linux/kernel/time/tick-broadcast.c

889 lines
23 KiB
C
Raw Normal View History

/*
* linux/kernel/time/tick-broadcast.c
*
* This file contains functions which emulate a local clock-event
* device via a broadcast event source.
*
* Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
* Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
* Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
*
* This code is licenced under the GPL version 2. For details see
* kernel-base/COPYING.
*/
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
[S390] genirq/clockevents: move irq affinity prototypes/inlines to interrupt.h > Generic code is not supposed to include irq.h. Replace this include > by linux/hardirq.h instead and add/replace an include of linux/irq.h > in asm header files where necessary. > This change should only matter for architectures that make use of > GENERIC_CLOCKEVENTS. > Architectures in question are mips, x86, arm, sh, powerpc, uml and sparc64. > > I did some cross compile tests for mips, x86_64, arm, powerpc and sparc64. > This patch fixes also build breakages caused by the include replacement in > tick-common.h. I generally dislike adding optional linux/* includes in asm/* includes - I'm nervous about this causing include loops. However, there's a separate point to be discussed here. That is, what interfaces are expected of every architecture in the kernel. If generic code wants to be able to set the affinity of interrupts, then that needs to become part of the interfaces listed in linux/interrupt.h rather than linux/irq.h. So what I suggest is this approach instead (against Linus' tree of a couple of days ago) - we move irq_set_affinity() and irq_can_set_affinity() to linux/interrupt.h, change the linux/irq.h includes to linux/interrupt.h and include asm/irq_regs.h where needed (asm/irq_regs.h is supposed to be rarely used include since not much touches the stacked parent context registers.) Build tested on ARM PXA family kernels and ARM's Realview platform kernels which both use genirq. [ tglx@linutronix.de: add GENERIC_HARDIRQ dependencies ] Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2008-04-17 05:46:24 +00:00
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/profile.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <linux/module.h>
#include "tick-internal.h"
/*
* Broadcast support for broken x86 hardware, where the local apic
* timer stops in C3 state.
*/
static struct tick_device tick_broadcast_device;
static cpumask_var_t tick_broadcast_mask;
tick: Sanitize broadcast control logic The recent implementation of a generic dummy timer resulted in a different registration order of per cpu local timers which made the broadcast control logic go belly up. If the dummy timer is the first clock event device which is registered for a CPU, then it is installed, the broadcast timer is initialized and the CPU is marked as broadcast target. If a real clock event device is installed after that, we can fail to take the CPU out of the broadcast mask. In the worst case we end up with two periodic timer events firing for the same CPU. One from the per cpu hardware device and one from the broadcast. Now the problem is that we have no way to distinguish whether the system is in a state which makes broadcasting necessary or the broadcast bit was set due to the nonfunctional dummy timer installment. To solve this we need to keep track of the system state seperately and provide a more detailed decision logic whether we keep the CPU in broadcast mode or not. The old decision logic only clears the broadcast mode, if the newly installed clock event device is not affected by power states. The new logic clears the broadcast mode if one of the following is true: - The new device is not affected by power states. - The system is not in a power state affected mode - The system has switched to oneshot mode. The oneshot broadcast is controlled from the deep idle state. The CPU is not in idle at this point, so it's safe to remove it from the mask. If we clear the broadcast bit for the CPU when a new device is installed, we also shutdown the broadcast device when this was the last CPU in the broadcast mask. If the broadcast bit is kept, then we leave the new device in shutdown state and rely on the broadcast to deliver the timer interrupts via the broadcast ipis. Reported-and-tested-by: Stehle Vincent-B46079 <B46079@freescale.com> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Cc: John Stultz <john.stultz@linaro.org>, Cc: Mark Rutland <mark.rutland@arm.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307012153060.4013@ionos.tec.linutronix.de Cc: stable@vger.kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-01 20:14:10 +00:00
static cpumask_var_t tick_broadcast_on;
static cpumask_var_t tmpmask;
static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
static int tick_broadcast_force;
#ifdef CONFIG_TICK_ONESHOT
static void tick_broadcast_clear_oneshot(int cpu);
#else
static inline void tick_broadcast_clear_oneshot(int cpu) { }
#endif
[PATCH] Add debugging feature /proc/timer_list add /proc/timer_list, which prints all currently pending (high-res) timers, all clock-event sources and their parameters in a human-readable form. Sample output: Timer List Version: v0.1 HRTIMER_MAX_CLOCK_BASES: 2 now at 4246046273872 nsecs cpu: 0 clock 0: .index: 0 .resolution: 1 nsecs .get_time: ktime_get_real .offset: 1273998312645738432 nsecs active timers: clock 1: .index: 1 .resolution: 1 nsecs .get_time: ktime_get .offset: 0 nsecs active timers: #0: <f5a90ec8>, hrtimer_sched_tick, hrtimer_stop_sched_tick, swapper/0 # expires at 4246432689566 nsecs [in 386415694 nsecs] #1: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, pcscd/2050 # expires at 4247018194689 nsecs [in 971920817 nsecs] #2: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, irqbalance/1909 # expires at 4247351358392 nsecs [in 1305084520 nsecs] #3: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, crond/2157 # expires at 4249097614968 nsecs [in 3051341096 nsecs] #4: <f5a90ec8>, it_real_fn, do_setitimer, syslogd/1888 # expires at 4251329900926 nsecs [in 5283627054 nsecs] .expires_next : 4246432689566 nsecs .hres_active : 1 .check_clocks : 0 .nr_events : 31306 .idle_tick : 4246020791890 nsecs .tick_stopped : 1 .idle_jiffies : 986504 .idle_calls : 40700 .idle_sleeps : 36014 .idle_entrytime : 4246019418883 nsecs .idle_sleeptime : 4178181972709 nsecs cpu: 1 clock 0: .index: 0 .resolution: 1 nsecs .get_time: ktime_get_real .offset: 1273998312645738432 nsecs active timers: clock 1: .index: 1 .resolution: 1 nsecs .get_time: ktime_get .offset: 0 nsecs active timers: #0: <f5a90ec8>, hrtimer_sched_tick, hrtimer_restart_sched_tick, swapper/0 # expires at 4246050084568 nsecs [in 3810696 nsecs] #1: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, atd/2227 # expires at 4261010635003 nsecs [in 14964361131 nsecs] #2: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, smartd/2332 # expires at 5469485798970 nsecs [in 1223439525098 nsecs] .expires_next : 4246050084568 nsecs .hres_active : 1 .check_clocks : 0 .nr_events : 24043 .idle_tick : 4246046084568 nsecs .tick_stopped : 0 .idle_jiffies : 986510 .idle_calls : 26360 .idle_sleeps : 22551 .idle_entrytime : 4246043874339 nsecs .idle_sleeptime : 4170763761184 nsecs tick_broadcast_mask: 00000003 event_broadcast_mask: 00000001 CPU#0's local event device: Clock Event Device: lapic capabilities: 0000000e max_delta_ns: 807385544 min_delta_ns: 1443 mult: 44624025 shift: 32 set_next_event: lapic_next_event set_mode: lapic_timer_setup event_handler: hrtimer_interrupt .installed: 1 .expires: 4246432689566 nsecs CPU#1's local event device: Clock Event Device: lapic capabilities: 0000000e max_delta_ns: 807385544 min_delta_ns: 1443 mult: 44624025 shift: 32 set_next_event: lapic_next_event set_mode: lapic_timer_setup event_handler: hrtimer_interrupt .installed: 1 .expires: 4246050084568 nsecs Clock Event Device: hpet capabilities: 00000007 max_delta_ns: 2147483647 min_delta_ns: 3352 mult: 61496110 shift: 32 set_next_event: hpet_next_event set_mode: hpet_set_mode event_handler: handle_nextevt_broadcast Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: john stultz <johnstul@us.ibm.com> Cc: Roman Zippel <zippel@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-16 09:28:15 +00:00
/*
* Debugging: see timer_list.c
*/
struct tick_device *tick_get_broadcast_device(void)
{
return &tick_broadcast_device;
}
struct cpumask *tick_get_broadcast_mask(void)
[PATCH] Add debugging feature /proc/timer_list add /proc/timer_list, which prints all currently pending (high-res) timers, all clock-event sources and their parameters in a human-readable form. Sample output: Timer List Version: v0.1 HRTIMER_MAX_CLOCK_BASES: 2 now at 4246046273872 nsecs cpu: 0 clock 0: .index: 0 .resolution: 1 nsecs .get_time: ktime_get_real .offset: 1273998312645738432 nsecs active timers: clock 1: .index: 1 .resolution: 1 nsecs .get_time: ktime_get .offset: 0 nsecs active timers: #0: <f5a90ec8>, hrtimer_sched_tick, hrtimer_stop_sched_tick, swapper/0 # expires at 4246432689566 nsecs [in 386415694 nsecs] #1: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, pcscd/2050 # expires at 4247018194689 nsecs [in 971920817 nsecs] #2: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, irqbalance/1909 # expires at 4247351358392 nsecs [in 1305084520 nsecs] #3: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, crond/2157 # expires at 4249097614968 nsecs [in 3051341096 nsecs] #4: <f5a90ec8>, it_real_fn, do_setitimer, syslogd/1888 # expires at 4251329900926 nsecs [in 5283627054 nsecs] .expires_next : 4246432689566 nsecs .hres_active : 1 .check_clocks : 0 .nr_events : 31306 .idle_tick : 4246020791890 nsecs .tick_stopped : 1 .idle_jiffies : 986504 .idle_calls : 40700 .idle_sleeps : 36014 .idle_entrytime : 4246019418883 nsecs .idle_sleeptime : 4178181972709 nsecs cpu: 1 clock 0: .index: 0 .resolution: 1 nsecs .get_time: ktime_get_real .offset: 1273998312645738432 nsecs active timers: clock 1: .index: 1 .resolution: 1 nsecs .get_time: ktime_get .offset: 0 nsecs active timers: #0: <f5a90ec8>, hrtimer_sched_tick, hrtimer_restart_sched_tick, swapper/0 # expires at 4246050084568 nsecs [in 3810696 nsecs] #1: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, atd/2227 # expires at 4261010635003 nsecs [in 14964361131 nsecs] #2: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, smartd/2332 # expires at 5469485798970 nsecs [in 1223439525098 nsecs] .expires_next : 4246050084568 nsecs .hres_active : 1 .check_clocks : 0 .nr_events : 24043 .idle_tick : 4246046084568 nsecs .tick_stopped : 0 .idle_jiffies : 986510 .idle_calls : 26360 .idle_sleeps : 22551 .idle_entrytime : 4246043874339 nsecs .idle_sleeptime : 4170763761184 nsecs tick_broadcast_mask: 00000003 event_broadcast_mask: 00000001 CPU#0's local event device: Clock Event Device: lapic capabilities: 0000000e max_delta_ns: 807385544 min_delta_ns: 1443 mult: 44624025 shift: 32 set_next_event: lapic_next_event set_mode: lapic_timer_setup event_handler: hrtimer_interrupt .installed: 1 .expires: 4246432689566 nsecs CPU#1's local event device: Clock Event Device: lapic capabilities: 0000000e max_delta_ns: 807385544 min_delta_ns: 1443 mult: 44624025 shift: 32 set_next_event: lapic_next_event set_mode: lapic_timer_setup event_handler: hrtimer_interrupt .installed: 1 .expires: 4246050084568 nsecs Clock Event Device: hpet capabilities: 00000007 max_delta_ns: 2147483647 min_delta_ns: 3352 mult: 61496110 shift: 32 set_next_event: hpet_next_event set_mode: hpet_set_mode event_handler: handle_nextevt_broadcast Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: john stultz <johnstul@us.ibm.com> Cc: Roman Zippel <zippel@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-16 09:28:15 +00:00
{
return tick_broadcast_mask;
[PATCH] Add debugging feature /proc/timer_list add /proc/timer_list, which prints all currently pending (high-res) timers, all clock-event sources and their parameters in a human-readable form. Sample output: Timer List Version: v0.1 HRTIMER_MAX_CLOCK_BASES: 2 now at 4246046273872 nsecs cpu: 0 clock 0: .index: 0 .resolution: 1 nsecs .get_time: ktime_get_real .offset: 1273998312645738432 nsecs active timers: clock 1: .index: 1 .resolution: 1 nsecs .get_time: ktime_get .offset: 0 nsecs active timers: #0: <f5a90ec8>, hrtimer_sched_tick, hrtimer_stop_sched_tick, swapper/0 # expires at 4246432689566 nsecs [in 386415694 nsecs] #1: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, pcscd/2050 # expires at 4247018194689 nsecs [in 971920817 nsecs] #2: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, irqbalance/1909 # expires at 4247351358392 nsecs [in 1305084520 nsecs] #3: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, crond/2157 # expires at 4249097614968 nsecs [in 3051341096 nsecs] #4: <f5a90ec8>, it_real_fn, do_setitimer, syslogd/1888 # expires at 4251329900926 nsecs [in 5283627054 nsecs] .expires_next : 4246432689566 nsecs .hres_active : 1 .check_clocks : 0 .nr_events : 31306 .idle_tick : 4246020791890 nsecs .tick_stopped : 1 .idle_jiffies : 986504 .idle_calls : 40700 .idle_sleeps : 36014 .idle_entrytime : 4246019418883 nsecs .idle_sleeptime : 4178181972709 nsecs cpu: 1 clock 0: .index: 0 .resolution: 1 nsecs .get_time: ktime_get_real .offset: 1273998312645738432 nsecs active timers: clock 1: .index: 1 .resolution: 1 nsecs .get_time: ktime_get .offset: 0 nsecs active timers: #0: <f5a90ec8>, hrtimer_sched_tick, hrtimer_restart_sched_tick, swapper/0 # expires at 4246050084568 nsecs [in 3810696 nsecs] #1: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, atd/2227 # expires at 4261010635003 nsecs [in 14964361131 nsecs] #2: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, smartd/2332 # expires at 5469485798970 nsecs [in 1223439525098 nsecs] .expires_next : 4246050084568 nsecs .hres_active : 1 .check_clocks : 0 .nr_events : 24043 .idle_tick : 4246046084568 nsecs .tick_stopped : 0 .idle_jiffies : 986510 .idle_calls : 26360 .idle_sleeps : 22551 .idle_entrytime : 4246043874339 nsecs .idle_sleeptime : 4170763761184 nsecs tick_broadcast_mask: 00000003 event_broadcast_mask: 00000001 CPU#0's local event device: Clock Event Device: lapic capabilities: 0000000e max_delta_ns: 807385544 min_delta_ns: 1443 mult: 44624025 shift: 32 set_next_event: lapic_next_event set_mode: lapic_timer_setup event_handler: hrtimer_interrupt .installed: 1 .expires: 4246432689566 nsecs CPU#1's local event device: Clock Event Device: lapic capabilities: 0000000e max_delta_ns: 807385544 min_delta_ns: 1443 mult: 44624025 shift: 32 set_next_event: lapic_next_event set_mode: lapic_timer_setup event_handler: hrtimer_interrupt .installed: 1 .expires: 4246050084568 nsecs Clock Event Device: hpet capabilities: 00000007 max_delta_ns: 2147483647 min_delta_ns: 3352 mult: 61496110 shift: 32 set_next_event: hpet_next_event set_mode: hpet_set_mode event_handler: handle_nextevt_broadcast Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: john stultz <johnstul@us.ibm.com> Cc: Roman Zippel <zippel@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-16 09:28:15 +00:00
}
/*
* Start the device in periodic mode
*/
static void tick_broadcast_start_periodic(struct clock_event_device *bc)
{
if (bc)
tick_setup_periodic(bc, 1);
}
/*
* Check, if the device can be utilized as broadcast device:
*/
static bool tick_check_broadcast_device(struct clock_event_device *curdev,
struct clock_event_device *newdev)
{
if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
(newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
(newdev->features & CLOCK_EVT_FEAT_C3STOP))
return false;
if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
!(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
return false;
return !curdev || newdev->rating > curdev->rating;
}
/*
* Conditionally install/replace broadcast device
*/
void tick_install_broadcast_device(struct clock_event_device *dev)
{
struct clock_event_device *cur = tick_broadcast_device.evtdev;
if (!tick_check_broadcast_device(cur, dev))
return;
if (!try_module_get(dev->owner))
return;
clockevents_exchange_device(cur, dev);
if (cur)
cur->event_handler = clockevents_handle_noop;
tick_broadcast_device.evtdev = dev;
if (!cpumask_empty(tick_broadcast_mask))
tick_broadcast_start_periodic(dev);
/*
* Inform all cpus about this. We might be in a situation
* where we did not switch to oneshot mode because the per cpu
* devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
* of a oneshot capable broadcast device. Without that
* notification the systems stays stuck in periodic mode
* forever.
*/
if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
tick_clock_notify();
}
/*
* Check, if the device is the broadcast device
*/
int tick_is_broadcast_device(struct clock_event_device *dev)
{
return (dev && tick_broadcast_device.evtdev == dev);
}
static void err_broadcast(const struct cpumask *mask)
{
pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
}
static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
{
if (!dev->broadcast)
dev->broadcast = tick_broadcast;
if (!dev->broadcast) {
pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
dev->name);
dev->broadcast = err_broadcast;
}
}
/*
* Check, if the device is disfunctional and a place holder, which
* needs to be handled by the broadcast device.
*/
int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
{
tick: Sanitize broadcast control logic The recent implementation of a generic dummy timer resulted in a different registration order of per cpu local timers which made the broadcast control logic go belly up. If the dummy timer is the first clock event device which is registered for a CPU, then it is installed, the broadcast timer is initialized and the CPU is marked as broadcast target. If a real clock event device is installed after that, we can fail to take the CPU out of the broadcast mask. In the worst case we end up with two periodic timer events firing for the same CPU. One from the per cpu hardware device and one from the broadcast. Now the problem is that we have no way to distinguish whether the system is in a state which makes broadcasting necessary or the broadcast bit was set due to the nonfunctional dummy timer installment. To solve this we need to keep track of the system state seperately and provide a more detailed decision logic whether we keep the CPU in broadcast mode or not. The old decision logic only clears the broadcast mode, if the newly installed clock event device is not affected by power states. The new logic clears the broadcast mode if one of the following is true: - The new device is not affected by power states. - The system is not in a power state affected mode - The system has switched to oneshot mode. The oneshot broadcast is controlled from the deep idle state. The CPU is not in idle at this point, so it's safe to remove it from the mask. If we clear the broadcast bit for the CPU when a new device is installed, we also shutdown the broadcast device when this was the last CPU in the broadcast mask. If the broadcast bit is kept, then we leave the new device in shutdown state and rely on the broadcast to deliver the timer interrupts via the broadcast ipis. Reported-and-tested-by: Stehle Vincent-B46079 <B46079@freescale.com> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Cc: John Stultz <john.stultz@linaro.org>, Cc: Mark Rutland <mark.rutland@arm.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307012153060.4013@ionos.tec.linutronix.de Cc: stable@vger.kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-01 20:14:10 +00:00
struct clock_event_device *bc = tick_broadcast_device.evtdev;
unsigned long flags;
tick: Sanitize broadcast control logic The recent implementation of a generic dummy timer resulted in a different registration order of per cpu local timers which made the broadcast control logic go belly up. If the dummy timer is the first clock event device which is registered for a CPU, then it is installed, the broadcast timer is initialized and the CPU is marked as broadcast target. If a real clock event device is installed after that, we can fail to take the CPU out of the broadcast mask. In the worst case we end up with two periodic timer events firing for the same CPU. One from the per cpu hardware device and one from the broadcast. Now the problem is that we have no way to distinguish whether the system is in a state which makes broadcasting necessary or the broadcast bit was set due to the nonfunctional dummy timer installment. To solve this we need to keep track of the system state seperately and provide a more detailed decision logic whether we keep the CPU in broadcast mode or not. The old decision logic only clears the broadcast mode, if the newly installed clock event device is not affected by power states. The new logic clears the broadcast mode if one of the following is true: - The new device is not affected by power states. - The system is not in a power state affected mode - The system has switched to oneshot mode. The oneshot broadcast is controlled from the deep idle state. The CPU is not in idle at this point, so it's safe to remove it from the mask. If we clear the broadcast bit for the CPU when a new device is installed, we also shutdown the broadcast device when this was the last CPU in the broadcast mask. If the broadcast bit is kept, then we leave the new device in shutdown state and rely on the broadcast to deliver the timer interrupts via the broadcast ipis. Reported-and-tested-by: Stehle Vincent-B46079 <B46079@freescale.com> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Cc: John Stultz <john.stultz@linaro.org>, Cc: Mark Rutland <mark.rutland@arm.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307012153060.4013@ionos.tec.linutronix.de Cc: stable@vger.kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-01 20:14:10 +00:00
int ret;
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
/*
* Devices might be registered with both periodic and oneshot
* mode disabled. This signals, that the device needs to be
* operated from the broadcast device and is a placeholder for
* the cpu local device.
*/
if (!tick_device_is_functional(dev)) {
dev->event_handler = tick_handle_periodic;
tick_device_setup_broadcast_func(dev);
cpumask_set_cpu(cpu, tick_broadcast_mask);
tick: broadcast: Check broadcast mode on CPU hotplug On ARM systems the dummy clockevent is registered with the cpu hotplug notifier chain before any other per-cpu clockevent. This has the side-effect of causing the dummy clockevent to be registered first in every hotplug sequence. Because the dummy is first, we'll try to turn the broadcast source on but the code in tick_device_uses_broadcast() assumes the broadcast source is in periodic mode and calls tick_broadcast_start_periodic() unconditionally. On boot this isn't a problem because we typically haven't switched into oneshot mode yet (if at all). During hotplug, if the broadcast source isn't in periodic mode we'll replace the broadcast oneshot handler with the broadcast periodic handler and start emulating oneshot mode when we shouldn't. Due to the way the broadcast oneshot handler programs the next_event it's possible for it to contain KTIME_MAX and cause us to hang the system when the periodic handler tries to program the next tick. Fix this by using the appropriate function to start the broadcast source. Reported-by: Stephen Warren <swarren@nvidia.com> Tested-by: Stephen Warren <swarren@nvidia.com> Signed-off-by: Stephen Boyd <sboyd@codeaurora.org> Cc: Mark Rutland <Mark.Rutland@arm.com> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: ARM kernel mailing list <linux-arm-kernel@lists.infradead.org> Cc: John Stultz <john.stultz@linaro.org> Cc: Joseph Lo <josephl@nvidia.com> Link: http://lkml.kernel.org/r/20130711140059.GA27430@codeaurora.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-11 14:00:59 +00:00
if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
tick_broadcast_start_periodic(bc);
else
tick_broadcast_setup_oneshot(bc);
ret = 1;
} else {
/*
tick: Sanitize broadcast control logic The recent implementation of a generic dummy timer resulted in a different registration order of per cpu local timers which made the broadcast control logic go belly up. If the dummy timer is the first clock event device which is registered for a CPU, then it is installed, the broadcast timer is initialized and the CPU is marked as broadcast target. If a real clock event device is installed after that, we can fail to take the CPU out of the broadcast mask. In the worst case we end up with two periodic timer events firing for the same CPU. One from the per cpu hardware device and one from the broadcast. Now the problem is that we have no way to distinguish whether the system is in a state which makes broadcasting necessary or the broadcast bit was set due to the nonfunctional dummy timer installment. To solve this we need to keep track of the system state seperately and provide a more detailed decision logic whether we keep the CPU in broadcast mode or not. The old decision logic only clears the broadcast mode, if the newly installed clock event device is not affected by power states. The new logic clears the broadcast mode if one of the following is true: - The new device is not affected by power states. - The system is not in a power state affected mode - The system has switched to oneshot mode. The oneshot broadcast is controlled from the deep idle state. The CPU is not in idle at this point, so it's safe to remove it from the mask. If we clear the broadcast bit for the CPU when a new device is installed, we also shutdown the broadcast device when this was the last CPU in the broadcast mask. If the broadcast bit is kept, then we leave the new device in shutdown state and rely on the broadcast to deliver the timer interrupts via the broadcast ipis. Reported-and-tested-by: Stehle Vincent-B46079 <B46079@freescale.com> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Cc: John Stultz <john.stultz@linaro.org>, Cc: Mark Rutland <mark.rutland@arm.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307012153060.4013@ionos.tec.linutronix.de Cc: stable@vger.kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-01 20:14:10 +00:00
* Clear the broadcast bit for this cpu if the
* device is not power state affected.
*/
tick: Sanitize broadcast control logic The recent implementation of a generic dummy timer resulted in a different registration order of per cpu local timers which made the broadcast control logic go belly up. If the dummy timer is the first clock event device which is registered for a CPU, then it is installed, the broadcast timer is initialized and the CPU is marked as broadcast target. If a real clock event device is installed after that, we can fail to take the CPU out of the broadcast mask. In the worst case we end up with two periodic timer events firing for the same CPU. One from the per cpu hardware device and one from the broadcast. Now the problem is that we have no way to distinguish whether the system is in a state which makes broadcasting necessary or the broadcast bit was set due to the nonfunctional dummy timer installment. To solve this we need to keep track of the system state seperately and provide a more detailed decision logic whether we keep the CPU in broadcast mode or not. The old decision logic only clears the broadcast mode, if the newly installed clock event device is not affected by power states. The new logic clears the broadcast mode if one of the following is true: - The new device is not affected by power states. - The system is not in a power state affected mode - The system has switched to oneshot mode. The oneshot broadcast is controlled from the deep idle state. The CPU is not in idle at this point, so it's safe to remove it from the mask. If we clear the broadcast bit for the CPU when a new device is installed, we also shutdown the broadcast device when this was the last CPU in the broadcast mask. If the broadcast bit is kept, then we leave the new device in shutdown state and rely on the broadcast to deliver the timer interrupts via the broadcast ipis. Reported-and-tested-by: Stehle Vincent-B46079 <B46079@freescale.com> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Cc: John Stultz <john.stultz@linaro.org>, Cc: Mark Rutland <mark.rutland@arm.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307012153060.4013@ionos.tec.linutronix.de Cc: stable@vger.kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-01 20:14:10 +00:00
if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
cpumask_clear_cpu(cpu, tick_broadcast_mask);
tick: Sanitize broadcast control logic The recent implementation of a generic dummy timer resulted in a different registration order of per cpu local timers which made the broadcast control logic go belly up. If the dummy timer is the first clock event device which is registered for a CPU, then it is installed, the broadcast timer is initialized and the CPU is marked as broadcast target. If a real clock event device is installed after that, we can fail to take the CPU out of the broadcast mask. In the worst case we end up with two periodic timer events firing for the same CPU. One from the per cpu hardware device and one from the broadcast. Now the problem is that we have no way to distinguish whether the system is in a state which makes broadcasting necessary or the broadcast bit was set due to the nonfunctional dummy timer installment. To solve this we need to keep track of the system state seperately and provide a more detailed decision logic whether we keep the CPU in broadcast mode or not. The old decision logic only clears the broadcast mode, if the newly installed clock event device is not affected by power states. The new logic clears the broadcast mode if one of the following is true: - The new device is not affected by power states. - The system is not in a power state affected mode - The system has switched to oneshot mode. The oneshot broadcast is controlled from the deep idle state. The CPU is not in idle at this point, so it's safe to remove it from the mask. If we clear the broadcast bit for the CPU when a new device is installed, we also shutdown the broadcast device when this was the last CPU in the broadcast mask. If the broadcast bit is kept, then we leave the new device in shutdown state and rely on the broadcast to deliver the timer interrupts via the broadcast ipis. Reported-and-tested-by: Stehle Vincent-B46079 <B46079@freescale.com> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Cc: John Stultz <john.stultz@linaro.org>, Cc: Mark Rutland <mark.rutland@arm.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307012153060.4013@ionos.tec.linutronix.de Cc: stable@vger.kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-01 20:14:10 +00:00
else
tick_device_setup_broadcast_func(dev);
tick: Sanitize broadcast control logic The recent implementation of a generic dummy timer resulted in a different registration order of per cpu local timers which made the broadcast control logic go belly up. If the dummy timer is the first clock event device which is registered for a CPU, then it is installed, the broadcast timer is initialized and the CPU is marked as broadcast target. If a real clock event device is installed after that, we can fail to take the CPU out of the broadcast mask. In the worst case we end up with two periodic timer events firing for the same CPU. One from the per cpu hardware device and one from the broadcast. Now the problem is that we have no way to distinguish whether the system is in a state which makes broadcasting necessary or the broadcast bit was set due to the nonfunctional dummy timer installment. To solve this we need to keep track of the system state seperately and provide a more detailed decision logic whether we keep the CPU in broadcast mode or not. The old decision logic only clears the broadcast mode, if the newly installed clock event device is not affected by power states. The new logic clears the broadcast mode if one of the following is true: - The new device is not affected by power states. - The system is not in a power state affected mode - The system has switched to oneshot mode. The oneshot broadcast is controlled from the deep idle state. The CPU is not in idle at this point, so it's safe to remove it from the mask. If we clear the broadcast bit for the CPU when a new device is installed, we also shutdown the broadcast device when this was the last CPU in the broadcast mask. If the broadcast bit is kept, then we leave the new device in shutdown state and rely on the broadcast to deliver the timer interrupts via the broadcast ipis. Reported-and-tested-by: Stehle Vincent-B46079 <B46079@freescale.com> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Cc: John Stultz <john.stultz@linaro.org>, Cc: Mark Rutland <mark.rutland@arm.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307012153060.4013@ionos.tec.linutronix.de Cc: stable@vger.kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-01 20:14:10 +00:00
/*
* Clear the broadcast bit if the CPU is not in
* periodic broadcast on state.
*/
if (!cpumask_test_cpu(cpu, tick_broadcast_on))
cpumask_clear_cpu(cpu, tick_broadcast_mask);
switch (tick_broadcast_device.mode) {
case TICKDEV_MODE_ONESHOT:
/*
* If the system is in oneshot mode we can
* unconditionally clear the oneshot mask bit,
* because the CPU is running and therefore
* not in an idle state which causes the power
* state affected device to stop. Let the
* caller initialize the device.
*/
tick_broadcast_clear_oneshot(cpu);
ret = 0;
break;
case TICKDEV_MODE_PERIODIC:
/*
* If the system is in periodic mode, check
* whether the broadcast device can be
* switched off now.
*/
if (cpumask_empty(tick_broadcast_mask) && bc)
clockevents_shutdown(bc);
/*
* If we kept the cpu in the broadcast mask,
* tell the caller to leave the per cpu device
* in shutdown state. The periodic interrupt
* is delivered by the broadcast device.
*/
ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
break;
default:
/* Nothing to do */
ret = 0;
break;
}
}
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
return ret;
}
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
int tick_receive_broadcast(void)
{
struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
struct clock_event_device *evt = td->evtdev;
if (!evt)
return -ENODEV;
if (!evt->event_handler)
return -EINVAL;
evt->event_handler(evt);
return 0;
}
#endif
/*
* Broadcast the event to the cpus, which are set in the mask (mangled).
*/
static void tick_do_broadcast(struct cpumask *mask)
{
int cpu = smp_processor_id();
struct tick_device *td;
/*
* Check, if the current cpu is in the mask
*/
if (cpumask_test_cpu(cpu, mask)) {
cpumask_clear_cpu(cpu, mask);
td = &per_cpu(tick_cpu_device, cpu);
td->evtdev->event_handler(td->evtdev);
}
if (!cpumask_empty(mask)) {
/*
* It might be necessary to actually check whether the devices
* have different broadcast functions. For now, just use the
* one of the first device. This works as long as we have this
* misfeature only on x86 (lapic)
*/
td = &per_cpu(tick_cpu_device, cpumask_first(mask));
td->evtdev->broadcast(mask);
}
}
/*
* Periodic broadcast:
* - invoke the broadcast handlers
*/
static void tick_do_periodic_broadcast(void)
{
raw_spin_lock(&tick_broadcast_lock);
cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
tick_do_broadcast(tmpmask);
raw_spin_unlock(&tick_broadcast_lock);
}
/*
* Event handler for periodic broadcast ticks
*/
static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
{
ktime_t next;
tick_do_periodic_broadcast();
/*
* The device is in periodic mode. No reprogramming necessary:
*/
if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
return;
/*
* Setup the next period for devices, which do not have
* periodic mode. We read dev->next_event first and add to it
* when the event already expired. clockevents_program_event()
* sets dev->next_event only when the event is really
* programmed to the device.
*/
for (next = dev->next_event; ;) {
next = ktime_add(next, tick_period);
if (!clockevents_program_event(dev, next, false))
return;
tick_do_periodic_broadcast();
}
}
/*
* Powerstate information: The system enters/leaves a state, where
* affected devices might stop
*/
2009-08-17 21:34:59 +00:00
static void tick_do_broadcast_on_off(unsigned long *reason)
{
struct clock_event_device *bc, *dev;
struct tick_device *td;
2009-08-17 21:34:59 +00:00
unsigned long flags;
int cpu, bc_stopped;
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
cpu = smp_processor_id();
td = &per_cpu(tick_cpu_device, cpu);
dev = td->evtdev;
bc = tick_broadcast_device.evtdev;
/*
* Is the device not affected by the powerstate ?
*/
if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
goto out;
if (!tick_device_is_functional(dev))
goto out;
bc_stopped = cpumask_empty(tick_broadcast_mask);
switch (*reason) {
case CLOCK_EVT_NOTIFY_BROADCAST_ON:
case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
tick: Sanitize broadcast control logic The recent implementation of a generic dummy timer resulted in a different registration order of per cpu local timers which made the broadcast control logic go belly up. If the dummy timer is the first clock event device which is registered for a CPU, then it is installed, the broadcast timer is initialized and the CPU is marked as broadcast target. If a real clock event device is installed after that, we can fail to take the CPU out of the broadcast mask. In the worst case we end up with two periodic timer events firing for the same CPU. One from the per cpu hardware device and one from the broadcast. Now the problem is that we have no way to distinguish whether the system is in a state which makes broadcasting necessary or the broadcast bit was set due to the nonfunctional dummy timer installment. To solve this we need to keep track of the system state seperately and provide a more detailed decision logic whether we keep the CPU in broadcast mode or not. The old decision logic only clears the broadcast mode, if the newly installed clock event device is not affected by power states. The new logic clears the broadcast mode if one of the following is true: - The new device is not affected by power states. - The system is not in a power state affected mode - The system has switched to oneshot mode. The oneshot broadcast is controlled from the deep idle state. The CPU is not in idle at this point, so it's safe to remove it from the mask. If we clear the broadcast bit for the CPU when a new device is installed, we also shutdown the broadcast device when this was the last CPU in the broadcast mask. If the broadcast bit is kept, then we leave the new device in shutdown state and rely on the broadcast to deliver the timer interrupts via the broadcast ipis. Reported-and-tested-by: Stehle Vincent-B46079 <B46079@freescale.com> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Cc: John Stultz <john.stultz@linaro.org>, Cc: Mark Rutland <mark.rutland@arm.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307012153060.4013@ionos.tec.linutronix.de Cc: stable@vger.kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-01 20:14:10 +00:00
cpumask_set_cpu(cpu, tick_broadcast_on);
if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
if (tick_broadcast_device.mode ==
TICKDEV_MODE_PERIODIC)
clockevents_shutdown(dev);
}
if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
tick_broadcast_force = 1;
break;
case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
tick: Sanitize broadcast control logic The recent implementation of a generic dummy timer resulted in a different registration order of per cpu local timers which made the broadcast control logic go belly up. If the dummy timer is the first clock event device which is registered for a CPU, then it is installed, the broadcast timer is initialized and the CPU is marked as broadcast target. If a real clock event device is installed after that, we can fail to take the CPU out of the broadcast mask. In the worst case we end up with two periodic timer events firing for the same CPU. One from the per cpu hardware device and one from the broadcast. Now the problem is that we have no way to distinguish whether the system is in a state which makes broadcasting necessary or the broadcast bit was set due to the nonfunctional dummy timer installment. To solve this we need to keep track of the system state seperately and provide a more detailed decision logic whether we keep the CPU in broadcast mode or not. The old decision logic only clears the broadcast mode, if the newly installed clock event device is not affected by power states. The new logic clears the broadcast mode if one of the following is true: - The new device is not affected by power states. - The system is not in a power state affected mode - The system has switched to oneshot mode. The oneshot broadcast is controlled from the deep idle state. The CPU is not in idle at this point, so it's safe to remove it from the mask. If we clear the broadcast bit for the CPU when a new device is installed, we also shutdown the broadcast device when this was the last CPU in the broadcast mask. If the broadcast bit is kept, then we leave the new device in shutdown state and rely on the broadcast to deliver the timer interrupts via the broadcast ipis. Reported-and-tested-by: Stehle Vincent-B46079 <B46079@freescale.com> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Cc: John Stultz <john.stultz@linaro.org>, Cc: Mark Rutland <mark.rutland@arm.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307012153060.4013@ionos.tec.linutronix.de Cc: stable@vger.kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-01 20:14:10 +00:00
if (tick_broadcast_force)
break;
cpumask_clear_cpu(cpu, tick_broadcast_on);
if (!tick_device_is_functional(dev))
break;
if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
if (tick_broadcast_device.mode ==
TICKDEV_MODE_PERIODIC)
tick_setup_periodic(dev, 0);
}
break;
}
if (cpumask_empty(tick_broadcast_mask)) {
if (!bc_stopped)
clockevents_shutdown(bc);
} else if (bc_stopped) {
if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
tick_broadcast_start_periodic(bc);
else
tick_broadcast_setup_oneshot(bc);
}
out:
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
}
/*
* Powerstate information: The system enters/leaves a state, where
* affected devices might stop.
*/
void tick_broadcast_on_off(unsigned long reason, int *oncpu)
{
if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
"offline CPU #%d\n", *oncpu);
else
2009-08-17 21:34:59 +00:00
tick_do_broadcast_on_off(&reason);
}
/*
* Set the periodic handler depending on broadcast on/off
*/
void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
{
if (!broadcast)
dev->event_handler = tick_handle_periodic;
else
dev->event_handler = tick_handle_periodic_broadcast;
}
/*
* Remove a CPU from broadcasting
*/
void tick_shutdown_broadcast(unsigned int *cpup)
{
struct clock_event_device *bc;
unsigned long flags;
unsigned int cpu = *cpup;
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
bc = tick_broadcast_device.evtdev;
cpumask_clear_cpu(cpu, tick_broadcast_mask);
tick: Sanitize broadcast control logic The recent implementation of a generic dummy timer resulted in a different registration order of per cpu local timers which made the broadcast control logic go belly up. If the dummy timer is the first clock event device which is registered for a CPU, then it is installed, the broadcast timer is initialized and the CPU is marked as broadcast target. If a real clock event device is installed after that, we can fail to take the CPU out of the broadcast mask. In the worst case we end up with two periodic timer events firing for the same CPU. One from the per cpu hardware device and one from the broadcast. Now the problem is that we have no way to distinguish whether the system is in a state which makes broadcasting necessary or the broadcast bit was set due to the nonfunctional dummy timer installment. To solve this we need to keep track of the system state seperately and provide a more detailed decision logic whether we keep the CPU in broadcast mode or not. The old decision logic only clears the broadcast mode, if the newly installed clock event device is not affected by power states. The new logic clears the broadcast mode if one of the following is true: - The new device is not affected by power states. - The system is not in a power state affected mode - The system has switched to oneshot mode. The oneshot broadcast is controlled from the deep idle state. The CPU is not in idle at this point, so it's safe to remove it from the mask. If we clear the broadcast bit for the CPU when a new device is installed, we also shutdown the broadcast device when this was the last CPU in the broadcast mask. If the broadcast bit is kept, then we leave the new device in shutdown state and rely on the broadcast to deliver the timer interrupts via the broadcast ipis. Reported-and-tested-by: Stehle Vincent-B46079 <B46079@freescale.com> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Cc: John Stultz <john.stultz@linaro.org>, Cc: Mark Rutland <mark.rutland@arm.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307012153060.4013@ionos.tec.linutronix.de Cc: stable@vger.kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-01 20:14:10 +00:00
cpumask_clear_cpu(cpu, tick_broadcast_on);
if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
if (bc && cpumask_empty(tick_broadcast_mask))
clockevents_shutdown(bc);
}
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
}
void tick_suspend_broadcast(void)
{
struct clock_event_device *bc;
unsigned long flags;
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
bc = tick_broadcast_device.evtdev;
if (bc)
clockevents_shutdown(bc);
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
}
int tick_resume_broadcast(void)
{
struct clock_event_device *bc;
unsigned long flags;
int broadcast = 0;
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
bc = tick_broadcast_device.evtdev;
if (bc) {
clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
switch (tick_broadcast_device.mode) {
case TICKDEV_MODE_PERIODIC:
if (!cpumask_empty(tick_broadcast_mask))
tick_broadcast_start_periodic(bc);
broadcast = cpumask_test_cpu(smp_processor_id(),
tick_broadcast_mask);
break;
case TICKDEV_MODE_ONESHOT:
if (!cpumask_empty(tick_broadcast_mask))
broadcast = tick_resume_broadcast_oneshot(bc);
break;
}
}
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
return broadcast;
}
#ifdef CONFIG_TICK_ONESHOT
static cpumask_var_t tick_broadcast_oneshot_mask;
static cpumask_var_t tick_broadcast_pending_mask;
tick: Handle broadcast wakeup of multiple cpus Some brilliant hardware implementations wake multiple cores when the broadcast timer fires. This leads to the following interesting problem: CPU0 CPU1 wakeup from idle wakeup from idle leave broadcast mode leave broadcast mode restart per cpu timer restart per cpu timer go back to idle handle broadcast (empty mask) enter broadcast mode programm broadcast device enter broadcast mode programm broadcast device So what happens is that due to the forced reprogramming of the cpu local timer, we need to set a event in the future. Now if we manage to go back to idle before the timer fires, we switch off the timer and arm the broadcast device with an already expired time (covered by forced mode). So in the worst case we repeat the above ping pong forever. Unfortunately we have no information about what caused the wakeup, but we can check current time against the expiry time of the local cpu. If the local event is already in the past, we know that the broadcast timer is about to fire and send an IPI. So we mark ourself as an IPI target even if we left broadcast mode and avoid the reprogramming of the local cpu timer. This still leaves the possibility that a CPU which is not handling the broadcast interrupt is going to reach idle again before the IPI arrives. This can't be solved in the core code and will be handled in follow up patches. Reported-by: Jason Liu <liu.h.jason@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: LAK <linux-arm-kernel@lists.infradead.org> Cc: John Stultz <john.stultz@linaro.org> Cc: Arjan van de Veen <arjan@infradead.org> Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com> Link: http://lkml.kernel.org/r/20130306111537.492045206@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-03-06 11:18:35 +00:00
static cpumask_var_t tick_broadcast_force_mask;
[PATCH] Add debugging feature /proc/timer_list add /proc/timer_list, which prints all currently pending (high-res) timers, all clock-event sources and their parameters in a human-readable form. Sample output: Timer List Version: v0.1 HRTIMER_MAX_CLOCK_BASES: 2 now at 4246046273872 nsecs cpu: 0 clock 0: .index: 0 .resolution: 1 nsecs .get_time: ktime_get_real .offset: 1273998312645738432 nsecs active timers: clock 1: .index: 1 .resolution: 1 nsecs .get_time: ktime_get .offset: 0 nsecs active timers: #0: <f5a90ec8>, hrtimer_sched_tick, hrtimer_stop_sched_tick, swapper/0 # expires at 4246432689566 nsecs [in 386415694 nsecs] #1: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, pcscd/2050 # expires at 4247018194689 nsecs [in 971920817 nsecs] #2: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, irqbalance/1909 # expires at 4247351358392 nsecs [in 1305084520 nsecs] #3: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, crond/2157 # expires at 4249097614968 nsecs [in 3051341096 nsecs] #4: <f5a90ec8>, it_real_fn, do_setitimer, syslogd/1888 # expires at 4251329900926 nsecs [in 5283627054 nsecs] .expires_next : 4246432689566 nsecs .hres_active : 1 .check_clocks : 0 .nr_events : 31306 .idle_tick : 4246020791890 nsecs .tick_stopped : 1 .idle_jiffies : 986504 .idle_calls : 40700 .idle_sleeps : 36014 .idle_entrytime : 4246019418883 nsecs .idle_sleeptime : 4178181972709 nsecs cpu: 1 clock 0: .index: 0 .resolution: 1 nsecs .get_time: ktime_get_real .offset: 1273998312645738432 nsecs active timers: clock 1: .index: 1 .resolution: 1 nsecs .get_time: ktime_get .offset: 0 nsecs active timers: #0: <f5a90ec8>, hrtimer_sched_tick, hrtimer_restart_sched_tick, swapper/0 # expires at 4246050084568 nsecs [in 3810696 nsecs] #1: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, atd/2227 # expires at 4261010635003 nsecs [in 14964361131 nsecs] #2: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, smartd/2332 # expires at 5469485798970 nsecs [in 1223439525098 nsecs] .expires_next : 4246050084568 nsecs .hres_active : 1 .check_clocks : 0 .nr_events : 24043 .idle_tick : 4246046084568 nsecs .tick_stopped : 0 .idle_jiffies : 986510 .idle_calls : 26360 .idle_sleeps : 22551 .idle_entrytime : 4246043874339 nsecs .idle_sleeptime : 4170763761184 nsecs tick_broadcast_mask: 00000003 event_broadcast_mask: 00000001 CPU#0's local event device: Clock Event Device: lapic capabilities: 0000000e max_delta_ns: 807385544 min_delta_ns: 1443 mult: 44624025 shift: 32 set_next_event: lapic_next_event set_mode: lapic_timer_setup event_handler: hrtimer_interrupt .installed: 1 .expires: 4246432689566 nsecs CPU#1's local event device: Clock Event Device: lapic capabilities: 0000000e max_delta_ns: 807385544 min_delta_ns: 1443 mult: 44624025 shift: 32 set_next_event: lapic_next_event set_mode: lapic_timer_setup event_handler: hrtimer_interrupt .installed: 1 .expires: 4246050084568 nsecs Clock Event Device: hpet capabilities: 00000007 max_delta_ns: 2147483647 min_delta_ns: 3352 mult: 61496110 shift: 32 set_next_event: hpet_next_event set_mode: hpet_set_mode event_handler: handle_nextevt_broadcast Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: john stultz <johnstul@us.ibm.com> Cc: Roman Zippel <zippel@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-16 09:28:15 +00:00
/*
* Exposed for debugging: see timer_list.c
[PATCH] Add debugging feature /proc/timer_list add /proc/timer_list, which prints all currently pending (high-res) timers, all clock-event sources and their parameters in a human-readable form. Sample output: Timer List Version: v0.1 HRTIMER_MAX_CLOCK_BASES: 2 now at 4246046273872 nsecs cpu: 0 clock 0: .index: 0 .resolution: 1 nsecs .get_time: ktime_get_real .offset: 1273998312645738432 nsecs active timers: clock 1: .index: 1 .resolution: 1 nsecs .get_time: ktime_get .offset: 0 nsecs active timers: #0: <f5a90ec8>, hrtimer_sched_tick, hrtimer_stop_sched_tick, swapper/0 # expires at 4246432689566 nsecs [in 386415694 nsecs] #1: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, pcscd/2050 # expires at 4247018194689 nsecs [in 971920817 nsecs] #2: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, irqbalance/1909 # expires at 4247351358392 nsecs [in 1305084520 nsecs] #3: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, crond/2157 # expires at 4249097614968 nsecs [in 3051341096 nsecs] #4: <f5a90ec8>, it_real_fn, do_setitimer, syslogd/1888 # expires at 4251329900926 nsecs [in 5283627054 nsecs] .expires_next : 4246432689566 nsecs .hres_active : 1 .check_clocks : 0 .nr_events : 31306 .idle_tick : 4246020791890 nsecs .tick_stopped : 1 .idle_jiffies : 986504 .idle_calls : 40700 .idle_sleeps : 36014 .idle_entrytime : 4246019418883 nsecs .idle_sleeptime : 4178181972709 nsecs cpu: 1 clock 0: .index: 0 .resolution: 1 nsecs .get_time: ktime_get_real .offset: 1273998312645738432 nsecs active timers: clock 1: .index: 1 .resolution: 1 nsecs .get_time: ktime_get .offset: 0 nsecs active timers: #0: <f5a90ec8>, hrtimer_sched_tick, hrtimer_restart_sched_tick, swapper/0 # expires at 4246050084568 nsecs [in 3810696 nsecs] #1: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, atd/2227 # expires at 4261010635003 nsecs [in 14964361131 nsecs] #2: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, smartd/2332 # expires at 5469485798970 nsecs [in 1223439525098 nsecs] .expires_next : 4246050084568 nsecs .hres_active : 1 .check_clocks : 0 .nr_events : 24043 .idle_tick : 4246046084568 nsecs .tick_stopped : 0 .idle_jiffies : 986510 .idle_calls : 26360 .idle_sleeps : 22551 .idle_entrytime : 4246043874339 nsecs .idle_sleeptime : 4170763761184 nsecs tick_broadcast_mask: 00000003 event_broadcast_mask: 00000001 CPU#0's local event device: Clock Event Device: lapic capabilities: 0000000e max_delta_ns: 807385544 min_delta_ns: 1443 mult: 44624025 shift: 32 set_next_event: lapic_next_event set_mode: lapic_timer_setup event_handler: hrtimer_interrupt .installed: 1 .expires: 4246432689566 nsecs CPU#1's local event device: Clock Event Device: lapic capabilities: 0000000e max_delta_ns: 807385544 min_delta_ns: 1443 mult: 44624025 shift: 32 set_next_event: lapic_next_event set_mode: lapic_timer_setup event_handler: hrtimer_interrupt .installed: 1 .expires: 4246050084568 nsecs Clock Event Device: hpet capabilities: 00000007 max_delta_ns: 2147483647 min_delta_ns: 3352 mult: 61496110 shift: 32 set_next_event: hpet_next_event set_mode: hpet_set_mode event_handler: handle_nextevt_broadcast Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: john stultz <johnstul@us.ibm.com> Cc: Roman Zippel <zippel@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-16 09:28:15 +00:00
*/
struct cpumask *tick_get_broadcast_oneshot_mask(void)
[PATCH] Add debugging feature /proc/timer_list add /proc/timer_list, which prints all currently pending (high-res) timers, all clock-event sources and their parameters in a human-readable form. Sample output: Timer List Version: v0.1 HRTIMER_MAX_CLOCK_BASES: 2 now at 4246046273872 nsecs cpu: 0 clock 0: .index: 0 .resolution: 1 nsecs .get_time: ktime_get_real .offset: 1273998312645738432 nsecs active timers: clock 1: .index: 1 .resolution: 1 nsecs .get_time: ktime_get .offset: 0 nsecs active timers: #0: <f5a90ec8>, hrtimer_sched_tick, hrtimer_stop_sched_tick, swapper/0 # expires at 4246432689566 nsecs [in 386415694 nsecs] #1: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, pcscd/2050 # expires at 4247018194689 nsecs [in 971920817 nsecs] #2: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, irqbalance/1909 # expires at 4247351358392 nsecs [in 1305084520 nsecs] #3: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, crond/2157 # expires at 4249097614968 nsecs [in 3051341096 nsecs] #4: <f5a90ec8>, it_real_fn, do_setitimer, syslogd/1888 # expires at 4251329900926 nsecs [in 5283627054 nsecs] .expires_next : 4246432689566 nsecs .hres_active : 1 .check_clocks : 0 .nr_events : 31306 .idle_tick : 4246020791890 nsecs .tick_stopped : 1 .idle_jiffies : 986504 .idle_calls : 40700 .idle_sleeps : 36014 .idle_entrytime : 4246019418883 nsecs .idle_sleeptime : 4178181972709 nsecs cpu: 1 clock 0: .index: 0 .resolution: 1 nsecs .get_time: ktime_get_real .offset: 1273998312645738432 nsecs active timers: clock 1: .index: 1 .resolution: 1 nsecs .get_time: ktime_get .offset: 0 nsecs active timers: #0: <f5a90ec8>, hrtimer_sched_tick, hrtimer_restart_sched_tick, swapper/0 # expires at 4246050084568 nsecs [in 3810696 nsecs] #1: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, atd/2227 # expires at 4261010635003 nsecs [in 14964361131 nsecs] #2: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, smartd/2332 # expires at 5469485798970 nsecs [in 1223439525098 nsecs] .expires_next : 4246050084568 nsecs .hres_active : 1 .check_clocks : 0 .nr_events : 24043 .idle_tick : 4246046084568 nsecs .tick_stopped : 0 .idle_jiffies : 986510 .idle_calls : 26360 .idle_sleeps : 22551 .idle_entrytime : 4246043874339 nsecs .idle_sleeptime : 4170763761184 nsecs tick_broadcast_mask: 00000003 event_broadcast_mask: 00000001 CPU#0's local event device: Clock Event Device: lapic capabilities: 0000000e max_delta_ns: 807385544 min_delta_ns: 1443 mult: 44624025 shift: 32 set_next_event: lapic_next_event set_mode: lapic_timer_setup event_handler: hrtimer_interrupt .installed: 1 .expires: 4246432689566 nsecs CPU#1's local event device: Clock Event Device: lapic capabilities: 0000000e max_delta_ns: 807385544 min_delta_ns: 1443 mult: 44624025 shift: 32 set_next_event: lapic_next_event set_mode: lapic_timer_setup event_handler: hrtimer_interrupt .installed: 1 .expires: 4246050084568 nsecs Clock Event Device: hpet capabilities: 00000007 max_delta_ns: 2147483647 min_delta_ns: 3352 mult: 61496110 shift: 32 set_next_event: hpet_next_event set_mode: hpet_set_mode event_handler: handle_nextevt_broadcast Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: john stultz <johnstul@us.ibm.com> Cc: Roman Zippel <zippel@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-16 09:28:15 +00:00
{
return tick_broadcast_oneshot_mask;
[PATCH] Add debugging feature /proc/timer_list add /proc/timer_list, which prints all currently pending (high-res) timers, all clock-event sources and their parameters in a human-readable form. Sample output: Timer List Version: v0.1 HRTIMER_MAX_CLOCK_BASES: 2 now at 4246046273872 nsecs cpu: 0 clock 0: .index: 0 .resolution: 1 nsecs .get_time: ktime_get_real .offset: 1273998312645738432 nsecs active timers: clock 1: .index: 1 .resolution: 1 nsecs .get_time: ktime_get .offset: 0 nsecs active timers: #0: <f5a90ec8>, hrtimer_sched_tick, hrtimer_stop_sched_tick, swapper/0 # expires at 4246432689566 nsecs [in 386415694 nsecs] #1: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, pcscd/2050 # expires at 4247018194689 nsecs [in 971920817 nsecs] #2: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, irqbalance/1909 # expires at 4247351358392 nsecs [in 1305084520 nsecs] #3: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, crond/2157 # expires at 4249097614968 nsecs [in 3051341096 nsecs] #4: <f5a90ec8>, it_real_fn, do_setitimer, syslogd/1888 # expires at 4251329900926 nsecs [in 5283627054 nsecs] .expires_next : 4246432689566 nsecs .hres_active : 1 .check_clocks : 0 .nr_events : 31306 .idle_tick : 4246020791890 nsecs .tick_stopped : 1 .idle_jiffies : 986504 .idle_calls : 40700 .idle_sleeps : 36014 .idle_entrytime : 4246019418883 nsecs .idle_sleeptime : 4178181972709 nsecs cpu: 1 clock 0: .index: 0 .resolution: 1 nsecs .get_time: ktime_get_real .offset: 1273998312645738432 nsecs active timers: clock 1: .index: 1 .resolution: 1 nsecs .get_time: ktime_get .offset: 0 nsecs active timers: #0: <f5a90ec8>, hrtimer_sched_tick, hrtimer_restart_sched_tick, swapper/0 # expires at 4246050084568 nsecs [in 3810696 nsecs] #1: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, atd/2227 # expires at 4261010635003 nsecs [in 14964361131 nsecs] #2: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, smartd/2332 # expires at 5469485798970 nsecs [in 1223439525098 nsecs] .expires_next : 4246050084568 nsecs .hres_active : 1 .check_clocks : 0 .nr_events : 24043 .idle_tick : 4246046084568 nsecs .tick_stopped : 0 .idle_jiffies : 986510 .idle_calls : 26360 .idle_sleeps : 22551 .idle_entrytime : 4246043874339 nsecs .idle_sleeptime : 4170763761184 nsecs tick_broadcast_mask: 00000003 event_broadcast_mask: 00000001 CPU#0's local event device: Clock Event Device: lapic capabilities: 0000000e max_delta_ns: 807385544 min_delta_ns: 1443 mult: 44624025 shift: 32 set_next_event: lapic_next_event set_mode: lapic_timer_setup event_handler: hrtimer_interrupt .installed: 1 .expires: 4246432689566 nsecs CPU#1's local event device: Clock Event Device: lapic capabilities: 0000000e max_delta_ns: 807385544 min_delta_ns: 1443 mult: 44624025 shift: 32 set_next_event: lapic_next_event set_mode: lapic_timer_setup event_handler: hrtimer_interrupt .installed: 1 .expires: 4246050084568 nsecs Clock Event Device: hpet capabilities: 00000007 max_delta_ns: 2147483647 min_delta_ns: 3352 mult: 61496110 shift: 32 set_next_event: hpet_next_event set_mode: hpet_set_mode event_handler: handle_nextevt_broadcast Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: john stultz <johnstul@us.ibm.com> Cc: Roman Zippel <zippel@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-16 09:28:15 +00:00
}
/*
* Called before going idle with interrupts disabled. Checks whether a
* broadcast event from the other core is about to happen. We detected
* that in tick_broadcast_oneshot_control(). The callsite can use this
* to avoid a deep idle transition as we are about to get the
* broadcast IPI right away.
*/
int tick_check_broadcast_expired(void)
{
return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
}
/*
* Set broadcast interrupt affinity
*/
static void tick_broadcast_set_affinity(struct clock_event_device *bc,
const struct cpumask *cpumask)
{
if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
return;
if (cpumask_equal(bc->cpumask, cpumask))
return;
bc->cpumask = cpumask;
irq_set_affinity(bc->irq, bc->cpumask);
}
static int tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
ktime_t expires, int force)
{
int ret;
tick: Ensure that the broadcast device is initialized Santosh found another trap when we avoid to initialize the broadcast device in the switch_to_oneshot code. The broadcast device might be still in SHUTDOWN state when we actually need to use it. That obviously breaks, as set_next_event() is called on a shutdown device. This did not break on x86, but Suresh analyzed it: From the review, most likely on Sven's system we are force enabling the hpet using the pci quirk's method very late. And in this case, hpet_clockevent (which will be global_clock_event) handler can be null, specifically as this platform might not be using deeper c-states and using the reliable APIC timer. Prior to commit 'fa4da365bc7772c', that handler will be set to 'tick_handle_oneshot_broadcast' when we switch the broadcast timer to oneshot mode, even though we don't use it. Post commit 'fa4da365bc7772c', we stopped switching the broadcast mode to oneshot as this is not really needed and his platform's global_clock_event's handler will remain null. While on my SNB laptop, same is set to 'clockevents_handle_noop' because hpet gets enabled very early. (noop handler on my platform set when the early enabled hpet timer gets replaced by the lapic timer). But the commit 'fa4da365bc7772c' tracked the broadcast timer mode in the SW as oneshot, even though it didn't touch the HW timer. During resume however, tick_resume_broadcast() saw the SW broadcast mode as oneshot and actually programmed the broadcast device also into oneshot mode. So this triggered the null pointer de-reference after the hpet wraps around and depending on what the hpet counter is set to. On the normal platforms where hpet gets enabled early we should be seeing a spurious interrupt (in my SNB laptop I see one spurious interrupt after around 5 minutes ;) which is 32-bit hpet counter wraparound time), but that's a separate issue. Enforce the mode setting when trying to set an event. Reported-and-tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Suresh Siddha <suresh.b.siddha@intel.com> Cc: torvalds@linux-foundation.org Cc: svenjoac@gmx.de Cc: rjw@sisk.pl Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1204181723350.2542@ionos
2012-04-18 15:31:58 +00:00
if (bc->mode != CLOCK_EVT_MODE_ONESHOT)
clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
ret = clockevents_program_event(bc, expires, force);
if (!ret)
tick_broadcast_set_affinity(bc, cpumask_of(cpu));
return ret;
}
int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
{
clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
return 0;
}
/*
* Called from irq_enter() when idle was interrupted to reenable the
* per cpu device.
*/
void tick_check_oneshot_broadcast_this_cpu(void)
{
if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
struct tick_device *td = &__get_cpu_var(tick_cpu_device);
tick: Prevent uncontrolled switch to oneshot mode When the system switches from periodic to oneshot mode, the broadcast logic causes a possibility that a CPU which has not yet switched to oneshot mode puts its own clock event device into oneshot mode without updating the state and the timer handler. CPU0 CPU1 per cpu tickdev is in periodic mode and switched to broadcast Switch to oneshot mode tick_broadcast_switch_to_oneshot() cpumask_copy(tick_oneshot_broacast_mask, tick_broadcast_mask); broadcast device mode = oneshot Timer interrupt irq_enter() tick_check_oneshot_broadcast() dev->set_mode(ONESHOT); tick_handle_periodic() if (dev->mode == ONESHOT) dev->next_event += period; FAIL. We fail, because dev->next_event contains KTIME_MAX, if the device was in periodic mode before the uncontrolled switch to oneshot happened. We must copy the broadcast bits over to the oneshot mask, because otherwise a CPU which relies on the broadcast would not been woken up anymore after the broadcast device switched to oneshot mode. So we need to verify in tick_check_oneshot_broadcast() whether the CPU has already switched to oneshot mode. If not, leave the device untouched and let the CPU switch controlled into oneshot mode. This is a long standing bug, which was never noticed, because the main user of the broadcast x86 cannot run into that scenario, AFAICT. The nonarchitected timer mess of ARM creates a gazillion of differently broken abominations which trigger the shortcomings of that broadcast code, which better had never been necessary in the first place. Reported-and-tested-by: Stehle Vincent-B46079 <B46079@freescale.com> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Cc: John Stultz <john.stultz@linaro.org>, Cc: Mark Rutland <mark.rutland@arm.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307012153060.4013@ionos.tec.linutronix.de Cc: stable@vger.kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-01 20:14:10 +00:00
/*
* We might be in the middle of switching over from
* periodic to oneshot. If the CPU has not yet
* switched over, leave the device alone.
*/
if (td->mode == TICKDEV_MODE_ONESHOT) {
clockevents_set_mode(td->evtdev,
CLOCK_EVT_MODE_ONESHOT);
}
}
}
/*
* Handle oneshot mode broadcasting
*/
static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
{
struct tick_device *td;
ktime_t now, next_event;
int cpu, next_cpu = 0;
raw_spin_lock(&tick_broadcast_lock);
again:
dev->next_event.tv64 = KTIME_MAX;
next_event.tv64 = KTIME_MAX;
cpumask_clear(tmpmask);
now = ktime_get();
/* Find all expired events */
for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
td = &per_cpu(tick_cpu_device, cpu);
if (td->evtdev->next_event.tv64 <= now.tv64) {
cpumask_set_cpu(cpu, tmpmask);
/*
* Mark the remote cpu in the pending mask, so
* it can avoid reprogramming the cpu local
* timer in tick_broadcast_oneshot_control().
*/
cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
} else if (td->evtdev->next_event.tv64 < next_event.tv64) {
next_event.tv64 = td->evtdev->next_event.tv64;
next_cpu = cpu;
}
}
tick: Cure broadcast false positive pending bit warning commit 26517f3e (tick: Avoid programming the local cpu timer if broadcast pending) added a warning if the cpu enters broadcast mode again while the pending bit is still set. Meelis reported that the warning triggers. There are two corner cases which have been not considered: 1) cpuidle calls clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER) twice. That can result in the following scenario CPU0 CPU1 cpuidle_idle_call() clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER) set cpu in tick_broadcast_oneshot_mask broadcast interrupt event expired for cpu1 set pending bit acpi_idle_enter_simple() clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER) WARN_ON(pending bit) Move the WARN_ON into the section where we enter broadcast mode so it wont provide false positives on the second call. 2) safe_halt() enables interrupts, so a broadcast interrupt can be delivered befor the broadcast mode is disabled. That sets the pending bit for the CPU which receives the broadcast interrupt. Though the interrupt is delivered right away from the broadcast handler and leaves the pending bit stale. Clear the pending bit for the current cpu in the broadcast handler. Reported-and-tested-by: Meelis Roos <mroos@linux.ee> Cc: Len Brown <lenb@kernel.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Rafael J. Wysocki <rjw@sisk.pl> Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1305271841130.4220@ionos Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-05-28 07:33:01 +00:00
/*
* Remove the current cpu from the pending mask. The event is
* delivered immediately in tick_do_broadcast() !
*/
cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
tick: Handle broadcast wakeup of multiple cpus Some brilliant hardware implementations wake multiple cores when the broadcast timer fires. This leads to the following interesting problem: CPU0 CPU1 wakeup from idle wakeup from idle leave broadcast mode leave broadcast mode restart per cpu timer restart per cpu timer go back to idle handle broadcast (empty mask) enter broadcast mode programm broadcast device enter broadcast mode programm broadcast device So what happens is that due to the forced reprogramming of the cpu local timer, we need to set a event in the future. Now if we manage to go back to idle before the timer fires, we switch off the timer and arm the broadcast device with an already expired time (covered by forced mode). So in the worst case we repeat the above ping pong forever. Unfortunately we have no information about what caused the wakeup, but we can check current time against the expiry time of the local cpu. If the local event is already in the past, we know that the broadcast timer is about to fire and send an IPI. So we mark ourself as an IPI target even if we left broadcast mode and avoid the reprogramming of the local cpu timer. This still leaves the possibility that a CPU which is not handling the broadcast interrupt is going to reach idle again before the IPI arrives. This can't be solved in the core code and will be handled in follow up patches. Reported-by: Jason Liu <liu.h.jason@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: LAK <linux-arm-kernel@lists.infradead.org> Cc: John Stultz <john.stultz@linaro.org> Cc: Arjan van de Veen <arjan@infradead.org> Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com> Link: http://lkml.kernel.org/r/20130306111537.492045206@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-03-06 11:18:35 +00:00
/* Take care of enforced broadcast requests */
cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
cpumask_clear(tick_broadcast_force_mask);
/*
* Sanity check. Catch the case where we try to broadcast to
* offline cpus.
*/
if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
cpumask_and(tmpmask, tmpmask, cpu_online_mask);
/*
* Wakeup the cpus which have an expired event.
*/
tick_do_broadcast(tmpmask);
/*
* Two reasons for reprogram:
*
* - The global event did not expire any CPU local
* events. This happens in dyntick mode, as the maximum PIT
* delta is quite small.
*
* - There are pending events on sleeping CPUs which were not
* in the event mask
*/
if (next_event.tv64 != KTIME_MAX) {
/*
* Rearm the broadcast device. If event expired,
* repeat the above
*/
if (tick_broadcast_set_event(dev, next_cpu, next_event, 0))
goto again;
}
raw_spin_unlock(&tick_broadcast_lock);
}
/*
* Powerstate information: The system enters/leaves a state, where
* affected devices might stop
*/
void tick_broadcast_oneshot_control(unsigned long reason)
{
struct clock_event_device *bc, *dev;
struct tick_device *td;
unsigned long flags;
tick: Handle broadcast wakeup of multiple cpus Some brilliant hardware implementations wake multiple cores when the broadcast timer fires. This leads to the following interesting problem: CPU0 CPU1 wakeup from idle wakeup from idle leave broadcast mode leave broadcast mode restart per cpu timer restart per cpu timer go back to idle handle broadcast (empty mask) enter broadcast mode programm broadcast device enter broadcast mode programm broadcast device So what happens is that due to the forced reprogramming of the cpu local timer, we need to set a event in the future. Now if we manage to go back to idle before the timer fires, we switch off the timer and arm the broadcast device with an already expired time (covered by forced mode). So in the worst case we repeat the above ping pong forever. Unfortunately we have no information about what caused the wakeup, but we can check current time against the expiry time of the local cpu. If the local event is already in the past, we know that the broadcast timer is about to fire and send an IPI. So we mark ourself as an IPI target even if we left broadcast mode and avoid the reprogramming of the local cpu timer. This still leaves the possibility that a CPU which is not handling the broadcast interrupt is going to reach idle again before the IPI arrives. This can't be solved in the core code and will be handled in follow up patches. Reported-by: Jason Liu <liu.h.jason@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: LAK <linux-arm-kernel@lists.infradead.org> Cc: John Stultz <john.stultz@linaro.org> Cc: Arjan van de Veen <arjan@infradead.org> Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com> Link: http://lkml.kernel.org/r/20130306111537.492045206@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-03-06 11:18:35 +00:00
ktime_t now;
int cpu;
/*
* Periodic mode does not care about the enter/exit of power
* states
*/
if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
return;
/*
* We are called with preemtion disabled from the depth of the
* idle code, so we can't be moved away.
*/
cpu = smp_processor_id();
td = &per_cpu(tick_cpu_device, cpu);
dev = td->evtdev;
if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
return;
bc = tick_broadcast_device.evtdev;
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
tick: Cure broadcast false positive pending bit warning commit 26517f3e (tick: Avoid programming the local cpu timer if broadcast pending) added a warning if the cpu enters broadcast mode again while the pending bit is still set. Meelis reported that the warning triggers. There are two corner cases which have been not considered: 1) cpuidle calls clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER) twice. That can result in the following scenario CPU0 CPU1 cpuidle_idle_call() clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER) set cpu in tick_broadcast_oneshot_mask broadcast interrupt event expired for cpu1 set pending bit acpi_idle_enter_simple() clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER) WARN_ON(pending bit) Move the WARN_ON into the section where we enter broadcast mode so it wont provide false positives on the second call. 2) safe_halt() enables interrupts, so a broadcast interrupt can be delivered befor the broadcast mode is disabled. That sets the pending bit for the CPU which receives the broadcast interrupt. Though the interrupt is delivered right away from the broadcast handler and leaves the pending bit stale. Clear the pending bit for the current cpu in the broadcast handler. Reported-and-tested-by: Meelis Roos <mroos@linux.ee> Cc: Len Brown <lenb@kernel.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Rafael J. Wysocki <rjw@sisk.pl> Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1305271841130.4220@ionos Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-05-28 07:33:01 +00:00
WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
tick: Handle broadcast wakeup of multiple cpus Some brilliant hardware implementations wake multiple cores when the broadcast timer fires. This leads to the following interesting problem: CPU0 CPU1 wakeup from idle wakeup from idle leave broadcast mode leave broadcast mode restart per cpu timer restart per cpu timer go back to idle handle broadcast (empty mask) enter broadcast mode programm broadcast device enter broadcast mode programm broadcast device So what happens is that due to the forced reprogramming of the cpu local timer, we need to set a event in the future. Now if we manage to go back to idle before the timer fires, we switch off the timer and arm the broadcast device with an already expired time (covered by forced mode). So in the worst case we repeat the above ping pong forever. Unfortunately we have no information about what caused the wakeup, but we can check current time against the expiry time of the local cpu. If the local event is already in the past, we know that the broadcast timer is about to fire and send an IPI. So we mark ourself as an IPI target even if we left broadcast mode and avoid the reprogramming of the local cpu timer. This still leaves the possibility that a CPU which is not handling the broadcast interrupt is going to reach idle again before the IPI arrives. This can't be solved in the core code and will be handled in follow up patches. Reported-by: Jason Liu <liu.h.jason@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: LAK <linux-arm-kernel@lists.infradead.org> Cc: John Stultz <john.stultz@linaro.org> Cc: Arjan van de Veen <arjan@infradead.org> Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com> Link: http://lkml.kernel.org/r/20130306111537.492045206@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-03-06 11:18:35 +00:00
/*
* We only reprogram the broadcast timer if we
* did not mark ourself in the force mask and
* if the cpu local event is earlier than the
* broadcast event. If the current CPU is in
* the force mask, then we are going to be
* woken by the IPI right away.
*/
if (!cpumask_test_cpu(cpu, tick_broadcast_force_mask) &&
dev->next_event.tv64 < bc->next_event.tv64)
tick_broadcast_set_event(bc, cpu, dev->next_event, 1);
}
} else {
if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
/*
* The cpu which was handling the broadcast
* timer marked this cpu in the broadcast
* pending mask and fired the broadcast
* IPI. So we are going to handle the expired
* event anyway via the broadcast IPI
* handler. No need to reprogram the timer
* with an already expired event.
*/
if (cpumask_test_and_clear_cpu(cpu,
tick_broadcast_pending_mask))
goto out;
tick: Fix tick_broadcast_pending_mask not cleared The recent modification in the cpuidle framework consolidated the timer broadcast code across the different drivers by setting a new flag in the idle state. It tells the cpuidle core code to enter/exit the broadcast mode for the cpu when entering a deep idle state. The broadcast timer enter/exit is no longer handled by the back-end driver. This change made the local interrupt to be enabled *before* calling CLOCK_EVENT_NOTIFY_EXIT. On a tegra114, a four cores system, when the flag has been introduced in the driver, the following warning appeared: WARNING: at kernel/time/tick-broadcast.c:578 tick_broadcast_oneshot_control CPU: 2 PID: 0 Comm: swapper/2 Not tainted 3.10.0-rc3-next-20130529+ #15 [<c00667f8>] (tick_broadcast_oneshot_control+0x1a4/0x1d0) from [<c0065cd0>] (tick_notify+0x240/0x40c) [<c0065cd0>] (tick_notify+0x240/0x40c) from [<c0044724>] (notifier_call_chain+0x44/0x84) [<c0044724>] (notifier_call_chain+0x44/0x84) from [<c0044828>] (raw_notifier_call_chain+0x18/0x20) [<c0044828>] (raw_notifier_call_chain+0x18/0x20) from [<c00650cc>] (clockevents_notify+0x28/0x170) [<c00650cc>] (clockevents_notify+0x28/0x170) from [<c033f1f0>] (cpuidle_idle_call+0x11c/0x168) [<c033f1f0>] (cpuidle_idle_call+0x11c/0x168) from [<c000ea94>] (arch_cpu_idle+0x8/0x38) [<c000ea94>] (arch_cpu_idle+0x8/0x38) from [<c005ea80>] (cpu_startup_entry+0x60/0x134) [<c005ea80>] (cpu_startup_entry+0x60/0x134) from [<804fe9a4>] (0x804fe9a4) I don't have the hardware, so I wasn't able to reproduce the warning but after looking a while at the code, I deduced the following: 1. the CPU2 enters a deep idle state and sets the broadcast timer 2. the timer expires, the tick_handle_oneshot_broadcast function is called, setting the tick_broadcast_pending_mask and waking up the idle cpu CPU2 3. the CPU2 exits idle handles the interrupt and then invokes tick_broadcast_oneshot_control with CLOCK_EVENT_NOTIFY_EXIT which runs the following code: [...] if (dev->next_event.tv64 == KTIME_MAX) goto out; if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_pending_mask)) goto out; [...] So if there is no next event scheduled for CPU2, we fulfil the first condition and jump out without clearing the tick_broadcast_pending_mask. 4. CPU2 goes to deep idle again and calls tick_broadcast_oneshot_control with CLOCK_NOTIFY_EVENT_ENTER but with the tick_broadcast_pending_mask set for CPU2, triggering the warning. The issue only surfaced due to the modifications of the cpuidle framework, which resulted in interrupts being enabled before the call to the clockevents code. If the call happens before interrupts have been enabled, the warning cannot trigger, because there is still the event pending which caused the broadcast timer expiry. Move the check for the next event below the check for the pending bit, so the pending bit gets cleared whether an event is scheduled on the cpu or not. [ tglx: Massaged changelog ] Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org> Reported-and-tested-by: Joseph Lo <josephl@nvidia.com> Cc: Stephen Warren <swarren@nvidia.com> Cc: linux-arm-kernel@lists.infradead.org Cc: linaro-kernel@lists.linaro.org Link: http://lkml.kernel.org/r/1371485735-31249-1-git-send-email-daniel.lezcano@linaro.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-06-17 16:15:35 +00:00
/*
* Bail out if there is no next event.
*/
if (dev->next_event.tv64 == KTIME_MAX)
goto out;
tick: Handle broadcast wakeup of multiple cpus Some brilliant hardware implementations wake multiple cores when the broadcast timer fires. This leads to the following interesting problem: CPU0 CPU1 wakeup from idle wakeup from idle leave broadcast mode leave broadcast mode restart per cpu timer restart per cpu timer go back to idle handle broadcast (empty mask) enter broadcast mode programm broadcast device enter broadcast mode programm broadcast device So what happens is that due to the forced reprogramming of the cpu local timer, we need to set a event in the future. Now if we manage to go back to idle before the timer fires, we switch off the timer and arm the broadcast device with an already expired time (covered by forced mode). So in the worst case we repeat the above ping pong forever. Unfortunately we have no information about what caused the wakeup, but we can check current time against the expiry time of the local cpu. If the local event is already in the past, we know that the broadcast timer is about to fire and send an IPI. So we mark ourself as an IPI target even if we left broadcast mode and avoid the reprogramming of the local cpu timer. This still leaves the possibility that a CPU which is not handling the broadcast interrupt is going to reach idle again before the IPI arrives. This can't be solved in the core code and will be handled in follow up patches. Reported-by: Jason Liu <liu.h.jason@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: LAK <linux-arm-kernel@lists.infradead.org> Cc: John Stultz <john.stultz@linaro.org> Cc: Arjan van de Veen <arjan@infradead.org> Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com> Link: http://lkml.kernel.org/r/20130306111537.492045206@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-03-06 11:18:35 +00:00
/*
* If the pending bit is not set, then we are
* either the CPU handling the broadcast
* interrupt or we got woken by something else.
*
* We are not longer in the broadcast mask, so
* if the cpu local expiry time is already
* reached, we would reprogram the cpu local
* timer with an already expired event.
*
* This can lead to a ping-pong when we return
* to idle and therefor rearm the broadcast
* timer before the cpu local timer was able
* to fire. This happens because the forced
* reprogramming makes sure that the event
* will happen in the future and depending on
* the min_delta setting this might be far
* enough out that the ping-pong starts.
*
* If the cpu local next_event has expired
* then we know that the broadcast timer
* next_event has expired as well and
* broadcast is about to be handled. So we
* avoid reprogramming and enforce that the
* broadcast handler, which did not run yet,
* will invoke the cpu local handler.
*
* We cannot call the handler directly from
* here, because we might be in a NOHZ phase
* and we did not go through the irq_enter()
* nohz fixups.
*/
now = ktime_get();
if (dev->next_event.tv64 <= now.tv64) {
cpumask_set_cpu(cpu, tick_broadcast_force_mask);
goto out;
}
/*
* We got woken by something else. Reprogram
* the cpu local timer device.
*/
tick_program_event(dev->next_event, 1);
}
}
out:
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
}
/*
* Reset the one shot broadcast for a cpu
*
* Called with tick_broadcast_lock held
*/
static void tick_broadcast_clear_oneshot(int cpu)
{
cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
tick: Clear broadcast pending bit when switching to oneshot AMD systems which use the C1E workaround in the amd_e400_idle routine trigger the WARN_ON_ONCE in the broadcast code when onlining a CPU. The reason is that the idle routine of those AMD systems switches the cpu into forced broadcast mode early on before the newly brought up CPU can switch over to high resolution / NOHZ mode. The timer related CPU1 bringup looks like this: clockevent_register_device(local_apic); tick_setup(local_apic); ... idle() tick_broadcast_on_off(FORCE); tick_broadcast_oneshot_control(ENTER) cpumask_set(cpu, broadcast_oneshot_mask); halt(); Now the broadcast interrupt on CPU0 sets CPU1 in the broadcast_pending_mask and wakes CPU1. So CPU1 continues: local_apic_timer_interrupt() tick_handle_periodic(); softirq() tick_init_highres(); cpumask_clr(cpu, broadcast_oneshot_mask); tick_broadcast_oneshot_control(ENTER) WARN_ON(cpumask_test(cpu, broadcast_pending_mask); So while we remove CPU1 from the broadcast_oneshot_mask when we switch over to highres mode, we do not clear the pending bit, which then triggers the warning when we go back to idle. The reason why this is only visible on C1E affected AMD systems is that the other machines enter the deep sleep states via acpi_idle/intel_idle and exit the broadcast mode before executing the remote triggered local_apic_timer_interrupt. So the pending bit is already cleared when the switch over to highres mode is clearing the oneshot mask. The solution is simple: Clear the pending bit together with the mask bit when we switch over to highres mode. Stanislaw came up independently with the same patch by enforcing the C1E workaround and debugging the fallout. I picked mine, because mine has a changelog :) Reported-by: poma <pomidorabelisima@gmail.com> Debugged-by: Stanislaw Gruszka <sgruszka@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Olaf Hering <olaf@aepfle.de> Cc: Dave Jones <davej@redhat.com> Cc: Justin M. Forbes <jforbes@redhat.com> Cc: Josh Boyer <jwboyer@redhat.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1402111434180.21991@ionos.tec.linutronix.de Cc: stable@vger.kernel.org # 3.10+ Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-02-11 13:35:40 +00:00
cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
}
static void tick_broadcast_init_next_event(struct cpumask *mask,
ktime_t expires)
{
struct tick_device *td;
int cpu;
for_each_cpu(cpu, mask) {
td = &per_cpu(tick_cpu_device, cpu);
if (td->evtdev)
td->evtdev->next_event = expires;
}
}
/**
* tick_broadcast_setup_oneshot - setup the broadcast device
*/
void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
{
tick: Clear broadcast active bit when switching to oneshot The first cpu which switches from periodic to oneshot mode switches also the broadcast device into oneshot mode. The broadcast device serves as a backup for per cpu timers which stop in deeper C-states. To avoid starvation of the cpus which might be in idle and depend on broadcast mode it marks the other cpus as broadcast active and sets the brodcast expiry value of those cpus to the next tick. The oneshot mode broadcast bit for the other cpus is sticky and gets only cleared when those cpus exit idle. If a cpu was not idle while the bit got set in consequence the bit prevents that the broadcast device is armed on behalf of that cpu when it enters idle for the first time after it switched to oneshot mode. In most cases that goes unnoticed as one of the other cpus has usually a timer pending which keeps the broadcast device armed with a short timeout. Now if the only cpu which has a short timer active has the bit set then the broadcast device will not be armed on behalf of that cpu and will fire way after the expected timer expiry. In the case of Christians bug report it took ~145 seconds which is about half of the wrap around time of HPET (the limit for that device) due to the fact that all other cpus had no timers armed which expired before the 145 seconds timeframe. The solution is simply to clear the broadcast active bit unconditionally when a cpu switches to oneshot mode after the first cpu switched the broadcast device over. It's not idle at that point otherwise it would not be executing that code. [ I fundamentally hate that broadcast crap. Why the heck thought some folks that when going into deep idle it's a brilliant concept to switch off the last device which brings the cpu back from that state? ] Thanks to Christian for providing all the valuable debug information! Reported-and-tested-by: Christian Hoffmann <email@christianhoffmann.info> Cc: John Stultz <johnstul@us.ibm.com> Link: http://lkml.kernel.org/r/%3Calpine.LFD.2.02.1105161105170.3078%40ionos%3E Cc: stable@kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2011-05-16 09:07:48 +00:00
int cpu = smp_processor_id();
/* Set it up only once ! */
if (bc->event_handler != tick_handle_oneshot_broadcast) {
int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
bc->event_handler = tick_handle_oneshot_broadcast;
/*
* We must be careful here. There might be other CPUs
* waiting for periodic broadcast. We need to set the
* oneshot_mask bits for those and program the
* broadcast device to fire.
*/
cpumask_copy(tmpmask, tick_broadcast_mask);
cpumask_clear_cpu(cpu, tmpmask);
cpumask_or(tick_broadcast_oneshot_mask,
tick_broadcast_oneshot_mask, tmpmask);
if (was_periodic && !cpumask_empty(tmpmask)) {
2012-04-18 10:08:23 +00:00
clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
tick_broadcast_init_next_event(tmpmask,
tick_next_period);
tick_broadcast_set_event(bc, cpu, tick_next_period, 1);
} else
bc->next_event.tv64 = KTIME_MAX;
tick: Clear broadcast active bit when switching to oneshot The first cpu which switches from periodic to oneshot mode switches also the broadcast device into oneshot mode. The broadcast device serves as a backup for per cpu timers which stop in deeper C-states. To avoid starvation of the cpus which might be in idle and depend on broadcast mode it marks the other cpus as broadcast active and sets the brodcast expiry value of those cpus to the next tick. The oneshot mode broadcast bit for the other cpus is sticky and gets only cleared when those cpus exit idle. If a cpu was not idle while the bit got set in consequence the bit prevents that the broadcast device is armed on behalf of that cpu when it enters idle for the first time after it switched to oneshot mode. In most cases that goes unnoticed as one of the other cpus has usually a timer pending which keeps the broadcast device armed with a short timeout. Now if the only cpu which has a short timer active has the bit set then the broadcast device will not be armed on behalf of that cpu and will fire way after the expected timer expiry. In the case of Christians bug report it took ~145 seconds which is about half of the wrap around time of HPET (the limit for that device) due to the fact that all other cpus had no timers armed which expired before the 145 seconds timeframe. The solution is simply to clear the broadcast active bit unconditionally when a cpu switches to oneshot mode after the first cpu switched the broadcast device over. It's not idle at that point otherwise it would not be executing that code. [ I fundamentally hate that broadcast crap. Why the heck thought some folks that when going into deep idle it's a brilliant concept to switch off the last device which brings the cpu back from that state? ] Thanks to Christian for providing all the valuable debug information! Reported-and-tested-by: Christian Hoffmann <email@christianhoffmann.info> Cc: John Stultz <johnstul@us.ibm.com> Link: http://lkml.kernel.org/r/%3Calpine.LFD.2.02.1105161105170.3078%40ionos%3E Cc: stable@kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2011-05-16 09:07:48 +00:00
} else {
/*
* The first cpu which switches to oneshot mode sets
* the bit for all other cpus which are in the general
* (periodic) broadcast mask. So the bit is set and
* would prevent the first broadcast enter after this
* to program the bc device.
*/
tick_broadcast_clear_oneshot(cpu);
}
}
/*
* Select oneshot operating mode for the broadcast device
*/
void tick_broadcast_switch_to_oneshot(void)
{
struct clock_event_device *bc;
unsigned long flags;
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
bc = tick_broadcast_device.evtdev;
if (bc)
tick_broadcast_setup_oneshot(bc);
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
}
/*
* Remove a dead CPU from broadcasting
*/
void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
{
unsigned long flags;
unsigned int cpu = *cpup;
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
/*
* Clear the broadcast masks for the dead cpu, but do not stop
* the broadcast device!
*/
cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
}
/*
* Check, whether the broadcast device is in one shot mode
*/
int tick_broadcast_oneshot_active(void)
{
return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
}
/*
* Check whether the broadcast device supports oneshot.
*/
bool tick_broadcast_oneshot_available(void)
{
struct clock_event_device *bc = tick_broadcast_device.evtdev;
return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
}
#endif
void __init tick_broadcast_init(void)
{
zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
tick: Sanitize broadcast control logic The recent implementation of a generic dummy timer resulted in a different registration order of per cpu local timers which made the broadcast control logic go belly up. If the dummy timer is the first clock event device which is registered for a CPU, then it is installed, the broadcast timer is initialized and the CPU is marked as broadcast target. If a real clock event device is installed after that, we can fail to take the CPU out of the broadcast mask. In the worst case we end up with two periodic timer events firing for the same CPU. One from the per cpu hardware device and one from the broadcast. Now the problem is that we have no way to distinguish whether the system is in a state which makes broadcasting necessary or the broadcast bit was set due to the nonfunctional dummy timer installment. To solve this we need to keep track of the system state seperately and provide a more detailed decision logic whether we keep the CPU in broadcast mode or not. The old decision logic only clears the broadcast mode, if the newly installed clock event device is not affected by power states. The new logic clears the broadcast mode if one of the following is true: - The new device is not affected by power states. - The system is not in a power state affected mode - The system has switched to oneshot mode. The oneshot broadcast is controlled from the deep idle state. The CPU is not in idle at this point, so it's safe to remove it from the mask. If we clear the broadcast bit for the CPU when a new device is installed, we also shutdown the broadcast device when this was the last CPU in the broadcast mask. If the broadcast bit is kept, then we leave the new device in shutdown state and rely on the broadcast to deliver the timer interrupts via the broadcast ipis. Reported-and-tested-by: Stehle Vincent-B46079 <B46079@freescale.com> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Cc: John Stultz <john.stultz@linaro.org>, Cc: Mark Rutland <mark.rutland@arm.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307012153060.4013@ionos.tec.linutronix.de Cc: stable@vger.kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-01 20:14:10 +00:00
zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
#ifdef CONFIG_TICK_ONESHOT
zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
#endif
}