linux/drivers/net/cassini.c

5376 lines
142 KiB
C
Raw Normal View History

/* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
*
* Copyright (C) 2004 Sun Microsystems Inc.
* Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
* 02111-1307, USA.
*
* This driver uses the sungem driver (c) David Miller
* (davem@redhat.com) as its basis.
*
* The cassini chip has a number of features that distinguish it from
* the gem chip:
* 4 transmit descriptor rings that are used for either QoS (VLAN) or
* load balancing (non-VLAN mode)
* batching of multiple packets
* multiple CPU dispatching
* page-based RX descriptor engine with separate completion rings
* Gigabit support (GMII and PCS interface)
* MIF link up/down detection works
*
* RX is handled by page sized buffers that are attached as fragments to
* the skb. here's what's done:
* -- driver allocates pages at a time and keeps reference counts
* on them.
* -- the upper protocol layers assume that the header is in the skb
* itself. as a result, cassini will copy a small amount (64 bytes)
* to make them happy.
* -- driver appends the rest of the data pages as frags to skbuffs
* and increments the reference count
* -- on page reclamation, the driver swaps the page with a spare page.
* if that page is still in use, it frees its reference to that page,
* and allocates a new page for use. otherwise, it just recycles the
* the page.
*
* NOTE: cassini can parse the header. however, it's not worth it
* as long as the network stack requires a header copy.
*
* TX has 4 queues. currently these queues are used in a round-robin
* fashion for load balancing. They can also be used for QoS. for that
* to work, however, QoS information needs to be exposed down to the driver
* level so that subqueues get targetted to particular transmit rings.
* alternatively, the queues can be configured via use of the all-purpose
* ioctl.
*
* RX DATA: the rx completion ring has all the info, but the rx desc
* ring has all of the data. RX can conceivably come in under multiple
* interrupts, but the INT# assignment needs to be set up properly by
* the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
* that. also, the two descriptor rings are designed to distinguish between
* encrypted and non-encrypted packets, but we use them for buffering
* instead.
*
* by default, the selective clear mask is set up to process rx packets.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/compiler.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/vmalloc.h>
#include <linux/ioport.h>
#include <linux/pci.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/list.h>
#include <linux/dma-mapping.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>
#include <linux/crc32.h>
#include <linux/random.h>
#include <linux/mii.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/mutex.h>
#include <linux/firmware.h>
#include <net/checksum.h>
#include <asm/atomic.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/byteorder.h>
#include <asm/uaccess.h>
#define cas_page_map(x) kmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
#define cas_page_unmap(x) kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
#define CAS_NCPUS num_online_cpus()
#if defined(CONFIG_CASSINI_NAPI) && defined(HAVE_NETDEV_POLL)
#define USE_NAPI
#define cas_skb_release(x) netif_receive_skb(x)
#else
#define cas_skb_release(x) netif_rx(x)
#endif
/* select which firmware to use */
#define USE_HP_WORKAROUND
#define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
#define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
#include "cassini.h"
#define USE_TX_COMPWB /* use completion writeback registers */
#define USE_CSMA_CD_PROTO /* standard CSMA/CD */
#define USE_RX_BLANK /* hw interrupt mitigation */
#undef USE_ENTROPY_DEV /* don't test for entropy device */
/* NOTE: these aren't useable unless PCI interrupts can be assigned.
* also, we need to make cp->lock finer-grained.
*/
#undef USE_PCI_INTB
#undef USE_PCI_INTC
#undef USE_PCI_INTD
#undef USE_QOS
#undef USE_VPD_DEBUG /* debug vpd information if defined */
/* rx processing options */
#define USE_PAGE_ORDER /* specify to allocate large rx pages */
#define RX_DONT_BATCH 0 /* if 1, don't batch flows */
#define RX_COPY_ALWAYS 0 /* if 0, use frags */
#define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
#undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
#define DRV_MODULE_NAME "cassini"
#define PFX DRV_MODULE_NAME ": "
#define DRV_MODULE_VERSION "1.6"
#define DRV_MODULE_RELDATE "21 May 2008"
#define CAS_DEF_MSG_ENABLE \
(NETIF_MSG_DRV | \
NETIF_MSG_PROBE | \
NETIF_MSG_LINK | \
NETIF_MSG_TIMER | \
NETIF_MSG_IFDOWN | \
NETIF_MSG_IFUP | \
NETIF_MSG_RX_ERR | \
NETIF_MSG_TX_ERR)
/* length of time before we decide the hardware is borked,
* and dev->tx_timeout() should be called to fix the problem
*/
#define CAS_TX_TIMEOUT (HZ)
#define CAS_LINK_TIMEOUT (22*HZ/10)
#define CAS_LINK_FAST_TIMEOUT (1)
/* timeout values for state changing. these specify the number
* of 10us delays to be used before giving up.
*/
#define STOP_TRIES_PHY 1000
#define STOP_TRIES 5000
/* specify a minimum frame size to deal with some fifo issues
* max mtu == 2 * page size - ethernet header - 64 - swivel =
* 2 * page_size - 0x50
*/
#define CAS_MIN_FRAME 97
#define CAS_1000MB_MIN_FRAME 255
#define CAS_MIN_MTU 60
#define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
#if 1
/*
* Eliminate these and use separate atomic counters for each, to
* avoid a race condition.
*/
#else
#define CAS_RESET_MTU 1
#define CAS_RESET_ALL 2
#define CAS_RESET_SPARE 3
#endif
static char version[] __devinitdata =
DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
static int link_mode;
MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
MODULE_LICENSE("GPL");
MODULE_FIRMWARE("sun/cassini.bin");
module_param(cassini_debug, int, 0);
MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
module_param(link_mode, int, 0);
MODULE_PARM_DESC(link_mode, "default link mode");
/*
* Work around for a PCS bug in which the link goes down due to the chip
* being confused and never showing a link status of "up."
*/
#define DEFAULT_LINKDOWN_TIMEOUT 5
/*
* Value in seconds, for user input.
*/
static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
module_param(linkdown_timeout, int, 0);
MODULE_PARM_DESC(linkdown_timeout,
"min reset interval in sec. for PCS linkdown issue; disabled if not positive");
/*
* value in 'ticks' (units used by jiffies). Set when we init the
* module because 'HZ' in actually a function call on some flavors of
* Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
*/
static int link_transition_timeout;
static u16 link_modes[] __devinitdata = {
BMCR_ANENABLE, /* 0 : autoneg */
0, /* 1 : 10bt half duplex */
BMCR_SPEED100, /* 2 : 100bt half duplex */
BMCR_FULLDPLX, /* 3 : 10bt full duplex */
BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */
CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
};
static struct pci_device_id cas_pci_tbl[] __devinitdata = {
{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
static void cas_set_link_modes(struct cas *cp);
static inline void cas_lock_tx(struct cas *cp)
{
int i;
for (i = 0; i < N_TX_RINGS; i++)
spin_lock(&cp->tx_lock[i]);
}
static inline void cas_lock_all(struct cas *cp)
{
spin_lock_irq(&cp->lock);
cas_lock_tx(cp);
}
/* WTZ: QA was finding deadlock problems with the previous
* versions after long test runs with multiple cards per machine.
* See if replacing cas_lock_all with safer versions helps. The
* symptoms QA is reporting match those we'd expect if interrupts
* aren't being properly restored, and we fixed a previous deadlock
* with similar symptoms by using save/restore versions in other
* places.
*/
#define cas_lock_all_save(cp, flags) \
do { \
struct cas *xxxcp = (cp); \
spin_lock_irqsave(&xxxcp->lock, flags); \
cas_lock_tx(xxxcp); \
} while (0)
static inline void cas_unlock_tx(struct cas *cp)
{
int i;
for (i = N_TX_RINGS; i > 0; i--)
spin_unlock(&cp->tx_lock[i - 1]);
}
static inline void cas_unlock_all(struct cas *cp)
{
cas_unlock_tx(cp);
spin_unlock_irq(&cp->lock);
}
#define cas_unlock_all_restore(cp, flags) \
do { \
struct cas *xxxcp = (cp); \
cas_unlock_tx(xxxcp); \
spin_unlock_irqrestore(&xxxcp->lock, flags); \
} while (0)
static void cas_disable_irq(struct cas *cp, const int ring)
{
/* Make sure we won't get any more interrupts */
if (ring == 0) {
writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
return;
}
/* disable completion interrupts and selectively mask */
if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
switch (ring) {
#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
#ifdef USE_PCI_INTB
case 1:
#endif
#ifdef USE_PCI_INTC
case 2:
#endif
#ifdef USE_PCI_INTD
case 3:
#endif
writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
cp->regs + REG_PLUS_INTRN_MASK(ring));
break;
#endif
default:
writel(INTRN_MASK_CLEAR_ALL, cp->regs +
REG_PLUS_INTRN_MASK(ring));
break;
}
}
}
static inline void cas_mask_intr(struct cas *cp)
{
int i;
for (i = 0; i < N_RX_COMP_RINGS; i++)
cas_disable_irq(cp, i);
}
static void cas_enable_irq(struct cas *cp, const int ring)
{
if (ring == 0) { /* all but TX_DONE */
writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
return;
}
if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
switch (ring) {
#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
#ifdef USE_PCI_INTB
case 1:
#endif
#ifdef USE_PCI_INTC
case 2:
#endif
#ifdef USE_PCI_INTD
case 3:
#endif
writel(INTRN_MASK_RX_EN, cp->regs +
REG_PLUS_INTRN_MASK(ring));
break;
#endif
default:
break;
}
}
}
static inline void cas_unmask_intr(struct cas *cp)
{
int i;
for (i = 0; i < N_RX_COMP_RINGS; i++)
cas_enable_irq(cp, i);
}
static inline void cas_entropy_gather(struct cas *cp)
{
#ifdef USE_ENTROPY_DEV
if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
return;
batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
readl(cp->regs + REG_ENTROPY_IV),
sizeof(uint64_t)*8);
#endif
}
static inline void cas_entropy_reset(struct cas *cp)
{
#ifdef USE_ENTROPY_DEV
if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
return;
writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
cp->regs + REG_BIM_LOCAL_DEV_EN);
writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
/* if we read back 0x0, we don't have an entropy device */
if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
#endif
}
/* access to the phy. the following assumes that we've initialized the MIF to
* be in frame rather than bit-bang mode
*/
static u16 cas_phy_read(struct cas *cp, int reg)
{
u32 cmd;
int limit = STOP_TRIES_PHY;
cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
cmd |= MIF_FRAME_TURN_AROUND_MSB;
writel(cmd, cp->regs + REG_MIF_FRAME);
/* poll for completion */
while (limit-- > 0) {
udelay(10);
cmd = readl(cp->regs + REG_MIF_FRAME);
if (cmd & MIF_FRAME_TURN_AROUND_LSB)
return (cmd & MIF_FRAME_DATA_MASK);
}
return 0xFFFF; /* -1 */
}
static int cas_phy_write(struct cas *cp, int reg, u16 val)
{
int limit = STOP_TRIES_PHY;
u32 cmd;
cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
cmd |= MIF_FRAME_TURN_AROUND_MSB;
cmd |= val & MIF_FRAME_DATA_MASK;
writel(cmd, cp->regs + REG_MIF_FRAME);
/* poll for completion */
while (limit-- > 0) {
udelay(10);
cmd = readl(cp->regs + REG_MIF_FRAME);
if (cmd & MIF_FRAME_TURN_AROUND_LSB)
return 0;
}
return -1;
}
static void cas_phy_powerup(struct cas *cp)
{
u16 ctl = cas_phy_read(cp, MII_BMCR);
if ((ctl & BMCR_PDOWN) == 0)
return;
ctl &= ~BMCR_PDOWN;
cas_phy_write(cp, MII_BMCR, ctl);
}
static void cas_phy_powerdown(struct cas *cp)
{
u16 ctl = cas_phy_read(cp, MII_BMCR);
if (ctl & BMCR_PDOWN)
return;
ctl |= BMCR_PDOWN;
cas_phy_write(cp, MII_BMCR, ctl);
}
/* cp->lock held. note: the last put_page will free the buffer */
static int cas_page_free(struct cas *cp, cas_page_t *page)
{
pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
PCI_DMA_FROMDEVICE);
__free_pages(page->buffer, cp->page_order);
kfree(page);
return 0;
}
#ifdef RX_COUNT_BUFFERS
#define RX_USED_ADD(x, y) ((x)->used += (y))
#define RX_USED_SET(x, y) ((x)->used = (y))
#else
#define RX_USED_ADD(x, y)
#define RX_USED_SET(x, y)
#endif
/* local page allocation routines for the receive buffers. jumbo pages
* require at least 8K contiguous and 8K aligned buffers.
*/
static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
{
cas_page_t *page;
page = kmalloc(sizeof(cas_page_t), flags);
if (!page)
return NULL;
INIT_LIST_HEAD(&page->list);
RX_USED_SET(page, 0);
page->buffer = alloc_pages(flags, cp->page_order);
if (!page->buffer)
goto page_err;
page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
cp->page_size, PCI_DMA_FROMDEVICE);
return page;
page_err:
kfree(page);
return NULL;
}
/* initialize spare pool of rx buffers, but allocate during the open */
static void cas_spare_init(struct cas *cp)
{
spin_lock(&cp->rx_inuse_lock);
INIT_LIST_HEAD(&cp->rx_inuse_list);
spin_unlock(&cp->rx_inuse_lock);
spin_lock(&cp->rx_spare_lock);
INIT_LIST_HEAD(&cp->rx_spare_list);
cp->rx_spares_needed = RX_SPARE_COUNT;
spin_unlock(&cp->rx_spare_lock);
}
/* used on close. free all the spare buffers. */
static void cas_spare_free(struct cas *cp)
{
struct list_head list, *elem, *tmp;
/* free spare buffers */
INIT_LIST_HEAD(&list);
spin_lock(&cp->rx_spare_lock);
list_splice_init(&cp->rx_spare_list, &list);
spin_unlock(&cp->rx_spare_lock);
list_for_each_safe(elem, tmp, &list) {
cas_page_free(cp, list_entry(elem, cas_page_t, list));
}
INIT_LIST_HEAD(&list);
#if 1
/*
* Looks like Adrian had protected this with a different
* lock than used everywhere else to manipulate this list.
*/
spin_lock(&cp->rx_inuse_lock);
list_splice_init(&cp->rx_inuse_list, &list);
spin_unlock(&cp->rx_inuse_lock);
#else
spin_lock(&cp->rx_spare_lock);
list_splice_init(&cp->rx_inuse_list, &list);
spin_unlock(&cp->rx_spare_lock);
#endif
list_for_each_safe(elem, tmp, &list) {
cas_page_free(cp, list_entry(elem, cas_page_t, list));
}
}
/* replenish spares if needed */
static void cas_spare_recover(struct cas *cp, const gfp_t flags)
{
struct list_head list, *elem, *tmp;
int needed, i;
/* check inuse list. if we don't need any more free buffers,
* just free it
*/
/* make a local copy of the list */
INIT_LIST_HEAD(&list);
spin_lock(&cp->rx_inuse_lock);
list_splice_init(&cp->rx_inuse_list, &list);
spin_unlock(&cp->rx_inuse_lock);
list_for_each_safe(elem, tmp, &list) {
cas_page_t *page = list_entry(elem, cas_page_t, list);
mm: speculative page references If we can be sure that elevating the page_count on a pagecache page will pin it, we can speculatively run this operation, and subsequently check to see if we hit the right page rather than relying on holding a lock or otherwise pinning a reference to the page. This can be done if get_page/put_page behaves consistently throughout the whole tree (ie. if we "get" the page after it has been used for something else, we must be able to free it with a put_page). Actually, there is a period where the count behaves differently: when the page is free or if it is a constituent page of a compound page. We need an atomic_inc_not_zero operation to ensure we don't try to grab the page in either case. This patch introduces the core locking protocol to the pagecache (ie. adds page_cache_get_speculative, and tweaks some update-side code to make it work). Thanks to Hugh for pointing out an improvement to the algorithm setting page_count to zero when we have control of all references, in order to hold off speculative getters. [kamezawa.hiroyu@jp.fujitsu.com: fix migration_entry_wait()] [hugh@veritas.com: fix add_to_page_cache] [akpm@linux-foundation.org: repair a comment] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Jeff Garzik <jeff@garzik.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Hugh Dickins <hugh@veritas.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Reviewed-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 02:45:30 +00:00
/*
* With the lockless pagecache, cassini buffering scheme gets
* slightly less accurate: we might find that a page has an
* elevated reference count here, due to a speculative ref,
* and skip it as in-use. Ideally we would be able to reclaim
* it. However this would be such a rare case, it doesn't
* matter too much as we should pick it up the next time round.
*
* Importantly, if we find that the page has a refcount of 1
* here (our refcount), then we know it is definitely not inuse
* so we can reuse it.
*/
if (page_count(page->buffer) > 1)
continue;
list_del(elem);
spin_lock(&cp->rx_spare_lock);
if (cp->rx_spares_needed > 0) {
list_add(elem, &cp->rx_spare_list);
cp->rx_spares_needed--;
spin_unlock(&cp->rx_spare_lock);
} else {
spin_unlock(&cp->rx_spare_lock);
cas_page_free(cp, page);
}
}
/* put any inuse buffers back on the list */
if (!list_empty(&list)) {
spin_lock(&cp->rx_inuse_lock);
list_splice(&list, &cp->rx_inuse_list);
spin_unlock(&cp->rx_inuse_lock);
}
spin_lock(&cp->rx_spare_lock);
needed = cp->rx_spares_needed;
spin_unlock(&cp->rx_spare_lock);
if (!needed)
return;
/* we still need spares, so try to allocate some */
INIT_LIST_HEAD(&list);
i = 0;
while (i < needed) {
cas_page_t *spare = cas_page_alloc(cp, flags);
if (!spare)
break;
list_add(&spare->list, &list);
i++;
}
spin_lock(&cp->rx_spare_lock);
list_splice(&list, &cp->rx_spare_list);
cp->rx_spares_needed -= i;
spin_unlock(&cp->rx_spare_lock);
}
/* pull a page from the list. */
static cas_page_t *cas_page_dequeue(struct cas *cp)
{
struct list_head *entry;
int recover;
spin_lock(&cp->rx_spare_lock);
if (list_empty(&cp->rx_spare_list)) {
/* try to do a quick recovery */
spin_unlock(&cp->rx_spare_lock);
cas_spare_recover(cp, GFP_ATOMIC);
spin_lock(&cp->rx_spare_lock);
if (list_empty(&cp->rx_spare_list)) {
if (netif_msg_rx_err(cp))
printk(KERN_ERR "%s: no spare buffers "
"available.\n", cp->dev->name);
spin_unlock(&cp->rx_spare_lock);
return NULL;
}
}
entry = cp->rx_spare_list.next;
list_del(entry);
recover = ++cp->rx_spares_needed;
spin_unlock(&cp->rx_spare_lock);
/* trigger the timer to do the recovery */
if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
#if 1
atomic_inc(&cp->reset_task_pending);
atomic_inc(&cp->reset_task_pending_spare);
schedule_work(&cp->reset_task);
#else
atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
schedule_work(&cp->reset_task);
#endif
}
return list_entry(entry, cas_page_t, list);
}
static void cas_mif_poll(struct cas *cp, const int enable)
{
u32 cfg;
cfg = readl(cp->regs + REG_MIF_CFG);
cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
if (cp->phy_type & CAS_PHY_MII_MDIO1)
cfg |= MIF_CFG_PHY_SELECT;
/* poll and interrupt on link status change. */
if (enable) {
cfg |= MIF_CFG_POLL_EN;
cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
}
writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
cp->regs + REG_MIF_MASK);
writel(cfg, cp->regs + REG_MIF_CFG);
}
/* Must be invoked under cp->lock */
static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
{
u16 ctl;
#if 1
int lcntl;
int changed = 0;
int oldstate = cp->lstate;
int link_was_not_down = !(oldstate == link_down);
#endif
/* Setup link parameters */
if (!ep)
goto start_aneg;
lcntl = cp->link_cntl;
if (ep->autoneg == AUTONEG_ENABLE)
cp->link_cntl = BMCR_ANENABLE;
else {
cp->link_cntl = 0;
if (ep->speed == SPEED_100)
cp->link_cntl |= BMCR_SPEED100;
else if (ep->speed == SPEED_1000)
cp->link_cntl |= CAS_BMCR_SPEED1000;
if (ep->duplex == DUPLEX_FULL)
cp->link_cntl |= BMCR_FULLDPLX;
}
#if 1
changed = (lcntl != cp->link_cntl);
#endif
start_aneg:
if (cp->lstate == link_up) {
printk(KERN_INFO "%s: PCS link down.\n",
cp->dev->name);
} else {
if (changed) {
printk(KERN_INFO "%s: link configuration changed\n",
cp->dev->name);
}
}
cp->lstate = link_down;
cp->link_transition = LINK_TRANSITION_LINK_DOWN;
if (!cp->hw_running)
return;
#if 1
/*
* WTZ: If the old state was link_up, we turn off the carrier
* to replicate everything we do elsewhere on a link-down
* event when we were already in a link-up state..
*/
if (oldstate == link_up)
netif_carrier_off(cp->dev);
if (changed && link_was_not_down) {
/*
* WTZ: This branch will simply schedule a full reset after
* we explicitly changed link modes in an ioctl. See if this
* fixes the link-problems we were having for forced mode.
*/
atomic_inc(&cp->reset_task_pending);
atomic_inc(&cp->reset_task_pending_all);
schedule_work(&cp->reset_task);
cp->timer_ticks = 0;
mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
return;
}
#endif
if (cp->phy_type & CAS_PHY_SERDES) {
u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
if (cp->link_cntl & BMCR_ANENABLE) {
val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
cp->lstate = link_aneg;
} else {
if (cp->link_cntl & BMCR_FULLDPLX)
val |= PCS_MII_CTRL_DUPLEX;
val &= ~PCS_MII_AUTONEG_EN;
cp->lstate = link_force_ok;
}
cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
writel(val, cp->regs + REG_PCS_MII_CTRL);
} else {
cas_mif_poll(cp, 0);
ctl = cas_phy_read(cp, MII_BMCR);
ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
ctl |= cp->link_cntl;
if (ctl & BMCR_ANENABLE) {
ctl |= BMCR_ANRESTART;
cp->lstate = link_aneg;
} else {
cp->lstate = link_force_ok;
}
cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
cas_phy_write(cp, MII_BMCR, ctl);
cas_mif_poll(cp, 1);
}
cp->timer_ticks = 0;
mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
}
/* Must be invoked under cp->lock. */
static int cas_reset_mii_phy(struct cas *cp)
{
int limit = STOP_TRIES_PHY;
u16 val;
cas_phy_write(cp, MII_BMCR, BMCR_RESET);
udelay(100);
while (--limit) {
val = cas_phy_read(cp, MII_BMCR);
if ((val & BMCR_RESET) == 0)
break;
udelay(10);
}
return (limit <= 0);
}
static int cas_saturn_firmware_init(struct cas *cp)
{
const struct firmware *fw;
const char fw_name[] = "sun/cassini.bin";
int err;
if (PHY_NS_DP83065 != cp->phy_id)
return 0;
err = request_firmware(&fw, fw_name, &cp->pdev->dev);
if (err) {
printk(KERN_ERR "cassini: Failed to load firmware \"%s\"\n",
fw_name);
return err;
}
if (fw->size < 2) {
printk(KERN_ERR "cassini: bogus length %zu in \"%s\"\n",
fw->size, fw_name);
err = -EINVAL;
goto out;
}
cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
cp->fw_size = fw->size - 2;
cp->fw_data = vmalloc(cp->fw_size);
if (!cp->fw_data) {
err = -ENOMEM;
printk(KERN_ERR "cassini: \"%s\" Failed %d\n", fw_name, err);
goto out;
}
memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
out:
release_firmware(fw);
return err;
}
static void cas_saturn_firmware_load(struct cas *cp)
{
int i;
cas_phy_powerdown(cp);
/* expanded memory access mode */
cas_phy_write(cp, DP83065_MII_MEM, 0x0);
/* pointer configuration for new firmware */
cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
cas_phy_write(cp, DP83065_MII_REGD, 0x82);
cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
cas_phy_write(cp, DP83065_MII_REGD, 0x0);
cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
cas_phy_write(cp, DP83065_MII_REGD, 0x39);
/* download new firmware */
cas_phy_write(cp, DP83065_MII_MEM, 0x1);
cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
for (i = 0; i < cp->fw_size; i++)
cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
/* enable firmware */
cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
cas_phy_write(cp, DP83065_MII_REGD, 0x1);
}
/* phy initialization */
static void cas_phy_init(struct cas *cp)
{
u16 val;
/* if we're in MII/GMII mode, set up phy */
if (CAS_PHY_MII(cp->phy_type)) {
writel(PCS_DATAPATH_MODE_MII,
cp->regs + REG_PCS_DATAPATH_MODE);
cas_mif_poll(cp, 0);
cas_reset_mii_phy(cp); /* take out of isolate mode */
if (PHY_LUCENT_B0 == cp->phy_id) {
/* workaround link up/down issue with lucent */
cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
cas_phy_write(cp, MII_BMCR, 0x00f1);
cas_phy_write(cp, LUCENT_MII_REG, 0x0);
} else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
/* workarounds for broadcom phy */
cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
} else if (PHY_BROADCOM_5411 == cp->phy_id) {
val = cas_phy_read(cp, BROADCOM_MII_REG4);
val = cas_phy_read(cp, BROADCOM_MII_REG4);
if (val & 0x0080) {
/* link workaround */
cas_phy_write(cp, BROADCOM_MII_REG4,
val & ~0x0080);
}
} else if (cp->cas_flags & CAS_FLAG_SATURN) {
writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
SATURN_PCFG_FSI : 0x0,
cp->regs + REG_SATURN_PCFG);
/* load firmware to address 10Mbps auto-negotiation
* issue. NOTE: this will need to be changed if the
* default firmware gets fixed.
*/
if (PHY_NS_DP83065 == cp->phy_id) {
cas_saturn_firmware_load(cp);
}
cas_phy_powerup(cp);
}
/* advertise capabilities */
val = cas_phy_read(cp, MII_BMCR);
val &= ~BMCR_ANENABLE;
cas_phy_write(cp, MII_BMCR, val);
udelay(10);
cas_phy_write(cp, MII_ADVERTISE,
cas_phy_read(cp, MII_ADVERTISE) |
(ADVERTISE_10HALF | ADVERTISE_10FULL |
ADVERTISE_100HALF | ADVERTISE_100FULL |
CAS_ADVERTISE_PAUSE |
CAS_ADVERTISE_ASYM_PAUSE));
if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
/* make sure that we don't advertise half
* duplex to avoid a chip issue
*/
val = cas_phy_read(cp, CAS_MII_1000_CTRL);
val &= ~CAS_ADVERTISE_1000HALF;
val |= CAS_ADVERTISE_1000FULL;
cas_phy_write(cp, CAS_MII_1000_CTRL, val);
}
} else {
/* reset pcs for serdes */
u32 val;
int limit;
writel(PCS_DATAPATH_MODE_SERDES,
cp->regs + REG_PCS_DATAPATH_MODE);
/* enable serdes pins on saturn */
if (cp->cas_flags & CAS_FLAG_SATURN)
writel(0, cp->regs + REG_SATURN_PCFG);
/* Reset PCS unit. */
val = readl(cp->regs + REG_PCS_MII_CTRL);
val |= PCS_MII_RESET;
writel(val, cp->regs + REG_PCS_MII_CTRL);
limit = STOP_TRIES;
while (--limit > 0) {
udelay(10);
if ((readl(cp->regs + REG_PCS_MII_CTRL) &
PCS_MII_RESET) == 0)
break;
}
if (limit <= 0)
printk(KERN_WARNING "%s: PCS reset bit would not "
"clear [%08x].\n", cp->dev->name,
readl(cp->regs + REG_PCS_STATE_MACHINE));
/* Make sure PCS is disabled while changing advertisement
* configuration.
*/
writel(0x0, cp->regs + REG_PCS_CFG);
/* Advertise all capabilities except half-duplex. */
val = readl(cp->regs + REG_PCS_MII_ADVERT);
val &= ~PCS_MII_ADVERT_HD;
val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
PCS_MII_ADVERT_ASYM_PAUSE);
writel(val, cp->regs + REG_PCS_MII_ADVERT);
/* enable PCS */
writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
/* pcs workaround: enable sync detect */
writel(PCS_SERDES_CTRL_SYNCD_EN,
cp->regs + REG_PCS_SERDES_CTRL);
}
}
static int cas_pcs_link_check(struct cas *cp)
{
u32 stat, state_machine;
int retval = 0;
/* The link status bit latches on zero, so you must
* read it twice in such a case to see a transition
* to the link being up.
*/
stat = readl(cp->regs + REG_PCS_MII_STATUS);
if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
stat = readl(cp->regs + REG_PCS_MII_STATUS);
/* The remote-fault indication is only valid
* when autoneg has completed.
*/
if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
PCS_MII_STATUS_REMOTE_FAULT)) ==
(PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT)) {
if (netif_msg_link(cp))
printk(KERN_INFO "%s: PCS RemoteFault\n",
cp->dev->name);
}
/* work around link detection issue by querying the PCS state
* machine directly.
*/
state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
stat &= ~PCS_MII_STATUS_LINK_STATUS;
} else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
stat |= PCS_MII_STATUS_LINK_STATUS;
}
if (stat & PCS_MII_STATUS_LINK_STATUS) {
if (cp->lstate != link_up) {
if (cp->opened) {
cp->lstate = link_up;
cp->link_transition = LINK_TRANSITION_LINK_UP;
cas_set_link_modes(cp);
netif_carrier_on(cp->dev);
}
}
} else if (cp->lstate == link_up) {
cp->lstate = link_down;
if (link_transition_timeout != 0 &&
cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
!cp->link_transition_jiffies_valid) {
/*
* force a reset, as a workaround for the
* link-failure problem. May want to move this to a
* point a bit earlier in the sequence. If we had
* generated a reset a short time ago, we'll wait for
* the link timer to check the status until a
* timer expires (link_transistion_jiffies_valid is
* true when the timer is running.) Instead of using
* a system timer, we just do a check whenever the
* link timer is running - this clears the flag after
* a suitable delay.
*/
retval = 1;
cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
cp->link_transition_jiffies = jiffies;
cp->link_transition_jiffies_valid = 1;
} else {
cp->link_transition = LINK_TRANSITION_ON_FAILURE;
}
netif_carrier_off(cp->dev);
if (cp->opened && netif_msg_link(cp)) {
printk(KERN_INFO "%s: PCS link down.\n",
cp->dev->name);
}
/* Cassini only: if you force a mode, there can be
* sync problems on link down. to fix that, the following
* things need to be checked:
* 1) read serialink state register
* 2) read pcs status register to verify link down.
* 3) if link down and serial link == 0x03, then you need
* to global reset the chip.
*/
if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
/* should check to see if we're in a forced mode */
stat = readl(cp->regs + REG_PCS_SERDES_STATE);
if (stat == 0x03)
return 1;
}
} else if (cp->lstate == link_down) {
if (link_transition_timeout != 0 &&
cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
!cp->link_transition_jiffies_valid) {
/* force a reset, as a workaround for the
* link-failure problem. May want to move
* this to a point a bit earlier in the
* sequence.
*/
retval = 1;
cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
cp->link_transition_jiffies = jiffies;
cp->link_transition_jiffies_valid = 1;
} else {
cp->link_transition = LINK_TRANSITION_STILL_FAILED;
}
}
return retval;
}
static int cas_pcs_interrupt(struct net_device *dev,
struct cas *cp, u32 status)
{
u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
return 0;
return cas_pcs_link_check(cp);
}
static int cas_txmac_interrupt(struct net_device *dev,
struct cas *cp, u32 status)
{
u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
if (!txmac_stat)
return 0;
if (netif_msg_intr(cp))
printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
cp->dev->name, txmac_stat);
/* Defer timer expiration is quite normal,
* don't even log the event.
*/
if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
!(txmac_stat & ~MAC_TX_DEFER_TIMER))
return 0;
spin_lock(&cp->stat_lock[0]);
if (txmac_stat & MAC_TX_UNDERRUN) {
printk(KERN_ERR "%s: TX MAC xmit underrun.\n",
dev->name);
cp->net_stats[0].tx_fifo_errors++;
}
if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
printk(KERN_ERR "%s: TX MAC max packet size error.\n",
dev->name);
cp->net_stats[0].tx_errors++;
}
/* The rest are all cases of one of the 16-bit TX
* counters expiring.
*/
if (txmac_stat & MAC_TX_COLL_NORMAL)
cp->net_stats[0].collisions += 0x10000;
if (txmac_stat & MAC_TX_COLL_EXCESS) {
cp->net_stats[0].tx_aborted_errors += 0x10000;
cp->net_stats[0].collisions += 0x10000;
}
if (txmac_stat & MAC_TX_COLL_LATE) {
cp->net_stats[0].tx_aborted_errors += 0x10000;
cp->net_stats[0].collisions += 0x10000;
}
spin_unlock(&cp->stat_lock[0]);
/* We do not keep track of MAC_TX_COLL_FIRST and
* MAC_TX_PEAK_ATTEMPTS events.
*/
return 0;
}
static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
{
cas_hp_inst_t *inst;
u32 val;
int i;
i = 0;
while ((inst = firmware) && inst->note) {
writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
++firmware;
++i;
}
}
static void cas_init_rx_dma(struct cas *cp)
{
u64 desc_dma = cp->block_dvma;
u32 val;
int i, size;
/* rx free descriptors */
val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
if ((N_RX_DESC_RINGS > 1) &&
(cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */
val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
writel(val, cp->regs + REG_RX_CFG);
val = (unsigned long) cp->init_rxds[0] -
(unsigned long) cp->init_block;
writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
/* rx desc 2 is for IPSEC packets. however,
* we don't it that for that purpose.
*/
val = (unsigned long) cp->init_rxds[1] -
(unsigned long) cp->init_block;
writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
writel((desc_dma + val) & 0xffffffff, cp->regs +
REG_PLUS_RX_DB1_LOW);
writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
REG_PLUS_RX_KICK1);
}
/* rx completion registers */
val = (unsigned long) cp->init_rxcs[0] -
(unsigned long) cp->init_block;
writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
/* rx comp 2-4 */
for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
val = (unsigned long) cp->init_rxcs[i] -
(unsigned long) cp->init_block;
writel((desc_dma + val) >> 32, cp->regs +
REG_PLUS_RX_CBN_HI(i));
writel((desc_dma + val) & 0xffffffff, cp->regs +
REG_PLUS_RX_CBN_LOW(i));
}
}
/* read selective clear regs to prevent spurious interrupts
* on reset because complete == kick.
* selective clear set up to prevent interrupts on resets
*/
readl(cp->regs + REG_INTR_STATUS_ALIAS);
writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
for (i = 1; i < N_RX_COMP_RINGS; i++)
readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
/* 2 is different from 3 and 4 */
if (N_RX_COMP_RINGS > 1)
writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
cp->regs + REG_PLUS_ALIASN_CLEAR(1));
for (i = 2; i < N_RX_COMP_RINGS; i++)
writel(INTR_RX_DONE_ALT,
cp->regs + REG_PLUS_ALIASN_CLEAR(i));
}
/* set up pause thresholds */
val = CAS_BASE(RX_PAUSE_THRESH_OFF,
cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
val |= CAS_BASE(RX_PAUSE_THRESH_ON,
cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
writel(val, cp->regs + REG_RX_PAUSE_THRESH);
/* zero out dma reassembly buffers */
for (i = 0; i < 64; i++) {
writel(i, cp->regs + REG_RX_TABLE_ADDR);
writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
}
/* make sure address register is 0 for normal operation */
writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
/* interrupt mitigation */
#ifdef USE_RX_BLANK
val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
writel(val, cp->regs + REG_RX_BLANK);
#else
writel(0x0, cp->regs + REG_RX_BLANK);
#endif
/* interrupt generation as a function of low water marks for
* free desc and completion entries. these are used to trigger
* housekeeping for rx descs. we don't use the free interrupt
* as it's not very useful
*/
/* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
writel(val, cp->regs + REG_RX_AE_THRESH);
if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
}
/* Random early detect registers. useful for congestion avoidance.
* this should be tunable.
*/
writel(0x0, cp->regs + REG_RX_RED);
/* receive page sizes. default == 2K (0x800) */
val = 0;
if (cp->page_size == 0x1000)
val = 0x1;
else if (cp->page_size == 0x2000)
val = 0x2;
else if (cp->page_size == 0x4000)
val = 0x3;
/* round mtu + offset. constrain to page size. */
size = cp->dev->mtu + 64;
if (size > cp->page_size)
size = cp->page_size;
if (size <= 0x400)
i = 0x0;
else if (size <= 0x800)
i = 0x1;
else if (size <= 0x1000)
i = 0x2;
else
i = 0x3;
cp->mtu_stride = 1 << (i + 10);
val = CAS_BASE(RX_PAGE_SIZE, val);
val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
writel(val, cp->regs + REG_RX_PAGE_SIZE);
/* enable the header parser if desired */
if (CAS_HP_FIRMWARE == cas_prog_null)
return;
val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
writel(val, cp->regs + REG_HP_CFG);
}
static inline void cas_rxc_init(struct cas_rx_comp *rxc)
{
memset(rxc, 0, sizeof(*rxc));
rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
}
/* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
* flipping is protected by the fact that the chip will not
* hand back the same page index while it's being processed.
*/
static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
{
cas_page_t *page = cp->rx_pages[1][index];
cas_page_t *new;
if (page_count(page->buffer) == 1)
return page;
new = cas_page_dequeue(cp);
if (new) {
spin_lock(&cp->rx_inuse_lock);
list_add(&page->list, &cp->rx_inuse_list);
spin_unlock(&cp->rx_inuse_lock);
}
return new;
}
/* this needs to be changed if we actually use the ENC RX DESC ring */
static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
const int index)
{
cas_page_t **page0 = cp->rx_pages[0];
cas_page_t **page1 = cp->rx_pages[1];
/* swap if buffer is in use */
if (page_count(page0[index]->buffer) > 1) {
cas_page_t *new = cas_page_spare(cp, index);
if (new) {
page1[index] = page0[index];
page0[index] = new;
}
}
RX_USED_SET(page0[index], 0);
return page0[index];
}
static void cas_clean_rxds(struct cas *cp)
{
/* only clean ring 0 as ring 1 is used for spare buffers */
struct cas_rx_desc *rxd = cp->init_rxds[0];
int i, size;
/* release all rx flows */
for (i = 0; i < N_RX_FLOWS; i++) {
struct sk_buff *skb;
while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
cas_skb_release(skb);
}
}
/* initialize descriptors */
size = RX_DESC_RINGN_SIZE(0);
for (i = 0; i < size; i++) {
cas_page_t *page = cas_page_swap(cp, 0, i);
rxd[i].buffer = cpu_to_le64(page->dma_addr);
rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
CAS_BASE(RX_INDEX_RING, 0));
}
cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4;
cp->rx_last[0] = 0;
cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
}
static void cas_clean_rxcs(struct cas *cp)
{
int i, j;
/* take ownership of rx comp descriptors */
memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
for (i = 0; i < N_RX_COMP_RINGS; i++) {
struct cas_rx_comp *rxc = cp->init_rxcs[i];
for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
cas_rxc_init(rxc + j);
}
}
}
#if 0
/* When we get a RX fifo overflow, the RX unit is probably hung
* so we do the following.
*
* If any part of the reset goes wrong, we return 1 and that causes the
* whole chip to be reset.
*/
static int cas_rxmac_reset(struct cas *cp)
{
struct net_device *dev = cp->dev;
int limit;
u32 val;
/* First, reset MAC RX. */
writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
for (limit = 0; limit < STOP_TRIES; limit++) {
if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
break;
udelay(10);
}
if (limit == STOP_TRIES) {
printk(KERN_ERR "%s: RX MAC will not disable, resetting whole "
"chip.\n", dev->name);
return 1;
}
/* Second, disable RX DMA. */
writel(0, cp->regs + REG_RX_CFG);
for (limit = 0; limit < STOP_TRIES; limit++) {
if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
break;
udelay(10);
}
if (limit == STOP_TRIES) {
printk(KERN_ERR "%s: RX DMA will not disable, resetting whole "
"chip.\n", dev->name);
return 1;
}
mdelay(5);
/* Execute RX reset command. */
writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
for (limit = 0; limit < STOP_TRIES; limit++) {
if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
break;
udelay(10);
}
if (limit == STOP_TRIES) {
printk(KERN_ERR "%s: RX reset command will not execute, "
"resetting whole chip.\n", dev->name);
return 1;
}
/* reset driver rx state */
cas_clean_rxds(cp);
cas_clean_rxcs(cp);
/* Now, reprogram the rest of RX unit. */
cas_init_rx_dma(cp);
/* re-enable */
val = readl(cp->regs + REG_RX_CFG);
writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
val = readl(cp->regs + REG_MAC_RX_CFG);
writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
return 0;
}
#endif
static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
u32 status)
{
u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
if (!stat)
return 0;
if (netif_msg_intr(cp))
printk(KERN_DEBUG "%s: rxmac interrupt, stat: 0x%x\n",
cp->dev->name, stat);
/* these are all rollovers */
spin_lock(&cp->stat_lock[0]);
if (stat & MAC_RX_ALIGN_ERR)
cp->net_stats[0].rx_frame_errors += 0x10000;
if (stat & MAC_RX_CRC_ERR)
cp->net_stats[0].rx_crc_errors += 0x10000;
if (stat & MAC_RX_LEN_ERR)
cp->net_stats[0].rx_length_errors += 0x10000;
if (stat & MAC_RX_OVERFLOW) {
cp->net_stats[0].rx_over_errors++;
cp->net_stats[0].rx_fifo_errors++;
}
/* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
* events.
*/
spin_unlock(&cp->stat_lock[0]);
return 0;
}
static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
u32 status)
{
u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
if (!stat)
return 0;
if (netif_msg_intr(cp))
printk(KERN_DEBUG "%s: mac interrupt, stat: 0x%x\n",
cp->dev->name, stat);
/* This interrupt is just for pause frame and pause
* tracking. It is useful for diagnostics and debug
* but probably by default we will mask these events.
*/
if (stat & MAC_CTRL_PAUSE_STATE)
cp->pause_entered++;
if (stat & MAC_CTRL_PAUSE_RECEIVED)
cp->pause_last_time_recvd = (stat >> 16);
return 0;
}
/* Must be invoked under cp->lock. */
static inline int cas_mdio_link_not_up(struct cas *cp)
{
u16 val;
switch (cp->lstate) {
case link_force_ret:
if (netif_msg_link(cp))
printk(KERN_INFO "%s: Autoneg failed again, keeping"
" forced mode\n", cp->dev->name);
cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
cp->timer_ticks = 5;
cp->lstate = link_force_ok;
cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
break;
case link_aneg:
val = cas_phy_read(cp, MII_BMCR);
/* Try forced modes. we try things in the following order:
* 1000 full -> 100 full/half -> 10 half
*/
val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
val |= BMCR_FULLDPLX;
val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
CAS_BMCR_SPEED1000 : BMCR_SPEED100;
cas_phy_write(cp, MII_BMCR, val);
cp->timer_ticks = 5;
cp->lstate = link_force_try;
cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
break;
case link_force_try:
/* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
val = cas_phy_read(cp, MII_BMCR);
cp->timer_ticks = 5;
if (val & CAS_BMCR_SPEED1000) { /* gigabit */
val &= ~CAS_BMCR_SPEED1000;
val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
cas_phy_write(cp, MII_BMCR, val);
break;
}
if (val & BMCR_SPEED100) {
if (val & BMCR_FULLDPLX) /* fd failed */
val &= ~BMCR_FULLDPLX;
else { /* 100Mbps failed */
val &= ~BMCR_SPEED100;
}
cas_phy_write(cp, MII_BMCR, val);
break;
}
default:
break;
}
return 0;
}
/* must be invoked with cp->lock held */
static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
{
int restart;
if (bmsr & BMSR_LSTATUS) {
/* Ok, here we got a link. If we had it due to a forced
* fallback, and we were configured for autoneg, we
* retry a short autoneg pass. If you know your hub is
* broken, use ethtool ;)
*/
if ((cp->lstate == link_force_try) &&
(cp->link_cntl & BMCR_ANENABLE)) {
cp->lstate = link_force_ret;
cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
cas_mif_poll(cp, 0);
cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
cp->timer_ticks = 5;
if (cp->opened && netif_msg_link(cp))
printk(KERN_INFO "%s: Got link after fallback, retrying"
" autoneg once...\n", cp->dev->name);
cas_phy_write(cp, MII_BMCR,
cp->link_fcntl | BMCR_ANENABLE |
BMCR_ANRESTART);
cas_mif_poll(cp, 1);
} else if (cp->lstate != link_up) {
cp->lstate = link_up;
cp->link_transition = LINK_TRANSITION_LINK_UP;
if (cp->opened) {
cas_set_link_modes(cp);
netif_carrier_on(cp->dev);
}
}
return 0;
}
/* link not up. if the link was previously up, we restart the
* whole process
*/
restart = 0;
if (cp->lstate == link_up) {
cp->lstate = link_down;
cp->link_transition = LINK_TRANSITION_LINK_DOWN;
netif_carrier_off(cp->dev);
if (cp->opened && netif_msg_link(cp))
printk(KERN_INFO "%s: Link down\n",
cp->dev->name);
restart = 1;
} else if (++cp->timer_ticks > 10)
cas_mdio_link_not_up(cp);
return restart;
}
static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
u32 status)
{
u32 stat = readl(cp->regs + REG_MIF_STATUS);
u16 bmsr;
/* check for a link change */
if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
return 0;
bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
return cas_mii_link_check(cp, bmsr);
}
static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
u32 status)
{
u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
if (!stat)
return 0;
printk(KERN_ERR "%s: PCI error [%04x:%04x] ", dev->name, stat,
readl(cp->regs + REG_BIM_DIAG));
/* cassini+ has this reserved */
if ((stat & PCI_ERR_BADACK) &&
((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
printk("<No ACK64# during ABS64 cycle> ");
if (stat & PCI_ERR_DTRTO)
printk("<Delayed transaction timeout> ");
if (stat & PCI_ERR_OTHER)
printk("<other> ");
if (stat & PCI_ERR_BIM_DMA_WRITE)
printk("<BIM DMA 0 write req> ");
if (stat & PCI_ERR_BIM_DMA_READ)
printk("<BIM DMA 0 read req> ");
printk("\n");
if (stat & PCI_ERR_OTHER) {
u16 cfg;
/* Interrogate PCI config space for the
* true cause.
*/
pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n",
dev->name, cfg);
if (cfg & PCI_STATUS_PARITY)
printk(KERN_ERR "%s: PCI parity error detected.\n",
dev->name);
if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
printk(KERN_ERR "%s: PCI target abort.\n",
dev->name);
if (cfg & PCI_STATUS_REC_TARGET_ABORT)
printk(KERN_ERR "%s: PCI master acks target abort.\n",
dev->name);
if (cfg & PCI_STATUS_REC_MASTER_ABORT)
printk(KERN_ERR "%s: PCI master abort.\n", dev->name);
if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
printk(KERN_ERR "%s: PCI system error SERR#.\n",
dev->name);
if (cfg & PCI_STATUS_DETECTED_PARITY)
printk(KERN_ERR "%s: PCI parity error.\n",
dev->name);
/* Write the error bits back to clear them. */
cfg &= (PCI_STATUS_PARITY |
PCI_STATUS_SIG_TARGET_ABORT |
PCI_STATUS_REC_TARGET_ABORT |
PCI_STATUS_REC_MASTER_ABORT |
PCI_STATUS_SIG_SYSTEM_ERROR |
PCI_STATUS_DETECTED_PARITY);
pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
}
/* For all PCI errors, we should reset the chip. */
return 1;
}
/* All non-normal interrupt conditions get serviced here.
* Returns non-zero if we should just exit the interrupt
* handler right now (ie. if we reset the card which invalidates
* all of the other original irq status bits).
*/
static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
u32 status)
{
if (status & INTR_RX_TAG_ERROR) {
/* corrupt RX tag framing */
if (netif_msg_rx_err(cp))
printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
cp->dev->name);
spin_lock(&cp->stat_lock[0]);
cp->net_stats[0].rx_errors++;
spin_unlock(&cp->stat_lock[0]);
goto do_reset;
}
if (status & INTR_RX_LEN_MISMATCH) {
/* length mismatch. */
if (netif_msg_rx_err(cp))
printk(KERN_DEBUG "%s: length mismatch for rx frame\n",
cp->dev->name);
spin_lock(&cp->stat_lock[0]);
cp->net_stats[0].rx_errors++;
spin_unlock(&cp->stat_lock[0]);
goto do_reset;
}
if (status & INTR_PCS_STATUS) {
if (cas_pcs_interrupt(dev, cp, status))
goto do_reset;
}
if (status & INTR_TX_MAC_STATUS) {
if (cas_txmac_interrupt(dev, cp, status))
goto do_reset;
}
if (status & INTR_RX_MAC_STATUS) {
if (cas_rxmac_interrupt(dev, cp, status))
goto do_reset;
}
if (status & INTR_MAC_CTRL_STATUS) {
if (cas_mac_interrupt(dev, cp, status))
goto do_reset;
}
if (status & INTR_MIF_STATUS) {
if (cas_mif_interrupt(dev, cp, status))
goto do_reset;
}
if (status & INTR_PCI_ERROR_STATUS) {
if (cas_pci_interrupt(dev, cp, status))
goto do_reset;
}
return 0;
do_reset:
#if 1
atomic_inc(&cp->reset_task_pending);
atomic_inc(&cp->reset_task_pending_all);
printk(KERN_ERR "%s:reset called in cas_abnormal_irq [0x%x]\n",
dev->name, status);
schedule_work(&cp->reset_task);
#else
atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
printk(KERN_ERR "reset called in cas_abnormal_irq\n");
schedule_work(&cp->reset_task);
#endif
return 1;
}
/* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
* determining whether to do a netif_stop/wakeup
*/
#define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
#define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
const int len)
{
unsigned long off = addr + len;
if (CAS_TABORT(cp) == 1)
return 0;
if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
return 0;
return TX_TARGET_ABORT_LEN;
}
static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
{
struct cas_tx_desc *txds;
struct sk_buff **skbs;
struct net_device *dev = cp->dev;
int entry, count;
spin_lock(&cp->tx_lock[ring]);
txds = cp->init_txds[ring];
skbs = cp->tx_skbs[ring];
entry = cp->tx_old[ring];
count = TX_BUFF_COUNT(ring, entry, limit);
while (entry != limit) {
struct sk_buff *skb = skbs[entry];
dma_addr_t daddr;
u32 dlen;
int frag;
if (!skb) {
/* this should never occur */
entry = TX_DESC_NEXT(ring, entry);
continue;
}
/* however, we might get only a partial skb release. */
count -= skb_shinfo(skb)->nr_frags +
+ cp->tx_tiny_use[ring][entry].nbufs + 1;
if (count < 0)
break;
if (netif_msg_tx_done(cp))
printk(KERN_DEBUG "%s: tx[%d] done, slot %d\n",
cp->dev->name, ring, entry);
skbs[entry] = NULL;
cp->tx_tiny_use[ring][entry].nbufs = 0;
for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
struct cas_tx_desc *txd = txds + entry;
daddr = le64_to_cpu(txd->buffer);
dlen = CAS_VAL(TX_DESC_BUFLEN,
le64_to_cpu(txd->control));
pci_unmap_page(cp->pdev, daddr, dlen,
PCI_DMA_TODEVICE);
entry = TX_DESC_NEXT(ring, entry);
/* tiny buffer may follow */
if (cp->tx_tiny_use[ring][entry].used) {
cp->tx_tiny_use[ring][entry].used = 0;
entry = TX_DESC_NEXT(ring, entry);
}
}
spin_lock(&cp->stat_lock[ring]);
cp->net_stats[ring].tx_packets++;
cp->net_stats[ring].tx_bytes += skb->len;
spin_unlock(&cp->stat_lock[ring]);
dev_kfree_skb_irq(skb);
}
cp->tx_old[ring] = entry;
/* this is wrong for multiple tx rings. the net device needs
* multiple queues for this to do the right thing. we wait
* for 2*packets to be available when using tiny buffers
*/
if (netif_queue_stopped(dev) &&
(TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
netif_wake_queue(dev);
spin_unlock(&cp->tx_lock[ring]);
}
static void cas_tx(struct net_device *dev, struct cas *cp,
u32 status)
{
int limit, ring;
#ifdef USE_TX_COMPWB
u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
#endif
if (netif_msg_intr(cp))
printk(KERN_DEBUG "%s: tx interrupt, status: 0x%x, %llx\n",
cp->dev->name, status, (unsigned long long)compwb);
/* process all the rings */
for (ring = 0; ring < N_TX_RINGS; ring++) {
#ifdef USE_TX_COMPWB
/* use the completion writeback registers */
limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
CAS_VAL(TX_COMPWB_LSB, compwb);
compwb = TX_COMPWB_NEXT(compwb);
#else
limit = readl(cp->regs + REG_TX_COMPN(ring));
#endif
if (cp->tx_old[ring] != limit)
cas_tx_ringN(cp, ring, limit);
}
}
static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
int entry, const u64 *words,
struct sk_buff **skbref)
{
int dlen, hlen, len, i, alloclen;
int off, swivel = RX_SWIVEL_OFF_VAL;
struct cas_page *page;
struct sk_buff *skb;
void *addr, *crcaddr;
__sum16 csum;
char *p;
hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
len = hlen + dlen;
if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
alloclen = len;
else
alloclen = max(hlen, RX_COPY_MIN);
skb = dev_alloc_skb(alloclen + swivel + cp->crc_size);
if (skb == NULL)
return -1;
*skbref = skb;
skb_reserve(skb, swivel);
p = skb->data;
addr = crcaddr = NULL;
if (hlen) { /* always copy header pages */
i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
swivel;
i = hlen;
if (!dlen) /* attach FCS */
i += cp->crc_size;
pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
PCI_DMA_FROMDEVICE);
addr = cas_page_map(page->buffer);
memcpy(p, addr + off, i);
pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
PCI_DMA_FROMDEVICE);
cas_page_unmap(addr);
RX_USED_ADD(page, 0x100);
p += hlen;
swivel = 0;
}
if (alloclen < (hlen + dlen)) {
skb_frag_t *frag = skb_shinfo(skb)->frags;
/* normal or jumbo packets. we use frags */
i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
hlen = min(cp->page_size - off, dlen);
if (hlen < 0) {
if (netif_msg_rx_err(cp)) {
printk(KERN_DEBUG "%s: rx page overflow: "
"%d\n", cp->dev->name, hlen);
}
dev_kfree_skb_irq(skb);
return -1;
}
i = hlen;
if (i == dlen) /* attach FCS */
i += cp->crc_size;
pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
PCI_DMA_FROMDEVICE);
/* make sure we always copy a header */
swivel = 0;
if (p == (char *) skb->data) { /* not split */
addr = cas_page_map(page->buffer);
memcpy(p, addr + off, RX_COPY_MIN);
pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
PCI_DMA_FROMDEVICE);
cas_page_unmap(addr);
off += RX_COPY_MIN;
swivel = RX_COPY_MIN;
RX_USED_ADD(page, cp->mtu_stride);
} else {
RX_USED_ADD(page, hlen);
}
skb_put(skb, alloclen);
skb_shinfo(skb)->nr_frags++;
skb->data_len += hlen - swivel;
skb->truesize += hlen - swivel;
skb->len += hlen - swivel;
get_page(page->buffer);
frag->page = page->buffer;
frag->page_offset = off;
frag->size = hlen - swivel;
/* any more data? */
if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
hlen = dlen;
off = 0;
i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
hlen + cp->crc_size,
PCI_DMA_FROMDEVICE);
pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
hlen + cp->crc_size,
PCI_DMA_FROMDEVICE);
skb_shinfo(skb)->nr_frags++;
skb->data_len += hlen;
skb->len += hlen;
frag++;
get_page(page->buffer);
frag->page = page->buffer;
frag->page_offset = 0;
frag->size = hlen;
RX_USED_ADD(page, hlen + cp->crc_size);
}
if (cp->crc_size) {
addr = cas_page_map(page->buffer);
crcaddr = addr + off + hlen;
}
} else {
/* copying packet */
if (!dlen)
goto end_copy_pkt;
i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
hlen = min(cp->page_size - off, dlen);
if (hlen < 0) {
if (netif_msg_rx_err(cp)) {
printk(KERN_DEBUG "%s: rx page overflow: "
"%d\n", cp->dev->name, hlen);
}
dev_kfree_skb_irq(skb);
return -1;
}
i = hlen;
if (i == dlen) /* attach FCS */
i += cp->crc_size;
pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
PCI_DMA_FROMDEVICE);
addr = cas_page_map(page->buffer);
memcpy(p, addr + off, i);
pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
PCI_DMA_FROMDEVICE);
cas_page_unmap(addr);
if (p == (char *) skb->data) /* not split */
RX_USED_ADD(page, cp->mtu_stride);
else
RX_USED_ADD(page, i);
/* any more data? */
if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
p += hlen;
i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
dlen + cp->crc_size,
PCI_DMA_FROMDEVICE);
addr = cas_page_map(page->buffer);
memcpy(p, addr, dlen + cp->crc_size);
pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
dlen + cp->crc_size,
PCI_DMA_FROMDEVICE);
cas_page_unmap(addr);
RX_USED_ADD(page, dlen + cp->crc_size);
}
end_copy_pkt:
if (cp->crc_size) {
addr = NULL;
crcaddr = skb->data + alloclen;
}
skb_put(skb, alloclen);
}
csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
if (cp->crc_size) {
/* checksum includes FCS. strip it out. */
csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
csum_unfold(csum)));
if (addr)
cas_page_unmap(addr);
}
skb->protocol = eth_type_trans(skb, cp->dev);
if (skb->protocol == htons(ETH_P_IP)) {
skb->csum = csum_unfold(~csum);
skb->ip_summed = CHECKSUM_COMPLETE;
} else
skb->ip_summed = CHECKSUM_NONE;
return len;
}
/* we can handle up to 64 rx flows at a time. we do the same thing
* as nonreassm except that we batch up the buffers.
* NOTE: we currently just treat each flow as a bunch of packets that
* we pass up. a better way would be to coalesce the packets
* into a jumbo packet. to do that, we need to do the following:
* 1) the first packet will have a clean split between header and
* data. save both.
* 2) each time the next flow packet comes in, extend the
* data length and merge the checksums.
* 3) on flow release, fix up the header.
* 4) make sure the higher layer doesn't care.
* because packets get coalesced, we shouldn't run into fragment count
* issues.
*/
static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
struct sk_buff *skb)
{
int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
struct sk_buff_head *flow = &cp->rx_flows[flowid];
/* this is protected at a higher layer, so no need to
* do any additional locking here. stick the buffer
* at the end.
*/
__skb_queue_tail(flow, skb);
if (words[0] & RX_COMP1_RELEASE_FLOW) {
while ((skb = __skb_dequeue(flow))) {
cas_skb_release(skb);
}
}
}
/* put rx descriptor back on ring. if a buffer is in use by a higher
* layer, this will need to put in a replacement.
*/
static void cas_post_page(struct cas *cp, const int ring, const int index)
{
cas_page_t *new;
int entry;
entry = cp->rx_old[ring];
new = cas_page_swap(cp, ring, index);
cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
cp->init_rxds[ring][entry].index =
cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
CAS_BASE(RX_INDEX_RING, ring));
entry = RX_DESC_ENTRY(ring, entry + 1);
cp->rx_old[ring] = entry;
if (entry % 4)
return;
if (ring == 0)
writel(entry, cp->regs + REG_RX_KICK);
else if ((N_RX_DESC_RINGS > 1) &&
(cp->cas_flags & CAS_FLAG_REG_PLUS))
writel(entry, cp->regs + REG_PLUS_RX_KICK1);
}
/* only when things are bad */
static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
{
unsigned int entry, last, count, released;
int cluster;
cas_page_t **page = cp->rx_pages[ring];
entry = cp->rx_old[ring];
if (netif_msg_intr(cp))
printk(KERN_DEBUG "%s: rxd[%d] interrupt, done: %d\n",
cp->dev->name, ring, entry);
cluster = -1;
count = entry & 0x3;
last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
released = 0;
while (entry != last) {
/* make a new buffer if it's still in use */
if (page_count(page[entry]->buffer) > 1) {
cas_page_t *new = cas_page_dequeue(cp);
if (!new) {
/* let the timer know that we need to
* do this again
*/
cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
if (!timer_pending(&cp->link_timer))
mod_timer(&cp->link_timer, jiffies +
CAS_LINK_FAST_TIMEOUT);
cp->rx_old[ring] = entry;
cp->rx_last[ring] = num ? num - released : 0;
return -ENOMEM;
}
spin_lock(&cp->rx_inuse_lock);
list_add(&page[entry]->list, &cp->rx_inuse_list);
spin_unlock(&cp->rx_inuse_lock);
cp->init_rxds[ring][entry].buffer =
cpu_to_le64(new->dma_addr);
page[entry] = new;
}
if (++count == 4) {
cluster = entry;
count = 0;
}
released++;
entry = RX_DESC_ENTRY(ring, entry + 1);
}
cp->rx_old[ring] = entry;
if (cluster < 0)
return 0;
if (ring == 0)
writel(cluster, cp->regs + REG_RX_KICK);
else if ((N_RX_DESC_RINGS > 1) &&
(cp->cas_flags & CAS_FLAG_REG_PLUS))
writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
return 0;
}
/* process a completion ring. packets are set up in three basic ways:
* small packets: should be copied header + data in single buffer.
* large packets: header and data in a single buffer.
* split packets: header in a separate buffer from data.
* data may be in multiple pages. data may be > 256
* bytes but in a single page.
*
* NOTE: RX page posting is done in this routine as well. while there's
* the capability of using multiple RX completion rings, it isn't
* really worthwhile due to the fact that the page posting will
* force serialization on the single descriptor ring.
*/
static int cas_rx_ringN(struct cas *cp, int ring, int budget)
{
struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
int entry, drops;
int npackets = 0;
if (netif_msg_intr(cp))
printk(KERN_DEBUG "%s: rx[%d] interrupt, done: %d/%d\n",
cp->dev->name, ring,
readl(cp->regs + REG_RX_COMP_HEAD),
cp->rx_new[ring]);
entry = cp->rx_new[ring];
drops = 0;
while (1) {
struct cas_rx_comp *rxc = rxcs + entry;
struct sk_buff *uninitialized_var(skb);
int type, len;
u64 words[4];
int i, dring;
words[0] = le64_to_cpu(rxc->word1);
words[1] = le64_to_cpu(rxc->word2);
words[2] = le64_to_cpu(rxc->word3);
words[3] = le64_to_cpu(rxc->word4);
/* don't touch if still owned by hw */
type = CAS_VAL(RX_COMP1_TYPE, words[0]);
if (type == 0)
break;
/* hw hasn't cleared the zero bit yet */
if (words[3] & RX_COMP4_ZERO) {
break;
}
/* get info on the packet */
if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
spin_lock(&cp->stat_lock[ring]);
cp->net_stats[ring].rx_errors++;
if (words[3] & RX_COMP4_LEN_MISMATCH)
cp->net_stats[ring].rx_length_errors++;
if (words[3] & RX_COMP4_BAD)
cp->net_stats[ring].rx_crc_errors++;
spin_unlock(&cp->stat_lock[ring]);
/* We'll just return it to Cassini. */
drop_it:
spin_lock(&cp->stat_lock[ring]);
++cp->net_stats[ring].rx_dropped;
spin_unlock(&cp->stat_lock[ring]);
goto next;
}
len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
if (len < 0) {
++drops;
goto drop_it;
}
/* see if it's a flow re-assembly or not. the driver
* itself handles release back up.
*/
if (RX_DONT_BATCH || (type == 0x2)) {
/* non-reassm: these always get released */
cas_skb_release(skb);
} else {
cas_rx_flow_pkt(cp, words, skb);
}
spin_lock(&cp->stat_lock[ring]);
cp->net_stats[ring].rx_packets++;
cp->net_stats[ring].rx_bytes += len;
spin_unlock(&cp->stat_lock[ring]);
next:
npackets++;
/* should it be released? */
if (words[0] & RX_COMP1_RELEASE_HDR) {
i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
dring = CAS_VAL(RX_INDEX_RING, i);
i = CAS_VAL(RX_INDEX_NUM, i);
cas_post_page(cp, dring, i);
}
if (words[0] & RX_COMP1_RELEASE_DATA) {
i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
dring = CAS_VAL(RX_INDEX_RING, i);
i = CAS_VAL(RX_INDEX_NUM, i);
cas_post_page(cp, dring, i);
}
if (words[0] & RX_COMP1_RELEASE_NEXT) {
i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
dring = CAS_VAL(RX_INDEX_RING, i);
i = CAS_VAL(RX_INDEX_NUM, i);
cas_post_page(cp, dring, i);
}
/* skip to the next entry */
entry = RX_COMP_ENTRY(ring, entry + 1 +
CAS_VAL(RX_COMP1_SKIP, words[0]));
#ifdef USE_NAPI
if (budget && (npackets >= budget))
break;
#endif
}
cp->rx_new[ring] = entry;
if (drops)
printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
cp->dev->name);
return npackets;
}
/* put completion entries back on the ring */
static void cas_post_rxcs_ringN(struct net_device *dev,
struct cas *cp, int ring)
{
struct cas_rx_comp *rxc = cp->init_rxcs[ring];
int last, entry;
last = cp->rx_cur[ring];
entry = cp->rx_new[ring];
if (netif_msg_intr(cp))
printk(KERN_DEBUG "%s: rxc[%d] interrupt, done: %d/%d\n",
dev->name, ring, readl(cp->regs + REG_RX_COMP_HEAD),
entry);
/* zero and re-mark descriptors */
while (last != entry) {
cas_rxc_init(rxc + last);
last = RX_COMP_ENTRY(ring, last + 1);
}
cp->rx_cur[ring] = last;
if (ring == 0)
writel(last, cp->regs + REG_RX_COMP_TAIL);
else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
}
/* cassini can use all four PCI interrupts for the completion ring.
* rings 3 and 4 are identical
*/
#if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
static inline void cas_handle_irqN(struct net_device *dev,
struct cas *cp, const u32 status,
const int ring)
{
if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
cas_post_rxcs_ringN(dev, cp, ring);
}
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
static irqreturn_t cas_interruptN(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct cas *cp = netdev_priv(dev);
unsigned long flags;
int ring;
u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
/* check for shared irq */
if (status == 0)
return IRQ_NONE;
ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
spin_lock_irqsave(&cp->lock, flags);
if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
#ifdef USE_NAPI
cas_mask_intr(cp);
napi_schedule(&cp->napi);
#else
cas_rx_ringN(cp, ring, 0);
#endif
status &= ~INTR_RX_DONE_ALT;
}
if (status)
cas_handle_irqN(dev, cp, status, ring);
spin_unlock_irqrestore(&cp->lock, flags);
return IRQ_HANDLED;
}
#endif
#ifdef USE_PCI_INTB
/* everything but rx packets */
static inline void cas_handle_irq1(struct cas *cp, const u32 status)
{
if (status & INTR_RX_BUF_UNAVAIL_1) {
/* Frame arrived, no free RX buffers available.
* NOTE: we can get this on a link transition. */
cas_post_rxds_ringN(cp, 1, 0);
spin_lock(&cp->stat_lock[1]);
cp->net_stats[1].rx_dropped++;
spin_unlock(&cp->stat_lock[1]);
}
if (status & INTR_RX_BUF_AE_1)
cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
RX_AE_FREEN_VAL(1));
if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
cas_post_rxcs_ringN(cp, 1);
}
/* ring 2 handles a few more events than 3 and 4 */
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
static irqreturn_t cas_interrupt1(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct cas *cp = netdev_priv(dev);
unsigned long flags;
u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
/* check for shared interrupt */
if (status == 0)
return IRQ_NONE;
spin_lock_irqsave(&cp->lock, flags);
if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
#ifdef USE_NAPI
cas_mask_intr(cp);
napi_schedule(&cp->napi);
#else
cas_rx_ringN(cp, 1, 0);
#endif
status &= ~INTR_RX_DONE_ALT;
}
if (status)
cas_handle_irq1(cp, status);
spin_unlock_irqrestore(&cp->lock, flags);
return IRQ_HANDLED;
}
#endif
static inline void cas_handle_irq(struct net_device *dev,
struct cas *cp, const u32 status)
{
/* housekeeping interrupts */
if (status & INTR_ERROR_MASK)
cas_abnormal_irq(dev, cp, status);
if (status & INTR_RX_BUF_UNAVAIL) {
/* Frame arrived, no free RX buffers available.
* NOTE: we can get this on a link transition.
*/
cas_post_rxds_ringN(cp, 0, 0);
spin_lock(&cp->stat_lock[0]);
cp->net_stats[0].rx_dropped++;
spin_unlock(&cp->stat_lock[0]);
} else if (status & INTR_RX_BUF_AE) {
cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
RX_AE_FREEN_VAL(0));
}
if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
cas_post_rxcs_ringN(dev, cp, 0);
}
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
static irqreturn_t cas_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct cas *cp = netdev_priv(dev);
unsigned long flags;
u32 status = readl(cp->regs + REG_INTR_STATUS);
if (status == 0)
return IRQ_NONE;
spin_lock_irqsave(&cp->lock, flags);
if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
cas_tx(dev, cp, status);
status &= ~(INTR_TX_ALL | INTR_TX_INTME);
}
if (status & INTR_RX_DONE) {
#ifdef USE_NAPI
cas_mask_intr(cp);
napi_schedule(&cp->napi);
#else
cas_rx_ringN(cp, 0, 0);
#endif
status &= ~INTR_RX_DONE;
}
if (status)
cas_handle_irq(dev, cp, status);
spin_unlock_irqrestore(&cp->lock, flags);
return IRQ_HANDLED;
}
#ifdef USE_NAPI
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
static int cas_poll(struct napi_struct *napi, int budget)
{
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
struct cas *cp = container_of(napi, struct cas, napi);
struct net_device *dev = cp->dev;
int i, enable_intr, credits;
u32 status = readl(cp->regs + REG_INTR_STATUS);
unsigned long flags;
spin_lock_irqsave(&cp->lock, flags);
cas_tx(dev, cp, status);
spin_unlock_irqrestore(&cp->lock, flags);
/* NAPI rx packets. we spread the credits across all of the
* rxc rings
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
*
* to make sure we're fair with the work we loop through each
* ring N_RX_COMP_RING times with a request of
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
* budget / N_RX_COMP_RINGS
*/
enable_intr = 1;
credits = 0;
for (i = 0; i < N_RX_COMP_RINGS; i++) {
int j;
for (j = 0; j < N_RX_COMP_RINGS; j++) {
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
if (credits >= budget) {
enable_intr = 0;
goto rx_comp;
}
}
}
rx_comp:
/* final rx completion */
spin_lock_irqsave(&cp->lock, flags);
if (status)
cas_handle_irq(dev, cp, status);
#ifdef USE_PCI_INTB
if (N_RX_COMP_RINGS > 1) {
status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
if (status)
cas_handle_irq1(dev, cp, status);
}
#endif
#ifdef USE_PCI_INTC
if (N_RX_COMP_RINGS > 2) {
status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
if (status)
cas_handle_irqN(dev, cp, status, 2);
}
#endif
#ifdef USE_PCI_INTD
if (N_RX_COMP_RINGS > 3) {
status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
if (status)
cas_handle_irqN(dev, cp, status, 3);
}
#endif
spin_unlock_irqrestore(&cp->lock, flags);
if (enable_intr) {
napi_complete(napi);
cas_unmask_intr(cp);
}
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
return credits;
}
#endif
#ifdef CONFIG_NET_POLL_CONTROLLER
static void cas_netpoll(struct net_device *dev)
{
struct cas *cp = netdev_priv(dev);
cas_disable_irq(cp, 0);
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
cas_interrupt(cp->pdev->irq, dev);
cas_enable_irq(cp, 0);
#ifdef USE_PCI_INTB
if (N_RX_COMP_RINGS > 1) {
/* cas_interrupt1(); */
}
#endif
#ifdef USE_PCI_INTC
if (N_RX_COMP_RINGS > 2) {
/* cas_interruptN(); */
}
#endif
#ifdef USE_PCI_INTD
if (N_RX_COMP_RINGS > 3) {
/* cas_interruptN(); */
}
#endif
}
#endif
static void cas_tx_timeout(struct net_device *dev)
{
struct cas *cp = netdev_priv(dev);
printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
if (!cp->hw_running) {
printk("%s: hrm.. hw not running!\n", dev->name);
return;
}
printk(KERN_ERR "%s: MIF_STATE[%08x]\n",
dev->name, readl(cp->regs + REG_MIF_STATE_MACHINE));
printk(KERN_ERR "%s: MAC_STATE[%08x]\n",
dev->name, readl(cp->regs + REG_MAC_STATE_MACHINE));
printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x] "
"FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
dev->name,
readl(cp->regs + REG_TX_CFG),
readl(cp->regs + REG_MAC_TX_STATUS),
readl(cp->regs + REG_MAC_TX_CFG),
readl(cp->regs + REG_TX_FIFO_PKT_CNT),
readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
readl(cp->regs + REG_TX_FIFO_READ_PTR),
readl(cp->regs + REG_TX_SM_1),
readl(cp->regs + REG_TX_SM_2));
printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n",
dev->name,
readl(cp->regs + REG_RX_CFG),
readl(cp->regs + REG_MAC_RX_STATUS),
readl(cp->regs + REG_MAC_RX_CFG));
printk(KERN_ERR "%s: HP_STATE[%08x:%08x:%08x:%08x]\n",
dev->name,
readl(cp->regs + REG_HP_STATE_MACHINE),
readl(cp->regs + REG_HP_STATUS0),
readl(cp->regs + REG_HP_STATUS1),
readl(cp->regs + REG_HP_STATUS2));
#if 1
atomic_inc(&cp->reset_task_pending);
atomic_inc(&cp->reset_task_pending_all);
schedule_work(&cp->reset_task);
#else
atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
schedule_work(&cp->reset_task);
#endif
}
static inline int cas_intme(int ring, int entry)
{
/* Algorithm: IRQ every 1/2 of descriptors. */
if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
return 1;
return 0;
}
static void cas_write_txd(struct cas *cp, int ring, int entry,
dma_addr_t mapping, int len, u64 ctrl, int last)
{
struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
if (cas_intme(ring, entry))
ctrl |= TX_DESC_INTME;
if (last)
ctrl |= TX_DESC_EOF;
txd->control = cpu_to_le64(ctrl);
txd->buffer = cpu_to_le64(mapping);
}
static inline void *tx_tiny_buf(struct cas *cp, const int ring,
const int entry)
{
return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
}
static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
const int entry, const int tentry)
{
cp->tx_tiny_use[ring][tentry].nbufs++;
cp->tx_tiny_use[ring][entry].used = 1;
return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
}
static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
struct sk_buff *skb)
{
struct net_device *dev = cp->dev;
int entry, nr_frags, frag, tabort, tentry;
dma_addr_t mapping;
unsigned long flags;
u64 ctrl;
u32 len;
spin_lock_irqsave(&cp->tx_lock[ring], flags);
/* This is a hard error, log it. */
if (TX_BUFFS_AVAIL(cp, ring) <=
CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
netif_stop_queue(dev);
spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
printk(KERN_ERR PFX "%s: BUG! Tx Ring full when "
"queue awake!\n", dev->name);
return 1;
}
ctrl = 0;
if (skb->ip_summed == CHECKSUM_PARTIAL) {
const u64 csum_start_off = skb_transport_offset(skb);
const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
ctrl = TX_DESC_CSUM_EN |
CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
}
entry = cp->tx_new[ring];
cp->tx_skbs[ring][entry] = skb;
nr_frags = skb_shinfo(skb)->nr_frags;
len = skb_headlen(skb);
mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
offset_in_page(skb->data), len,
PCI_DMA_TODEVICE);
tentry = entry;
tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
if (unlikely(tabort)) {
/* NOTE: len is always > tabort */
cas_write_txd(cp, ring, entry, mapping, len - tabort,
ctrl | TX_DESC_SOF, 0);
entry = TX_DESC_NEXT(ring, entry);
skb_copy_from_linear_data_offset(skb, len - tabort,
tx_tiny_buf(cp, ring, entry), tabort);
mapping = tx_tiny_map(cp, ring, entry, tentry);
cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
(nr_frags == 0));
} else {
cas_write_txd(cp, ring, entry, mapping, len, ctrl |
TX_DESC_SOF, (nr_frags == 0));
}
entry = TX_DESC_NEXT(ring, entry);
for (frag = 0; frag < nr_frags; frag++) {
skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
len = fragp->size;
mapping = pci_map_page(cp->pdev, fragp->page,
fragp->page_offset, len,
PCI_DMA_TODEVICE);
tabort = cas_calc_tabort(cp, fragp->page_offset, len);
if (unlikely(tabort)) {
void *addr;
/* NOTE: len is always > tabort */
cas_write_txd(cp, ring, entry, mapping, len - tabort,
ctrl, 0);
entry = TX_DESC_NEXT(ring, entry);
addr = cas_page_map(fragp->page);
memcpy(tx_tiny_buf(cp, ring, entry),
addr + fragp->page_offset + len - tabort,
tabort);
cas_page_unmap(addr);
mapping = tx_tiny_map(cp, ring, entry, tentry);
len = tabort;
}
cas_write_txd(cp, ring, entry, mapping, len, ctrl,
(frag + 1 == nr_frags));
entry = TX_DESC_NEXT(ring, entry);
}
cp->tx_new[ring] = entry;
if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
netif_stop_queue(dev);
if (netif_msg_tx_queued(cp))
printk(KERN_DEBUG "%s: tx[%d] queued, slot %d, skblen %d, "
"avail %d\n",
dev->name, ring, entry, skb->len,
TX_BUFFS_AVAIL(cp, ring));
writel(entry, cp->regs + REG_TX_KICKN(ring));
spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
return 0;
}
static int cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct cas *cp = netdev_priv(dev);
/* this is only used as a load-balancing hint, so it doesn't
* need to be SMP safe
*/
static int ring;
if (skb_padto(skb, cp->min_frame_size))
return 0;
/* XXX: we need some higher-level QoS hooks to steer packets to
* individual queues.
*/
if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
return 1;
dev->trans_start = jiffies;
return 0;
}
static void cas_init_tx_dma(struct cas *cp)
{
u64 desc_dma = cp->block_dvma;
unsigned long off;
u32 val;
int i;
/* set up tx completion writeback registers. must be 8-byte aligned */
#ifdef USE_TX_COMPWB
off = offsetof(struct cas_init_block, tx_compwb);
writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
#endif
/* enable completion writebacks, enable paced mode,
* disable read pipe, and disable pre-interrupt compwbs
*/
val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
TX_CFG_INTR_COMPWB_DIS;
/* write out tx ring info and tx desc bases */
for (i = 0; i < MAX_TX_RINGS; i++) {
off = (unsigned long) cp->init_txds[i] -
(unsigned long) cp->init_block;
val |= CAS_TX_RINGN_BASE(i);
writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
writel((desc_dma + off) & 0xffffffff, cp->regs +
REG_TX_DBN_LOW(i));
/* don't zero out the kick register here as the system
* will wedge
*/
}
writel(val, cp->regs + REG_TX_CFG);
/* program max burst sizes. these numbers should be different
* if doing QoS.
*/
#ifdef USE_QOS
writel(0x800, cp->regs + REG_TX_MAXBURST_0);
writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
#else
writel(0x800, cp->regs + REG_TX_MAXBURST_0);
writel(0x800, cp->regs + REG_TX_MAXBURST_1);
writel(0x800, cp->regs + REG_TX_MAXBURST_2);
writel(0x800, cp->regs + REG_TX_MAXBURST_3);
#endif
}
/* Must be invoked under cp->lock. */
static inline void cas_init_dma(struct cas *cp)
{
cas_init_tx_dma(cp);
cas_init_rx_dma(cp);
}
/* Must be invoked under cp->lock. */
static u32 cas_setup_multicast(struct cas *cp)
{
u32 rxcfg = 0;
int i;
if (cp->dev->flags & IFF_PROMISC) {
rxcfg |= MAC_RX_CFG_PROMISC_EN;
} else if (cp->dev->flags & IFF_ALLMULTI) {
for (i=0; i < 16; i++)
writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
} else {
u16 hash_table[16];
u32 crc;
struct dev_mc_list *dmi = cp->dev->mc_list;
int i;
/* use the alternate mac address registers for the
* first 15 multicast addresses
*/
for (i = 1; i <= CAS_MC_EXACT_MATCH_SIZE; i++) {
if (!dmi) {
writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 0));
writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 1));
writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 2));
continue;
}
writel((dmi->dmi_addr[4] << 8) | dmi->dmi_addr[5],
cp->regs + REG_MAC_ADDRN(i*3 + 0));
writel((dmi->dmi_addr[2] << 8) | dmi->dmi_addr[3],
cp->regs + REG_MAC_ADDRN(i*3 + 1));
writel((dmi->dmi_addr[0] << 8) | dmi->dmi_addr[1],
cp->regs + REG_MAC_ADDRN(i*3 + 2));
dmi = dmi->next;
}
/* use hw hash table for the next series of
* multicast addresses
*/
memset(hash_table, 0, sizeof(hash_table));
while (dmi) {
crc = ether_crc_le(ETH_ALEN, dmi->dmi_addr);
crc >>= 24;
hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
dmi = dmi->next;
}
for (i=0; i < 16; i++)
writel(hash_table[i], cp->regs +
REG_MAC_HASH_TABLEN(i));
rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
}
return rxcfg;
}
/* must be invoked under cp->stat_lock[N_TX_RINGS] */
static void cas_clear_mac_err(struct cas *cp)
{
writel(0, cp->regs + REG_MAC_COLL_NORMAL);
writel(0, cp->regs + REG_MAC_COLL_FIRST);
writel(0, cp->regs + REG_MAC_COLL_EXCESS);
writel(0, cp->regs + REG_MAC_COLL_LATE);
writel(0, cp->regs + REG_MAC_TIMER_DEFER);
writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
writel(0, cp->regs + REG_MAC_RECV_FRAME);
writel(0, cp->regs + REG_MAC_LEN_ERR);
writel(0, cp->regs + REG_MAC_ALIGN_ERR);
writel(0, cp->regs + REG_MAC_FCS_ERR);
writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
}
static void cas_mac_reset(struct cas *cp)
{
int i;
/* do both TX and RX reset */
writel(0x1, cp->regs + REG_MAC_TX_RESET);
writel(0x1, cp->regs + REG_MAC_RX_RESET);
/* wait for TX */
i = STOP_TRIES;
while (i-- > 0) {
if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
break;
udelay(10);
}
/* wait for RX */
i = STOP_TRIES;
while (i-- > 0) {
if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
break;
udelay(10);
}
if (readl(cp->regs + REG_MAC_TX_RESET) |
readl(cp->regs + REG_MAC_RX_RESET))
printk(KERN_ERR "%s: mac tx[%d]/rx[%d] reset failed [%08x]\n",
cp->dev->name, readl(cp->regs + REG_MAC_TX_RESET),
readl(cp->regs + REG_MAC_RX_RESET),
readl(cp->regs + REG_MAC_STATE_MACHINE));
}
/* Must be invoked under cp->lock. */
static void cas_init_mac(struct cas *cp)
{
unsigned char *e = &cp->dev->dev_addr[0];
int i;
#ifdef CONFIG_CASSINI_MULTICAST_REG_WRITE
u32 rxcfg;
#endif
cas_mac_reset(cp);
/* setup core arbitration weight register */
writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
/* XXX Use pci_dma_burst_advice() */
#if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
/* set the infinite burst register for chips that don't have
* pci issues.
*/
if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
#endif
writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
writel(0x00, cp->regs + REG_MAC_IPG0);
writel(0x08, cp->regs + REG_MAC_IPG1);
writel(0x04, cp->regs + REG_MAC_IPG2);
/* change later for 802.3z */
writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
/* min frame + FCS */
writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
/* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
* specify the maximum frame size to prevent RX tag errors on
* oversized frames.
*/
writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
(CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
cp->regs + REG_MAC_FRAMESIZE_MAX);
/* NOTE: crc_size is used as a surrogate for half-duplex.
* workaround saturn half-duplex issue by increasing preamble
* size to 65 bytes.
*/
if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
writel(0x41, cp->regs + REG_MAC_PA_SIZE);
else
writel(0x07, cp->regs + REG_MAC_PA_SIZE);
writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
/* setup mac address in perfect filter array */
for (i = 0; i < 45; i++)
writel(0x0, cp->regs + REG_MAC_ADDRN(i));
writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
#ifndef CONFIG_CASSINI_MULTICAST_REG_WRITE
cp->mac_rx_cfg = cas_setup_multicast(cp);
#else
/* WTZ: Do what Adrian did in cas_set_multicast. Doing
* a writel does not seem to be necessary because Cassini
* seems to preserve the configuration when we do the reset.
* If the chip is in trouble, though, it is not clear if we
* can really count on this behavior. cas_set_multicast uses
* spin_lock_irqsave, but we are called only in cas_init_hw and
* cas_init_hw is protected by cas_lock_all, which calls
* spin_lock_irq (so it doesn't need to save the flags, and
* we should be OK for the writel, as that is the only
* difference).
*/
cp->mac_rx_cfg = rxcfg = cas_setup_multicast(cp);
writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
#endif
spin_lock(&cp->stat_lock[N_TX_RINGS]);
cas_clear_mac_err(cp);
spin_unlock(&cp->stat_lock[N_TX_RINGS]);
/* Setup MAC interrupts. We want to get all of the interesting
* counter expiration events, but we do not want to hear about
* normal rx/tx as the DMA engine tells us that.
*/
writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
/* Don't enable even the PAUSE interrupts for now, we
* make no use of those events other than to record them.
*/
writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
}
/* Must be invoked under cp->lock. */
static void cas_init_pause_thresholds(struct cas *cp)
{
/* Calculate pause thresholds. Setting the OFF threshold to the
* full RX fifo size effectively disables PAUSE generation
*/
if (cp->rx_fifo_size <= (2 * 1024)) {
cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
} else {
int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
if (max_frame * 3 > cp->rx_fifo_size) {
cp->rx_pause_off = 7104;
cp->rx_pause_on = 960;
} else {
int off = (cp->rx_fifo_size - (max_frame * 2));
int on = off - max_frame;
cp->rx_pause_off = off;
cp->rx_pause_on = on;
}
}
}
static int cas_vpd_match(const void __iomem *p, const char *str)
{
int len = strlen(str) + 1;
int i;
for (i = 0; i < len; i++) {
if (readb(p + i) != str[i])
return 0;
}
return 1;
}
/* get the mac address by reading the vpd information in the rom.
* also get the phy type and determine if there's an entropy generator.
* NOTE: this is a bit convoluted for the following reasons:
* 1) vpd info has order-dependent mac addresses for multinic cards
* 2) the only way to determine the nic order is to use the slot
* number.
* 3) fiber cards don't have bridges, so their slot numbers don't
* mean anything.
* 4) we don't actually know we have a fiber card until after
* the mac addresses are parsed.
*/
static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
const int offset)
{
void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
void __iomem *base, *kstart;
int i, len;
int found = 0;
#define VPD_FOUND_MAC 0x01
#define VPD_FOUND_PHY 0x02
int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
int mac_off = 0;
/* give us access to the PROM */
writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
cp->regs + REG_BIM_LOCAL_DEV_EN);
/* check for an expansion rom */
if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
goto use_random_mac_addr;
/* search for beginning of vpd */
base = NULL;
for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
/* check for PCIR */
if ((readb(p + i + 0) == 0x50) &&
(readb(p + i + 1) == 0x43) &&
(readb(p + i + 2) == 0x49) &&
(readb(p + i + 3) == 0x52)) {
base = p + (readb(p + i + 8) |
(readb(p + i + 9) << 8));
break;
}
}
if (!base || (readb(base) != 0x82))
goto use_random_mac_addr;
i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
while (i < EXPANSION_ROM_SIZE) {
if (readb(base + i) != 0x90) /* no vpd found */
goto use_random_mac_addr;
/* found a vpd field */
len = readb(base + i + 1) | (readb(base + i + 2) << 8);
/* extract keywords */
kstart = base + i + 3;
p = kstart;
while ((p - kstart) < len) {
int klen = readb(p + 2);
int j;
char type;
p += 3;
/* look for the following things:
* -- correct length == 29
* 3 (type) + 2 (size) +
* 18 (strlen("local-mac-address") + 1) +
* 6 (mac addr)
* -- VPD Instance 'I'
* -- VPD Type Bytes 'B'
* -- VPD data length == 6
* -- property string == local-mac-address
*
* -- correct length == 24
* 3 (type) + 2 (size) +
* 12 (strlen("entropy-dev") + 1) +
* 7 (strlen("vms110") + 1)
* -- VPD Instance 'I'
* -- VPD Type String 'B'
* -- VPD data length == 7
* -- property string == entropy-dev
*
* -- correct length == 18
* 3 (type) + 2 (size) +
* 9 (strlen("phy-type") + 1) +
* 4 (strlen("pcs") + 1)
* -- VPD Instance 'I'
* -- VPD Type String 'S'
* -- VPD data length == 4
* -- property string == phy-type
*
* -- correct length == 23
* 3 (type) + 2 (size) +
* 14 (strlen("phy-interface") + 1) +
* 4 (strlen("pcs") + 1)
* -- VPD Instance 'I'
* -- VPD Type String 'S'
* -- VPD data length == 4
* -- property string == phy-interface
*/
if (readb(p) != 'I')
goto next;
/* finally, check string and length */
type = readb(p + 3);
if (type == 'B') {
if ((klen == 29) && readb(p + 4) == 6 &&
cas_vpd_match(p + 5,
"local-mac-address")) {
if (mac_off++ > offset)
goto next;
/* set mac address */
for (j = 0; j < 6; j++)
dev_addr[j] =
readb(p + 23 + j);
goto found_mac;
}
}
if (type != 'S')
goto next;
#ifdef USE_ENTROPY_DEV
if ((klen == 24) &&
cas_vpd_match(p + 5, "entropy-dev") &&
cas_vpd_match(p + 17, "vms110")) {
cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
goto next;
}
#endif
if (found & VPD_FOUND_PHY)
goto next;
if ((klen == 18) && readb(p + 4) == 4 &&
cas_vpd_match(p + 5, "phy-type")) {
if (cas_vpd_match(p + 14, "pcs")) {
phy_type = CAS_PHY_SERDES;
goto found_phy;
}
}
if ((klen == 23) && readb(p + 4) == 4 &&
cas_vpd_match(p + 5, "phy-interface")) {
if (cas_vpd_match(p + 19, "pcs")) {
phy_type = CAS_PHY_SERDES;
goto found_phy;
}
}
found_mac:
found |= VPD_FOUND_MAC;
goto next;
found_phy:
found |= VPD_FOUND_PHY;
next:
p += klen;
}
i += len + 3;
}
use_random_mac_addr:
if (found & VPD_FOUND_MAC)
goto done;
/* Sun MAC prefix then 3 random bytes. */
printk(PFX "MAC address not found in ROM VPD\n");
dev_addr[0] = 0x08;
dev_addr[1] = 0x00;
dev_addr[2] = 0x20;
get_random_bytes(dev_addr + 3, 3);
done:
writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
return phy_type;
}
/* check pci invariants */
static void cas_check_pci_invariants(struct cas *cp)
{
struct pci_dev *pdev = cp->pdev;
cp->cas_flags = 0;
if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
(pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
if (pdev->revision >= CAS_ID_REVPLUS)
cp->cas_flags |= CAS_FLAG_REG_PLUS;
if (pdev->revision < CAS_ID_REVPLUS02u)
cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
/* Original Cassini supports HW CSUM, but it's not
* enabled by default as it can trigger TX hangs.
*/
if (pdev->revision < CAS_ID_REV2)
cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
} else {
/* Only sun has original cassini chips. */
cp->cas_flags |= CAS_FLAG_REG_PLUS;
/* We use a flag because the same phy might be externally
* connected.
*/
if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
(pdev->device == PCI_DEVICE_ID_NS_SATURN))
cp->cas_flags |= CAS_FLAG_SATURN;
}
}
static int cas_check_invariants(struct cas *cp)
{
struct pci_dev *pdev = cp->pdev;
u32 cfg;
int i;
/* get page size for rx buffers. */
cp->page_order = 0;
#ifdef USE_PAGE_ORDER
if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
/* see if we can allocate larger pages */
struct page *page = alloc_pages(GFP_ATOMIC,
CAS_JUMBO_PAGE_SHIFT -
PAGE_SHIFT);
if (page) {
__free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
} else {
printk(PFX "MTU limited to %d bytes\n", CAS_MAX_MTU);
}
}
#endif
cp->page_size = (PAGE_SIZE << cp->page_order);
/* Fetch the FIFO configurations. */
cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
cp->rx_fifo_size = RX_FIFO_SIZE;
/* finish phy determination. MDIO1 takes precedence over MDIO0 if
* they're both connected.
*/
cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
PCI_SLOT(pdev->devfn));
if (cp->phy_type & CAS_PHY_SERDES) {
cp->cas_flags |= CAS_FLAG_1000MB_CAP;
return 0; /* no more checking needed */
}
/* MII */
cfg = readl(cp->regs + REG_MIF_CFG);
if (cfg & MIF_CFG_MDIO_1) {
cp->phy_type = CAS_PHY_MII_MDIO1;
} else if (cfg & MIF_CFG_MDIO_0) {
cp->phy_type = CAS_PHY_MII_MDIO0;
}
cas_mif_poll(cp, 0);
writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
for (i = 0; i < 32; i++) {
u32 phy_id;
int j;
for (j = 0; j < 3; j++) {
cp->phy_addr = i;
phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
phy_id |= cas_phy_read(cp, MII_PHYSID2);
if (phy_id && (phy_id != 0xFFFFFFFF)) {
cp->phy_id = phy_id;
goto done;
}
}
}
printk(KERN_ERR PFX "MII phy did not respond [%08x]\n",
readl(cp->regs + REG_MIF_STATE_MACHINE));
return -1;
done:
/* see if we can do gigabit */
cfg = cas_phy_read(cp, MII_BMSR);
if ((cfg & CAS_BMSR_1000_EXTEND) &&
cas_phy_read(cp, CAS_MII_1000_EXTEND))
cp->cas_flags |= CAS_FLAG_1000MB_CAP;
return 0;
}
/* Must be invoked under cp->lock. */
static inline void cas_start_dma(struct cas *cp)
{
int i;
u32 val;
int txfailed = 0;
/* enable dma */
val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
writel(val, cp->regs + REG_TX_CFG);
val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
writel(val, cp->regs + REG_RX_CFG);
/* enable the mac */
val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
writel(val, cp->regs + REG_MAC_TX_CFG);
val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
writel(val, cp->regs + REG_MAC_RX_CFG);
i = STOP_TRIES;
while (i-- > 0) {
val = readl(cp->regs + REG_MAC_TX_CFG);
if ((val & MAC_TX_CFG_EN))
break;
udelay(10);
}
if (i < 0) txfailed = 1;
i = STOP_TRIES;
while (i-- > 0) {
val = readl(cp->regs + REG_MAC_RX_CFG);
if ((val & MAC_RX_CFG_EN)) {
if (txfailed) {
printk(KERN_ERR
"%s: enabling mac failed [tx:%08x:%08x].\n",
cp->dev->name,
readl(cp->regs + REG_MIF_STATE_MACHINE),
readl(cp->regs + REG_MAC_STATE_MACHINE));
}
goto enable_rx_done;
}
udelay(10);
}
printk(KERN_ERR "%s: enabling mac failed [%s:%08x:%08x].\n",
cp->dev->name,
(txfailed? "tx,rx":"rx"),
readl(cp->regs + REG_MIF_STATE_MACHINE),
readl(cp->regs + REG_MAC_STATE_MACHINE));
enable_rx_done:
cas_unmask_intr(cp); /* enable interrupts */
writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
writel(0, cp->regs + REG_RX_COMP_TAIL);
if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
if (N_RX_DESC_RINGS > 1)
writel(RX_DESC_RINGN_SIZE(1) - 4,
cp->regs + REG_PLUS_RX_KICK1);
for (i = 1; i < N_RX_COMP_RINGS; i++)
writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
}
}
/* Must be invoked under cp->lock. */
static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
int *pause)
{
u32 val = readl(cp->regs + REG_PCS_MII_LPA);
*fd = (val & PCS_MII_LPA_FD) ? 1 : 0;
*pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
if (val & PCS_MII_LPA_ASYM_PAUSE)
*pause |= 0x10;
*spd = 1000;
}
/* Must be invoked under cp->lock. */
static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
int *pause)
{
u32 val;
*fd = 0;
*spd = 10;
*pause = 0;
/* use GMII registers */
val = cas_phy_read(cp, MII_LPA);
if (val & CAS_LPA_PAUSE)
*pause = 0x01;
if (val & CAS_LPA_ASYM_PAUSE)
*pause |= 0x10;
if (val & LPA_DUPLEX)
*fd = 1;
if (val & LPA_100)
*spd = 100;
if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
val = cas_phy_read(cp, CAS_MII_1000_STATUS);
if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
*spd = 1000;
if (val & CAS_LPA_1000FULL)
*fd = 1;
}
}
/* A link-up condition has occurred, initialize and enable the
* rest of the chip.
*
* Must be invoked under cp->lock.
*/
static void cas_set_link_modes(struct cas *cp)
{
u32 val;
int full_duplex, speed, pause;
full_duplex = 0;
speed = 10;
pause = 0;
if (CAS_PHY_MII(cp->phy_type)) {
cas_mif_poll(cp, 0);
val = cas_phy_read(cp, MII_BMCR);
if (val & BMCR_ANENABLE) {
cas_read_mii_link_mode(cp, &full_duplex, &speed,
&pause);
} else {
if (val & BMCR_FULLDPLX)
full_duplex = 1;
if (val & BMCR_SPEED100)
speed = 100;
else if (val & CAS_BMCR_SPEED1000)
speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1000 : 100;
}
cas_mif_poll(cp, 1);
} else {
val = readl(cp->regs + REG_PCS_MII_CTRL);
cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
if ((val & PCS_MII_AUTONEG_EN) == 0) {
if (val & PCS_MII_CTRL_DUPLEX)
full_duplex = 1;
}
}
if (netif_msg_link(cp))
printk(KERN_INFO "%s: Link up at %d Mbps, %s-duplex.\n",
cp->dev->name, speed, (full_duplex ? "full" : "half"));
val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
if (CAS_PHY_MII(cp->phy_type)) {
val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
if (!full_duplex)
val |= MAC_XIF_DISABLE_ECHO;
}
if (full_duplex)
val |= MAC_XIF_FDPLX_LED;
if (speed == 1000)
val |= MAC_XIF_GMII_MODE;
writel(val, cp->regs + REG_MAC_XIF_CFG);
/* deal with carrier and collision detect. */
val = MAC_TX_CFG_IPG_EN;
if (full_duplex) {
val |= MAC_TX_CFG_IGNORE_CARRIER;
val |= MAC_TX_CFG_IGNORE_COLL;
} else {
#ifndef USE_CSMA_CD_PROTO
val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
#endif
}
/* val now set up for REG_MAC_TX_CFG */
/* If gigabit and half-duplex, enable carrier extension
* mode. increase slot time to 512 bytes as well.
* else, disable it and make sure slot time is 64 bytes.
* also activate checksum bug workaround
*/
if ((speed == 1000) && !full_duplex) {
writel(val | MAC_TX_CFG_CARRIER_EXTEND,
cp->regs + REG_MAC_TX_CFG);
val = readl(cp->regs + REG_MAC_RX_CFG);
val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
writel(val | MAC_RX_CFG_CARRIER_EXTEND,
cp->regs + REG_MAC_RX_CFG);
writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
cp->crc_size = 4;
/* minimum size gigabit frame at half duplex */
cp->min_frame_size = CAS_1000MB_MIN_FRAME;
} else {
writel(val, cp->regs + REG_MAC_TX_CFG);
/* checksum bug workaround. don't strip FCS when in
* half-duplex mode
*/
val = readl(cp->regs + REG_MAC_RX_CFG);
if (full_duplex) {
val |= MAC_RX_CFG_STRIP_FCS;
cp->crc_size = 0;
cp->min_frame_size = CAS_MIN_MTU;
} else {
val &= ~MAC_RX_CFG_STRIP_FCS;
cp->crc_size = 4;
cp->min_frame_size = CAS_MIN_FRAME;
}
writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
cp->regs + REG_MAC_RX_CFG);
writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
}
if (netif_msg_link(cp)) {
if (pause & 0x01) {
printk(KERN_INFO "%s: Pause is enabled "
"(rxfifo: %d off: %d on: %d)\n",
cp->dev->name,
cp->rx_fifo_size,
cp->rx_pause_off,
cp->rx_pause_on);
} else if (pause & 0x10) {
printk(KERN_INFO "%s: TX pause enabled\n",
cp->dev->name);
} else {
printk(KERN_INFO "%s: Pause is disabled\n",
cp->dev->name);
}
}
val = readl(cp->regs + REG_MAC_CTRL_CFG);
val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
if (pause) { /* symmetric or asymmetric pause */
val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
if (pause & 0x01) { /* symmetric pause */
val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
}
}
writel(val, cp->regs + REG_MAC_CTRL_CFG);
cas_start_dma(cp);
}
/* Must be invoked under cp->lock. */
static void cas_init_hw(struct cas *cp, int restart_link)
{
if (restart_link)
cas_phy_init(cp);
cas_init_pause_thresholds(cp);
cas_init_mac(cp);
cas_init_dma(cp);
if (restart_link) {
/* Default aneg parameters */
cp->timer_ticks = 0;
cas_begin_auto_negotiation(cp, NULL);
} else if (cp->lstate == link_up) {
cas_set_link_modes(cp);
netif_carrier_on(cp->dev);
}
}
/* Must be invoked under cp->lock. on earlier cassini boards,
* SOFT_0 is tied to PCI reset. we use this to force a pci reset,
* let it settle out, and then restore pci state.
*/
static void cas_hard_reset(struct cas *cp)
{
writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
udelay(20);
pci_restore_state(cp->pdev);
}
static void cas_global_reset(struct cas *cp, int blkflag)
{
int limit;
/* issue a global reset. don't use RSTOUT. */
if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
/* For PCS, when the blkflag is set, we should set the
* SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
* the last autonegotiation from being cleared. We'll
* need some special handling if the chip is set into a
* loopback mode.
*/
writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
cp->regs + REG_SW_RESET);
} else {
writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
}
/* need to wait at least 3ms before polling register */
mdelay(3);
limit = STOP_TRIES;
while (limit-- > 0) {
u32 val = readl(cp->regs + REG_SW_RESET);
if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
goto done;
udelay(10);
}
printk(KERN_ERR "%s: sw reset failed.\n", cp->dev->name);
done:
/* enable various BIM interrupts */
writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
/* clear out pci error status mask for handled errors.
* we don't deal with DMA counter overflows as they happen
* all the time.
*/
writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
PCI_ERR_BIM_DMA_READ), cp->regs +
REG_PCI_ERR_STATUS_MASK);
/* set up for MII by default to address mac rx reset timeout
* issue
*/
writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
}
static void cas_reset(struct cas *cp, int blkflag)
{
u32 val;
cas_mask_intr(cp);
cas_global_reset(cp, blkflag);
cas_mac_reset(cp);
cas_entropy_reset(cp);
/* disable dma engines. */
val = readl(cp->regs + REG_TX_CFG);
val &= ~TX_CFG_DMA_EN;
writel(val, cp->regs + REG_TX_CFG);
val = readl(cp->regs + REG_RX_CFG);
val &= ~RX_CFG_DMA_EN;
writel(val, cp->regs + REG_RX_CFG);
/* program header parser */
if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
(CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
cas_load_firmware(cp, CAS_HP_FIRMWARE);
} else {
cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
}
/* clear out error registers */
spin_lock(&cp->stat_lock[N_TX_RINGS]);
cas_clear_mac_err(cp);
spin_unlock(&cp->stat_lock[N_TX_RINGS]);
}
/* Shut down the chip, must be called with pm_mutex held. */
static void cas_shutdown(struct cas *cp)
{
unsigned long flags;
/* Make us not-running to avoid timers respawning */
cp->hw_running = 0;
del_timer_sync(&cp->link_timer);
/* Stop the reset task */
#if 0
while (atomic_read(&cp->reset_task_pending_mtu) ||
atomic_read(&cp->reset_task_pending_spare) ||
atomic_read(&cp->reset_task_pending_all))
schedule();
#else
while (atomic_read(&cp->reset_task_pending))
schedule();
#endif
/* Actually stop the chip */
cas_lock_all_save(cp, flags);
cas_reset(cp, 0);
if (cp->cas_flags & CAS_FLAG_SATURN)
cas_phy_powerdown(cp);
cas_unlock_all_restore(cp, flags);
}
static int cas_change_mtu(struct net_device *dev, int new_mtu)
{
struct cas *cp = netdev_priv(dev);
if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
return -EINVAL;
dev->mtu = new_mtu;
if (!netif_running(dev) || !netif_device_present(dev))
return 0;
/* let the reset task handle it */
#if 1
atomic_inc(&cp->reset_task_pending);
if ((cp->phy_type & CAS_PHY_SERDES)) {
atomic_inc(&cp->reset_task_pending_all);
} else {
atomic_inc(&cp->reset_task_pending_mtu);
}
schedule_work(&cp->reset_task);
#else
atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
CAS_RESET_ALL : CAS_RESET_MTU);
printk(KERN_ERR "reset called in cas_change_mtu\n");
schedule_work(&cp->reset_task);
#endif
flush_scheduled_work();
return 0;
}
static void cas_clean_txd(struct cas *cp, int ring)
{
struct cas_tx_desc *txd = cp->init_txds[ring];
struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
u64 daddr, dlen;
int i, size;
size = TX_DESC_RINGN_SIZE(ring);
for (i = 0; i < size; i++) {
int frag;
if (skbs[i] == NULL)
continue;
skb = skbs[i];
skbs[i] = NULL;
for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
int ent = i & (size - 1);
/* first buffer is never a tiny buffer and so
* needs to be unmapped.
*/
daddr = le64_to_cpu(txd[ent].buffer);
dlen = CAS_VAL(TX_DESC_BUFLEN,
le64_to_cpu(txd[ent].control));
pci_unmap_page(cp->pdev, daddr, dlen,
PCI_DMA_TODEVICE);
if (frag != skb_shinfo(skb)->nr_frags) {
i++;
/* next buffer might by a tiny buffer.
* skip past it.
*/
ent = i & (size - 1);
if (cp->tx_tiny_use[ring][ent].used)
i++;
}
}
dev_kfree_skb_any(skb);
}
/* zero out tiny buf usage */
memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
}
/* freed on close */
static inline void cas_free_rx_desc(struct cas *cp, int ring)
{
cas_page_t **page = cp->rx_pages[ring];
int i, size;
size = RX_DESC_RINGN_SIZE(ring);
for (i = 0; i < size; i++) {
if (page[i]) {
cas_page_free(cp, page[i]);
page[i] = NULL;
}
}
}
static void cas_free_rxds(struct cas *cp)
{
int i;
for (i = 0; i < N_RX_DESC_RINGS; i++)
cas_free_rx_desc(cp, i);
}
/* Must be invoked under cp->lock. */
static void cas_clean_rings(struct cas *cp)
{
int i;
/* need to clean all tx rings */
memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
for (i = 0; i < N_TX_RINGS; i++)
cas_clean_txd(cp, i);
/* zero out init block */
memset(cp->init_block, 0, sizeof(struct cas_init_block));
cas_clean_rxds(cp);
cas_clean_rxcs(cp);
}
/* allocated on open */
static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
{
cas_page_t **page = cp->rx_pages[ring];
int size, i = 0;
size = RX_DESC_RINGN_SIZE(ring);
for (i = 0; i < size; i++) {
if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
return -1;
}
return 0;
}
static int cas_alloc_rxds(struct cas *cp)
{
int i;
for (i = 0; i < N_RX_DESC_RINGS; i++) {
if (cas_alloc_rx_desc(cp, i) < 0) {
cas_free_rxds(cp);
return -1;
}
}
return 0;
}
static void cas_reset_task(struct work_struct *work)
{
struct cas *cp = container_of(work, struct cas, reset_task);
#if 0
int pending = atomic_read(&cp->reset_task_pending);
#else
int pending_all = atomic_read(&cp->reset_task_pending_all);
int pending_spare = atomic_read(&cp->reset_task_pending_spare);
int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
/* We can have more tasks scheduled than actually
* needed.
*/
atomic_dec(&cp->reset_task_pending);
return;
}
#endif
/* The link went down, we reset the ring, but keep
* DMA stopped. Use this function for reset
* on error as well.
*/
if (cp->hw_running) {
unsigned long flags;
/* Make sure we don't get interrupts or tx packets */
netif_device_detach(cp->dev);
cas_lock_all_save(cp, flags);
if (cp->opened) {
/* We call cas_spare_recover when we call cas_open.
* but we do not initialize the lists cas_spare_recover
* uses until cas_open is called.
*/
cas_spare_recover(cp, GFP_ATOMIC);
}
#if 1
/* test => only pending_spare set */
if (!pending_all && !pending_mtu)
goto done;
#else
if (pending == CAS_RESET_SPARE)
goto done;
#endif
/* when pending == CAS_RESET_ALL, the following
* call to cas_init_hw will restart auto negotiation.
* Setting the second argument of cas_reset to
* !(pending == CAS_RESET_ALL) will set this argument
* to 1 (avoiding reinitializing the PHY for the normal
* PCS case) when auto negotiation is not restarted.
*/
#if 1
cas_reset(cp, !(pending_all > 0));
if (cp->opened)
cas_clean_rings(cp);
cas_init_hw(cp, (pending_all > 0));
#else
cas_reset(cp, !(pending == CAS_RESET_ALL));
if (cp->opened)
cas_clean_rings(cp);
cas_init_hw(cp, pending == CAS_RESET_ALL);
#endif
done:
cas_unlock_all_restore(cp, flags);
netif_device_attach(cp->dev);
}
#if 1
atomic_sub(pending_all, &cp->reset_task_pending_all);
atomic_sub(pending_spare, &cp->reset_task_pending_spare);
atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
atomic_dec(&cp->reset_task_pending);
#else
atomic_set(&cp->reset_task_pending, 0);
#endif
}
static void cas_link_timer(unsigned long data)
{
struct cas *cp = (struct cas *) data;
int mask, pending = 0, reset = 0;
unsigned long flags;
if (link_transition_timeout != 0 &&
cp->link_transition_jiffies_valid &&
((jiffies - cp->link_transition_jiffies) >
(link_transition_timeout))) {
/* One-second counter so link-down workaround doesn't
* cause resets to occur so fast as to fool the switch
* into thinking the link is down.
*/
cp->link_transition_jiffies_valid = 0;
}
if (!cp->hw_running)
return;
spin_lock_irqsave(&cp->lock, flags);
cas_lock_tx(cp);
cas_entropy_gather(cp);
/* If the link task is still pending, we just
* reschedule the link timer
*/
#if 1
if (atomic_read(&cp->reset_task_pending_all) ||
atomic_read(&cp->reset_task_pending_spare) ||
atomic_read(&cp->reset_task_pending_mtu))
goto done;
#else
if (atomic_read(&cp->reset_task_pending))
goto done;
#endif
/* check for rx cleaning */
if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
int i, rmask;
for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
rmask = CAS_FLAG_RXD_POST(i);
if ((mask & rmask) == 0)
continue;
/* post_rxds will do a mod_timer */
if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
pending = 1;
continue;
}
cp->cas_flags &= ~rmask;
}
}
if (CAS_PHY_MII(cp->phy_type)) {
u16 bmsr;
cas_mif_poll(cp, 0);
bmsr = cas_phy_read(cp, MII_BMSR);
/* WTZ: Solaris driver reads this twice, but that
* may be due to the PCS case and the use of a
* common implementation. Read it twice here to be
* safe.
*/
bmsr = cas_phy_read(cp, MII_BMSR);
cas_mif_poll(cp, 1);
readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
reset = cas_mii_link_check(cp, bmsr);
} else {
reset = cas_pcs_link_check(cp);
}
if (reset)
goto done;
/* check for tx state machine confusion */
if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
u32 wptr, rptr;
int tlm = CAS_VAL(MAC_SM_TLM, val);
if (((tlm == 0x5) || (tlm == 0x3)) &&
(CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
if (netif_msg_tx_err(cp))
printk(KERN_DEBUG "%s: tx err: "
"MAC_STATE[%08x]\n",
cp->dev->name, val);
reset = 1;
goto done;
}
val = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
if ((val == 0) && (wptr != rptr)) {
if (netif_msg_tx_err(cp))
printk(KERN_DEBUG "%s: tx err: "
"TX_FIFO[%08x:%08x:%08x]\n",
cp->dev->name, val, wptr, rptr);
reset = 1;
}
if (reset)
cas_hard_reset(cp);
}
done:
if (reset) {
#if 1
atomic_inc(&cp->reset_task_pending);
atomic_inc(&cp->reset_task_pending_all);
schedule_work(&cp->reset_task);
#else
atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
printk(KERN_ERR "reset called in cas_link_timer\n");
schedule_work(&cp->reset_task);
#endif
}
if (!pending)
mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
cas_unlock_tx(cp);
spin_unlock_irqrestore(&cp->lock, flags);
}
/* tiny buffers are used to avoid target abort issues with
* older cassini's
*/
static void cas_tx_tiny_free(struct cas *cp)
{
struct pci_dev *pdev = cp->pdev;
int i;
for (i = 0; i < N_TX_RINGS; i++) {
if (!cp->tx_tiny_bufs[i])
continue;
pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
cp->tx_tiny_bufs[i],
cp->tx_tiny_dvma[i]);
cp->tx_tiny_bufs[i] = NULL;
}
}
static int cas_tx_tiny_alloc(struct cas *cp)
{
struct pci_dev *pdev = cp->pdev;
int i;
for (i = 0; i < N_TX_RINGS; i++) {
cp->tx_tiny_bufs[i] =
pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
&cp->tx_tiny_dvma[i]);
if (!cp->tx_tiny_bufs[i]) {
cas_tx_tiny_free(cp);
return -1;
}
}
return 0;
}
static int cas_open(struct net_device *dev)
{
struct cas *cp = netdev_priv(dev);
int hw_was_up, err;
unsigned long flags;
mutex_lock(&cp->pm_mutex);
hw_was_up = cp->hw_running;
/* The power-management mutex protects the hw_running
* etc. state so it is safe to do this bit without cp->lock
*/
if (!cp->hw_running) {
/* Reset the chip */
cas_lock_all_save(cp, flags);
/* We set the second arg to cas_reset to zero
* because cas_init_hw below will have its second
* argument set to non-zero, which will force
* autonegotiation to start.
*/
cas_reset(cp, 0);
cp->hw_running = 1;
cas_unlock_all_restore(cp, flags);
}
if (cas_tx_tiny_alloc(cp) < 0)
return -ENOMEM;
/* alloc rx descriptors */
err = -ENOMEM;
if (cas_alloc_rxds(cp) < 0)
goto err_tx_tiny;
/* allocate spares */
cas_spare_init(cp);
cas_spare_recover(cp, GFP_KERNEL);
/* We can now request the interrupt as we know it's masked
* on the controller. cassini+ has up to 4 interrupts
* that can be used, but you need to do explicit pci interrupt
* mapping to expose them
*/
if (request_irq(cp->pdev->irq, cas_interrupt,
IRQF_SHARED, dev->name, (void *) dev)) {
printk(KERN_ERR "%s: failed to request irq !\n",
cp->dev->name);
err = -EAGAIN;
goto err_spare;
}
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
#ifdef USE_NAPI
napi_enable(&cp->napi);
#endif
/* init hw */
cas_lock_all_save(cp, flags);
cas_clean_rings(cp);
cas_init_hw(cp, !hw_was_up);
cp->opened = 1;
cas_unlock_all_restore(cp, flags);
netif_start_queue(dev);
mutex_unlock(&cp->pm_mutex);
return 0;
err_spare:
cas_spare_free(cp);
cas_free_rxds(cp);
err_tx_tiny:
cas_tx_tiny_free(cp);
mutex_unlock(&cp->pm_mutex);
return err;
}
static int cas_close(struct net_device *dev)
{
unsigned long flags;
struct cas *cp = netdev_priv(dev);
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
#ifdef USE_NAPI
napi_disable(&cp->napi);
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
#endif
/* Make sure we don't get distracted by suspend/resume */
mutex_lock(&cp->pm_mutex);
netif_stop_queue(dev);
/* Stop traffic, mark us closed */
cas_lock_all_save(cp, flags);
cp->opened = 0;
cas_reset(cp, 0);
cas_phy_init(cp);
cas_begin_auto_negotiation(cp, NULL);
cas_clean_rings(cp);
cas_unlock_all_restore(cp, flags);
free_irq(cp->pdev->irq, (void *) dev);
cas_spare_free(cp);
cas_free_rxds(cp);
cas_tx_tiny_free(cp);
mutex_unlock(&cp->pm_mutex);
return 0;
}
static struct {
const char name[ETH_GSTRING_LEN];
} ethtool_cassini_statnames[] = {
{"collisions"},
{"rx_bytes"},
{"rx_crc_errors"},
{"rx_dropped"},
{"rx_errors"},
{"rx_fifo_errors"},
{"rx_frame_errors"},
{"rx_length_errors"},
{"rx_over_errors"},
{"rx_packets"},
{"tx_aborted_errors"},
{"tx_bytes"},
{"tx_dropped"},
{"tx_errors"},
{"tx_fifo_errors"},
{"tx_packets"}
};
#define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
static struct {
const int offsets; /* neg. values for 2nd arg to cas_read_phy */
} ethtool_register_table[] = {
{-MII_BMSR},
{-MII_BMCR},
{REG_CAWR},
{REG_INF_BURST},
{REG_BIM_CFG},
{REG_RX_CFG},
{REG_HP_CFG},
{REG_MAC_TX_CFG},
{REG_MAC_RX_CFG},
{REG_MAC_CTRL_CFG},
{REG_MAC_XIF_CFG},
{REG_MIF_CFG},
{REG_PCS_CFG},
{REG_SATURN_PCFG},
{REG_PCS_MII_STATUS},
{REG_PCS_STATE_MACHINE},
{REG_MAC_COLL_EXCESS},
{REG_MAC_COLL_LATE}
};
#define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table)
#define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
{
u8 *p;
int i;
unsigned long flags;
spin_lock_irqsave(&cp->lock, flags);
for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
u16 hval;
u32 val;
if (ethtool_register_table[i].offsets < 0) {
hval = cas_phy_read(cp,
-ethtool_register_table[i].offsets);
val = hval;
} else {
val= readl(cp->regs+ethtool_register_table[i].offsets);
}
memcpy(p, (u8 *)&val, sizeof(u32));
}
spin_unlock_irqrestore(&cp->lock, flags);
}
static struct net_device_stats *cas_get_stats(struct net_device *dev)
{
struct cas *cp = netdev_priv(dev);
struct net_device_stats *stats = cp->net_stats;
unsigned long flags;
int i;
unsigned long tmp;
/* we collate all of the stats into net_stats[N_TX_RING] */
if (!cp->hw_running)
return stats + N_TX_RINGS;
/* collect outstanding stats */
/* WTZ: the Cassini spec gives these as 16 bit counters but
* stored in 32-bit words. Added a mask of 0xffff to be safe,
* in case the chip somehow puts any garbage in the other bits.
* Also, counter usage didn't seem to mach what Adrian did
* in the parts of the code that set these quantities. Made
* that consistent.
*/
spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
stats[N_TX_RINGS].rx_crc_errors +=
readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
stats[N_TX_RINGS].rx_frame_errors +=
readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
stats[N_TX_RINGS].rx_length_errors +=
readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
#if 1
tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
(readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
stats[N_TX_RINGS].tx_aborted_errors += tmp;
stats[N_TX_RINGS].collisions +=
tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
#else
stats[N_TX_RINGS].tx_aborted_errors +=
readl(cp->regs + REG_MAC_COLL_EXCESS);
stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
readl(cp->regs + REG_MAC_COLL_LATE);
#endif
cas_clear_mac_err(cp);
/* saved bits that are unique to ring 0 */
spin_lock(&cp->stat_lock[0]);
stats[N_TX_RINGS].collisions += stats[0].collisions;
stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors;
stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors;
stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors;
stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors;
spin_unlock(&cp->stat_lock[0]);
for (i = 0; i < N_TX_RINGS; i++) {
spin_lock(&cp->stat_lock[i]);
stats[N_TX_RINGS].rx_length_errors +=
stats[i].rx_length_errors;
stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
stats[N_TX_RINGS].rx_packets += stats[i].rx_packets;
stats[N_TX_RINGS].tx_packets += stats[i].tx_packets;
stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes;
stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes;
stats[N_TX_RINGS].rx_errors += stats[i].rx_errors;
stats[N_TX_RINGS].tx_errors += stats[i].tx_errors;
stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped;
stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped;
memset(stats + i, 0, sizeof(struct net_device_stats));
spin_unlock(&cp->stat_lock[i]);
}
spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
return stats + N_TX_RINGS;
}
static void cas_set_multicast(struct net_device *dev)
{
struct cas *cp = netdev_priv(dev);
u32 rxcfg, rxcfg_new;
unsigned long flags;
int limit = STOP_TRIES;
if (!cp->hw_running)
return;
spin_lock_irqsave(&cp->lock, flags);
rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
/* disable RX MAC and wait for completion */
writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
if (!limit--)
break;
udelay(10);
}
/* disable hash filter and wait for completion */
limit = STOP_TRIES;
rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
if (!limit--)
break;
udelay(10);
}
/* program hash filters */
cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
rxcfg |= rxcfg_new;
writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
spin_unlock_irqrestore(&cp->lock, flags);
}
static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
struct cas *cp = netdev_priv(dev);
strncpy(info->driver, DRV_MODULE_NAME, ETHTOOL_BUSINFO_LEN);
strncpy(info->version, DRV_MODULE_VERSION, ETHTOOL_BUSINFO_LEN);
info->fw_version[0] = '\0';
strncpy(info->bus_info, pci_name(cp->pdev), ETHTOOL_BUSINFO_LEN);
info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
cp->casreg_len : CAS_MAX_REGS;
info->n_stats = CAS_NUM_STAT_KEYS;
}
static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct cas *cp = netdev_priv(dev);
u16 bmcr;
int full_duplex, speed, pause;
unsigned long flags;
enum link_state linkstate = link_up;
cmd->advertising = 0;
cmd->supported = SUPPORTED_Autoneg;
if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
cmd->supported |= SUPPORTED_1000baseT_Full;
cmd->advertising |= ADVERTISED_1000baseT_Full;
}
/* Record PHY settings if HW is on. */
spin_lock_irqsave(&cp->lock, flags);
bmcr = 0;
linkstate = cp->lstate;
if (CAS_PHY_MII(cp->phy_type)) {
cmd->port = PORT_MII;
cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
XCVR_INTERNAL : XCVR_EXTERNAL;
cmd->phy_address = cp->phy_addr;
cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
ADVERTISED_10baseT_Half |
ADVERTISED_10baseT_Full |
ADVERTISED_100baseT_Half |
ADVERTISED_100baseT_Full;
cmd->supported |=
(SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full |
SUPPORTED_TP | SUPPORTED_MII);
if (cp->hw_running) {
cas_mif_poll(cp, 0);
bmcr = cas_phy_read(cp, MII_BMCR);
cas_read_mii_link_mode(cp, &full_duplex,
&speed, &pause);
cas_mif_poll(cp, 1);
}
} else {
cmd->port = PORT_FIBRE;
cmd->transceiver = XCVR_INTERNAL;
cmd->phy_address = 0;
cmd->supported |= SUPPORTED_FIBRE;
cmd->advertising |= ADVERTISED_FIBRE;
if (cp->hw_running) {
/* pcs uses the same bits as mii */
bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
cas_read_pcs_link_mode(cp, &full_duplex,
&speed, &pause);
}
}
spin_unlock_irqrestore(&cp->lock, flags);
if (bmcr & BMCR_ANENABLE) {
cmd->advertising |= ADVERTISED_Autoneg;
cmd->autoneg = AUTONEG_ENABLE;
cmd->speed = ((speed == 10) ?
SPEED_10 :
((speed == 1000) ?
SPEED_1000 : SPEED_100));
cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
} else {
cmd->autoneg = AUTONEG_DISABLE;
cmd->speed =
(bmcr & CAS_BMCR_SPEED1000) ?
SPEED_1000 :
((bmcr & BMCR_SPEED100) ? SPEED_100:
SPEED_10);
cmd->duplex =
(bmcr & BMCR_FULLDPLX) ?
DUPLEX_FULL : DUPLEX_HALF;
}
if (linkstate != link_up) {
/* Force these to "unknown" if the link is not up and
* autonogotiation in enabled. We can set the link
* speed to 0, but not cmd->duplex,
* because its legal values are 0 and 1. Ethtool will
* print the value reported in parentheses after the
* word "Unknown" for unrecognized values.
*
* If in forced mode, we report the speed and duplex
* settings that we configured.
*/
if (cp->link_cntl & BMCR_ANENABLE) {
cmd->speed = 0;
cmd->duplex = 0xff;
} else {
cmd->speed = SPEED_10;
if (cp->link_cntl & BMCR_SPEED100) {
cmd->speed = SPEED_100;
} else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
cmd->speed = SPEED_1000;
}
cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
DUPLEX_FULL : DUPLEX_HALF;
}
}
return 0;
}
static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct cas *cp = netdev_priv(dev);
unsigned long flags;
/* Verify the settings we care about. */
if (cmd->autoneg != AUTONEG_ENABLE &&
cmd->autoneg != AUTONEG_DISABLE)
return -EINVAL;
if (cmd->autoneg == AUTONEG_DISABLE &&
((cmd->speed != SPEED_1000 &&
cmd->speed != SPEED_100 &&
cmd->speed != SPEED_10) ||
(cmd->duplex != DUPLEX_HALF &&
cmd->duplex != DUPLEX_FULL)))
return -EINVAL;
/* Apply settings and restart link process. */
spin_lock_irqsave(&cp->lock, flags);
cas_begin_auto_negotiation(cp, cmd);
spin_unlock_irqrestore(&cp->lock, flags);
return 0;
}
static int cas_nway_reset(struct net_device *dev)
{
struct cas *cp = netdev_priv(dev);
unsigned long flags;
if ((cp->link_cntl & BMCR_ANENABLE) == 0)
return -EINVAL;
/* Restart link process. */
spin_lock_irqsave(&cp->lock, flags);
cas_begin_auto_negotiation(cp, NULL);
spin_unlock_irqrestore(&cp->lock, flags);
return 0;
}
static u32 cas_get_link(struct net_device *dev)
{
struct cas *cp = netdev_priv(dev);
return cp->lstate == link_up;
}
static u32 cas_get_msglevel(struct net_device *dev)
{
struct cas *cp = netdev_priv(dev);
return cp->msg_enable;
}
static void cas_set_msglevel(struct net_device *dev, u32 value)
{
struct cas *cp = netdev_priv(dev);
cp->msg_enable = value;
}
static int cas_get_regs_len(struct net_device *dev)
{
struct cas *cp = netdev_priv(dev);
return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
}
static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
void *p)
{
struct cas *cp = netdev_priv(dev);
regs->version = 0;
/* cas_read_regs handles locks (cp->lock). */
cas_read_regs(cp, p, regs->len / sizeof(u32));
}
static int cas_get_sset_count(struct net_device *dev, int sset)
{
switch (sset) {
case ETH_SS_STATS:
return CAS_NUM_STAT_KEYS;
default:
return -EOPNOTSUPP;
}
}
static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
memcpy(data, &ethtool_cassini_statnames,
CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
}
static void cas_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *estats, u64 *data)
{
struct cas *cp = netdev_priv(dev);
struct net_device_stats *stats = cas_get_stats(cp->dev);
int i = 0;
data[i++] = stats->collisions;
data[i++] = stats->rx_bytes;
data[i++] = stats->rx_crc_errors;
data[i++] = stats->rx_dropped;
data[i++] = stats->rx_errors;
data[i++] = stats->rx_fifo_errors;
data[i++] = stats->rx_frame_errors;
data[i++] = stats->rx_length_errors;
data[i++] = stats->rx_over_errors;
data[i++] = stats->rx_packets;
data[i++] = stats->tx_aborted_errors;
data[i++] = stats->tx_bytes;
data[i++] = stats->tx_dropped;
data[i++] = stats->tx_errors;
data[i++] = stats->tx_fifo_errors;
data[i++] = stats->tx_packets;
BUG_ON(i != CAS_NUM_STAT_KEYS);
}
static const struct ethtool_ops cas_ethtool_ops = {
.get_drvinfo = cas_get_drvinfo,
.get_settings = cas_get_settings,
.set_settings = cas_set_settings,
.nway_reset = cas_nway_reset,
.get_link = cas_get_link,
.get_msglevel = cas_get_msglevel,
.set_msglevel = cas_set_msglevel,
.get_regs_len = cas_get_regs_len,
.get_regs = cas_get_regs,
.get_sset_count = cas_get_sset_count,
.get_strings = cas_get_strings,
.get_ethtool_stats = cas_get_ethtool_stats,
};
static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct cas *cp = netdev_priv(dev);
struct mii_ioctl_data *data = if_mii(ifr);
unsigned long flags;
int rc = -EOPNOTSUPP;
/* Hold the PM mutex while doing ioctl's or we may collide
* with open/close and power management and oops.
*/
mutex_lock(&cp->pm_mutex);
switch (cmd) {
case SIOCGMIIPHY: /* Get address of MII PHY in use. */
data->phy_id = cp->phy_addr;
/* Fallthrough... */
case SIOCGMIIREG: /* Read MII PHY register. */
spin_lock_irqsave(&cp->lock, flags);
cas_mif_poll(cp, 0);
data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
cas_mif_poll(cp, 1);
spin_unlock_irqrestore(&cp->lock, flags);
rc = 0;
break;
case SIOCSMIIREG: /* Write MII PHY register. */
if (!capable(CAP_NET_ADMIN)) {
rc = -EPERM;
break;
}
spin_lock_irqsave(&cp->lock, flags);
cas_mif_poll(cp, 0);
rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
cas_mif_poll(cp, 1);
spin_unlock_irqrestore(&cp->lock, flags);
break;
default:
break;
};
mutex_unlock(&cp->pm_mutex);
return rc;
}
/* When this chip sits underneath an Intel 31154 bridge, it is the
* only subordinate device and we can tweak the bridge settings to
* reflect that fact.
*/
static void __devinit cas_program_bridge(struct pci_dev *cas_pdev)
{
struct pci_dev *pdev = cas_pdev->bus->self;
u32 val;
if (!pdev)
return;
if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
return;
/* Clear bit 10 (Bus Parking Control) in the Secondary
* Arbiter Control/Status Register which lives at offset
* 0x41. Using a 32-bit word read/modify/write at 0x40
* is much simpler so that's how we do this.
*/
pci_read_config_dword(pdev, 0x40, &val);
val &= ~0x00040000;
pci_write_config_dword(pdev, 0x40, val);
/* Max out the Multi-Transaction Timer settings since
* Cassini is the only device present.
*
* The register is 16-bit and lives at 0x50. When the
* settings are enabled, it extends the GRANT# signal
* for a requestor after a transaction is complete. This
* allows the next request to run without first needing
* to negotiate the GRANT# signal back.
*
* Bits 12:10 define the grant duration:
*
* 1 -- 16 clocks
* 2 -- 32 clocks
* 3 -- 64 clocks
* 4 -- 128 clocks
* 5 -- 256 clocks
*
* All other values are illegal.
*
* Bits 09:00 define which REQ/GNT signal pairs get the
* GRANT# signal treatment. We set them all.
*/
pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
/* The Read Prefecth Policy register is 16-bit and sits at
* offset 0x52. It enables a "smart" pre-fetch policy. We
* enable it and max out all of the settings since only one
* device is sitting underneath and thus bandwidth sharing is
* not an issue.
*
* The register has several 3 bit fields, which indicates a
* multiplier applied to the base amount of prefetching the
* chip would do. These fields are at:
*
* 15:13 --- ReRead Primary Bus
* 12:10 --- FirstRead Primary Bus
* 09:07 --- ReRead Secondary Bus
* 06:04 --- FirstRead Secondary Bus
*
* Bits 03:00 control which REQ/GNT pairs the prefetch settings
* get enabled on. Bit 3 is a grouped enabler which controls
* all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control
* the individual REQ/GNT pairs [2:0].
*/
pci_write_config_word(pdev, 0x52,
(0x7 << 13) |
(0x7 << 10) |
(0x7 << 7) |
(0x7 << 4) |
(0xf << 0));
/* Force cacheline size to 0x8 */
pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
/* Force latency timer to maximum setting so Cassini can
* sit on the bus as long as it likes.
*/
pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
}
static const struct net_device_ops cas_netdev_ops = {
.ndo_open = cas_open,
.ndo_stop = cas_close,
.ndo_start_xmit = cas_start_xmit,
.ndo_get_stats = cas_get_stats,
.ndo_set_multicast_list = cas_set_multicast,
.ndo_do_ioctl = cas_ioctl,
.ndo_tx_timeout = cas_tx_timeout,
.ndo_change_mtu = cas_change_mtu,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = cas_netpoll,
#endif
};
static int __devinit cas_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
static int cas_version_printed = 0;
unsigned long casreg_len;
struct net_device *dev;
struct cas *cp;
int i, err, pci_using_dac;
u16 pci_cmd;
u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
if (cas_version_printed++ == 0)
printk(KERN_INFO "%s", version);
err = pci_enable_device(pdev);
if (err) {
dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
return err;
}
if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
dev_err(&pdev->dev, "Cannot find proper PCI device "
"base address, aborting.\n");
err = -ENODEV;
goto err_out_disable_pdev;
}
dev = alloc_etherdev(sizeof(*cp));
if (!dev) {
dev_err(&pdev->dev, "Etherdev alloc failed, aborting.\n");
err = -ENOMEM;
goto err_out_disable_pdev;
}
SET_NETDEV_DEV(dev, &pdev->dev);
err = pci_request_regions(pdev, dev->name);
if (err) {
dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
goto err_out_free_netdev;
}
pci_set_master(pdev);
/* we must always turn on parity response or else parity
* doesn't get generated properly. disable SERR/PERR as well.
* in addition, we want to turn MWI on.
*/
pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
pci_cmd &= ~PCI_COMMAND_SERR;
pci_cmd |= PCI_COMMAND_PARITY;
pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
if (pci_try_set_mwi(pdev))
printk(KERN_WARNING PFX "Could not enable MWI for %s\n",
pci_name(pdev));
cas_program_bridge(pdev);
/*
* On some architectures, the default cache line size set
* by pci_try_set_mwi reduces perforamnce. We have to increase
* it for this case. To start, we'll print some configuration
* data.
*/
#if 1
pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
&orig_cacheline_size);
if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
cas_cacheline_size =
(CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
if (pci_write_config_byte(pdev,
PCI_CACHE_LINE_SIZE,
cas_cacheline_size)) {
dev_err(&pdev->dev, "Could not set PCI cache "
"line size\n");
goto err_write_cacheline;
}
}
#endif
/* Configure DMA attributes. */
if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
pci_using_dac = 1;
err = pci_set_consistent_dma_mask(pdev,
DMA_64BIT_MASK);
if (err < 0) {
dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
"for consistent allocations\n");
goto err_out_free_res;
}
} else {
err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
if (err) {
dev_err(&pdev->dev, "No usable DMA configuration, "
"aborting.\n");
goto err_out_free_res;
}
pci_using_dac = 0;
}
casreg_len = pci_resource_len(pdev, 0);
cp = netdev_priv(dev);
cp->pdev = pdev;
#if 1
/* A value of 0 indicates we never explicitly set it */
cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
#endif
cp->dev = dev;
cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
cassini_debug;
cp->link_transition = LINK_TRANSITION_UNKNOWN;
cp->link_transition_jiffies_valid = 0;
spin_lock_init(&cp->lock);
spin_lock_init(&cp->rx_inuse_lock);
spin_lock_init(&cp->rx_spare_lock);
for (i = 0; i < N_TX_RINGS; i++) {
spin_lock_init(&cp->stat_lock[i]);
spin_lock_init(&cp->tx_lock[i]);
}
spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
mutex_init(&cp->pm_mutex);
init_timer(&cp->link_timer);
cp->link_timer.function = cas_link_timer;
cp->link_timer.data = (unsigned long) cp;
#if 1
/* Just in case the implementation of atomic operations
* change so that an explicit initialization is necessary.
*/
atomic_set(&cp->reset_task_pending, 0);
atomic_set(&cp->reset_task_pending_all, 0);
atomic_set(&cp->reset_task_pending_spare, 0);
atomic_set(&cp->reset_task_pending_mtu, 0);
#endif
INIT_WORK(&cp->reset_task, cas_reset_task);
/* Default link parameters */
if (link_mode >= 0 && link_mode <= 6)
cp->link_cntl = link_modes[link_mode];
else
cp->link_cntl = BMCR_ANENABLE;
cp->lstate = link_down;
cp->link_transition = LINK_TRANSITION_LINK_DOWN;
netif_carrier_off(cp->dev);
cp->timer_ticks = 0;
/* give us access to cassini registers */
cp->regs = pci_iomap(pdev, 0, casreg_len);
if (!cp->regs) {
dev_err(&pdev->dev, "Cannot map device registers, aborting.\n");
goto err_out_free_res;
}
cp->casreg_len = casreg_len;
pci_save_state(pdev);
cas_check_pci_invariants(cp);
cas_hard_reset(cp);
cas_reset(cp, 0);
if (cas_check_invariants(cp))
goto err_out_iounmap;
if (cp->cas_flags & CAS_FLAG_SATURN)
if (cas_saturn_firmware_init(cp))
goto err_out_iounmap;
cp->init_block = (struct cas_init_block *)
pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
&cp->block_dvma);
if (!cp->init_block) {
dev_err(&pdev->dev, "Cannot allocate init block, aborting.\n");
goto err_out_iounmap;
}
for (i = 0; i < N_TX_RINGS; i++)
cp->init_txds[i] = cp->init_block->txds[i];
for (i = 0; i < N_RX_DESC_RINGS; i++)
cp->init_rxds[i] = cp->init_block->rxds[i];
for (i = 0; i < N_RX_COMP_RINGS; i++)
cp->init_rxcs[i] = cp->init_block->rxcs[i];
for (i = 0; i < N_RX_FLOWS; i++)
skb_queue_head_init(&cp->rx_flows[i]);
dev->netdev_ops = &cas_netdev_ops;
dev->ethtool_ops = &cas_ethtool_ops;
dev->watchdog_timeo = CAS_TX_TIMEOUT;
#ifdef USE_NAPI
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
netif_napi_add(dev, &cp->napi, cas_poll, 64);
#endif
dev->irq = pdev->irq;
dev->dma = 0;
/* Cassini features. */
if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
if (pci_using_dac)
dev->features |= NETIF_F_HIGHDMA;
if (register_netdev(dev)) {
dev_err(&pdev->dev, "Cannot register net device, aborting.\n");
goto err_out_free_consistent;
}
i = readl(cp->regs + REG_BIM_CFG);
printk(KERN_INFO "%s: Sun Cassini%s (%sbit/%sMHz PCI/%s) "
"Ethernet[%d] %pM\n", dev->name,
(cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
(i & BIM_CFG_32BIT) ? "32" : "64",
(i & BIM_CFG_66MHZ) ? "66" : "33",
(cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
dev->dev_addr);
pci_set_drvdata(pdev, dev);
cp->hw_running = 1;
cas_entropy_reset(cp);
cas_phy_init(cp);
cas_begin_auto_negotiation(cp, NULL);
return 0;
err_out_free_consistent:
pci_free_consistent(pdev, sizeof(struct cas_init_block),
cp->init_block, cp->block_dvma);
err_out_iounmap:
mutex_lock(&cp->pm_mutex);
if (cp->hw_running)
cas_shutdown(cp);
mutex_unlock(&cp->pm_mutex);
pci_iounmap(pdev, cp->regs);
err_out_free_res:
pci_release_regions(pdev);
err_write_cacheline:
/* Try to restore it in case the error occured after we
* set it.
*/
pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
err_out_free_netdev:
free_netdev(dev);
err_out_disable_pdev:
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
return -ENODEV;
}
static void __devexit cas_remove_one(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct cas *cp;
if (!dev)
return;
cp = netdev_priv(dev);
unregister_netdev(dev);
if (cp->fw_data)
vfree(cp->fw_data);
mutex_lock(&cp->pm_mutex);
flush_scheduled_work();
if (cp->hw_running)
cas_shutdown(cp);
mutex_unlock(&cp->pm_mutex);
#if 1
if (cp->orig_cacheline_size) {
/* Restore the cache line size if we had modified
* it.
*/
pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
cp->orig_cacheline_size);
}
#endif
pci_free_consistent(pdev, sizeof(struct cas_init_block),
cp->init_block, cp->block_dvma);
pci_iounmap(pdev, cp->regs);
free_netdev(dev);
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
}
#ifdef CONFIG_PM
static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct cas *cp = netdev_priv(dev);
unsigned long flags;
mutex_lock(&cp->pm_mutex);
/* If the driver is opened, we stop the DMA */
if (cp->opened) {
netif_device_detach(dev);
cas_lock_all_save(cp, flags);
/* We can set the second arg of cas_reset to 0
* because on resume, we'll call cas_init_hw with
* its second arg set so that autonegotiation is
* restarted.
*/
cas_reset(cp, 0);
cas_clean_rings(cp);
cas_unlock_all_restore(cp, flags);
}
if (cp->hw_running)
cas_shutdown(cp);
mutex_unlock(&cp->pm_mutex);
return 0;
}
static int cas_resume(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct cas *cp = netdev_priv(dev);
printk(KERN_INFO "%s: resuming\n", dev->name);
mutex_lock(&cp->pm_mutex);
cas_hard_reset(cp);
if (cp->opened) {
unsigned long flags;
cas_lock_all_save(cp, flags);
cas_reset(cp, 0);
cp->hw_running = 1;
cas_clean_rings(cp);
cas_init_hw(cp, 1);
cas_unlock_all_restore(cp, flags);
netif_device_attach(dev);
}
mutex_unlock(&cp->pm_mutex);
return 0;
}
#endif /* CONFIG_PM */
static struct pci_driver cas_driver = {
.name = DRV_MODULE_NAME,
.id_table = cas_pci_tbl,
.probe = cas_init_one,
.remove = __devexit_p(cas_remove_one),
#ifdef CONFIG_PM
.suspend = cas_suspend,
.resume = cas_resume
#endif
};
static int __init cas_init(void)
{
if (linkdown_timeout > 0)
link_transition_timeout = linkdown_timeout * HZ;
else
link_transition_timeout = 0;
return pci_register_driver(&cas_driver);
}
static void __exit cas_cleanup(void)
{
pci_unregister_driver(&cas_driver);
}
module_init(cas_init);
module_exit(cas_cleanup);