linux/kernel/profile.c

567 lines
15 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/kernel/profile.c
* Simple profiling. Manages a direct-mapped profile hit count buffer,
* with configurable resolution, support for restricting the cpus on
* which profiling is done, and switching between cpu time and
* schedule() calls via kernel command line parameters passed at boot.
*
* Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
* Red Hat, July 2004
* Consolidation of architecture support code for profiling,
* Nadia Yvette Chambers, Oracle, July 2004
* Amortized hit count accounting via per-cpu open-addressed hashtables
* to resolve timer interrupt livelocks, Nadia Yvette Chambers,
* Oracle, 2004
*/
#include <linux/export.h>
#include <linux/profile.h>
mm: remove include/linux/bootmem.h Move remaining definitions and declarations from include/linux/bootmem.h into include/linux/memblock.h and remove the redundant header. The includes were replaced with the semantic patch below and then semi-automated removal of duplicated '#include <linux/memblock.h> @@ @@ - #include <linux/bootmem.h> + #include <linux/memblock.h> [sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h] Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au [sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h] Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au [sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal] Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Zankel <chris@zankel.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Ingo Molnar <mingo@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Jonas Bonn <jonas@southpole.se> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ley Foon Tan <lftan@altera.com> Cc: Mark Salter <msalter@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Palmer Dabbelt <palmer@sifive.com> Cc: Paul Burton <paul.burton@mips.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Serge Semin <fancer.lancer@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-30 22:09:49 +00:00
#include <linux/memblock.h>
#include <linux/notifier.h>
#include <linux/mm.h>
#include <linux/cpumask.h>
#include <linux/cpu.h>
#include <linux/highmem.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/sched/stat.h>
#include <asm/sections.h>
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
#include <asm/irq_regs.h>
#include <asm/ptrace.h>
struct profile_hit {
u32 pc, hits;
};
#define PROFILE_GRPSHIFT 3
#define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT)
#define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit))
#define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ)
static atomic_t *prof_buffer;
static unsigned long prof_len, prof_shift;
int prof_on __read_mostly;
EXPORT_SYMBOL_GPL(prof_on);
static cpumask_var_t prof_cpu_mask;
#if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
static DEFINE_PER_CPU(int, cpu_profile_flip);
static DEFINE_MUTEX(profile_flip_mutex);
#endif /* CONFIG_SMP */
int profile_setup(char *str)
{
static const char schedstr[] = "schedule";
static const char sleepstr[] = "sleep";
static const char kvmstr[] = "kvm";
int par;
if (!strncmp(str, sleepstr, strlen(sleepstr))) {
#ifdef CONFIG_SCHEDSTATS
sched/debug: Make schedstats a runtime tunable that is disabled by default schedstats is very useful during debugging and performance tuning but it incurs overhead to calculate the stats. As such, even though it can be disabled at build time, it is often enabled as the information is useful. This patch adds a kernel command-line and sysctl tunable to enable or disable schedstats on demand (when it's built in). It is disabled by default as someone who knows they need it can also learn to enable it when necessary. The benefits are dependent on how scheduler-intensive the workload is. If it is then the patch reduces the number of cycles spent calculating the stats with a small benefit from reducing the cache footprint of the scheduler. These measurements were taken from a 48-core 2-socket machine with Xeon(R) E5-2670 v3 cpus although they were also tested on a single socket machine 8-core machine with Intel i7-3770 processors. netperf-tcp 4.5.0-rc1 4.5.0-rc1 vanilla nostats-v3r1 Hmean 64 560.45 ( 0.00%) 575.98 ( 2.77%) Hmean 128 766.66 ( 0.00%) 795.79 ( 3.80%) Hmean 256 950.51 ( 0.00%) 981.50 ( 3.26%) Hmean 1024 1433.25 ( 0.00%) 1466.51 ( 2.32%) Hmean 2048 2810.54 ( 0.00%) 2879.75 ( 2.46%) Hmean 3312 4618.18 ( 0.00%) 4682.09 ( 1.38%) Hmean 4096 5306.42 ( 0.00%) 5346.39 ( 0.75%) Hmean 8192 10581.44 ( 0.00%) 10698.15 ( 1.10%) Hmean 16384 18857.70 ( 0.00%) 18937.61 ( 0.42%) Small gains here, UDP_STREAM showed nothing intresting and neither did the TCP_RR tests. The gains on the 8-core machine were very similar. tbench4 4.5.0-rc1 4.5.0-rc1 vanilla nostats-v3r1 Hmean mb/sec-1 500.85 ( 0.00%) 522.43 ( 4.31%) Hmean mb/sec-2 984.66 ( 0.00%) 1018.19 ( 3.41%) Hmean mb/sec-4 1827.91 ( 0.00%) 1847.78 ( 1.09%) Hmean mb/sec-8 3561.36 ( 0.00%) 3611.28 ( 1.40%) Hmean mb/sec-16 5824.52 ( 0.00%) 5929.03 ( 1.79%) Hmean mb/sec-32 10943.10 ( 0.00%) 10802.83 ( -1.28%) Hmean mb/sec-64 15950.81 ( 0.00%) 16211.31 ( 1.63%) Hmean mb/sec-128 15302.17 ( 0.00%) 15445.11 ( 0.93%) Hmean mb/sec-256 14866.18 ( 0.00%) 15088.73 ( 1.50%) Hmean mb/sec-512 15223.31 ( 0.00%) 15373.69 ( 0.99%) Hmean mb/sec-1024 14574.25 ( 0.00%) 14598.02 ( 0.16%) Hmean mb/sec-2048 13569.02 ( 0.00%) 13733.86 ( 1.21%) Hmean mb/sec-3072 12865.98 ( 0.00%) 13209.23 ( 2.67%) Small gains of 2-4% at low thread counts and otherwise flat. The gains on the 8-core machine were slightly different tbench4 on 8-core i7-3770 single socket machine Hmean mb/sec-1 442.59 ( 0.00%) 448.73 ( 1.39%) Hmean mb/sec-2 796.68 ( 0.00%) 794.39 ( -0.29%) Hmean mb/sec-4 1322.52 ( 0.00%) 1343.66 ( 1.60%) Hmean mb/sec-8 2611.65 ( 0.00%) 2694.86 ( 3.19%) Hmean mb/sec-16 2537.07 ( 0.00%) 2609.34 ( 2.85%) Hmean mb/sec-32 2506.02 ( 0.00%) 2578.18 ( 2.88%) Hmean mb/sec-64 2511.06 ( 0.00%) 2569.16 ( 2.31%) Hmean mb/sec-128 2313.38 ( 0.00%) 2395.50 ( 3.55%) Hmean mb/sec-256 2110.04 ( 0.00%) 2177.45 ( 3.19%) Hmean mb/sec-512 2072.51 ( 0.00%) 2053.97 ( -0.89%) In constract, this shows a relatively steady 2-3% gain at higher thread counts. Due to the nature of the patch and the type of workload, it's not a surprise that the result will depend on the CPU used. hackbench-pipes 4.5.0-rc1 4.5.0-rc1 vanilla nostats-v3r1 Amean 1 0.0637 ( 0.00%) 0.0660 ( -3.59%) Amean 4 0.1229 ( 0.00%) 0.1181 ( 3.84%) Amean 7 0.1921 ( 0.00%) 0.1911 ( 0.52%) Amean 12 0.3117 ( 0.00%) 0.2923 ( 6.23%) Amean 21 0.4050 ( 0.00%) 0.3899 ( 3.74%) Amean 30 0.4586 ( 0.00%) 0.4433 ( 3.33%) Amean 48 0.5910 ( 0.00%) 0.5694 ( 3.65%) Amean 79 0.8663 ( 0.00%) 0.8626 ( 0.43%) Amean 110 1.1543 ( 0.00%) 1.1517 ( 0.22%) Amean 141 1.4457 ( 0.00%) 1.4290 ( 1.16%) Amean 172 1.7090 ( 0.00%) 1.6924 ( 0.97%) Amean 192 1.9126 ( 0.00%) 1.9089 ( 0.19%) Some small gains and losses and while the variance data is not included, it's close to the noise. The UMA machine did not show anything particularly different pipetest 4.5.0-rc1 4.5.0-rc1 vanilla nostats-v2r2 Min Time 4.13 ( 0.00%) 3.99 ( 3.39%) 1st-qrtle Time 4.38 ( 0.00%) 4.27 ( 2.51%) 2nd-qrtle Time 4.46 ( 0.00%) 4.39 ( 1.57%) 3rd-qrtle Time 4.56 ( 0.00%) 4.51 ( 1.10%) Max-90% Time 4.67 ( 0.00%) 4.60 ( 1.50%) Max-93% Time 4.71 ( 0.00%) 4.65 ( 1.27%) Max-95% Time 4.74 ( 0.00%) 4.71 ( 0.63%) Max-99% Time 4.88 ( 0.00%) 4.79 ( 1.84%) Max Time 4.93 ( 0.00%) 4.83 ( 2.03%) Mean Time 4.48 ( 0.00%) 4.39 ( 1.91%) Best99%Mean Time 4.47 ( 0.00%) 4.39 ( 1.91%) Best95%Mean Time 4.46 ( 0.00%) 4.38 ( 1.93%) Best90%Mean Time 4.45 ( 0.00%) 4.36 ( 1.98%) Best50%Mean Time 4.36 ( 0.00%) 4.25 ( 2.49%) Best10%Mean Time 4.23 ( 0.00%) 4.10 ( 3.13%) Best5%Mean Time 4.19 ( 0.00%) 4.06 ( 3.20%) Best1%Mean Time 4.13 ( 0.00%) 4.00 ( 3.39%) Small improvement and similar gains were seen on the UMA machine. The gain is small but it stands to reason that doing less work in the scheduler is a good thing. The downside is that the lack of schedstats and tracepoints may be surprising to experts doing performance analysis until they find the existence of the schedstats= parameter or schedstats sysctl. It will be automatically activated for latencytop and sleep profiling to alleviate the problem. For tracepoints, there is a simple warning as it's not safe to activate schedstats in the context when it's known the tracepoint may be wanted but is unavailable. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk> Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <mgalbraith@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1454663316-22048-1-git-send-email-mgorman@techsingularity.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-05 09:08:36 +00:00
force_schedstat_enabled();
prof_on = SLEEP_PROFILING;
if (str[strlen(sleepstr)] == ',')
str += strlen(sleepstr) + 1;
if (get_option(&str, &par))
prof_shift = par;
pr_info("kernel sleep profiling enabled (shift: %ld)\n",
prof_shift);
#else
pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
#endif /* CONFIG_SCHEDSTATS */
} else if (!strncmp(str, schedstr, strlen(schedstr))) {
prof_on = SCHED_PROFILING;
if (str[strlen(schedstr)] == ',')
str += strlen(schedstr) + 1;
if (get_option(&str, &par))
prof_shift = par;
pr_info("kernel schedule profiling enabled (shift: %ld)\n",
prof_shift);
} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
prof_on = KVM_PROFILING;
if (str[strlen(kvmstr)] == ',')
str += strlen(kvmstr) + 1;
if (get_option(&str, &par))
prof_shift = par;
pr_info("kernel KVM profiling enabled (shift: %ld)\n",
prof_shift);
} else if (get_option(&str, &par)) {
prof_shift = par;
prof_on = CPU_PROFILING;
pr_info("kernel profiling enabled (shift: %ld)\n",
prof_shift);
}
return 1;
}
__setup("profile=", profile_setup);
int __ref profile_init(void)
{
int buffer_bytes;
if (!prof_on)
return 0;
/* only text is profiled */
prof_len = (_etext - _stext) >> prof_shift;
buffer_bytes = prof_len*sizeof(atomic_t);
if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
return -ENOMEM;
cpumask_copy(prof_cpu_mask, cpu_possible_mask);
prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
if (prof_buffer)
return 0;
prof_buffer = alloc_pages_exact(buffer_bytes,
GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
if (prof_buffer)
return 0;
prof_buffer = vzalloc(buffer_bytes);
if (prof_buffer)
return 0;
free_cpumask_var(prof_cpu_mask);
return -ENOMEM;
}
/* Profile event notifications */
[PATCH] Notifier chain update: API changes The kernel's implementation of notifier chains is unsafe. There is no protection against entries being added to or removed from a chain while the chain is in use. The issues were discussed in this thread: http://marc.theaimsgroup.com/?l=linux-kernel&m=113018709002036&w=2 We noticed that notifier chains in the kernel fall into two basic usage classes: "Blocking" chains are always called from a process context and the callout routines are allowed to sleep; "Atomic" chains can be called from an atomic context and the callout routines are not allowed to sleep. We decided to codify this distinction and make it part of the API. Therefore this set of patches introduces three new, parallel APIs: one for blocking notifiers, one for atomic notifiers, and one for "raw" notifiers (which is really just the old API under a new name). New kinds of data structures are used for the heads of the chains, and new routines are defined for registration, unregistration, and calling a chain. The three APIs are explained in include/linux/notifier.h and their implementation is in kernel/sys.c. With atomic and blocking chains, the implementation guarantees that the chain links will not be corrupted and that chain callers will not get messed up by entries being added or removed. For raw chains the implementation provides no guarantees at all; users of this API must provide their own protections. (The idea was that situations may come up where the assumptions of the atomic and blocking APIs are not appropriate, so it should be possible for users to handle these things in their own way.) There are some limitations, which should not be too hard to live with. For atomic/blocking chains, registration and unregistration must always be done in a process context since the chain is protected by a mutex/rwsem. Also, a callout routine for a non-raw chain must not try to register or unregister entries on its own chain. (This did happen in a couple of places and the code had to be changed to avoid it.) Since atomic chains may be called from within an NMI handler, they cannot use spinlocks for synchronization. Instead we use RCU. The overhead falls almost entirely in the unregister routine, which is okay since unregistration is much less frequent that calling a chain. Here is the list of chains that we adjusted and their classifications. None of them use the raw API, so for the moment it is only a placeholder. ATOMIC CHAINS ------------- arch/i386/kernel/traps.c: i386die_chain arch/ia64/kernel/traps.c: ia64die_chain arch/powerpc/kernel/traps.c: powerpc_die_chain arch/sparc64/kernel/traps.c: sparc64die_chain arch/x86_64/kernel/traps.c: die_chain drivers/char/ipmi/ipmi_si_intf.c: xaction_notifier_list kernel/panic.c: panic_notifier_list kernel/profile.c: task_free_notifier net/bluetooth/hci_core.c: hci_notifier net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_chain net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_expect_chain net/ipv6/addrconf.c: inet6addr_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_expect_chain net/netlink/af_netlink.c: netlink_chain BLOCKING CHAINS --------------- arch/powerpc/platforms/pseries/reconfig.c: pSeries_reconfig_chain arch/s390/kernel/process.c: idle_chain arch/x86_64/kernel/process.c idle_notifier drivers/base/memory.c: memory_chain drivers/cpufreq/cpufreq.c cpufreq_policy_notifier_list drivers/cpufreq/cpufreq.c cpufreq_transition_notifier_list drivers/macintosh/adb.c: adb_client_list drivers/macintosh/via-pmu.c sleep_notifier_list drivers/macintosh/via-pmu68k.c sleep_notifier_list drivers/macintosh/windfarm_core.c wf_client_list drivers/usb/core/notify.c usb_notifier_list drivers/video/fbmem.c fb_notifier_list kernel/cpu.c cpu_chain kernel/module.c module_notify_list kernel/profile.c munmap_notifier kernel/profile.c task_exit_notifier kernel/sys.c reboot_notifier_list net/core/dev.c netdev_chain net/decnet/dn_dev.c: dnaddr_chain net/ipv4/devinet.c: inetaddr_chain It's possible that some of these classifications are wrong. If they are, please let us know or submit a patch to fix them. Note that any chain that gets called very frequently should be atomic, because the rwsem read-locking used for blocking chains is very likely to incur cache misses on SMP systems. (However, if the chain's callout routines may sleep then the chain cannot be atomic.) The patch set was written by Alan Stern and Chandra Seetharaman, incorporating material written by Keith Owens and suggestions from Paul McKenney and Andrew Morton. [jes@sgi.com: restructure the notifier chain initialization macros] Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com> Signed-off-by: Jes Sorensen <jes@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 09:16:30 +00:00
static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
void profile_task_exit(struct task_struct *task)
{
[PATCH] Notifier chain update: API changes The kernel's implementation of notifier chains is unsafe. There is no protection against entries being added to or removed from a chain while the chain is in use. The issues were discussed in this thread: http://marc.theaimsgroup.com/?l=linux-kernel&m=113018709002036&w=2 We noticed that notifier chains in the kernel fall into two basic usage classes: "Blocking" chains are always called from a process context and the callout routines are allowed to sleep; "Atomic" chains can be called from an atomic context and the callout routines are not allowed to sleep. We decided to codify this distinction and make it part of the API. Therefore this set of patches introduces three new, parallel APIs: one for blocking notifiers, one for atomic notifiers, and one for "raw" notifiers (which is really just the old API under a new name). New kinds of data structures are used for the heads of the chains, and new routines are defined for registration, unregistration, and calling a chain. The three APIs are explained in include/linux/notifier.h and their implementation is in kernel/sys.c. With atomic and blocking chains, the implementation guarantees that the chain links will not be corrupted and that chain callers will not get messed up by entries being added or removed. For raw chains the implementation provides no guarantees at all; users of this API must provide their own protections. (The idea was that situations may come up where the assumptions of the atomic and blocking APIs are not appropriate, so it should be possible for users to handle these things in their own way.) There are some limitations, which should not be too hard to live with. For atomic/blocking chains, registration and unregistration must always be done in a process context since the chain is protected by a mutex/rwsem. Also, a callout routine for a non-raw chain must not try to register or unregister entries on its own chain. (This did happen in a couple of places and the code had to be changed to avoid it.) Since atomic chains may be called from within an NMI handler, they cannot use spinlocks for synchronization. Instead we use RCU. The overhead falls almost entirely in the unregister routine, which is okay since unregistration is much less frequent that calling a chain. Here is the list of chains that we adjusted and their classifications. None of them use the raw API, so for the moment it is only a placeholder. ATOMIC CHAINS ------------- arch/i386/kernel/traps.c: i386die_chain arch/ia64/kernel/traps.c: ia64die_chain arch/powerpc/kernel/traps.c: powerpc_die_chain arch/sparc64/kernel/traps.c: sparc64die_chain arch/x86_64/kernel/traps.c: die_chain drivers/char/ipmi/ipmi_si_intf.c: xaction_notifier_list kernel/panic.c: panic_notifier_list kernel/profile.c: task_free_notifier net/bluetooth/hci_core.c: hci_notifier net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_chain net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_expect_chain net/ipv6/addrconf.c: inet6addr_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_expect_chain net/netlink/af_netlink.c: netlink_chain BLOCKING CHAINS --------------- arch/powerpc/platforms/pseries/reconfig.c: pSeries_reconfig_chain arch/s390/kernel/process.c: idle_chain arch/x86_64/kernel/process.c idle_notifier drivers/base/memory.c: memory_chain drivers/cpufreq/cpufreq.c cpufreq_policy_notifier_list drivers/cpufreq/cpufreq.c cpufreq_transition_notifier_list drivers/macintosh/adb.c: adb_client_list drivers/macintosh/via-pmu.c sleep_notifier_list drivers/macintosh/via-pmu68k.c sleep_notifier_list drivers/macintosh/windfarm_core.c wf_client_list drivers/usb/core/notify.c usb_notifier_list drivers/video/fbmem.c fb_notifier_list kernel/cpu.c cpu_chain kernel/module.c module_notify_list kernel/profile.c munmap_notifier kernel/profile.c task_exit_notifier kernel/sys.c reboot_notifier_list net/core/dev.c netdev_chain net/decnet/dn_dev.c: dnaddr_chain net/ipv4/devinet.c: inetaddr_chain It's possible that some of these classifications are wrong. If they are, please let us know or submit a patch to fix them. Note that any chain that gets called very frequently should be atomic, because the rwsem read-locking used for blocking chains is very likely to incur cache misses on SMP systems. (However, if the chain's callout routines may sleep then the chain cannot be atomic.) The patch set was written by Alan Stern and Chandra Seetharaman, incorporating material written by Keith Owens and suggestions from Paul McKenney and Andrew Morton. [jes@sgi.com: restructure the notifier chain initialization macros] Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com> Signed-off-by: Jes Sorensen <jes@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 09:16:30 +00:00
blocking_notifier_call_chain(&task_exit_notifier, 0, task);
}
int profile_handoff_task(struct task_struct *task)
{
int ret;
[PATCH] Notifier chain update: API changes The kernel's implementation of notifier chains is unsafe. There is no protection against entries being added to or removed from a chain while the chain is in use. The issues were discussed in this thread: http://marc.theaimsgroup.com/?l=linux-kernel&m=113018709002036&w=2 We noticed that notifier chains in the kernel fall into two basic usage classes: "Blocking" chains are always called from a process context and the callout routines are allowed to sleep; "Atomic" chains can be called from an atomic context and the callout routines are not allowed to sleep. We decided to codify this distinction and make it part of the API. Therefore this set of patches introduces three new, parallel APIs: one for blocking notifiers, one for atomic notifiers, and one for "raw" notifiers (which is really just the old API under a new name). New kinds of data structures are used for the heads of the chains, and new routines are defined for registration, unregistration, and calling a chain. The three APIs are explained in include/linux/notifier.h and their implementation is in kernel/sys.c. With atomic and blocking chains, the implementation guarantees that the chain links will not be corrupted and that chain callers will not get messed up by entries being added or removed. For raw chains the implementation provides no guarantees at all; users of this API must provide their own protections. (The idea was that situations may come up where the assumptions of the atomic and blocking APIs are not appropriate, so it should be possible for users to handle these things in their own way.) There are some limitations, which should not be too hard to live with. For atomic/blocking chains, registration and unregistration must always be done in a process context since the chain is protected by a mutex/rwsem. Also, a callout routine for a non-raw chain must not try to register or unregister entries on its own chain. (This did happen in a couple of places and the code had to be changed to avoid it.) Since atomic chains may be called from within an NMI handler, they cannot use spinlocks for synchronization. Instead we use RCU. The overhead falls almost entirely in the unregister routine, which is okay since unregistration is much less frequent that calling a chain. Here is the list of chains that we adjusted and their classifications. None of them use the raw API, so for the moment it is only a placeholder. ATOMIC CHAINS ------------- arch/i386/kernel/traps.c: i386die_chain arch/ia64/kernel/traps.c: ia64die_chain arch/powerpc/kernel/traps.c: powerpc_die_chain arch/sparc64/kernel/traps.c: sparc64die_chain arch/x86_64/kernel/traps.c: die_chain drivers/char/ipmi/ipmi_si_intf.c: xaction_notifier_list kernel/panic.c: panic_notifier_list kernel/profile.c: task_free_notifier net/bluetooth/hci_core.c: hci_notifier net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_chain net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_expect_chain net/ipv6/addrconf.c: inet6addr_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_expect_chain net/netlink/af_netlink.c: netlink_chain BLOCKING CHAINS --------------- arch/powerpc/platforms/pseries/reconfig.c: pSeries_reconfig_chain arch/s390/kernel/process.c: idle_chain arch/x86_64/kernel/process.c idle_notifier drivers/base/memory.c: memory_chain drivers/cpufreq/cpufreq.c cpufreq_policy_notifier_list drivers/cpufreq/cpufreq.c cpufreq_transition_notifier_list drivers/macintosh/adb.c: adb_client_list drivers/macintosh/via-pmu.c sleep_notifier_list drivers/macintosh/via-pmu68k.c sleep_notifier_list drivers/macintosh/windfarm_core.c wf_client_list drivers/usb/core/notify.c usb_notifier_list drivers/video/fbmem.c fb_notifier_list kernel/cpu.c cpu_chain kernel/module.c module_notify_list kernel/profile.c munmap_notifier kernel/profile.c task_exit_notifier kernel/sys.c reboot_notifier_list net/core/dev.c netdev_chain net/decnet/dn_dev.c: dnaddr_chain net/ipv4/devinet.c: inetaddr_chain It's possible that some of these classifications are wrong. If they are, please let us know or submit a patch to fix them. Note that any chain that gets called very frequently should be atomic, because the rwsem read-locking used for blocking chains is very likely to incur cache misses on SMP systems. (However, if the chain's callout routines may sleep then the chain cannot be atomic.) The patch set was written by Alan Stern and Chandra Seetharaman, incorporating material written by Keith Owens and suggestions from Paul McKenney and Andrew Morton. [jes@sgi.com: restructure the notifier chain initialization macros] Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com> Signed-off-by: Jes Sorensen <jes@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 09:16:30 +00:00
ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
return (ret == NOTIFY_OK) ? 1 : 0;
}
void profile_munmap(unsigned long addr)
{
[PATCH] Notifier chain update: API changes The kernel's implementation of notifier chains is unsafe. There is no protection against entries being added to or removed from a chain while the chain is in use. The issues were discussed in this thread: http://marc.theaimsgroup.com/?l=linux-kernel&m=113018709002036&w=2 We noticed that notifier chains in the kernel fall into two basic usage classes: "Blocking" chains are always called from a process context and the callout routines are allowed to sleep; "Atomic" chains can be called from an atomic context and the callout routines are not allowed to sleep. We decided to codify this distinction and make it part of the API. Therefore this set of patches introduces three new, parallel APIs: one for blocking notifiers, one for atomic notifiers, and one for "raw" notifiers (which is really just the old API under a new name). New kinds of data structures are used for the heads of the chains, and new routines are defined for registration, unregistration, and calling a chain. The three APIs are explained in include/linux/notifier.h and their implementation is in kernel/sys.c. With atomic and blocking chains, the implementation guarantees that the chain links will not be corrupted and that chain callers will not get messed up by entries being added or removed. For raw chains the implementation provides no guarantees at all; users of this API must provide their own protections. (The idea was that situations may come up where the assumptions of the atomic and blocking APIs are not appropriate, so it should be possible for users to handle these things in their own way.) There are some limitations, which should not be too hard to live with. For atomic/blocking chains, registration and unregistration must always be done in a process context since the chain is protected by a mutex/rwsem. Also, a callout routine for a non-raw chain must not try to register or unregister entries on its own chain. (This did happen in a couple of places and the code had to be changed to avoid it.) Since atomic chains may be called from within an NMI handler, they cannot use spinlocks for synchronization. Instead we use RCU. The overhead falls almost entirely in the unregister routine, which is okay since unregistration is much less frequent that calling a chain. Here is the list of chains that we adjusted and their classifications. None of them use the raw API, so for the moment it is only a placeholder. ATOMIC CHAINS ------------- arch/i386/kernel/traps.c: i386die_chain arch/ia64/kernel/traps.c: ia64die_chain arch/powerpc/kernel/traps.c: powerpc_die_chain arch/sparc64/kernel/traps.c: sparc64die_chain arch/x86_64/kernel/traps.c: die_chain drivers/char/ipmi/ipmi_si_intf.c: xaction_notifier_list kernel/panic.c: panic_notifier_list kernel/profile.c: task_free_notifier net/bluetooth/hci_core.c: hci_notifier net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_chain net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_expect_chain net/ipv6/addrconf.c: inet6addr_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_expect_chain net/netlink/af_netlink.c: netlink_chain BLOCKING CHAINS --------------- arch/powerpc/platforms/pseries/reconfig.c: pSeries_reconfig_chain arch/s390/kernel/process.c: idle_chain arch/x86_64/kernel/process.c idle_notifier drivers/base/memory.c: memory_chain drivers/cpufreq/cpufreq.c cpufreq_policy_notifier_list drivers/cpufreq/cpufreq.c cpufreq_transition_notifier_list drivers/macintosh/adb.c: adb_client_list drivers/macintosh/via-pmu.c sleep_notifier_list drivers/macintosh/via-pmu68k.c sleep_notifier_list drivers/macintosh/windfarm_core.c wf_client_list drivers/usb/core/notify.c usb_notifier_list drivers/video/fbmem.c fb_notifier_list kernel/cpu.c cpu_chain kernel/module.c module_notify_list kernel/profile.c munmap_notifier kernel/profile.c task_exit_notifier kernel/sys.c reboot_notifier_list net/core/dev.c netdev_chain net/decnet/dn_dev.c: dnaddr_chain net/ipv4/devinet.c: inetaddr_chain It's possible that some of these classifications are wrong. If they are, please let us know or submit a patch to fix them. Note that any chain that gets called very frequently should be atomic, because the rwsem read-locking used for blocking chains is very likely to incur cache misses on SMP systems. (However, if the chain's callout routines may sleep then the chain cannot be atomic.) The patch set was written by Alan Stern and Chandra Seetharaman, incorporating material written by Keith Owens and suggestions from Paul McKenney and Andrew Morton. [jes@sgi.com: restructure the notifier chain initialization macros] Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com> Signed-off-by: Jes Sorensen <jes@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 09:16:30 +00:00
blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
}
int task_handoff_register(struct notifier_block *n)
{
[PATCH] Notifier chain update: API changes The kernel's implementation of notifier chains is unsafe. There is no protection against entries being added to or removed from a chain while the chain is in use. The issues were discussed in this thread: http://marc.theaimsgroup.com/?l=linux-kernel&m=113018709002036&w=2 We noticed that notifier chains in the kernel fall into two basic usage classes: "Blocking" chains are always called from a process context and the callout routines are allowed to sleep; "Atomic" chains can be called from an atomic context and the callout routines are not allowed to sleep. We decided to codify this distinction and make it part of the API. Therefore this set of patches introduces three new, parallel APIs: one for blocking notifiers, one for atomic notifiers, and one for "raw" notifiers (which is really just the old API under a new name). New kinds of data structures are used for the heads of the chains, and new routines are defined for registration, unregistration, and calling a chain. The three APIs are explained in include/linux/notifier.h and their implementation is in kernel/sys.c. With atomic and blocking chains, the implementation guarantees that the chain links will not be corrupted and that chain callers will not get messed up by entries being added or removed. For raw chains the implementation provides no guarantees at all; users of this API must provide their own protections. (The idea was that situations may come up where the assumptions of the atomic and blocking APIs are not appropriate, so it should be possible for users to handle these things in their own way.) There are some limitations, which should not be too hard to live with. For atomic/blocking chains, registration and unregistration must always be done in a process context since the chain is protected by a mutex/rwsem. Also, a callout routine for a non-raw chain must not try to register or unregister entries on its own chain. (This did happen in a couple of places and the code had to be changed to avoid it.) Since atomic chains may be called from within an NMI handler, they cannot use spinlocks for synchronization. Instead we use RCU. The overhead falls almost entirely in the unregister routine, which is okay since unregistration is much less frequent that calling a chain. Here is the list of chains that we adjusted and their classifications. None of them use the raw API, so for the moment it is only a placeholder. ATOMIC CHAINS ------------- arch/i386/kernel/traps.c: i386die_chain arch/ia64/kernel/traps.c: ia64die_chain arch/powerpc/kernel/traps.c: powerpc_die_chain arch/sparc64/kernel/traps.c: sparc64die_chain arch/x86_64/kernel/traps.c: die_chain drivers/char/ipmi/ipmi_si_intf.c: xaction_notifier_list kernel/panic.c: panic_notifier_list kernel/profile.c: task_free_notifier net/bluetooth/hci_core.c: hci_notifier net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_chain net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_expect_chain net/ipv6/addrconf.c: inet6addr_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_expect_chain net/netlink/af_netlink.c: netlink_chain BLOCKING CHAINS --------------- arch/powerpc/platforms/pseries/reconfig.c: pSeries_reconfig_chain arch/s390/kernel/process.c: idle_chain arch/x86_64/kernel/process.c idle_notifier drivers/base/memory.c: memory_chain drivers/cpufreq/cpufreq.c cpufreq_policy_notifier_list drivers/cpufreq/cpufreq.c cpufreq_transition_notifier_list drivers/macintosh/adb.c: adb_client_list drivers/macintosh/via-pmu.c sleep_notifier_list drivers/macintosh/via-pmu68k.c sleep_notifier_list drivers/macintosh/windfarm_core.c wf_client_list drivers/usb/core/notify.c usb_notifier_list drivers/video/fbmem.c fb_notifier_list kernel/cpu.c cpu_chain kernel/module.c module_notify_list kernel/profile.c munmap_notifier kernel/profile.c task_exit_notifier kernel/sys.c reboot_notifier_list net/core/dev.c netdev_chain net/decnet/dn_dev.c: dnaddr_chain net/ipv4/devinet.c: inetaddr_chain It's possible that some of these classifications are wrong. If they are, please let us know or submit a patch to fix them. Note that any chain that gets called very frequently should be atomic, because the rwsem read-locking used for blocking chains is very likely to incur cache misses on SMP systems. (However, if the chain's callout routines may sleep then the chain cannot be atomic.) The patch set was written by Alan Stern and Chandra Seetharaman, incorporating material written by Keith Owens and suggestions from Paul McKenney and Andrew Morton. [jes@sgi.com: restructure the notifier chain initialization macros] Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com> Signed-off-by: Jes Sorensen <jes@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 09:16:30 +00:00
return atomic_notifier_chain_register(&task_free_notifier, n);
}
EXPORT_SYMBOL_GPL(task_handoff_register);
int task_handoff_unregister(struct notifier_block *n)
{
[PATCH] Notifier chain update: API changes The kernel's implementation of notifier chains is unsafe. There is no protection against entries being added to or removed from a chain while the chain is in use. The issues were discussed in this thread: http://marc.theaimsgroup.com/?l=linux-kernel&m=113018709002036&w=2 We noticed that notifier chains in the kernel fall into two basic usage classes: "Blocking" chains are always called from a process context and the callout routines are allowed to sleep; "Atomic" chains can be called from an atomic context and the callout routines are not allowed to sleep. We decided to codify this distinction and make it part of the API. Therefore this set of patches introduces three new, parallel APIs: one for blocking notifiers, one for atomic notifiers, and one for "raw" notifiers (which is really just the old API under a new name). New kinds of data structures are used for the heads of the chains, and new routines are defined for registration, unregistration, and calling a chain. The three APIs are explained in include/linux/notifier.h and their implementation is in kernel/sys.c. With atomic and blocking chains, the implementation guarantees that the chain links will not be corrupted and that chain callers will not get messed up by entries being added or removed. For raw chains the implementation provides no guarantees at all; users of this API must provide their own protections. (The idea was that situations may come up where the assumptions of the atomic and blocking APIs are not appropriate, so it should be possible for users to handle these things in their own way.) There are some limitations, which should not be too hard to live with. For atomic/blocking chains, registration and unregistration must always be done in a process context since the chain is protected by a mutex/rwsem. Also, a callout routine for a non-raw chain must not try to register or unregister entries on its own chain. (This did happen in a couple of places and the code had to be changed to avoid it.) Since atomic chains may be called from within an NMI handler, they cannot use spinlocks for synchronization. Instead we use RCU. The overhead falls almost entirely in the unregister routine, which is okay since unregistration is much less frequent that calling a chain. Here is the list of chains that we adjusted and their classifications. None of them use the raw API, so for the moment it is only a placeholder. ATOMIC CHAINS ------------- arch/i386/kernel/traps.c: i386die_chain arch/ia64/kernel/traps.c: ia64die_chain arch/powerpc/kernel/traps.c: powerpc_die_chain arch/sparc64/kernel/traps.c: sparc64die_chain arch/x86_64/kernel/traps.c: die_chain drivers/char/ipmi/ipmi_si_intf.c: xaction_notifier_list kernel/panic.c: panic_notifier_list kernel/profile.c: task_free_notifier net/bluetooth/hci_core.c: hci_notifier net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_chain net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_expect_chain net/ipv6/addrconf.c: inet6addr_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_expect_chain net/netlink/af_netlink.c: netlink_chain BLOCKING CHAINS --------------- arch/powerpc/platforms/pseries/reconfig.c: pSeries_reconfig_chain arch/s390/kernel/process.c: idle_chain arch/x86_64/kernel/process.c idle_notifier drivers/base/memory.c: memory_chain drivers/cpufreq/cpufreq.c cpufreq_policy_notifier_list drivers/cpufreq/cpufreq.c cpufreq_transition_notifier_list drivers/macintosh/adb.c: adb_client_list drivers/macintosh/via-pmu.c sleep_notifier_list drivers/macintosh/via-pmu68k.c sleep_notifier_list drivers/macintosh/windfarm_core.c wf_client_list drivers/usb/core/notify.c usb_notifier_list drivers/video/fbmem.c fb_notifier_list kernel/cpu.c cpu_chain kernel/module.c module_notify_list kernel/profile.c munmap_notifier kernel/profile.c task_exit_notifier kernel/sys.c reboot_notifier_list net/core/dev.c netdev_chain net/decnet/dn_dev.c: dnaddr_chain net/ipv4/devinet.c: inetaddr_chain It's possible that some of these classifications are wrong. If they are, please let us know or submit a patch to fix them. Note that any chain that gets called very frequently should be atomic, because the rwsem read-locking used for blocking chains is very likely to incur cache misses on SMP systems. (However, if the chain's callout routines may sleep then the chain cannot be atomic.) The patch set was written by Alan Stern and Chandra Seetharaman, incorporating material written by Keith Owens and suggestions from Paul McKenney and Andrew Morton. [jes@sgi.com: restructure the notifier chain initialization macros] Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com> Signed-off-by: Jes Sorensen <jes@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 09:16:30 +00:00
return atomic_notifier_chain_unregister(&task_free_notifier, n);
}
EXPORT_SYMBOL_GPL(task_handoff_unregister);
int profile_event_register(enum profile_type type, struct notifier_block *n)
{
int err = -EINVAL;
switch (type) {
case PROFILE_TASK_EXIT:
err = blocking_notifier_chain_register(
&task_exit_notifier, n);
break;
case PROFILE_MUNMAP:
err = blocking_notifier_chain_register(
&munmap_notifier, n);
break;
}
return err;
}
EXPORT_SYMBOL_GPL(profile_event_register);
int profile_event_unregister(enum profile_type type, struct notifier_block *n)
{
int err = -EINVAL;
switch (type) {
case PROFILE_TASK_EXIT:
err = blocking_notifier_chain_unregister(
&task_exit_notifier, n);
break;
case PROFILE_MUNMAP:
err = blocking_notifier_chain_unregister(
&munmap_notifier, n);
break;
}
return err;
}
EXPORT_SYMBOL_GPL(profile_event_unregister);
#if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
/*
* Each cpu has a pair of open-addressed hashtables for pending
* profile hits. read_profile() IPI's all cpus to request them
* to flip buffers and flushes their contents to prof_buffer itself.
* Flip requests are serialized by the profile_flip_mutex. The sole
* use of having a second hashtable is for avoiding cacheline
* contention that would otherwise happen during flushes of pending
* profile hits required for the accuracy of reported profile hits
* and so resurrect the interrupt livelock issue.
*
* The open-addressed hashtables are indexed by profile buffer slot
* and hold the number of pending hits to that profile buffer slot on
* a cpu in an entry. When the hashtable overflows, all pending hits
* are accounted to their corresponding profile buffer slots with
* atomic_add() and the hashtable emptied. As numerous pending hits
* may be accounted to a profile buffer slot in a hashtable entry,
* this amortizes a number of atomic profile buffer increments likely
* to be far larger than the number of entries in the hashtable,
* particularly given that the number of distinct profile buffer
* positions to which hits are accounted during short intervals (e.g.
* several seconds) is usually very small. Exclusion from buffer
* flipping is provided by interrupt disablement (note that for
* SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
* process context).
* The hash function is meant to be lightweight as opposed to strong,
* and was vaguely inspired by ppc64 firmware-supported inverted
* pagetable hash functions, but uses a full hashtable full of finite
* collision chains, not just pairs of them.
*
* -- nyc
*/
static void __profile_flip_buffers(void *unused)
{
int cpu = smp_processor_id();
per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
}
static void profile_flip_buffers(void)
{
int i, j, cpu;
mutex_lock(&profile_flip_mutex);
j = per_cpu(cpu_profile_flip, get_cpu());
put_cpu();
on_each_cpu(__profile_flip_buffers, NULL, 1);
for_each_online_cpu(cpu) {
struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
for (i = 0; i < NR_PROFILE_HIT; ++i) {
if (!hits[i].hits) {
if (hits[i].pc)
hits[i].pc = 0;
continue;
}
atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
hits[i].hits = hits[i].pc = 0;
}
}
mutex_unlock(&profile_flip_mutex);
}
static void profile_discard_flip_buffers(void)
{
int i, cpu;
mutex_lock(&profile_flip_mutex);
i = per_cpu(cpu_profile_flip, get_cpu());
put_cpu();
on_each_cpu(__profile_flip_buffers, NULL, 1);
for_each_online_cpu(cpu) {
struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
}
mutex_unlock(&profile_flip_mutex);
}
static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
{
unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
int i, j, cpu;
struct profile_hit *hits;
pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
cpu = get_cpu();
hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
if (!hits) {
put_cpu();
return;
}
/*
* We buffer the global profiler buffer into a per-CPU
* queue and thus reduce the number of global (and possibly
* NUMA-alien) accesses. The write-queue is self-coalescing:
*/
local_irq_save(flags);
do {
for (j = 0; j < PROFILE_GRPSZ; ++j) {
if (hits[i + j].pc == pc) {
hits[i + j].hits += nr_hits;
goto out;
} else if (!hits[i + j].hits) {
hits[i + j].pc = pc;
hits[i + j].hits = nr_hits;
goto out;
}
}
i = (i + secondary) & (NR_PROFILE_HIT - 1);
} while (i != primary);
/*
* Add the current hit(s) and flush the write-queue out
* to the global buffer:
*/
atomic_add(nr_hits, &prof_buffer[pc]);
for (i = 0; i < NR_PROFILE_HIT; ++i) {
atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
hits[i].pc = hits[i].hits = 0;
}
out:
local_irq_restore(flags);
put_cpu();
}
static int profile_dead_cpu(unsigned int cpu)
{
struct page *page;
int i;
if (prof_cpu_mask != NULL)
cpumask_clear_cpu(cpu, prof_cpu_mask);
for (i = 0; i < 2; i++) {
if (per_cpu(cpu_profile_hits, cpu)[i]) {
page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[i]);
per_cpu(cpu_profile_hits, cpu)[i] = NULL;
__free_page(page);
}
}
return 0;
}
static int profile_prepare_cpu(unsigned int cpu)
{
int i, node = cpu_to_mem(cpu);
struct page *page;
per_cpu(cpu_profile_flip, cpu) = 0;
for (i = 0; i < 2; i++) {
if (per_cpu(cpu_profile_hits, cpu)[i])
continue;
page = __alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
if (!page) {
profile_dead_cpu(cpu);
return -ENOMEM;
}
per_cpu(cpu_profile_hits, cpu)[i] = page_address(page);
}
return 0;
}
static int profile_online_cpu(unsigned int cpu)
{
if (prof_cpu_mask != NULL)
cpumask_set_cpu(cpu, prof_cpu_mask);
return 0;
}
#else /* !CONFIG_SMP */
#define profile_flip_buffers() do { } while (0)
#define profile_discard_flip_buffers() do { } while (0)
static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
{
unsigned long pc;
pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
}
#endif /* !CONFIG_SMP */
void profile_hits(int type, void *__pc, unsigned int nr_hits)
{
if (prof_on != type || !prof_buffer)
return;
do_profile_hits(type, __pc, nr_hits);
}
EXPORT_SYMBOL_GPL(profile_hits);
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
void profile_tick(int type)
{
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
struct pt_regs *regs = get_irq_regs();
if (!user_mode(regs) && prof_cpu_mask != NULL &&
cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
profile_hit(type, (void *)profile_pc(regs));
}
#ifdef CONFIG_PROC_FS
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
{
seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask));
return 0;
}
static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, prof_cpu_mask_proc_show, NULL);
}
static ssize_t prof_cpu_mask_proc_write(struct file *file,
const char __user *buffer, size_t count, loff_t *pos)
{
cpumask_var_t new_value;
int err;
if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
return -ENOMEM;
err = cpumask_parse_user(buffer, count, new_value);
if (!err) {
cpumask_copy(prof_cpu_mask, new_value);
err = count;
}
free_cpumask_var(new_value);
return err;
}
static const struct file_operations prof_cpu_mask_proc_fops = {
.open = prof_cpu_mask_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = prof_cpu_mask_proc_write,
};
void create_prof_cpu_mask(void)
{
/* create /proc/irq/prof_cpu_mask */
proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_fops);
}
/*
* This function accesses profiling information. The returned data is
* binary: the sampling step and the actual contents of the profile
* buffer. Use of the program readprofile is recommended in order to
* get meaningful info out of these data.
*/
static ssize_t
read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
unsigned long p = *ppos;
ssize_t read;
char *pnt;
unsigned int sample_step = 1 << prof_shift;
profile_flip_buffers();
if (p >= (prof_len+1)*sizeof(unsigned int))
return 0;
if (count > (prof_len+1)*sizeof(unsigned int) - p)
count = (prof_len+1)*sizeof(unsigned int) - p;
read = 0;
while (p < sizeof(unsigned int) && count > 0) {
if (put_user(*((char *)(&sample_step)+p), buf))
return -EFAULT;
buf++; p++; count--; read++;
}
pnt = (char *)prof_buffer + p - sizeof(atomic_t);
if (copy_to_user(buf, (void *)pnt, count))
return -EFAULT;
read += count;
*ppos += read;
return read;
}
/*
* Writing to /proc/profile resets the counters
*
* Writing a 'profiling multiplier' value into it also re-sets the profiling
* interrupt frequency, on architectures that support this.
*/
static ssize_t write_profile(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
#ifdef CONFIG_SMP
extern int setup_profiling_timer(unsigned int multiplier);
if (count == sizeof(int)) {
unsigned int multiplier;
if (copy_from_user(&multiplier, buf, sizeof(int)))
return -EFAULT;
if (setup_profiling_timer(multiplier))
return -EINVAL;
}
#endif
profile_discard_flip_buffers();
memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
return count;
}
static const struct file_operations proc_profile_operations = {
.read = read_profile,
.write = write_profile,
llseek: automatically add .llseek fop All file_operations should get a .llseek operation so we can make nonseekable_open the default for future file operations without a .llseek pointer. The three cases that we can automatically detect are no_llseek, seq_lseek and default_llseek. For cases where we can we can automatically prove that the file offset is always ignored, we use noop_llseek, which maintains the current behavior of not returning an error from a seek. New drivers should normally not use noop_llseek but instead use no_llseek and call nonseekable_open at open time. Existing drivers can be converted to do the same when the maintainer knows for certain that no user code relies on calling seek on the device file. The generated code is often incorrectly indented and right now contains comments that clarify for each added line why a specific variant was chosen. In the version that gets submitted upstream, the comments will be gone and I will manually fix the indentation, because there does not seem to be a way to do that using coccinelle. Some amount of new code is currently sitting in linux-next that should get the same modifications, which I will do at the end of the merge window. Many thanks to Julia Lawall for helping me learn to write a semantic patch that does all this. ===== begin semantic patch ===== // This adds an llseek= method to all file operations, // as a preparation for making no_llseek the default. // // The rules are // - use no_llseek explicitly if we do nonseekable_open // - use seq_lseek for sequential files // - use default_llseek if we know we access f_pos // - use noop_llseek if we know we don't access f_pos, // but we still want to allow users to call lseek // @ open1 exists @ identifier nested_open; @@ nested_open(...) { <+... nonseekable_open(...) ...+> } @ open exists@ identifier open_f; identifier i, f; identifier open1.nested_open; @@ int open_f(struct inode *i, struct file *f) { <+... ( nonseekable_open(...) | nested_open(...) ) ...+> } @ read disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ read_no_fpos disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { ... when != off } @ write @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ write_no_fpos @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { ... when != off } @ fops0 @ identifier fops; @@ struct file_operations fops = { ... }; @ has_llseek depends on fops0 @ identifier fops0.fops; identifier llseek_f; @@ struct file_operations fops = { ... .llseek = llseek_f, ... }; @ has_read depends on fops0 @ identifier fops0.fops; identifier read_f; @@ struct file_operations fops = { ... .read = read_f, ... }; @ has_write depends on fops0 @ identifier fops0.fops; identifier write_f; @@ struct file_operations fops = { ... .write = write_f, ... }; @ has_open depends on fops0 @ identifier fops0.fops; identifier open_f; @@ struct file_operations fops = { ... .open = open_f, ... }; // use no_llseek if we call nonseekable_open //////////////////////////////////////////// @ nonseekable1 depends on !has_llseek && has_open @ identifier fops0.fops; identifier nso ~= "nonseekable_open"; @@ struct file_operations fops = { ... .open = nso, ... +.llseek = no_llseek, /* nonseekable */ }; @ nonseekable2 depends on !has_llseek @ identifier fops0.fops; identifier open.open_f; @@ struct file_operations fops = { ... .open = open_f, ... +.llseek = no_llseek, /* open uses nonseekable */ }; // use seq_lseek for sequential files ///////////////////////////////////// @ seq depends on !has_llseek @ identifier fops0.fops; identifier sr ~= "seq_read"; @@ struct file_operations fops = { ... .read = sr, ... +.llseek = seq_lseek, /* we have seq_read */ }; // use default_llseek if there is a readdir /////////////////////////////////////////// @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier readdir_e; @@ // any other fop is used that changes pos struct file_operations fops = { ... .readdir = readdir_e, ... +.llseek = default_llseek, /* readdir is present */ }; // use default_llseek if at least one of read/write touches f_pos ///////////////////////////////////////////////////////////////// @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read.read_f; @@ // read fops use offset struct file_operations fops = { ... .read = read_f, ... +.llseek = default_llseek, /* read accesses f_pos */ }; @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, ... + .llseek = default_llseek, /* write accesses f_pos */ }; // Use noop_llseek if neither read nor write accesses f_pos /////////////////////////////////////////////////////////// @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; identifier write_no_fpos.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, .read = read_f, ... +.llseek = noop_llseek, /* read and write both use no f_pos */ }; @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write_no_fpos.write_f; @@ struct file_operations fops = { ... .write = write_f, ... +.llseek = noop_llseek, /* write uses no f_pos */ }; @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; @@ struct file_operations fops = { ... .read = read_f, ... +.llseek = noop_llseek, /* read uses no f_pos */ }; @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; @@ struct file_operations fops = { ... +.llseek = noop_llseek, /* no read or write fn */ }; ===== End semantic patch ===== Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Julia Lawall <julia@diku.dk> Cc: Christoph Hellwig <hch@infradead.org>
2010-08-15 16:52:59 +00:00
.llseek = default_llseek,
};
int __ref create_proc_profile(void)
{
struct proc_dir_entry *entry;
#ifdef CONFIG_SMP
enum cpuhp_state online_state;
#endif
int err = 0;
if (!prof_on)
return 0;
#ifdef CONFIG_SMP
err = cpuhp_setup_state(CPUHP_PROFILE_PREPARE, "PROFILE_PREPARE",
profile_prepare_cpu, profile_dead_cpu);
if (err)
return err;
err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "AP_PROFILE_ONLINE",
profile_online_cpu, NULL);
if (err < 0)
goto err_state_prep;
online_state = err;
err = 0;
#endif
entry = proc_create("profile", S_IWUSR | S_IRUGO,
NULL, &proc_profile_operations);
if (!entry)
goto err_state_onl;
proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
return err;
err_state_onl:
#ifdef CONFIG_SMP
cpuhp_remove_state(online_state);
err_state_prep:
cpuhp_remove_state(CPUHP_PROFILE_PREPARE);
#endif
return err;
}
2014-04-03 21:48:35 +00:00
subsys_initcall(create_proc_profile);
#endif /* CONFIG_PROC_FS */