_write(&s->pics[0], addr, data);
|
|
|
|
pic_unlock(s);
|
|
|
|
break;
|
2007-07-06 09:20:49 +00:00
|
|
|
case 0xa0:
|
|
|
|
case 0xa1:
|
2017-04-07 08:50:38 +00:00
|
|
|
pic_lock(s);
|
2019-12-11 20:47:43 +00:00
|
|
|
pic_ioport_write(&s->pics[1], addr, data);
|
2017-04-07 08:50:38 +00:00
|
|
|
pic_unlock(s);
|
2007-07-06 09:20:49 +00:00
|
|
|
break;
|
|
|
|
case 0x4d0:
|
|
|
|
case 0x4d1:
|
2017-04-07 08:50:38 +00:00
|
|
|
pic_lock(s);
|
2022-01-25 09:59:02 +00:00
|
|
|
elcr_ioport_write(&s->pics[addr & 1], data);
|
2017-04-07 08:50:38 +00:00
|
|
|
pic_unlock(s);
|
2007-07-06 09:20:49 +00:00
|
|
|
break;
|
2017-04-07 08:50:38 +00:00
|
|
|
default:
|
|
|
|
return -EOPNOTSUPP;
|
2007-07-06 09:20:49 +00:00
|
|
|
}
|
2009-06-29 19:24:32 +00:00
|
|
|
return 0;
|
2007-07-06 09:20:49 +00:00
|
|
|
}
|
|
|
|
|
2011-07-27 13:00:48 +00:00
|
|
|
static int picdev_read(struct kvm_pic *s,
|
2009-06-29 19:24:32 +00:00
|
|
|
gpa_t addr, int len, void *val)
|
2007-07-06 09:20:49 +00:00
|
|
|
{
|
2017-04-07 08:50:39 +00:00
|
|
|
unsigned char *data = (unsigned char *)val;
|
2007-07-06 09:20:49 +00:00
|
|
|
|
|
|
|
if (len != 1) {
|
2015-03-11 11:16:09 +00:00
|
|
|
memset(val, 0, len);
|
2011-09-12 09:26:22 +00:00
|
|
|
pr_pic_unimpl("non byte read\n");
|
2009-06-29 19:24:32 +00:00
|
|
|
return 0;
|
2007-07-06 09:20:49 +00:00
|
|
|
}
|
|
|
|
switch (addr) {
|
|
|
|
case 0x20:
|
|
|
|
case 0x21:
|
|
|
|
case 0xa0:
|
|
|
|
case 0xa1:
|
2017-04-07 08:50:38 +00:00
|
|
|
pic_lock(s);
|
2017-04-07 08:50:39 +00:00
|
|
|
*data = pic_ioport_read(&s->pics[addr >> 7], addr);
|
2017-04-07 08:50:38 +00:00
|
|
|
pic_unlock(s);
|
2007-07-06 09:20:49 +00:00
|
|
|
break;
|
|
|
|
case 0x4d0:
|
|
|
|
case 0x4d1:
|
2017-04-07 08:50:38 +00:00
|
|
|
pic_lock(s);
|
2022-01-25 09:59:02 +00:00
|
|
|
*data = elcr_ioport_read(&s->pics[addr & 1]);
|
2017-04-07 08:50:38 +00:00
|
|
|
pic_unlock(s);
|
2007-07-06 09:20:49 +00:00
|
|
|
break;
|
2017-04-07 08:50:38 +00:00
|
|
|
default:
|
|
|
|
return -EOPNOTSUPP;
|
2007-07-06 09:20:49 +00:00
|
|
|
}
|
2009-06-29 19:24:32 +00:00
|
|
|
return 0;
|
2007-07-06 09:20:49 +00:00
|
|
|
}
|
|
|
|
|
2015-03-26 14:39:28 +00:00
|
|
|
static int picdev_master_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
|
2011-07-27 13:00:48 +00:00
|
|
|
gpa_t addr, int len, const void *val)
|
|
|
|
{
|
|
|
|
return picdev_write(container_of(dev, struct kvm_pic, dev_master),
|
|
|
|
addr, len, val);
|
|
|
|
}
|
|
|
|
|
2015-03-26 14:39:28 +00:00
|
|
|
static int picdev_master_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
|
2011-07-27 13:00:48 +00:00
|
|
|
gpa_t addr, int len, void *val)
|
|
|
|
{
|
|
|
|
return picdev_read(container_of(dev, struct kvm_pic, dev_master),
|
|
|
|
addr, len, val);
|
|
|
|
}
|
|
|
|
|
2015-03-26 14:39:28 +00:00
|
|
|
static int picdev_slave_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
|
2011-07-27 13:00:48 +00:00
|
|
|
gpa_t addr, int len, const void *val)
|
|
|
|
{
|
|
|
|
return picdev_write(container_of(dev, struct kvm_pic, dev_slave),
|
|
|
|
addr, len, val);
|
|
|
|
}
|
|
|
|
|
2015-03-26 14:39:28 +00:00
|
|
|
static int picdev_slave_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
|
2011-07-27 13:00:48 +00:00
|
|
|
gpa_t addr, int len, void *val)
|
|
|
|
{
|
|
|
|
return picdev_read(container_of(dev, struct kvm_pic, dev_slave),
|
|
|
|
addr, len, val);
|
|
|
|
}
|
|
|
|
|
2021-07-20 03:28:15 +00:00
|
|
|
static int picdev_elcr_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
|
2011-07-27 13:00:48 +00:00
|
|
|
gpa_t addr, int len, const void *val)
|
|
|
|
{
|
2021-07-20 03:28:15 +00:00
|
|
|
return picdev_write(container_of(dev, struct kvm_pic, dev_elcr),
|
2011-07-27 13:00:48 +00:00
|
|
|
addr, len, val);
|
|
|
|
}
|
|
|
|
|
2021-07-20 03:28:15 +00:00
|
|
|
static int picdev_elcr_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
|
2011-07-27 13:00:48 +00:00
|
|
|
gpa_t addr, int len, void *val)
|
|
|
|
{
|
2021-07-20 03:28:15 +00:00
|
|
|
return picdev_read(container_of(dev, struct kvm_pic, dev_elcr),
|
2011-07-27 13:00:48 +00:00
|
|
|
addr, len, val);
|
|
|
|
}
|
|
|
|
|
2007-07-06 09:20:49 +00:00
|
|
|
/*
|
|
|
|
* callback when PIC0 irq status changed
|
|
|
|
*/
|
2010-05-03 14:34:34 +00:00
|
|
|
static void pic_irq_request(struct kvm *kvm, int level)
|
2007-07-06 09:20:49 +00:00
|
|
|
{
|
2017-04-07 08:50:23 +00:00
|
|
|
struct kvm_pic *s = kvm->arch.vpic;
|
2007-07-06 09:20:49 +00:00
|
|
|
|
2011-02-09 10:09:46 +00:00
|
|
|
if (!s->output)
|
2010-02-24 09:41:58 +00:00
|
|
|
s->wakeup_needed = true;
|
2011-02-09 10:09:46 +00:00
|
|
|
s->output = level;
|
2007-07-06 09:20:49 +00:00
|
|
|
}
|
|
|
|
|
2011-07-27 13:00:48 +00:00
|
|
|
static const struct kvm_io_device_ops picdev_master_ops = {
|
|
|
|
.read = picdev_master_read,
|
|
|
|
.write = picdev_master_write,
|
|
|
|
};
|
|
|
|
|
|
|
|
static const struct kvm_io_device_ops picdev_slave_ops = {
|
|
|
|
.read = picdev_slave_read,
|
|
|
|
.write = picdev_slave_write,
|
|
|
|
};
|
|
|
|
|
2021-07-20 03:28:15 +00:00
|
|
|
static const struct kvm_io_device_ops picdev_elcr_ops = {
|
|
|
|
.read = picdev_elcr_read,
|
|
|
|
.write = picdev_elcr_write,
|
2009-06-01 16:54:50 +00:00
|
|
|
};
|
|
|
|
|
2016-12-16 15:10:03 +00:00
|
|
|
int kvm_pic_init(struct kvm *kvm)
|
2007-07-06 09:20:49 +00:00
|
|
|
{
|
|
|
|
struct kvm_pic *s;
|
2009-07-07 21:08:44 +00:00
|
|
|
int ret;
|
|
|
|
|
2019-02-11 19:02:50 +00:00
|
|
|
s = kzalloc(sizeof(struct kvm_pic), GFP_KERNEL_ACCOUNT);
|
2007-07-06 09:20:49 +00:00
|
|
|
if (!s)
|
2016-12-16 15:10:03 +00:00
|
|
|
return -ENOMEM;
|
2010-09-19 16:44:07 +00:00
|
|
|
spin_lock_init(&s->lock);
|
2008-12-21 20:48:32 +00:00
|
|
|
s->kvm = kvm;
|
2007-07-06 09:20:49 +00:00
|
|
|
s->pics[0].elcr_mask = 0xf8;
|
|
|
|
s->pics[1].elcr_mask = 0xde;
|
|
|
|
s->pics[0].pics_state = s;
|
|
|
|
s->pics[1].pics_state = s;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialize PIO device
|
|
|
|
*/
|
2011-07-27 13:00:48 +00:00
|
|
|
kvm_iodevice_init(&s->dev_master, &picdev_master_ops);
|
|
|
|
kvm_iodevice_init(&s->dev_slave, &picdev_slave_ops);
|
2021-07-20 03:28:15 +00:00
|
|
|
kvm_iodevice_init(&s->dev_elcr, &picdev_elcr_ops);
|
2009-12-23 16:35:26 +00:00
|
|
|
mutex_lock(&kvm->slots_lock);
|
2011-07-27 13:00:48 +00:00
|
|
|
ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, 0x20, 2,
|
|
|
|
&s->dev_master);
|
|
|
|
if (ret < 0)
|
|
|
|
goto fail_unlock;
|
|
|
|
|
|
|
|
ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, 0xa0, 2, &s->dev_slave);
|
|
|
|
if (ret < 0)
|
|
|
|
goto fail_unreg_2;
|
|
|
|
|
2021-07-20 03:28:15 +00:00
|
|
|
ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, 0x4d0, 2, &s->dev_elcr);
|
2011-07-27 13:00:48 +00:00
|
|
|
if (ret < 0)
|
|
|
|
goto fail_unreg_1;
|
|
|
|
|
2009-12-23 16:35:26 +00:00
|
|
|
mutex_unlock(&kvm->slots_lock);
|
2009-07-07 21:08:44 +00:00
|
|
|
|
2016-12-16 15:10:03 +00:00
|
|
|
kvm->arch.vpic = s;
|
|
|
|
|
|
|
|
return 0;
|
2011-07-27 13:00:48 +00:00
|
|
|
|
|
|
|
fail_unreg_1:
|
|
|
|
kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &s->dev_slave);
|
|
|
|
|
|
|
|
fail_unreg_2:
|
|
|
|
kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &s->dev_master);
|
|
|
|
|
|
|
|
fail_unlock:
|
|
|
|
mutex_unlock(&kvm->slots_lock);
|
|
|
|
|
|
|
|
kfree(s);
|
|
|
|
|
2016-12-16 15:10:03 +00:00
|
|
|
return ret;
|
2007-07-06 09:20:49 +00:00
|
|
|
}
|
2010-02-09 02:33:03 +00:00
|
|
|
|
2016-12-16 15:10:03 +00:00
|
|
|
void kvm_pic_destroy(struct kvm *kvm)
|
2010-02-09 02:33:03 +00:00
|
|
|
{
|
2016-12-16 15:10:03 +00:00
|
|
|
struct kvm_pic *vpic = kvm->arch.vpic;
|
|
|
|
|
2017-03-15 08:01:18 +00:00
|
|
|
if (!vpic)
|
|
|
|
return;
|
|
|
|
|
2017-04-07 08:50:29 +00:00
|
|
|
mutex_lock(&kvm->slots_lock);
|
2015-07-29 10:31:15 +00:00
|
|
|
kvm_io_bus_unregister_dev(vpic->kvm, KVM_PIO_BUS, &vpic->dev_master);
|
|
|
|
kvm_io_bus_unregister_dev(vpic->kvm, KVM_PIO_BUS, &vpic->dev_slave);
|
2021-07-20 03:28:15 +00:00
|
|
|
kvm_io_bus_unregister_dev(vpic->kvm, KVM_PIO_BUS, &vpic->dev_elcr);
|
2017-04-07 08:50:29 +00:00
|
|
|
mutex_unlock(&kvm->slots_lock);
|
2016-12-16 15:10:03 +00:00
|
|
|
|
|
|
|
kvm->arch.vpic = NULL;
|
2015-07-29 10:31:15 +00:00
|
|
|
kfree(vpic);
|
2010-02-09 02:33:03 +00:00
|
|
|
}
|