linux/drivers/gpu/drm/radeon/radeon_gart.c

667 lines
17 KiB
C
Raw Normal View History

drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
/*
* Copyright 2008 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
* Copyright 2009 Jerome Glisse.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie
* Alex Deucher
* Jerome Glisse
*/
#include "drmP.h"
#include "radeon_drm.h"
#include "radeon.h"
#include "radeon_reg.h"
/*
* Common GART table functions.
*/
int radeon_gart_table_ram_alloc(struct radeon_device *rdev)
{
void *ptr;
ptr = pci_alloc_consistent(rdev->pdev, rdev->gart.table_size,
&rdev->gart.table_addr);
if (ptr == NULL) {
return -ENOMEM;
}
#ifdef CONFIG_X86
if (rdev->family == CHIP_RS400 || rdev->family == CHIP_RS480 ||
rdev->family == CHIP_RS690 || rdev->family == CHIP_RS740) {
set_memory_uc((unsigned long)ptr,
rdev->gart.table_size >> PAGE_SHIFT);
}
#endif
rdev->gart.ptr = ptr;
memset((void *)rdev->gart.ptr, 0, rdev->gart.table_size);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
return 0;
}
void radeon_gart_table_ram_free(struct radeon_device *rdev)
{
if (rdev->gart.ptr == NULL) {
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
return;
}
#ifdef CONFIG_X86
if (rdev->family == CHIP_RS400 || rdev->family == CHIP_RS480 ||
rdev->family == CHIP_RS690 || rdev->family == CHIP_RS740) {
set_memory_wb((unsigned long)rdev->gart.ptr,
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
rdev->gart.table_size >> PAGE_SHIFT);
}
#endif
pci_free_consistent(rdev->pdev, rdev->gart.table_size,
(void *)rdev->gart.ptr,
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
rdev->gart.table_addr);
rdev->gart.ptr = NULL;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
rdev->gart.table_addr = 0;
}
int radeon_gart_table_vram_alloc(struct radeon_device *rdev)
{
int r;
if (rdev->gart.robj == NULL) {
r = radeon_bo_create(rdev, rdev->gart.table_size,
PAGE_SIZE, true, RADEON_GEM_DOMAIN_VRAM,
&rdev->gart.robj);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
if (r) {
return r;
}
}
return 0;
}
int radeon_gart_table_vram_pin(struct radeon_device *rdev)
{
uint64_t gpu_addr;
int r;
r = radeon_bo_reserve(rdev->gart.robj, false);
if (unlikely(r != 0))
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
return r;
r = radeon_bo_pin(rdev->gart.robj,
RADEON_GEM_DOMAIN_VRAM, &gpu_addr);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
if (r) {
radeon_bo_unreserve(rdev->gart.robj);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
return r;
}
r = radeon_bo_kmap(rdev->gart.robj, &rdev->gart.ptr);
if (r)
radeon_bo_unpin(rdev->gart.robj);
radeon_bo_unreserve(rdev->gart.robj);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
rdev->gart.table_addr = gpu_addr;
return r;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
void radeon_gart_table_vram_unpin(struct radeon_device *rdev)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
{
int r;
if (rdev->gart.robj == NULL) {
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
return;
}
r = radeon_bo_reserve(rdev->gart.robj, false);
if (likely(r == 0)) {
radeon_bo_kunmap(rdev->gart.robj);
radeon_bo_unpin(rdev->gart.robj);
radeon_bo_unreserve(rdev->gart.robj);
rdev->gart.ptr = NULL;
}
}
void radeon_gart_table_vram_free(struct radeon_device *rdev)
{
if (rdev->gart.robj == NULL) {
return;
}
radeon_gart_table_vram_unpin(rdev);
radeon_bo_unref(&rdev->gart.robj);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
/*
* Common gart functions.
*/
void radeon_gart_unbind(struct radeon_device *rdev, unsigned offset,
int pages)
{
unsigned t;
unsigned p;
int i, j;
u64 page_base;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
if (!rdev->gart.ready) {
WARN(1, "trying to unbind memory from uninitialized GART !\n");
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
return;
}
t = offset / RADEON_GPU_PAGE_SIZE;
p = t / (PAGE_SIZE / RADEON_GPU_PAGE_SIZE);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
for (i = 0; i < pages; i++, p++) {
if (rdev->gart.pages[p]) {
rdev->gart.pages[p] = NULL;
rdev->gart.pages_addr[p] = rdev->dummy_page.addr;
page_base = rdev->gart.pages_addr[p];
for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) {
if (rdev->gart.ptr) {
radeon_gart_set_page(rdev, t, page_base);
}
page_base += RADEON_GPU_PAGE_SIZE;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
}
}
mb();
radeon_gart_tlb_flush(rdev);
}
int radeon_gart_bind(struct radeon_device *rdev, unsigned offset,
int pages, struct page **pagelist, dma_addr_t *dma_addr)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
{
unsigned t;
unsigned p;
uint64_t page_base;
int i, j;
if (!rdev->gart.ready) {
WARN(1, "trying to bind memory to uninitialized GART !\n");
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
return -EINVAL;
}
t = offset / RADEON_GPU_PAGE_SIZE;
p = t / (PAGE_SIZE / RADEON_GPU_PAGE_SIZE);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
for (i = 0; i < pages; i++, p++) {
rdev->gart.pages_addr[p] = dma_addr[i];
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
rdev->gart.pages[p] = pagelist[i];
if (rdev->gart.ptr) {
page_base = rdev->gart.pages_addr[p];
for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) {
radeon_gart_set_page(rdev, t, page_base);
page_base += RADEON_GPU_PAGE_SIZE;
}
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
}
mb();
radeon_gart_tlb_flush(rdev);
return 0;
}
void radeon_gart_restore(struct radeon_device *rdev)
{
int i, j, t;
u64 page_base;
if (!rdev->gart.ptr) {
return;
}
for (i = 0, t = 0; i < rdev->gart.num_cpu_pages; i++) {
page_base = rdev->gart.pages_addr[i];
for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) {
radeon_gart_set_page(rdev, t, page_base);
page_base += RADEON_GPU_PAGE_SIZE;
}
}
mb();
radeon_gart_tlb_flush(rdev);
}
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
int radeon_gart_init(struct radeon_device *rdev)
{
int r, i;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
if (rdev->gart.pages) {
return 0;
}
/* We need PAGE_SIZE >= RADEON_GPU_PAGE_SIZE */
if (PAGE_SIZE < RADEON_GPU_PAGE_SIZE) {
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
DRM_ERROR("Page size is smaller than GPU page size!\n");
return -EINVAL;
}
r = radeon_dummy_page_init(rdev);
if (r)
return r;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
/* Compute table size */
rdev->gart.num_cpu_pages = rdev->mc.gtt_size / PAGE_SIZE;
rdev->gart.num_gpu_pages = rdev->mc.gtt_size / RADEON_GPU_PAGE_SIZE;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
DRM_INFO("GART: num cpu pages %u, num gpu pages %u\n",
rdev->gart.num_cpu_pages, rdev->gart.num_gpu_pages);
/* Allocate pages table */
rdev->gart.pages = kzalloc(sizeof(void *) * rdev->gart.num_cpu_pages,
GFP_KERNEL);
if (rdev->gart.pages == NULL) {
radeon_gart_fini(rdev);
return -ENOMEM;
}
rdev->gart.pages_addr = kzalloc(sizeof(dma_addr_t) *
rdev->gart.num_cpu_pages, GFP_KERNEL);
if (rdev->gart.pages_addr == NULL) {
radeon_gart_fini(rdev);
return -ENOMEM;
}
/* set GART entry to point to the dummy page by default */
for (i = 0; i < rdev->gart.num_cpu_pages; i++) {
rdev->gart.pages_addr[i] = rdev->dummy_page.addr;
}
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
return 0;
}
void radeon_gart_fini(struct radeon_device *rdev)
{
if (rdev->gart.pages && rdev->gart.pages_addr && rdev->gart.ready) {
/* unbind pages */
radeon_gart_unbind(rdev, 0, rdev->gart.num_cpu_pages);
}
rdev->gart.ready = false;
kfree(rdev->gart.pages);
kfree(rdev->gart.pages_addr);
rdev->gart.pages = NULL;
rdev->gart.pages_addr = NULL;
radeon_dummy_page_fini(rdev);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
drm/radeon: GPU virtual memory support v22 Virtual address space are per drm client (opener of /dev/drm). Client are in charge of virtual address space, they need to map bo into it by calling DRM_RADEON_GEM_VA ioctl. First 16M of virtual address space is reserved by the kernel. Once using 2 level page table we should be able to have a small vram memory footprint for each pt (there would be one pt for all gart, one for all vram and then one first level for each virtual address space). Plan include using the sub allocator for a common vm page table area and using memcpy to copy vm page table in & out. Or use a gart object and copy things in & out using dma. v2: agd5f fixes: - Add vram base offset for vram pages. The GPU physical address of a vram page is FB_OFFSET + page offset. FB_OFFSET is 0 on discrete cards and the physical bus address of the stolen memory on integrated chips. - VM_CONTEXT1_PROTECTION_FAULT_DEFAULT_ADDR covers all vmid's >= 1 v3: agd5f: - integrate with the semaphore/multi-ring stuff v4: - rebase on top ttm dma & multi-ring stuff - userspace is now in charge of the address space - no more specific cs vm ioctl, instead cs ioctl has a new chunk v5: - properly handle mem == NULL case from move_notify callback - fix the vm cleanup path v6: - fix update of page table to only happen on valid mem placement v7: - add tlb flush for each vm context - add flags to define mapping property (readable, writeable, snooped) - make ring id implicit from ib->fence->ring, up to each asic callback to then do ring specific scheduling if vm ib scheduling function v8: - add query for ib limit and kernel reserved virtual space - rename vm->size to max_pfn (maximum number of page) - update gem_va ioctl to also allow unmap operation - bump kernel version to allow userspace to query for vm support v9: - rebuild page table only when bind and incrementaly depending on bo referenced by cs and that have been moved - allow virtual address space to grow - use sa allocator for vram page table - return invalid when querying vm limit on non cayman GPU - dump vm fault register on lockup v10: agd5f: - Move the vm schedule_ib callback to a standalone function, remove the callback and use the existing ib_execute callback for VM IBs. v11: - rebase on top of lastest Linus v12: agd5f: - remove spurious backslash - set IB vm_id to 0 in radeon_ib_get() v13: agd5f: - fix handling of RADEON_CHUNK_ID_FLAGS v14: - fix va destruction - fix suspend resume - forbid bo to have several different va in same vm v15: - rebase v16: - cleanup left over of vm init/fini v17: agd5f: - cs checker v18: agd5f: - reworks the CS ioctl to better support multiple rings and VM. Rather than adding a new chunk id for VM, just re-use the IB chunk id and add a new flags for VM mode. Also define additional dwords for the flags chunk id to define the what ring we want to use (gfx, compute, uvd, etc.) and the priority. v19: - fix cs fini in weird case of no ib - semi working flush fix for ni - rebase on top of sa allocator changes v20: agd5f: - further CS ioctl cleanups from Christian's comments v21: agd5f: - integrate CS checker improvements v22: agd5f: - final cleanups for release, only allow VM CS on cayman Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2012-01-06 03:11:05 +00:00
/*
* vm helpers
*
* TODO bind a default page at vm initialization for default address
*/
int radeon_vm_manager_init(struct radeon_device *rdev)
{
int r;
/* mark first vm as always in use, it's the system one */
r = radeon_sa_bo_manager_init(rdev, &rdev->vm_manager.sa_manager,
rdev->vm_manager.max_pfn * 8,
RADEON_GEM_DOMAIN_VRAM);
if (r) {
dev_err(rdev->dev, "failed to allocate vm bo (%dKB)\n",
(rdev->vm_manager.max_pfn * 8) >> 10);
return r;
}
return rdev->vm_manager.funcs->init(rdev);
}
/* cs mutex must be lock */
static void radeon_vm_unbind_locked(struct radeon_device *rdev,
struct radeon_vm *vm)
{
struct radeon_bo_va *bo_va;
if (vm->id == -1) {
return;
}
/* wait for vm use to end */
if (vm->fence) {
radeon_fence_wait(vm->fence, false);
radeon_fence_unref(&vm->fence);
}
/* hw unbind */
rdev->vm_manager.funcs->unbind(rdev, vm);
rdev->vm_manager.use_bitmap &= ~(1 << vm->id);
list_del_init(&vm->list);
vm->id = -1;
radeon_sa_bo_free(rdev, &vm->sa_bo);
vm->pt = NULL;
list_for_each_entry(bo_va, &vm->va, vm_list) {
bo_va->valid = false;
}
}
void radeon_vm_manager_fini(struct radeon_device *rdev)
{
if (rdev->vm_manager.sa_manager.bo == NULL)
return;
radeon_vm_manager_suspend(rdev);
rdev->vm_manager.funcs->fini(rdev);
radeon_sa_bo_manager_fini(rdev, &rdev->vm_manager.sa_manager);
}
int radeon_vm_manager_start(struct radeon_device *rdev)
{
if (rdev->vm_manager.sa_manager.bo == NULL) {
return -EINVAL;
}
return radeon_sa_bo_manager_start(rdev, &rdev->vm_manager.sa_manager);
}
int radeon_vm_manager_suspend(struct radeon_device *rdev)
{
struct radeon_vm *vm, *tmp;
radeon_mutex_lock(&rdev->cs_mutex);
/* unbind all active vm */
list_for_each_entry_safe(vm, tmp, &rdev->vm_manager.lru_vm, list) {
radeon_vm_unbind_locked(rdev, vm);
}
rdev->vm_manager.funcs->fini(rdev);
radeon_mutex_unlock(&rdev->cs_mutex);
return radeon_sa_bo_manager_suspend(rdev, &rdev->vm_manager.sa_manager);
}
/* cs mutex must be lock */
void radeon_vm_unbind(struct radeon_device *rdev, struct radeon_vm *vm)
{
mutex_lock(&vm->mutex);
radeon_vm_unbind_locked(rdev, vm);
mutex_unlock(&vm->mutex);
}
/* cs mutex must be lock & vm mutex must be lock */
int radeon_vm_bind(struct radeon_device *rdev, struct radeon_vm *vm)
{
struct radeon_vm *vm_evict;
unsigned i;
int id = -1, r;
if (vm == NULL) {
return -EINVAL;
}
if (vm->id != -1) {
/* update lru */
list_del_init(&vm->list);
list_add_tail(&vm->list, &rdev->vm_manager.lru_vm);
return 0;
}
retry:
r = radeon_sa_bo_new(rdev, &rdev->vm_manager.sa_manager, &vm->sa_bo,
RADEON_GPU_PAGE_ALIGN(vm->last_pfn * 8),
RADEON_GPU_PAGE_SIZE);
if (r) {
if (list_empty(&rdev->vm_manager.lru_vm)) {
return r;
}
vm_evict = list_first_entry(&rdev->vm_manager.lru_vm, struct radeon_vm, list);
radeon_vm_unbind(rdev, vm_evict);
goto retry;
}
vm->pt = rdev->vm_manager.sa_manager.cpu_ptr;
vm->pt += (vm->sa_bo.offset >> 3);
vm->pt_gpu_addr = rdev->vm_manager.sa_manager.gpu_addr;
vm->pt_gpu_addr += vm->sa_bo.offset;
memset(vm->pt, 0, RADEON_GPU_PAGE_ALIGN(vm->last_pfn * 8));
retry_id:
/* search for free vm */
for (i = 0; i < rdev->vm_manager.nvm; i++) {
if (!(rdev->vm_manager.use_bitmap & (1 << i))) {
id = i;
break;
}
}
/* evict vm if necessary */
if (id == -1) {
vm_evict = list_first_entry(&rdev->vm_manager.lru_vm, struct radeon_vm, list);
radeon_vm_unbind(rdev, vm_evict);
goto retry_id;
}
/* do hw bind */
r = rdev->vm_manager.funcs->bind(rdev, vm, id);
if (r) {
radeon_sa_bo_free(rdev, &vm->sa_bo);
return r;
}
rdev->vm_manager.use_bitmap |= 1 << id;
vm->id = id;
list_add_tail(&vm->list, &rdev->vm_manager.lru_vm);
return radeon_vm_bo_update_pte(rdev, vm, rdev->ib_pool.sa_manager.bo,
&rdev->ib_pool.sa_manager.bo->tbo.mem);
}
/* object have to be reserved */
int radeon_vm_bo_add(struct radeon_device *rdev,
struct radeon_vm *vm,
struct radeon_bo *bo,
uint64_t offset,
uint32_t flags)
{
struct radeon_bo_va *bo_va, *tmp;
struct list_head *head;
uint64_t size = radeon_bo_size(bo), last_offset = 0;
unsigned last_pfn;
bo_va = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL);
if (bo_va == NULL) {
return -ENOMEM;
}
bo_va->vm = vm;
bo_va->bo = bo;
bo_va->soffset = offset;
bo_va->eoffset = offset + size;
bo_va->flags = flags;
bo_va->valid = false;
INIT_LIST_HEAD(&bo_va->bo_list);
INIT_LIST_HEAD(&bo_va->vm_list);
/* make sure object fit at this offset */
if (bo_va->soffset >= bo_va->eoffset) {
kfree(bo_va);
return -EINVAL;
}
last_pfn = bo_va->eoffset / RADEON_GPU_PAGE_SIZE;
if (last_pfn > rdev->vm_manager.max_pfn) {
kfree(bo_va);
dev_err(rdev->dev, "va above limit (0x%08X > 0x%08X)\n",
last_pfn, rdev->vm_manager.max_pfn);
return -EINVAL;
}
mutex_lock(&vm->mutex);
if (last_pfn > vm->last_pfn) {
/* grow va space 32M by 32M */
unsigned align = ((32 << 20) >> 12) - 1;
radeon_mutex_lock(&rdev->cs_mutex);
radeon_vm_unbind_locked(rdev, vm);
radeon_mutex_unlock(&rdev->cs_mutex);
vm->last_pfn = (last_pfn + align) & ~align;
}
head = &vm->va;
last_offset = 0;
list_for_each_entry(tmp, &vm->va, vm_list) {
if (bo_va->soffset >= last_offset && bo_va->eoffset < tmp->soffset) {
/* bo can be added before this one */
break;
}
if (bo_va->soffset >= tmp->soffset && bo_va->soffset < tmp->eoffset) {
/* bo and tmp overlap, invalid offset */
kfree(bo_va);
dev_err(rdev->dev, "bo %p va 0x%08X conflict with (bo %p 0x%08X 0x%08X)\n",
bo, (unsigned)bo_va->soffset, tmp->bo,
(unsigned)tmp->soffset, (unsigned)tmp->eoffset);
mutex_unlock(&vm->mutex);
return -EINVAL;
}
last_offset = tmp->eoffset;
head = &tmp->vm_list;
}
list_add(&bo_va->vm_list, head);
list_add_tail(&bo_va->bo_list, &bo->va);
mutex_unlock(&vm->mutex);
return 0;
}
static u64 radeon_vm_get_addr(struct radeon_device *rdev,
struct ttm_mem_reg *mem,
unsigned pfn)
{
u64 addr = 0;
switch (mem->mem_type) {
case TTM_PL_VRAM:
addr = (mem->start << PAGE_SHIFT);
addr += pfn * RADEON_GPU_PAGE_SIZE;
addr += rdev->vm_manager.vram_base_offset;
break;
case TTM_PL_TT:
/* offset inside page table */
addr = mem->start << PAGE_SHIFT;
addr += pfn * RADEON_GPU_PAGE_SIZE;
addr = addr >> PAGE_SHIFT;
/* page table offset */
addr = rdev->gart.pages_addr[addr];
/* in case cpu page size != gpu page size*/
addr += (pfn * RADEON_GPU_PAGE_SIZE) & (~PAGE_MASK);
break;
default:
break;
}
return addr;
}
/* object have to be reserved & cs mutex took & vm mutex took */
int radeon_vm_bo_update_pte(struct radeon_device *rdev,
struct radeon_vm *vm,
struct radeon_bo *bo,
struct ttm_mem_reg *mem)
{
struct radeon_bo_va *bo_va;
unsigned ngpu_pages, i;
uint64_t addr = 0, pfn;
uint32_t flags;
/* nothing to do if vm isn't bound */
if (vm->id == -1)
return 0;;
bo_va = radeon_bo_va(bo, vm);
if (bo_va == NULL) {
dev_err(rdev->dev, "bo %p not in vm %p\n", bo, vm);
return -EINVAL;
}
if (bo_va->valid)
return 0;
ngpu_pages = radeon_bo_ngpu_pages(bo);
bo_va->flags &= ~RADEON_VM_PAGE_VALID;
bo_va->flags &= ~RADEON_VM_PAGE_SYSTEM;
if (mem) {
if (mem->mem_type != TTM_PL_SYSTEM) {
bo_va->flags |= RADEON_VM_PAGE_VALID;
bo_va->valid = true;
}
if (mem->mem_type == TTM_PL_TT) {
bo_va->flags |= RADEON_VM_PAGE_SYSTEM;
}
}
pfn = bo_va->soffset / RADEON_GPU_PAGE_SIZE;
flags = rdev->vm_manager.funcs->page_flags(rdev, bo_va->vm, bo_va->flags);
for (i = 0, addr = 0; i < ngpu_pages; i++) {
if (mem && bo_va->valid) {
addr = radeon_vm_get_addr(rdev, mem, i);
}
rdev->vm_manager.funcs->set_page(rdev, bo_va->vm, i + pfn, addr, flags);
}
rdev->vm_manager.funcs->tlb_flush(rdev, bo_va->vm);
return 0;
}
/* object have to be reserved */
int radeon_vm_bo_rmv(struct radeon_device *rdev,
struct radeon_vm *vm,
struct radeon_bo *bo)
{
struct radeon_bo_va *bo_va;
bo_va = radeon_bo_va(bo, vm);
if (bo_va == NULL)
return 0;
list_del(&bo_va->bo_list);
mutex_lock(&vm->mutex);
radeon_mutex_lock(&rdev->cs_mutex);
radeon_vm_bo_update_pte(rdev, vm, bo, NULL);
radeon_mutex_unlock(&rdev->cs_mutex);
list_del(&bo_va->vm_list);
mutex_lock(&vm->mutex);
kfree(bo_va);
return 0;
}
void radeon_vm_bo_invalidate(struct radeon_device *rdev,
struct radeon_bo *bo)
{
struct radeon_bo_va *bo_va;
BUG_ON(!atomic_read(&bo->tbo.reserved));
list_for_each_entry(bo_va, &bo->va, bo_list) {
bo_va->valid = false;
}
}
int radeon_vm_init(struct radeon_device *rdev, struct radeon_vm *vm)
{
int r;
vm->id = -1;
vm->fence = NULL;
mutex_init(&vm->mutex);
INIT_LIST_HEAD(&vm->list);
INIT_LIST_HEAD(&vm->va);
vm->last_pfn = 0;
/* map the ib pool buffer at 0 in virtual address space, set
* read only
*/
r = radeon_vm_bo_add(rdev, vm, rdev->ib_pool.sa_manager.bo, 0,
RADEON_VM_PAGE_READABLE | RADEON_VM_PAGE_SNOOPED);
return r;
}
void radeon_vm_fini(struct radeon_device *rdev, struct radeon_vm *vm)
{
struct radeon_bo_va *bo_va, *tmp;
int r;
mutex_lock(&vm->mutex);
radeon_mutex_lock(&rdev->cs_mutex);
radeon_vm_unbind_locked(rdev, vm);
radeon_mutex_unlock(&rdev->cs_mutex);
/* remove all bo */
r = radeon_bo_reserve(rdev->ib_pool.sa_manager.bo, false);
if (!r) {
bo_va = radeon_bo_va(rdev->ib_pool.sa_manager.bo, vm);
list_del_init(&bo_va->bo_list);
list_del_init(&bo_va->vm_list);
radeon_bo_unreserve(rdev->ib_pool.sa_manager.bo);
kfree(bo_va);
}
if (!list_empty(&vm->va)) {
dev_err(rdev->dev, "still active bo inside vm\n");
}
list_for_each_entry_safe(bo_va, tmp, &vm->va, vm_list) {
list_del_init(&bo_va->vm_list);
r = radeon_bo_reserve(bo_va->bo, false);
if (!r) {
list_del_init(&bo_va->bo_list);
radeon_bo_unreserve(bo_va->bo);
kfree(bo_va);
}
}
mutex_unlock(&vm->mutex);
}