linux/fs/proc/inode.c

702 lines
17 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
// SPDX-License-Identifier: GPL-2.0
/*
* linux/fs/proc/inode.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*/
#include <linux/cache.h>
#include <linux/time.h>
#include <linux/proc_fs.h>
#include <linux/kernel.h>
#include <linux/pid_namespace.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/stat.h>
2007-07-16 06:39:00 +00:00
#include <linux/completion.h>
#include <linux/poll.h>
#include <linux/printk.h>
#include <linux/file.h>
#include <linux/limits.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/sysctl.h>
#include <linux/seq_file.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/mount.h>
#include <linux/bug.h>
#include "internal.h"
static void proc_evict_inode(struct inode *inode)
{
struct proc_dir_entry *de;
struct ctl_table_header *head;
struct proc_inode *ei = PROC_I(inode);
mm + fs: store shadow entries in page cache Reclaim will be leaving shadow entries in the page cache radix tree upon evicting the real page. As those pages are found from the LRU, an iput() can lead to the inode being freed concurrently. At this point, reclaim must no longer install shadow pages because the inode freeing code needs to ensure the page tree is really empty. Add an address_space flag, AS_EXITING, that the inode freeing code sets under the tree lock before doing the final truncate. Reclaim will check for this flag before installing shadow pages. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-03 21:47:49 +00:00
truncate_inode_pages_final(&inode->i_data);
clear_inode(inode);
/* Stop tracking associated processes */
if (ei->pid) {
proc: Use a list of inodes to flush from proc Rework the flushing of proc to use a list of directory inodes that need to be flushed. The list is kept on struct pid not on struct task_struct, as there is a fixed connection between proc inodes and pids but at least for the case of de_thread the pid of a task_struct changes. This removes the dependency on proc_mnt which allows for different mounts of proc having different mount options even in the same pid namespace and this allows for the removal of proc_mnt which will trivially the first mount of proc to honor it's mount options. This flushing remains an optimization. The functions pid_delete_dentry and pid_revalidate ensure that ordinary dcache management will not attempt to use dentries past the point their respective task has died. When unused the shrinker will eventually be able to remove these dentries. There is a case in de_thread where proc_flush_pid can be called early for a given pid. Which winds up being safe (if suboptimal) as this is just an optiimization. Only pid directories are put on the list as the other per pid files are children of those directories and d_invalidate on the directory will get them as well. So that the pid can be used during flushing it's reference count is taken in release_task and dropped in proc_flush_pid. Further the call of proc_flush_pid is moved after the tasklist_lock is released in release_task so that it is certain that the pid has already been unhashed when flushing it taking place. This removes a small race where a dentry could recreated. As struct pid is supposed to be small and I need a per pid lock I reuse the only lock that currently exists in struct pid the the wait_pidfd.lock. The net result is that this adds all of this functionality with just a little extra list management overhead and a single extra pointer in struct pid. v2: Initialize pid->inodes. I somehow failed to get that initialization into the initial version of the patch. A boot failure was reported by "kernel test robot <lkp@intel.com>", and failure to initialize that pid->inodes matches all of the reported symptoms. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2020-02-20 00:22:26 +00:00
proc_pid_evict_inode(ei);
ei->pid = NULL;
}
/* Let go of any associated proc directory entry */
de = ei->pde;
if (de) {
pde_put(de);
ei->pde = NULL;
}
head = ei->sysctl;
if (head) {
RCU_INIT_POINTER(ei->sysctl, NULL);
proc_sys_evict_inode(inode, head);
}
}
static struct kmem_cache *proc_inode_cachep __ro_after_init;
static struct kmem_cache *pde_opener_cache __ro_after_init;
static struct inode *proc_alloc_inode(struct super_block *sb)
{
struct proc_inode *ei;
ei = alloc_inode_sb(sb, proc_inode_cachep, GFP_KERNEL);
if (!ei)
return NULL;
ei->pid = NULL;
ei->fd = 0;
ei->op.proc_get_link = NULL;
ei->pde = NULL;
ei->sysctl = NULL;
ei->sysctl_entry = NULL;
INIT_HLIST_NODE(&ei->sibling_inodes);
ei->ns_ops = NULL;
return &ei->vfs_inode;
}
static void proc_free_inode(struct inode *inode)
{
kmem_cache_free(proc_inode_cachep, PROC_I(inode));
}
static void init_once(void *foo)
{
struct proc_inode *ei = (struct proc_inode *) foo;
inode_init_once(&ei->vfs_inode);
}
void __init proc_init_kmemcache(void)
{
proc_inode_cachep = kmem_cache_create("proc_inode_cache",
sizeof(struct proc_inode),
0, (SLAB_RECLAIM_ACCOUNT|
2016-01-14 23:18:21 +00:00
SLAB_MEM_SPREAD|SLAB_ACCOUNT|
SLAB_PANIC),
init_once);
pde_opener_cache =
kmem_cache_create("pde_opener", sizeof(struct pde_opener), 0,
SLAB_ACCOUNT|SLAB_PANIC, NULL);
proc_dir_entry_cache = kmem_cache_create_usercopy(
"proc_dir_entry", SIZEOF_PDE, 0, SLAB_PANIC,
offsetof(struct proc_dir_entry, inline_name),
SIZEOF_PDE_INLINE_NAME, NULL);
BUILD_BUG_ON(sizeof(struct proc_dir_entry) >= SIZEOF_PDE);
}
void proc_invalidate_siblings_dcache(struct hlist_head *inodes, spinlock_t *lock)
{
struct hlist_node *node;
struct super_block *old_sb = NULL;
rcu_read_lock();
while ((node = hlist_first_rcu(inodes))) {
struct proc_inode *ei = hlist_entry(node, struct proc_inode, sibling_inodes);
struct super_block *sb;
struct inode *inode;
spin_lock(lock);
hlist_del_init_rcu(&ei->sibling_inodes);
spin_unlock(lock);
inode = &ei->vfs_inode;
sb = inode->i_sb;
if ((sb != old_sb) && !atomic_inc_not_zero(&sb->s_active))
continue;
inode = igrab(inode);
rcu_read_unlock();
if (sb != old_sb) {
if (old_sb)
deactivate_super(old_sb);
old_sb = sb;
}
if (unlikely(!inode)) {
rcu_read_lock();
continue;
}
if (S_ISDIR(inode->i_mode)) {
struct dentry *dir = d_find_any_alias(inode);
if (dir) {
d_invalidate(dir);
dput(dir);
}
} else {
struct dentry *dentry;
while ((dentry = d_find_alias(inode))) {
d_invalidate(dentry);
dput(dentry);
}
}
iput(inode);
rcu_read_lock();
}
rcu_read_unlock();
if (old_sb)
deactivate_super(old_sb);
}
static inline const char *hidepid2str(enum proc_hidepid v)
{
switch (v) {
case HIDEPID_OFF: return "off";
case HIDEPID_NO_ACCESS: return "noaccess";
case HIDEPID_INVISIBLE: return "invisible";
case HIDEPID_NOT_PTRACEABLE: return "ptraceable";
}
WARN_ONCE(1, "bad hide_pid value: %d\n", v);
return "unknown";
}
static int proc_show_options(struct seq_file *seq, struct dentry *root)
{
proc: allow to mount many instances of proc in one pid namespace This patch allows to have multiple procfs instances inside the same pid namespace. The aim here is lightweight sandboxes, and to allow that we have to modernize procfs internals. 1) The main aim of this work is to have on embedded systems one supervisor for apps. Right now we have some lightweight sandbox support, however if we create pid namespacess we have to manages all the processes inside too, where our goal is to be able to run a bunch of apps each one inside its own mount namespace without being able to notice each other. We only want to use mount namespaces, and we want procfs to behave more like a real mount point. 2) Linux Security Modules have multiple ptrace paths inside some subsystems, however inside procfs, the implementation does not guarantee that the ptrace() check which triggers the security_ptrace_check() hook will always run. We have the 'hidepid' mount option that can be used to force the ptrace_may_access() check inside has_pid_permissions() to run. The problem is that 'hidepid' is per pid namespace and not attached to the mount point, any remount or modification of 'hidepid' will propagate to all other procfs mounts. This also does not allow to support Yama LSM easily in desktop and user sessions. Yama ptrace scope which restricts ptrace and some other syscalls to be allowed only on inferiors, can be updated to have a per-task context, where the context will be inherited during fork(), clone() and preserved across execve(). If we support multiple private procfs instances, then we may force the ptrace_may_access() on /proc/<pids>/ to always run inside that new procfs instances. This will allow to specifiy on user sessions if we should populate procfs with pids that the user can ptrace or not. By using Yama ptrace scope, some restricted users will only be able to see inferiors inside /proc, they won't even be able to see their other processes. Some software like Chromium, Firefox's crash handler, Wine and others are already using Yama to restrict which processes can be ptracable. With this change this will give the possibility to restrict /proc/<pids>/ but more importantly this will give desktop users a generic and usuable way to specifiy which users should see all processes and which users can not. Side notes: * This covers the lack of seccomp where it is not able to parse arguments, it is easy to install a seccomp filter on direct syscalls that operate on pids, however /proc/<pid>/ is a Linux ABI using filesystem syscalls. With this change LSMs should be able to analyze open/read/write/close... In the new patch set version I removed the 'newinstance' option as suggested by Eric W. Biederman. Selftest has been added to verify new behavior. Signed-off-by: Alexey Gladkov <gladkov.alexey@gmail.com> Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2020-04-19 14:10:52 +00:00
struct proc_fs_info *fs_info = proc_sb_info(root->d_sb);
procfs: add hidepid= and gid= mount options Add support for mount options to restrict access to /proc/PID/ directories. The default backward-compatible "relaxed" behaviour is left untouched. The first mount option is called "hidepid" and its value defines how much info about processes we want to be available for non-owners: hidepid=0 (default) means the old behavior - anybody may read all world-readable /proc/PID/* files. hidepid=1 means users may not access any /proc/<pid>/ directories, but their own. Sensitive files like cmdline, sched*, status are now protected against other users. As permission checking done in proc_pid_permission() and files' permissions are left untouched, programs expecting specific files' modes are not confused. hidepid=2 means hidepid=1 plus all /proc/PID/ will be invisible to other users. It doesn't mean that it hides whether a process exists (it can be learned by other means, e.g. by kill -0 $PID), but it hides process' euid and egid. It compicates intruder's task of gathering info about running processes, whether some daemon runs with elevated privileges, whether another user runs some sensitive program, whether other users run any program at all, etc. gid=XXX defines a group that will be able to gather all processes' info (as in hidepid=0 mode). This group should be used instead of putting nonroot user in sudoers file or something. However, untrusted users (like daemons, etc.) which are not supposed to monitor the tasks in the whole system should not be added to the group. hidepid=1 or higher is designed to restrict access to procfs files, which might reveal some sensitive private information like precise keystrokes timings: http://www.openwall.com/lists/oss-security/2011/11/05/3 hidepid=1/2 doesn't break monitoring userspace tools. ps, top, pgrep, and conky gracefully handle EPERM/ENOENT and behave as if the current user is the only user running processes. pstree shows the process subtree which contains "pstree" process. Note: the patch doesn't deal with setuid/setgid issues of keeping preopened descriptors of procfs files (like https://lkml.org/lkml/2011/2/7/368). We rely on that the leaked information like the scheduling counters of setuid apps doesn't threaten anybody's privacy - only the user started the setuid program may read the counters. Signed-off-by: Vasiliy Kulikov <segoon@openwall.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Randy Dunlap <rdunlap@xenotime.net> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Greg KH <greg@kroah.com> Cc: Theodore Tso <tytso@MIT.EDU> Cc: Alan Cox <alan@lxorguk.ukuu.org.uk> Cc: James Morris <jmorris@namei.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10 23:11:31 +00:00
proc: allow to mount many instances of proc in one pid namespace This patch allows to have multiple procfs instances inside the same pid namespace. The aim here is lightweight sandboxes, and to allow that we have to modernize procfs internals. 1) The main aim of this work is to have on embedded systems one supervisor for apps. Right now we have some lightweight sandbox support, however if we create pid namespacess we have to manages all the processes inside too, where our goal is to be able to run a bunch of apps each one inside its own mount namespace without being able to notice each other. We only want to use mount namespaces, and we want procfs to behave more like a real mount point. 2) Linux Security Modules have multiple ptrace paths inside some subsystems, however inside procfs, the implementation does not guarantee that the ptrace() check which triggers the security_ptrace_check() hook will always run. We have the 'hidepid' mount option that can be used to force the ptrace_may_access() check inside has_pid_permissions() to run. The problem is that 'hidepid' is per pid namespace and not attached to the mount point, any remount or modification of 'hidepid' will propagate to all other procfs mounts. This also does not allow to support Yama LSM easily in desktop and user sessions. Yama ptrace scope which restricts ptrace and some other syscalls to be allowed only on inferiors, can be updated to have a per-task context, where the context will be inherited during fork(), clone() and preserved across execve(). If we support multiple private procfs instances, then we may force the ptrace_may_access() on /proc/<pids>/ to always run inside that new procfs instances. This will allow to specifiy on user sessions if we should populate procfs with pids that the user can ptrace or not. By using Yama ptrace scope, some restricted users will only be able to see inferiors inside /proc, they won't even be able to see their other processes. Some software like Chromium, Firefox's crash handler, Wine and others are already using Yama to restrict which processes can be ptracable. With this change this will give the possibility to restrict /proc/<pids>/ but more importantly this will give desktop users a generic and usuable way to specifiy which users should see all processes and which users can not. Side notes: * This covers the lack of seccomp where it is not able to parse arguments, it is easy to install a seccomp filter on direct syscalls that operate on pids, however /proc/<pid>/ is a Linux ABI using filesystem syscalls. With this change LSMs should be able to analyze open/read/write/close... In the new patch set version I removed the 'newinstance' option as suggested by Eric W. Biederman. Selftest has been added to verify new behavior. Signed-off-by: Alexey Gladkov <gladkov.alexey@gmail.com> Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2020-04-19 14:10:52 +00:00
if (!gid_eq(fs_info->pid_gid, GLOBAL_ROOT_GID))
seq_printf(seq, ",gid=%u", from_kgid_munged(&init_user_ns, fs_info->pid_gid));
if (fs_info->hide_pid != HIDEPID_OFF)
seq_printf(seq, ",hidepid=%s", hidepid2str(fs_info->hide_pid));
if (fs_info->pidonly != PROC_PIDONLY_OFF)
seq_printf(seq, ",subset=pid");
procfs: add hidepid= and gid= mount options Add support for mount options to restrict access to /proc/PID/ directories. The default backward-compatible "relaxed" behaviour is left untouched. The first mount option is called "hidepid" and its value defines how much info about processes we want to be available for non-owners: hidepid=0 (default) means the old behavior - anybody may read all world-readable /proc/PID/* files. hidepid=1 means users may not access any /proc/<pid>/ directories, but their own. Sensitive files like cmdline, sched*, status are now protected against other users. As permission checking done in proc_pid_permission() and files' permissions are left untouched, programs expecting specific files' modes are not confused. hidepid=2 means hidepid=1 plus all /proc/PID/ will be invisible to other users. It doesn't mean that it hides whether a process exists (it can be learned by other means, e.g. by kill -0 $PID), but it hides process' euid and egid. It compicates intruder's task of gathering info about running processes, whether some daemon runs with elevated privileges, whether another user runs some sensitive program, whether other users run any program at all, etc. gid=XXX defines a group that will be able to gather all processes' info (as in hidepid=0 mode). This group should be used instead of putting nonroot user in sudoers file or something. However, untrusted users (like daemons, etc.) which are not supposed to monitor the tasks in the whole system should not be added to the group. hidepid=1 or higher is designed to restrict access to procfs files, which might reveal some sensitive private information like precise keystrokes timings: http://www.openwall.com/lists/oss-security/2011/11/05/3 hidepid=1/2 doesn't break monitoring userspace tools. ps, top, pgrep, and conky gracefully handle EPERM/ENOENT and behave as if the current user is the only user running processes. pstree shows the process subtree which contains "pstree" process. Note: the patch doesn't deal with setuid/setgid issues of keeping preopened descriptors of procfs files (like https://lkml.org/lkml/2011/2/7/368). We rely on that the leaked information like the scheduling counters of setuid apps doesn't threaten anybody's privacy - only the user started the setuid program may read the counters. Signed-off-by: Vasiliy Kulikov <segoon@openwall.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Randy Dunlap <rdunlap@xenotime.net> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Greg KH <greg@kroah.com> Cc: Theodore Tso <tytso@MIT.EDU> Cc: Alan Cox <alan@lxorguk.ukuu.org.uk> Cc: James Morris <jmorris@namei.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10 23:11:31 +00:00
return 0;
}
const struct super_operations proc_sops = {
.alloc_inode = proc_alloc_inode,
.free_inode = proc_free_inode,
.drop_inode = generic_delete_inode,
.evict_inode = proc_evict_inode,
.statfs = simple_statfs,
.show_options = proc_show_options,
};
enum {BIAS = -1U<<31};
static inline int use_pde(struct proc_dir_entry *pde)
{
return likely(atomic_inc_unless_negative(&pde->in_use));
}
static void unuse_pde(struct proc_dir_entry *pde)
{
if (unlikely(atomic_dec_return(&pde->in_use) == BIAS))
complete(pde->pde_unload_completion);
2007-07-16 06:39:00 +00:00
}
/*
* At most 2 contexts can enter this function: the one doing the last
* close on the descriptor and whoever is deleting PDE itself.
*
* First to enter calls ->proc_release hook and signals its completion
* to the second one which waits and then does nothing.
*
* PDE is locked on entry, unlocked on exit.
*/
static void close_pdeo(struct proc_dir_entry *pde, struct pde_opener *pdeo)
__releases(&pde->pde_unload_lock)
{
/*
* close() (proc_reg_release()) can't delete an entry and proceed:
* ->release hook needs to be available at the right moment.
*
* rmmod (remove_proc_entry() et al) can't delete an entry and proceed:
* "struct file" needs to be available at the right moment.
*/
if (pdeo->closing) {
/* somebody else is doing that, just wait */
DECLARE_COMPLETION_ONSTACK(c);
pdeo->c = &c;
spin_unlock(&pde->pde_unload_lock);
wait_for_completion(&c);
} else {
struct file *file;
proc: do less stuff under ->pde_unload_lock Commit ca469f35a8e9ef ("deal with races between remove_proc_entry() and proc_reg_release()") moved too much stuff under ->pde_unload_lock making a problem described at series "[PATCH v5] procfs: Improve Scaling in proc" worse. While RCU is being figured out, move kfree() out of ->pde_unload_lock. On my potato, difference is only 0.5% speedup with concurrent open+read+close of /proc/cmdline, but the effect should be more noticeable on more capable machines. $ perf stat -r 16 -- ./proc-j 16 Performance counter stats for './proc-j 16' (16 runs): 130569.502377 task-clock (msec) # 15.872 CPUs utilized ( +- 0.05% ) 19,169 context-switches # 0.147 K/sec ( +- 0.18% ) 15 cpu-migrations # 0.000 K/sec ( +- 3.27% ) 437 page-faults # 0.003 K/sec ( +- 1.25% ) 300,172,097,675 cycles # 2.299 GHz ( +- 0.05% ) 96,793,267,308 instructions # 0.32 insn per cycle ( +- 0.04% ) 22,798,342,298 branches # 174.607 M/sec ( +- 0.04% ) 111,764,687 branch-misses # 0.49% of all branches ( +- 0.47% ) 8.226574400 seconds time elapsed ( +- 0.05% ) ^^^^^^^^^^^ $ perf stat -r 16 -- ./proc-j 16 Performance counter stats for './proc-j 16' (16 runs): 129866.777392 task-clock (msec) # 15.869 CPUs utilized ( +- 0.04% ) 19,154 context-switches # 0.147 K/sec ( +- 0.66% ) 14 cpu-migrations # 0.000 K/sec ( +- 1.73% ) 431 page-faults # 0.003 K/sec ( +- 1.09% ) 298,556,520,546 cycles # 2.299 GHz ( +- 0.04% ) 96,525,366,833 instructions # 0.32 insn per cycle ( +- 0.04% ) 22,730,194,043 branches # 175.027 M/sec ( +- 0.04% ) 111,506,074 branch-misses # 0.49% of all branches ( +- 0.18% ) 8.183629778 seconds time elapsed ( +- 0.04% ) ^^^^^^^^^^^ Link: http://lkml.kernel.org/r/20180213132911.GA24298@avx2 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-10 23:30:54 +00:00
struct completion *c;
pdeo->closing = true;
spin_unlock(&pde->pde_unload_lock);
file = pdeo->file;
pde->proc_ops->proc_release(file_inode(file), file);
spin_lock(&pde->pde_unload_lock);
/* Strictly after ->proc_release, see above. */
list_del(&pdeo->lh);
proc: do less stuff under ->pde_unload_lock Commit ca469f35a8e9ef ("deal with races between remove_proc_entry() and proc_reg_release()") moved too much stuff under ->pde_unload_lock making a problem described at series "[PATCH v5] procfs: Improve Scaling in proc" worse. While RCU is being figured out, move kfree() out of ->pde_unload_lock. On my potato, difference is only 0.5% speedup with concurrent open+read+close of /proc/cmdline, but the effect should be more noticeable on more capable machines. $ perf stat -r 16 -- ./proc-j 16 Performance counter stats for './proc-j 16' (16 runs): 130569.502377 task-clock (msec) # 15.872 CPUs utilized ( +- 0.05% ) 19,169 context-switches # 0.147 K/sec ( +- 0.18% ) 15 cpu-migrations # 0.000 K/sec ( +- 3.27% ) 437 page-faults # 0.003 K/sec ( +- 1.25% ) 300,172,097,675 cycles # 2.299 GHz ( +- 0.05% ) 96,793,267,308 instructions # 0.32 insn per cycle ( +- 0.04% ) 22,798,342,298 branches # 174.607 M/sec ( +- 0.04% ) 111,764,687 branch-misses # 0.49% of all branches ( +- 0.47% ) 8.226574400 seconds time elapsed ( +- 0.05% ) ^^^^^^^^^^^ $ perf stat -r 16 -- ./proc-j 16 Performance counter stats for './proc-j 16' (16 runs): 129866.777392 task-clock (msec) # 15.869 CPUs utilized ( +- 0.04% ) 19,154 context-switches # 0.147 K/sec ( +- 0.66% ) 14 cpu-migrations # 0.000 K/sec ( +- 1.73% ) 431 page-faults # 0.003 K/sec ( +- 1.09% ) 298,556,520,546 cycles # 2.299 GHz ( +- 0.04% ) 96,525,366,833 instructions # 0.32 insn per cycle ( +- 0.04% ) 22,730,194,043 branches # 175.027 M/sec ( +- 0.04% ) 111,506,074 branch-misses # 0.49% of all branches ( +- 0.18% ) 8.183629778 seconds time elapsed ( +- 0.04% ) ^^^^^^^^^^^ Link: http://lkml.kernel.org/r/20180213132911.GA24298@avx2 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-10 23:30:54 +00:00
c = pdeo->c;
spin_unlock(&pde->pde_unload_lock);
if (unlikely(c))
complete(c);
kmem_cache_free(pde_opener_cache, pdeo);
}
}
void proc_entry_rundown(struct proc_dir_entry *de)
2007-07-16 06:39:00 +00:00
{
DECLARE_COMPLETION_ONSTACK(c);
/* Wait until all existing callers into module are done. */
de->pde_unload_completion = &c;
if (atomic_add_return(BIAS, &de->in_use) != BIAS)
wait_for_completion(&c);
2007-07-16 06:39:00 +00:00
/* ->pde_openers list can't grow from now on. */
spin_lock(&de->pde_unload_lock);
while (!list_empty(&de->pde_openers)) {
struct pde_opener *pdeo;
pdeo = list_first_entry(&de->pde_openers, struct pde_opener, lh);
close_pdeo(de, pdeo);
proc: do less stuff under ->pde_unload_lock Commit ca469f35a8e9ef ("deal with races between remove_proc_entry() and proc_reg_release()") moved too much stuff under ->pde_unload_lock making a problem described at series "[PATCH v5] procfs: Improve Scaling in proc" worse. While RCU is being figured out, move kfree() out of ->pde_unload_lock. On my potato, difference is only 0.5% speedup with concurrent open+read+close of /proc/cmdline, but the effect should be more noticeable on more capable machines. $ perf stat -r 16 -- ./proc-j 16 Performance counter stats for './proc-j 16' (16 runs): 130569.502377 task-clock (msec) # 15.872 CPUs utilized ( +- 0.05% ) 19,169 context-switches # 0.147 K/sec ( +- 0.18% ) 15 cpu-migrations # 0.000 K/sec ( +- 3.27% ) 437 page-faults # 0.003 K/sec ( +- 1.25% ) 300,172,097,675 cycles # 2.299 GHz ( +- 0.05% ) 96,793,267,308 instructions # 0.32 insn per cycle ( +- 0.04% ) 22,798,342,298 branches # 174.607 M/sec ( +- 0.04% ) 111,764,687 branch-misses # 0.49% of all branches ( +- 0.47% ) 8.226574400 seconds time elapsed ( +- 0.05% ) ^^^^^^^^^^^ $ perf stat -r 16 -- ./proc-j 16 Performance counter stats for './proc-j 16' (16 runs): 129866.777392 task-clock (msec) # 15.869 CPUs utilized ( +- 0.04% ) 19,154 context-switches # 0.147 K/sec ( +- 0.66% ) 14 cpu-migrations # 0.000 K/sec ( +- 1.73% ) 431 page-faults # 0.003 K/sec ( +- 1.09% ) 298,556,520,546 cycles # 2.299 GHz ( +- 0.04% ) 96,525,366,833 instructions # 0.32 insn per cycle ( +- 0.04% ) 22,730,194,043 branches # 175.027 M/sec ( +- 0.04% ) 111,506,074 branch-misses # 0.49% of all branches ( +- 0.18% ) 8.183629778 seconds time elapsed ( +- 0.04% ) ^^^^^^^^^^^ Link: http://lkml.kernel.org/r/20180213132911.GA24298@avx2 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-10 23:30:54 +00:00
spin_lock(&de->pde_unload_lock);
}
spin_unlock(&de->pde_unload_lock);
2007-07-16 06:39:00 +00:00
}
static loff_t proc_reg_llseek(struct file *file, loff_t offset, int whence)
{
struct proc_dir_entry *pde = PDE(file_inode(file));
loff_t rv = -EINVAL;
proc: faster open/read/close with "permanent" files Now that "struct proc_ops" exist we can start putting there stuff which could not fly with VFS "struct file_operations"... Most of fs/proc/inode.c file is dedicated to make open/read/.../close reliable in the event of disappearing /proc entries which usually happens if module is getting removed. Files like /proc/cpuinfo which never disappear simply do not need such protection. Save 2 atomic ops, 1 allocation, 1 free per open/read/close sequence for such "permanent" files. Enable "permanent" flag for /proc/cpuinfo /proc/kmsg /proc/modules /proc/slabinfo /proc/stat /proc/sysvipc/* /proc/swaps More will come once I figure out foolproof way to prevent out module authors from marking their stuff "permanent" for performance reasons when it is not. This should help with scalability: benchmark is "read /proc/cpuinfo R times by N threads scattered over the system". N R t, s (before) t, s (after) ----------------------------------------------------- 64 4096 1.582458 1.530502 -3.2% 256 4096 6.371926 6.125168 -3.9% 1024 4096 25.64888 24.47528 -4.6% Benchmark source: #include <chrono> #include <iostream> #include <thread> #include <vector> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> const int NR_CPUS = sysconf(_SC_NPROCESSORS_ONLN); int N; const char *filename; int R; int xxx = 0; int glue(int n) { cpu_set_t m; CPU_ZERO(&m); CPU_SET(n, &m); return sched_setaffinity(0, sizeof(cpu_set_t), &m); } void f(int n) { glue(n % NR_CPUS); while (*(volatile int *)&xxx == 0) { } for (int i = 0; i < R; i++) { int fd = open(filename, O_RDONLY); char buf[4096]; ssize_t rv = read(fd, buf, sizeof(buf)); asm volatile ("" :: "g" (rv)); close(fd); } } int main(int argc, char *argv[]) { if (argc < 4) { std::cerr << "usage: " << argv[0] << ' ' << "N /proc/filename R "; return 1; } N = atoi(argv[1]); filename = argv[2]; R = atoi(argv[3]); for (int i = 0; i < NR_CPUS; i++) { if (glue(i) == 0) break; } std::vector<std::thread> T; T.reserve(N); for (int i = 0; i < N; i++) { T.emplace_back(f, i); } auto t0 = std::chrono::system_clock::now(); { *(volatile int *)&xxx = 1; for (auto& t: T) { t.join(); } } auto t1 = std::chrono::system_clock::now(); std::chrono::duration<double> dt = t1 - t0; std::cout << dt.count() << ' '; return 0; } P.S.: Explicit randomization marker is added because adding non-function pointer will silently disable structure layout randomization. [akpm@linux-foundation.org: coding style fixes] Reported-by: kbuild test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Joe Perches <joe@perches.com> Link: http://lkml.kernel.org/r/20200222201539.GA22576@avx2 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:09:01 +00:00
if (pde_is_permanent(pde)) {
return pde->proc_ops->proc_lseek(file, offset, whence);
proc: faster open/read/close with "permanent" files Now that "struct proc_ops" exist we can start putting there stuff which could not fly with VFS "struct file_operations"... Most of fs/proc/inode.c file is dedicated to make open/read/.../close reliable in the event of disappearing /proc entries which usually happens if module is getting removed. Files like /proc/cpuinfo which never disappear simply do not need such protection. Save 2 atomic ops, 1 allocation, 1 free per open/read/close sequence for such "permanent" files. Enable "permanent" flag for /proc/cpuinfo /proc/kmsg /proc/modules /proc/slabinfo /proc/stat /proc/sysvipc/* /proc/swaps More will come once I figure out foolproof way to prevent out module authors from marking their stuff "permanent" for performance reasons when it is not. This should help with scalability: benchmark is "read /proc/cpuinfo R times by N threads scattered over the system". N R t, s (before) t, s (after) ----------------------------------------------------- 64 4096 1.582458 1.530502 -3.2% 256 4096 6.371926 6.125168 -3.9% 1024 4096 25.64888 24.47528 -4.6% Benchmark source: #include <chrono> #include <iostream> #include <thread> #include <vector> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> const int NR_CPUS = sysconf(_SC_NPROCESSORS_ONLN); int N; const char *filename; int R; int xxx = 0; int glue(int n) { cpu_set_t m; CPU_ZERO(&m); CPU_SET(n, &m); return sched_setaffinity(0, sizeof(cpu_set_t), &m); } void f(int n) { glue(n % NR_CPUS); while (*(volatile int *)&xxx == 0) { } for (int i = 0; i < R; i++) { int fd = open(filename, O_RDONLY); char buf[4096]; ssize_t rv = read(fd, buf, sizeof(buf)); asm volatile ("" :: "g" (rv)); close(fd); } } int main(int argc, char *argv[]) { if (argc < 4) { std::cerr << "usage: " << argv[0] << ' ' << "N /proc/filename R "; return 1; } N = atoi(argv[1]); filename = argv[2]; R = atoi(argv[3]); for (int i = 0; i < NR_CPUS; i++) { if (glue(i) == 0) break; } std::vector<std::thread> T; T.reserve(N); for (int i = 0; i < N; i++) { T.emplace_back(f, i); } auto t0 = std::chrono::system_clock::now(); { *(volatile int *)&xxx = 1; for (auto& t: T) { t.join(); } } auto t1 = std::chrono::system_clock::now(); std::chrono::duration<double> dt = t1 - t0; std::cout << dt.count() << ' '; return 0; } P.S.: Explicit randomization marker is added because adding non-function pointer will silently disable structure layout randomization. [akpm@linux-foundation.org: coding style fixes] Reported-by: kbuild test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Joe Perches <joe@perches.com> Link: http://lkml.kernel.org/r/20200222201539.GA22576@avx2 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:09:01 +00:00
} else if (use_pde(pde)) {
rv = pde->proc_ops->proc_lseek(file, offset, whence);
unuse_pde(pde);
}
2007-07-16 06:39:00 +00:00
return rv;
}
static ssize_t proc_reg_read_iter(struct kiocb *iocb, struct iov_iter *iter)
{
struct proc_dir_entry *pde = PDE(file_inode(iocb->ki_filp));
ssize_t ret;
if (pde_is_permanent(pde))
return pde->proc_ops->proc_read_iter(iocb, iter);
if (!use_pde(pde))
return -EIO;
ret = pde->proc_ops->proc_read_iter(iocb, iter);
unuse_pde(pde);
return ret;
}
proc: faster open/read/close with "permanent" files Now that "struct proc_ops" exist we can start putting there stuff which could not fly with VFS "struct file_operations"... Most of fs/proc/inode.c file is dedicated to make open/read/.../close reliable in the event of disappearing /proc entries which usually happens if module is getting removed. Files like /proc/cpuinfo which never disappear simply do not need such protection. Save 2 atomic ops, 1 allocation, 1 free per open/read/close sequence for such "permanent" files. Enable "permanent" flag for /proc/cpuinfo /proc/kmsg /proc/modules /proc/slabinfo /proc/stat /proc/sysvipc/* /proc/swaps More will come once I figure out foolproof way to prevent out module authors from marking their stuff "permanent" for performance reasons when it is not. This should help with scalability: benchmark is "read /proc/cpuinfo R times by N threads scattered over the system". N R t, s (before) t, s (after) ----------------------------------------------------- 64 4096 1.582458 1.530502 -3.2% 256 4096 6.371926 6.125168 -3.9% 1024 4096 25.64888 24.47528 -4.6% Benchmark source: #include <chrono> #include <iostream> #include <thread> #include <vector> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> const int NR_CPUS = sysconf(_SC_NPROCESSORS_ONLN); int N; const char *filename; int R; int xxx = 0; int glue(int n) { cpu_set_t m; CPU_ZERO(&m); CPU_SET(n, &m); return sched_setaffinity(0, sizeof(cpu_set_t), &m); } void f(int n) { glue(n % NR_CPUS); while (*(volatile int *)&xxx == 0) { } for (int i = 0; i < R; i++) { int fd = open(filename, O_RDONLY); char buf[4096]; ssize_t rv = read(fd, buf, sizeof(buf)); asm volatile ("" :: "g" (rv)); close(fd); } } int main(int argc, char *argv[]) { if (argc < 4) { std::cerr << "usage: " << argv[0] << ' ' << "N /proc/filename R "; return 1; } N = atoi(argv[1]); filename = argv[2]; R = atoi(argv[3]); for (int i = 0; i < NR_CPUS; i++) { if (glue(i) == 0) break; } std::vector<std::thread> T; T.reserve(N); for (int i = 0; i < N; i++) { T.emplace_back(f, i); } auto t0 = std::chrono::system_clock::now(); { *(volatile int *)&xxx = 1; for (auto& t: T) { t.join(); } } auto t1 = std::chrono::system_clock::now(); std::chrono::duration<double> dt = t1 - t0; std::cout << dt.count() << ' '; return 0; } P.S.: Explicit randomization marker is added because adding non-function pointer will silently disable structure layout randomization. [akpm@linux-foundation.org: coding style fixes] Reported-by: kbuild test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Joe Perches <joe@perches.com> Link: http://lkml.kernel.org/r/20200222201539.GA22576@avx2 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:09:01 +00:00
static ssize_t pde_read(struct proc_dir_entry *pde, struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
typeof_member(struct proc_ops, proc_read) read;
read = pde->proc_ops->proc_read;
if (read)
return read(file, buf, count, ppos);
return -EIO;
}
static ssize_t proc_reg_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2007-07-16 06:39:00 +00:00
{
struct proc_dir_entry *pde = PDE(file_inode(file));
2007-07-16 06:39:00 +00:00
ssize_t rv = -EIO;
proc: faster open/read/close with "permanent" files Now that "struct proc_ops" exist we can start putting there stuff which could not fly with VFS "struct file_operations"... Most of fs/proc/inode.c file is dedicated to make open/read/.../close reliable in the event of disappearing /proc entries which usually happens if module is getting removed. Files like /proc/cpuinfo which never disappear simply do not need such protection. Save 2 atomic ops, 1 allocation, 1 free per open/read/close sequence for such "permanent" files. Enable "permanent" flag for /proc/cpuinfo /proc/kmsg /proc/modules /proc/slabinfo /proc/stat /proc/sysvipc/* /proc/swaps More will come once I figure out foolproof way to prevent out module authors from marking their stuff "permanent" for performance reasons when it is not. This should help with scalability: benchmark is "read /proc/cpuinfo R times by N threads scattered over the system". N R t, s (before) t, s (after) ----------------------------------------------------- 64 4096 1.582458 1.530502 -3.2% 256 4096 6.371926 6.125168 -3.9% 1024 4096 25.64888 24.47528 -4.6% Benchmark source: #include <chrono> #include <iostream> #include <thread> #include <vector> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> const int NR_CPUS = sysconf(_SC_NPROCESSORS_ONLN); int N; const char *filename; int R; int xxx = 0; int glue(int n) { cpu_set_t m; CPU_ZERO(&m); CPU_SET(n, &m); return sched_setaffinity(0, sizeof(cpu_set_t), &m); } void f(int n) { glue(n % NR_CPUS); while (*(volatile int *)&xxx == 0) { } for (int i = 0; i < R; i++) { int fd = open(filename, O_RDONLY); char buf[4096]; ssize_t rv = read(fd, buf, sizeof(buf)); asm volatile ("" :: "g" (rv)); close(fd); } } int main(int argc, char *argv[]) { if (argc < 4) { std::cerr << "usage: " << argv[0] << ' ' << "N /proc/filename R "; return 1; } N = atoi(argv[1]); filename = argv[2]; R = atoi(argv[3]); for (int i = 0; i < NR_CPUS; i++) { if (glue(i) == 0) break; } std::vector<std::thread> T; T.reserve(N); for (int i = 0; i < N; i++) { T.emplace_back(f, i); } auto t0 = std::chrono::system_clock::now(); { *(volatile int *)&xxx = 1; for (auto& t: T) { t.join(); } } auto t1 = std::chrono::system_clock::now(); std::chrono::duration<double> dt = t1 - t0; std::cout << dt.count() << ' '; return 0; } P.S.: Explicit randomization marker is added because adding non-function pointer will silently disable structure layout randomization. [akpm@linux-foundation.org: coding style fixes] Reported-by: kbuild test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Joe Perches <joe@perches.com> Link: http://lkml.kernel.org/r/20200222201539.GA22576@avx2 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:09:01 +00:00
if (pde_is_permanent(pde)) {
return pde_read(pde, file, buf, count, ppos);
} else if (use_pde(pde)) {
rv = pde_read(pde, file, buf, count, ppos);
unuse_pde(pde);
2007-07-16 06:39:00 +00:00
}
return rv;
}
2007-07-16 06:39:00 +00:00
proc: faster open/read/close with "permanent" files Now that "struct proc_ops" exist we can start putting there stuff which could not fly with VFS "struct file_operations"... Most of fs/proc/inode.c file is dedicated to make open/read/.../close reliable in the event of disappearing /proc entries which usually happens if module is getting removed. Files like /proc/cpuinfo which never disappear simply do not need such protection. Save 2 atomic ops, 1 allocation, 1 free per open/read/close sequence for such "permanent" files. Enable "permanent" flag for /proc/cpuinfo /proc/kmsg /proc/modules /proc/slabinfo /proc/stat /proc/sysvipc/* /proc/swaps More will come once I figure out foolproof way to prevent out module authors from marking their stuff "permanent" for performance reasons when it is not. This should help with scalability: benchmark is "read /proc/cpuinfo R times by N threads scattered over the system". N R t, s (before) t, s (after) ----------------------------------------------------- 64 4096 1.582458 1.530502 -3.2% 256 4096 6.371926 6.125168 -3.9% 1024 4096 25.64888 24.47528 -4.6% Benchmark source: #include <chrono> #include <iostream> #include <thread> #include <vector> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> const int NR_CPUS = sysconf(_SC_NPROCESSORS_ONLN); int N; const char *filename; int R; int xxx = 0; int glue(int n) { cpu_set_t m; CPU_ZERO(&m); CPU_SET(n, &m); return sched_setaffinity(0, sizeof(cpu_set_t), &m); } void f(int n) { glue(n % NR_CPUS); while (*(volatile int *)&xxx == 0) { } for (int i = 0; i < R; i++) { int fd = open(filename, O_RDONLY); char buf[4096]; ssize_t rv = read(fd, buf, sizeof(buf)); asm volatile ("" :: "g" (rv)); close(fd); } } int main(int argc, char *argv[]) { if (argc < 4) { std::cerr << "usage: " << argv[0] << ' ' << "N /proc/filename R "; return 1; } N = atoi(argv[1]); filename = argv[2]; R = atoi(argv[3]); for (int i = 0; i < NR_CPUS; i++) { if (glue(i) == 0) break; } std::vector<std::thread> T; T.reserve(N); for (int i = 0; i < N; i++) { T.emplace_back(f, i); } auto t0 = std::chrono::system_clock::now(); { *(volatile int *)&xxx = 1; for (auto& t: T) { t.join(); } } auto t1 = std::chrono::system_clock::now(); std::chrono::duration<double> dt = t1 - t0; std::cout << dt.count() << ' '; return 0; } P.S.: Explicit randomization marker is added because adding non-function pointer will silently disable structure layout randomization. [akpm@linux-foundation.org: coding style fixes] Reported-by: kbuild test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Joe Perches <joe@perches.com> Link: http://lkml.kernel.org/r/20200222201539.GA22576@avx2 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:09:01 +00:00
static ssize_t pde_write(struct proc_dir_entry *pde, struct file *file, const char __user *buf, size_t count, loff_t *ppos)
{
typeof_member(struct proc_ops, proc_write) write;
write = pde->proc_ops->proc_write;
if (write)
return write(file, buf, count, ppos);
return -EIO;
}
static ssize_t proc_reg_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
{
struct proc_dir_entry *pde = PDE(file_inode(file));
ssize_t rv = -EIO;
proc: faster open/read/close with "permanent" files Now that "struct proc_ops" exist we can start putting there stuff which could not fly with VFS "struct file_operations"... Most of fs/proc/inode.c file is dedicated to make open/read/.../close reliable in the event of disappearing /proc entries which usually happens if module is getting removed. Files like /proc/cpuinfo which never disappear simply do not need such protection. Save 2 atomic ops, 1 allocation, 1 free per open/read/close sequence for such "permanent" files. Enable "permanent" flag for /proc/cpuinfo /proc/kmsg /proc/modules /proc/slabinfo /proc/stat /proc/sysvipc/* /proc/swaps More will come once I figure out foolproof way to prevent out module authors from marking their stuff "permanent" for performance reasons when it is not. This should help with scalability: benchmark is "read /proc/cpuinfo R times by N threads scattered over the system". N R t, s (before) t, s (after) ----------------------------------------------------- 64 4096 1.582458 1.530502 -3.2% 256 4096 6.371926 6.125168 -3.9% 1024 4096 25.64888 24.47528 -4.6% Benchmark source: #include <chrono> #include <iostream> #include <thread> #include <vector> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> const int NR_CPUS = sysconf(_SC_NPROCESSORS_ONLN); int N; const char *filename; int R; int xxx = 0; int glue(int n) { cpu_set_t m; CPU_ZERO(&m); CPU_SET(n, &m); return sched_setaffinity(0, sizeof(cpu_set_t), &m); } void f(int n) { glue(n % NR_CPUS); while (*(volatile int *)&xxx == 0) { } for (int i = 0; i < R; i++) { int fd = open(filename, O_RDONLY); char buf[4096]; ssize_t rv = read(fd, buf, sizeof(buf)); asm volatile ("" :: "g" (rv)); close(fd); } } int main(int argc, char *argv[]) { if (argc < 4) { std::cerr << "usage: " << argv[0] << ' ' << "N /proc/filename R "; return 1; } N = atoi(argv[1]); filename = argv[2]; R = atoi(argv[3]); for (int i = 0; i < NR_CPUS; i++) { if (glue(i) == 0) break; } std::vector<std::thread> T; T.reserve(N); for (int i = 0; i < N; i++) { T.emplace_back(f, i); } auto t0 = std::chrono::system_clock::now(); { *(volatile int *)&xxx = 1; for (auto& t: T) { t.join(); } } auto t1 = std::chrono::system_clock::now(); std::chrono::duration<double> dt = t1 - t0; std::cout << dt.count() << ' '; return 0; } P.S.: Explicit randomization marker is added because adding non-function pointer will silently disable structure layout randomization. [akpm@linux-foundation.org: coding style fixes] Reported-by: kbuild test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Joe Perches <joe@perches.com> Link: http://lkml.kernel.org/r/20200222201539.GA22576@avx2 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:09:01 +00:00
if (pde_is_permanent(pde)) {
return pde_write(pde, file, buf, count, ppos);
} else if (use_pde(pde)) {
rv = pde_write(pde, file, buf, count, ppos);
unuse_pde(pde);
}
2007-07-16 06:39:00 +00:00
return rv;
}
proc: faster open/read/close with "permanent" files Now that "struct proc_ops" exist we can start putting there stuff which could not fly with VFS "struct file_operations"... Most of fs/proc/inode.c file is dedicated to make open/read/.../close reliable in the event of disappearing /proc entries which usually happens if module is getting removed. Files like /proc/cpuinfo which never disappear simply do not need such protection. Save 2 atomic ops, 1 allocation, 1 free per open/read/close sequence for such "permanent" files. Enable "permanent" flag for /proc/cpuinfo /proc/kmsg /proc/modules /proc/slabinfo /proc/stat /proc/sysvipc/* /proc/swaps More will come once I figure out foolproof way to prevent out module authors from marking their stuff "permanent" for performance reasons when it is not. This should help with scalability: benchmark is "read /proc/cpuinfo R times by N threads scattered over the system". N R t, s (before) t, s (after) ----------------------------------------------------- 64 4096 1.582458 1.530502 -3.2% 256 4096 6.371926 6.125168 -3.9% 1024 4096 25.64888 24.47528 -4.6% Benchmark source: #include <chrono> #include <iostream> #include <thread> #include <vector> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> const int NR_CPUS = sysconf(_SC_NPROCESSORS_ONLN); int N; const char *filename; int R; int xxx = 0; int glue(int n) { cpu_set_t m; CPU_ZERO(&m); CPU_SET(n, &m); return sched_setaffinity(0, sizeof(cpu_set_t), &m); } void f(int n) { glue(n % NR_CPUS); while (*(volatile int *)&xxx == 0) { } for (int i = 0; i < R; i++) { int fd = open(filename, O_RDONLY); char buf[4096]; ssize_t rv = read(fd, buf, sizeof(buf)); asm volatile ("" :: "g" (rv)); close(fd); } } int main(int argc, char *argv[]) { if (argc < 4) { std::cerr << "usage: " << argv[0] << ' ' << "N /proc/filename R "; return 1; } N = atoi(argv[1]); filename = argv[2]; R = atoi(argv[3]); for (int i = 0; i < NR_CPUS; i++) { if (glue(i) == 0) break; } std::vector<std::thread> T; T.reserve(N); for (int i = 0; i < N; i++) { T.emplace_back(f, i); } auto t0 = std::chrono::system_clock::now(); { *(volatile int *)&xxx = 1; for (auto& t: T) { t.join(); } } auto t1 = std::chrono::system_clock::now(); std::chrono::duration<double> dt = t1 - t0; std::cout << dt.count() << ' '; return 0; } P.S.: Explicit randomization marker is added because adding non-function pointer will silently disable structure layout randomization. [akpm@linux-foundation.org: coding style fixes] Reported-by: kbuild test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Joe Perches <joe@perches.com> Link: http://lkml.kernel.org/r/20200222201539.GA22576@avx2 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:09:01 +00:00
static __poll_t pde_poll(struct proc_dir_entry *pde, struct file *file, struct poll_table_struct *pts)
{
typeof_member(struct proc_ops, proc_poll) poll;
poll = pde->proc_ops->proc_poll;
if (poll)
return poll(file, pts);
return DEFAULT_POLLMASK;
}
static __poll_t proc_reg_poll(struct file *file, struct poll_table_struct *pts)
2007-07-16 06:39:00 +00:00
{
struct proc_dir_entry *pde = PDE(file_inode(file));
__poll_t rv = DEFAULT_POLLMASK;
proc: faster open/read/close with "permanent" files Now that "struct proc_ops" exist we can start putting there stuff which could not fly with VFS "struct file_operations"... Most of fs/proc/inode.c file is dedicated to make open/read/.../close reliable in the event of disappearing /proc entries which usually happens if module is getting removed. Files like /proc/cpuinfo which never disappear simply do not need such protection. Save 2 atomic ops, 1 allocation, 1 free per open/read/close sequence for such "permanent" files. Enable "permanent" flag for /proc/cpuinfo /proc/kmsg /proc/modules /proc/slabinfo /proc/stat /proc/sysvipc/* /proc/swaps More will come once I figure out foolproof way to prevent out module authors from marking their stuff "permanent" for performance reasons when it is not. This should help with scalability: benchmark is "read /proc/cpuinfo R times by N threads scattered over the system". N R t, s (before) t, s (after) ----------------------------------------------------- 64 4096 1.582458 1.530502 -3.2% 256 4096 6.371926 6.125168 -3.9% 1024 4096 25.64888 24.47528 -4.6% Benchmark source: #include <chrono> #include <iostream> #include <thread> #include <vector> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> const int NR_CPUS = sysconf(_SC_NPROCESSORS_ONLN); int N; const char *filename; int R; int xxx = 0; int glue(int n) { cpu_set_t m; CPU_ZERO(&m); CPU_SET(n, &m); return sched_setaffinity(0, sizeof(cpu_set_t), &m); } void f(int n) { glue(n % NR_CPUS); while (*(volatile int *)&xxx == 0) { } for (int i = 0; i < R; i++) { int fd = open(filename, O_RDONLY); char buf[4096]; ssize_t rv = read(fd, buf, sizeof(buf)); asm volatile ("" :: "g" (rv)); close(fd); } } int main(int argc, char *argv[]) { if (argc < 4) { std::cerr << "usage: " << argv[0] << ' ' << "N /proc/filename R "; return 1; } N = atoi(argv[1]); filename = argv[2]; R = atoi(argv[3]); for (int i = 0; i < NR_CPUS; i++) { if (glue(i) == 0) break; } std::vector<std::thread> T; T.reserve(N); for (int i = 0; i < N; i++) { T.emplace_back(f, i); } auto t0 = std::chrono::system_clock::now(); { *(volatile int *)&xxx = 1; for (auto& t: T) { t.join(); } } auto t1 = std::chrono::system_clock::now(); std::chrono::duration<double> dt = t1 - t0; std::cout << dt.count() << ' '; return 0; } P.S.: Explicit randomization marker is added because adding non-function pointer will silently disable structure layout randomization. [akpm@linux-foundation.org: coding style fixes] Reported-by: kbuild test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Joe Perches <joe@perches.com> Link: http://lkml.kernel.org/r/20200222201539.GA22576@avx2 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:09:01 +00:00
if (pde_is_permanent(pde)) {
return pde_poll(pde, file, pts);
} else if (use_pde(pde)) {
rv = pde_poll(pde, file, pts);
unuse_pde(pde);
2007-07-16 06:39:00 +00:00
}
return rv;
}
proc: faster open/read/close with "permanent" files Now that "struct proc_ops" exist we can start putting there stuff which could not fly with VFS "struct file_operations"... Most of fs/proc/inode.c file is dedicated to make open/read/.../close reliable in the event of disappearing /proc entries which usually happens if module is getting removed. Files like /proc/cpuinfo which never disappear simply do not need such protection. Save 2 atomic ops, 1 allocation, 1 free per open/read/close sequence for such "permanent" files. Enable "permanent" flag for /proc/cpuinfo /proc/kmsg /proc/modules /proc/slabinfo /proc/stat /proc/sysvipc/* /proc/swaps More will come once I figure out foolproof way to prevent out module authors from marking their stuff "permanent" for performance reasons when it is not. This should help with scalability: benchmark is "read /proc/cpuinfo R times by N threads scattered over the system". N R t, s (before) t, s (after) ----------------------------------------------------- 64 4096 1.582458 1.530502 -3.2% 256 4096 6.371926 6.125168 -3.9% 1024 4096 25.64888 24.47528 -4.6% Benchmark source: #include <chrono> #include <iostream> #include <thread> #include <vector> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> const int NR_CPUS = sysconf(_SC_NPROCESSORS_ONLN); int N; const char *filename; int R; int xxx = 0; int glue(int n) { cpu_set_t m; CPU_ZERO(&m); CPU_SET(n, &m); return sched_setaffinity(0, sizeof(cpu_set_t), &m); } void f(int n) { glue(n % NR_CPUS); while (*(volatile int *)&xxx == 0) { } for (int i = 0; i < R; i++) { int fd = open(filename, O_RDONLY); char buf[4096]; ssize_t rv = read(fd, buf, sizeof(buf)); asm volatile ("" :: "g" (rv)); close(fd); } } int main(int argc, char *argv[]) { if (argc < 4) { std::cerr << "usage: " << argv[0] << ' ' << "N /proc/filename R "; return 1; } N = atoi(argv[1]); filename = argv[2]; R = atoi(argv[3]); for (int i = 0; i < NR_CPUS; i++) { if (glue(i) == 0) break; } std::vector<std::thread> T; T.reserve(N); for (int i = 0; i < N; i++) { T.emplace_back(f, i); } auto t0 = std::chrono::system_clock::now(); { *(volatile int *)&xxx = 1; for (auto& t: T) { t.join(); } } auto t1 = std::chrono::system_clock::now(); std::chrono::duration<double> dt = t1 - t0; std::cout << dt.count() << ' '; return 0; } P.S.: Explicit randomization marker is added because adding non-function pointer will silently disable structure layout randomization. [akpm@linux-foundation.org: coding style fixes] Reported-by: kbuild test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Joe Perches <joe@perches.com> Link: http://lkml.kernel.org/r/20200222201539.GA22576@avx2 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:09:01 +00:00
static long pde_ioctl(struct proc_dir_entry *pde, struct file *file, unsigned int cmd, unsigned long arg)
{
typeof_member(struct proc_ops, proc_ioctl) ioctl;
ioctl = pde->proc_ops->proc_ioctl;
if (ioctl)
return ioctl(file, cmd, arg);
return -ENOTTY;
}
2007-07-16 06:39:00 +00:00
static long proc_reg_unlocked_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
struct proc_dir_entry *pde = PDE(file_inode(file));
2007-07-16 06:39:00 +00:00
long rv = -ENOTTY;
proc: faster open/read/close with "permanent" files Now that "struct proc_ops" exist we can start putting there stuff which could not fly with VFS "struct file_operations"... Most of fs/proc/inode.c file is dedicated to make open/read/.../close reliable in the event of disappearing /proc entries which usually happens if module is getting removed. Files like /proc/cpuinfo which never disappear simply do not need such protection. Save 2 atomic ops, 1 allocation, 1 free per open/read/close sequence for such "permanent" files. Enable "permanent" flag for /proc/cpuinfo /proc/kmsg /proc/modules /proc/slabinfo /proc/stat /proc/sysvipc/* /proc/swaps More will come once I figure out foolproof way to prevent out module authors from marking their stuff "permanent" for performance reasons when it is not. This should help with scalability: benchmark is "read /proc/cpuinfo R times by N threads scattered over the system". N R t, s (before) t, s (after) ----------------------------------------------------- 64 4096 1.582458 1.530502 -3.2% 256 4096 6.371926 6.125168 -3.9% 1024 4096 25.64888 24.47528 -4.6% Benchmark source: #include <chrono> #include <iostream> #include <thread> #include <vector> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> const int NR_CPUS = sysconf(_SC_NPROCESSORS_ONLN); int N; const char *filename; int R; int xxx = 0; int glue(int n) { cpu_set_t m; CPU_ZERO(&m); CPU_SET(n, &m); return sched_setaffinity(0, sizeof(cpu_set_t), &m); } void f(int n) { glue(n % NR_CPUS); while (*(volatile int *)&xxx == 0) { } for (int i = 0; i < R; i++) { int fd = open(filename, O_RDONLY); char buf[4096]; ssize_t rv = read(fd, buf, sizeof(buf)); asm volatile ("" :: "g" (rv)); close(fd); } } int main(int argc, char *argv[]) { if (argc < 4) { std::cerr << "usage: " << argv[0] << ' ' << "N /proc/filename R "; return 1; } N = atoi(argv[1]); filename = argv[2]; R = atoi(argv[3]); for (int i = 0; i < NR_CPUS; i++) { if (glue(i) == 0) break; } std::vector<std::thread> T; T.reserve(N); for (int i = 0; i < N; i++) { T.emplace_back(f, i); } auto t0 = std::chrono::system_clock::now(); { *(volatile int *)&xxx = 1; for (auto& t: T) { t.join(); } } auto t1 = std::chrono::system_clock::now(); std::chrono::duration<double> dt = t1 - t0; std::cout << dt.count() << ' '; return 0; } P.S.: Explicit randomization marker is added because adding non-function pointer will silently disable structure layout randomization. [akpm@linux-foundation.org: coding style fixes] Reported-by: kbuild test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Joe Perches <joe@perches.com> Link: http://lkml.kernel.org/r/20200222201539.GA22576@avx2 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:09:01 +00:00
if (pde_is_permanent(pde)) {
return pde_ioctl(pde, file, cmd, arg);
} else if (use_pde(pde)) {
rv = pde_ioctl(pde, file, cmd, arg);
unuse_pde(pde);
2007-07-16 06:39:00 +00:00
}
return rv;
}
#ifdef CONFIG_COMPAT
proc: faster open/read/close with "permanent" files Now that "struct proc_ops" exist we can start putting there stuff which could not fly with VFS "struct file_operations"... Most of fs/proc/inode.c file is dedicated to make open/read/.../close reliable in the event of disappearing /proc entries which usually happens if module is getting removed. Files like /proc/cpuinfo which never disappear simply do not need such protection. Save 2 atomic ops, 1 allocation, 1 free per open/read/close sequence for such "permanent" files. Enable "permanent" flag for /proc/cpuinfo /proc/kmsg /proc/modules /proc/slabinfo /proc/stat /proc/sysvipc/* /proc/swaps More will come once I figure out foolproof way to prevent out module authors from marking their stuff "permanent" for performance reasons when it is not. This should help with scalability: benchmark is "read /proc/cpuinfo R times by N threads scattered over the system". N R t, s (before) t, s (after) ----------------------------------------------------- 64 4096 1.582458 1.530502 -3.2% 256 4096 6.371926 6.125168 -3.9% 1024 4096 25.64888 24.47528 -4.6% Benchmark source: #include <chrono> #include <iostream> #include <thread> #include <vector> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> const int NR_CPUS = sysconf(_SC_NPROCESSORS_ONLN); int N; const char *filename; int R; int xxx = 0; int glue(int n) { cpu_set_t m; CPU_ZERO(&m); CPU_SET(n, &m); return sched_setaffinity(0, sizeof(cpu_set_t), &m); } void f(int n) { glue(n % NR_CPUS); while (*(volatile int *)&xxx == 0) { } for (int i = 0; i < R; i++) { int fd = open(filename, O_RDONLY); char buf[4096]; ssize_t rv = read(fd, buf, sizeof(buf)); asm volatile ("" :: "g" (rv)); close(fd); } } int main(int argc, char *argv[]) { if (argc < 4) { std::cerr << "usage: " << argv[0] << ' ' << "N /proc/filename R "; return 1; } N = atoi(argv[1]); filename = argv[2]; R = atoi(argv[3]); for (int i = 0; i < NR_CPUS; i++) { if (glue(i) == 0) break; } std::vector<std::thread> T; T.reserve(N); for (int i = 0; i < N; i++) { T.emplace_back(f, i); } auto t0 = std::chrono::system_clock::now(); { *(volatile int *)&xxx = 1; for (auto& t: T) { t.join(); } } auto t1 = std::chrono::system_clock::now(); std::chrono::duration<double> dt = t1 - t0; std::cout << dt.count() << ' '; return 0; } P.S.: Explicit randomization marker is added because adding non-function pointer will silently disable structure layout randomization. [akpm@linux-foundation.org: coding style fixes] Reported-by: kbuild test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Joe Perches <joe@perches.com> Link: http://lkml.kernel.org/r/20200222201539.GA22576@avx2 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:09:01 +00:00
static long pde_compat_ioctl(struct proc_dir_entry *pde, struct file *file, unsigned int cmd, unsigned long arg)
{
typeof_member(struct proc_ops, proc_compat_ioctl) compat_ioctl;
compat_ioctl = pde->proc_ops->proc_compat_ioctl;
if (compat_ioctl)
return compat_ioctl(file, cmd, arg);
return -ENOTTY;
}
2007-07-16 06:39:00 +00:00
static long proc_reg_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
struct proc_dir_entry *pde = PDE(file_inode(file));
2007-07-16 06:39:00 +00:00
long rv = -ENOTTY;
proc: faster open/read/close with "permanent" files Now that "struct proc_ops" exist we can start putting there stuff which could not fly with VFS "struct file_operations"... Most of fs/proc/inode.c file is dedicated to make open/read/.../close reliable in the event of disappearing /proc entries which usually happens if module is getting removed. Files like /proc/cpuinfo which never disappear simply do not need such protection. Save 2 atomic ops, 1 allocation, 1 free per open/read/close sequence for such "permanent" files. Enable "permanent" flag for /proc/cpuinfo /proc/kmsg /proc/modules /proc/slabinfo /proc/stat /proc/sysvipc/* /proc/swaps More will come once I figure out foolproof way to prevent out module authors from marking their stuff "permanent" for performance reasons when it is not. This should help with scalability: benchmark is "read /proc/cpuinfo R times by N threads scattered over the system". N R t, s (before) t, s (after) ----------------------------------------------------- 64 4096 1.582458 1.530502 -3.2% 256 4096 6.371926 6.125168 -3.9% 1024 4096 25.64888 24.47528 -4.6% Benchmark source: #include <chrono> #include <iostream> #include <thread> #include <vector> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> const int NR_CPUS = sysconf(_SC_NPROCESSORS_ONLN); int N; const char *filename; int R; int xxx = 0; int glue(int n) { cpu_set_t m; CPU_ZERO(&m); CPU_SET(n, &m); return sched_setaffinity(0, sizeof(cpu_set_t), &m); } void f(int n) { glue(n % NR_CPUS); while (*(volatile int *)&xxx == 0) { } for (int i = 0; i < R; i++) { int fd = open(filename, O_RDONLY); char buf[4096]; ssize_t rv = read(fd, buf, sizeof(buf)); asm volatile ("" :: "g" (rv)); close(fd); } } int main(int argc, char *argv[]) { if (argc < 4) { std::cerr << "usage: " << argv[0] << ' ' << "N /proc/filename R "; return 1; } N = atoi(argv[1]); filename = argv[2]; R = atoi(argv[3]); for (int i = 0; i < NR_CPUS; i++) { if (glue(i) == 0) break; } std::vector<std::thread> T; T.reserve(N); for (int i = 0; i < N; i++) { T.emplace_back(f, i); } auto t0 = std::chrono::system_clock::now(); { *(volatile int *)&xxx = 1; for (auto& t: T) { t.join(); } } auto t1 = std::chrono::system_clock::now(); std::chrono::duration<double> dt = t1 - t0; std::cout << dt.count() << ' '; return 0; } P.S.: Explicit randomization marker is added because adding non-function pointer will silently disable structure layout randomization. [akpm@linux-foundation.org: coding style fixes] Reported-by: kbuild test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Joe Perches <joe@perches.com> Link: http://lkml.kernel.org/r/20200222201539.GA22576@avx2 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:09:01 +00:00
if (pde_is_permanent(pde)) {
return pde_compat_ioctl(pde, file, cmd, arg);
} else if (use_pde(pde)) {
rv = pde_compat_ioctl(pde, file, cmd, arg);
unuse_pde(pde);
2007-07-16 06:39:00 +00:00
}
return rv;
}
#endif
proc: faster open/read/close with "permanent" files Now that "struct proc_ops" exist we can start putting there stuff which could not fly with VFS "struct file_operations"... Most of fs/proc/inode.c file is dedicated to make open/read/.../close reliable in the event of disappearing /proc entries which usually happens if module is getting removed. Files like /proc/cpuinfo which never disappear simply do not need such protection. Save 2 atomic ops, 1 allocation, 1 free per open/read/close sequence for such "permanent" files. Enable "permanent" flag for /proc/cpuinfo /proc/kmsg /proc/modules /proc/slabinfo /proc/stat /proc/sysvipc/* /proc/swaps More will come once I figure out foolproof way to prevent out module authors from marking their stuff "permanent" for performance reasons when it is not. This should help with scalability: benchmark is "read /proc/cpuinfo R times by N threads scattered over the system". N R t, s (before) t, s (after) ----------------------------------------------------- 64 4096 1.582458 1.530502 -3.2% 256 4096 6.371926 6.125168 -3.9% 1024 4096 25.64888 24.47528 -4.6% Benchmark source: #include <chrono> #include <iostream> #include <thread> #include <vector> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> const int NR_CPUS = sysconf(_SC_NPROCESSORS_ONLN); int N; const char *filename; int R; int xxx = 0; int glue(int n) { cpu_set_t m; CPU_ZERO(&m); CPU_SET(n, &m); return sched_setaffinity(0, sizeof(cpu_set_t), &m); } void f(int n) { glue(n % NR_CPUS); while (*(volatile int *)&xxx == 0) { } for (int i = 0; i < R; i++) { int fd = open(filename, O_RDONLY); char buf[4096]; ssize_t rv = read(fd, buf, sizeof(buf)); asm volatile ("" :: "g" (rv)); close(fd); } } int main(int argc, char *argv[]) { if (argc < 4) { std::cerr << "usage: " << argv[0] << ' ' << "N /proc/filename R "; return 1; } N = atoi(argv[1]); filename = argv[2]; R = atoi(argv[3]); for (int i = 0; i < NR_CPUS; i++) { if (glue(i) == 0) break; } std::vector<std::thread> T; T.reserve(N); for (int i = 0; i < N; i++) { T.emplace_back(f, i); } auto t0 = std::chrono::system_clock::now(); { *(volatile int *)&xxx = 1; for (auto& t: T) { t.join(); } } auto t1 = std::chrono::system_clock::now(); std::chrono::duration<double> dt = t1 - t0; std::cout << dt.count() << ' '; return 0; } P.S.: Explicit randomization marker is added because adding non-function pointer will silently disable structure layout randomization. [akpm@linux-foundation.org: coding style fixes] Reported-by: kbuild test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Joe Perches <joe@perches.com> Link: http://lkml.kernel.org/r/20200222201539.GA22576@avx2 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:09:01 +00:00
static int pde_mmap(struct proc_dir_entry *pde, struct file *file, struct vm_area_struct *vma)
{
typeof_member(struct proc_ops, proc_mmap) mmap;
mmap = pde->proc_ops->proc_mmap;
if (mmap)
return mmap(file, vma);
return -EIO;
}
2007-07-16 06:39:00 +00:00
static int proc_reg_mmap(struct file *file, struct vm_area_struct *vma)
{
struct proc_dir_entry *pde = PDE(file_inode(file));
2007-07-16 06:39:00 +00:00
int rv = -EIO;
proc: faster open/read/close with "permanent" files Now that "struct proc_ops" exist we can start putting there stuff which could not fly with VFS "struct file_operations"... Most of fs/proc/inode.c file is dedicated to make open/read/.../close reliable in the event of disappearing /proc entries which usually happens if module is getting removed. Files like /proc/cpuinfo which never disappear simply do not need such protection. Save 2 atomic ops, 1 allocation, 1 free per open/read/close sequence for such "permanent" files. Enable "permanent" flag for /proc/cpuinfo /proc/kmsg /proc/modules /proc/slabinfo /proc/stat /proc/sysvipc/* /proc/swaps More will come once I figure out foolproof way to prevent out module authors from marking their stuff "permanent" for performance reasons when it is not. This should help with scalability: benchmark is "read /proc/cpuinfo R times by N threads scattered over the system". N R t, s (before) t, s (after) ----------------------------------------------------- 64 4096 1.582458 1.530502 -3.2% 256 4096 6.371926 6.125168 -3.9% 1024 4096 25.64888 24.47528 -4.6% Benchmark source: #include <chrono> #include <iostream> #include <thread> #include <vector> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> const int NR_CPUS = sysconf(_SC_NPROCESSORS_ONLN); int N; const char *filename; int R; int xxx = 0; int glue(int n) { cpu_set_t m; CPU_ZERO(&m); CPU_SET(n, &m); return sched_setaffinity(0, sizeof(cpu_set_t), &m); } void f(int n) { glue(n % NR_CPUS); while (*(volatile int *)&xxx == 0) { } for (int i = 0; i < R; i++) { int fd = open(filename, O_RDONLY); char buf[4096]; ssize_t rv = read(fd, buf, sizeof(buf)); asm volatile ("" :: "g" (rv)); close(fd); } } int main(int argc, char *argv[]) { if (argc < 4) { std::cerr << "usage: " << argv[0] << ' ' << "N /proc/filename R "; return 1; } N = atoi(argv[1]); filename = argv[2]; R = atoi(argv[3]); for (int i = 0; i < NR_CPUS; i++) { if (glue(i) == 0) break; } std::vector<std::thread> T; T.reserve(N); for (int i = 0; i < N; i++) { T.emplace_back(f, i); } auto t0 = std::chrono::system_clock::now(); { *(volatile int *)&xxx = 1; for (auto& t: T) { t.join(); } } auto t1 = std::chrono::system_clock::now(); std::chrono::duration<double> dt = t1 - t0; std::cout << dt.count() << ' '; return 0; } P.S.: Explicit randomization marker is added because adding non-function pointer will silently disable structure layout randomization. [akpm@linux-foundation.org: coding style fixes] Reported-by: kbuild test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Joe Perches <joe@perches.com> Link: http://lkml.kernel.org/r/20200222201539.GA22576@avx2 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:09:01 +00:00
if (pde_is_permanent(pde)) {
return pde_mmap(pde, file, vma);
} else if (use_pde(pde)) {
rv = pde_mmap(pde, file, vma);
unuse_pde(pde);
2007-07-16 06:39:00 +00:00
}
return rv;
}
static unsigned long
proc: faster open/read/close with "permanent" files Now that "struct proc_ops" exist we can start putting there stuff which could not fly with VFS "struct file_operations"... Most of fs/proc/inode.c file is dedicated to make open/read/.../close reliable in the event of disappearing /proc entries which usually happens if module is getting removed. Files like /proc/cpuinfo which never disappear simply do not need such protection. Save 2 atomic ops, 1 allocation, 1 free per open/read/close sequence for such "permanent" files. Enable "permanent" flag for /proc/cpuinfo /proc/kmsg /proc/modules /proc/slabinfo /proc/stat /proc/sysvipc/* /proc/swaps More will come once I figure out foolproof way to prevent out module authors from marking their stuff "permanent" for performance reasons when it is not. This should help with scalability: benchmark is "read /proc/cpuinfo R times by N threads scattered over the system". N R t, s (before) t, s (after) ----------------------------------------------------- 64 4096 1.582458 1.530502 -3.2% 256 4096 6.371926 6.125168 -3.9% 1024 4096 25.64888 24.47528 -4.6% Benchmark source: #include <chrono> #include <iostream> #include <thread> #include <vector> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> const int NR_CPUS = sysconf(_SC_NPROCESSORS_ONLN); int N; const char *filename; int R; int xxx = 0; int glue(int n) { cpu_set_t m; CPU_ZERO(&m); CPU_SET(n, &m); return sched_setaffinity(0, sizeof(cpu_set_t), &m); } void f(int n) { glue(n % NR_CPUS); while (*(volatile int *)&xxx == 0) { } for (int i = 0; i < R; i++) { int fd = open(filename, O_RDONLY); char buf[4096]; ssize_t rv = read(fd, buf, sizeof(buf)); asm volatile ("" :: "g" (rv)); close(fd); } } int main(int argc, char *argv[]) { if (argc < 4) { std::cerr << "usage: " << argv[0] << ' ' << "N /proc/filename R "; return 1; } N = atoi(argv[1]); filename = argv[2]; R = atoi(argv[3]); for (int i = 0; i < NR_CPUS; i++) { if (glue(i) == 0) break; } std::vector<std::thread> T; T.reserve(N); for (int i = 0; i < N; i++) { T.emplace_back(f, i); } auto t0 = std::chrono::system_clock::now(); { *(volatile int *)&xxx = 1; for (auto& t: T) { t.join(); } } auto t1 = std::chrono::system_clock::now(); std::chrono::duration<double> dt = t1 - t0; std::cout << dt.count() << ' '; return 0; } P.S.: Explicit randomization marker is added because adding non-function pointer will silently disable structure layout randomization. [akpm@linux-foundation.org: coding style fixes] Reported-by: kbuild test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Joe Perches <joe@perches.com> Link: http://lkml.kernel.org/r/20200222201539.GA22576@avx2 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:09:01 +00:00
pde_get_unmapped_area(struct proc_dir_entry *pde, struct file *file, unsigned long orig_addr,
unsigned long len, unsigned long pgoff,
unsigned long flags)
{
proc: faster open/read/close with "permanent" files Now that "struct proc_ops" exist we can start putting there stuff which could not fly with VFS "struct file_operations"... Most of fs/proc/inode.c file is dedicated to make open/read/.../close reliable in the event of disappearing /proc entries which usually happens if module is getting removed. Files like /proc/cpuinfo which never disappear simply do not need such protection. Save 2 atomic ops, 1 allocation, 1 free per open/read/close sequence for such "permanent" files. Enable "permanent" flag for /proc/cpuinfo /proc/kmsg /proc/modules /proc/slabinfo /proc/stat /proc/sysvipc/* /proc/swaps More will come once I figure out foolproof way to prevent out module authors from marking their stuff "permanent" for performance reasons when it is not. This should help with scalability: benchmark is "read /proc/cpuinfo R times by N threads scattered over the system". N R t, s (before) t, s (after) ----------------------------------------------------- 64 4096 1.582458 1.530502 -3.2% 256 4096 6.371926 6.125168 -3.9% 1024 4096 25.64888 24.47528 -4.6% Benchmark source: #include <chrono> #include <iostream> #include <thread> #include <vector> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> const int NR_CPUS = sysconf(_SC_NPROCESSORS_ONLN); int N; const char *filename; int R; int xxx = 0; int glue(int n) { cpu_set_t m; CPU_ZERO(&m); CPU_SET(n, &m); return sched_setaffinity(0, sizeof(cpu_set_t), &m); } void f(int n) { glue(n % NR_CPUS); while (*(volatile int *)&xxx == 0) { } for (int i = 0; i < R; i++) { int fd = open(filename, O_RDONLY); char buf[4096]; ssize_t rv = read(fd, buf, sizeof(buf)); asm volatile ("" :: "g" (rv)); close(fd); } } int main(int argc, char *argv[]) { if (argc < 4) { std::cerr << "usage: " << argv[0] << ' ' << "N /proc/filename R "; return 1; } N = atoi(argv[1]); filename = argv[2]; R = atoi(argv[3]); for (int i = 0; i < NR_CPUS; i++) { if (glue(i) == 0) break; } std::vector<std::thread> T; T.reserve(N); for (int i = 0; i < N; i++) { T.emplace_back(f, i); } auto t0 = std::chrono::system_clock::now(); { *(volatile int *)&xxx = 1; for (auto& t: T) { t.join(); } } auto t1 = std::chrono::system_clock::now(); std::chrono::duration<double> dt = t1 - t0; std::cout << dt.count() << ' '; return 0; } P.S.: Explicit randomization marker is added because adding non-function pointer will silently disable structure layout randomization. [akpm@linux-foundation.org: coding style fixes] Reported-by: kbuild test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Joe Perches <joe@perches.com> Link: http://lkml.kernel.org/r/20200222201539.GA22576@avx2 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:09:01 +00:00
typeof_member(struct proc_ops, proc_get_unmapped_area) get_area;
proc: faster open/read/close with "permanent" files Now that "struct proc_ops" exist we can start putting there stuff which could not fly with VFS "struct file_operations"... Most of fs/proc/inode.c file is dedicated to make open/read/.../close reliable in the event of disappearing /proc entries which usually happens if module is getting removed. Files like /proc/cpuinfo which never disappear simply do not need such protection. Save 2 atomic ops, 1 allocation, 1 free per open/read/close sequence for such "permanent" files. Enable "permanent" flag for /proc/cpuinfo /proc/kmsg /proc/modules /proc/slabinfo /proc/stat /proc/sysvipc/* /proc/swaps More will come once I figure out foolproof way to prevent out module authors from marking their stuff "permanent" for performance reasons when it is not. This should help with scalability: benchmark is "read /proc/cpuinfo R times by N threads scattered over the system". N R t, s (before) t, s (after) ----------------------------------------------------- 64 4096 1.582458 1.530502 -3.2% 256 4096 6.371926 6.125168 -3.9% 1024 4096 25.64888 24.47528 -4.6% Benchmark source: #include <chrono> #include <iostream> #include <thread> #include <vector> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> const int NR_CPUS = sysconf(_SC_NPROCESSORS_ONLN); int N; const char *filename; int R; int xxx = 0; int glue(int n) { cpu_set_t m; CPU_ZERO(&m); CPU_SET(n, &m); return sched_setaffinity(0, sizeof(cpu_set_t), &m); } void f(int n) { glue(n % NR_CPUS); while (*(volatile int *)&xxx == 0) { } for (int i = 0; i < R; i++) { int fd = open(filename, O_RDONLY); char buf[4096]; ssize_t rv = read(fd, buf, sizeof(buf)); asm volatile ("" :: "g" (rv)); close(fd); } } int main(int argc, char *argv[]) { if (argc < 4) { std::cerr << "usage: " << argv[0] << ' ' << "N /proc/filename R "; return 1; } N = atoi(argv[1]); filename = argv[2]; R = atoi(argv[3]); for (int i = 0; i < NR_CPUS; i++) { if (glue(i) == 0) break; } std::vector<std::thread> T; T.reserve(N); for (int i = 0; i < N; i++) { T.emplace_back(f, i); } auto t0 = std::chrono::system_clock::now(); { *(volatile int *)&xxx = 1; for (auto& t: T) { t.join(); } } auto t1 = std::chrono::system_clock::now(); std::chrono::duration<double> dt = t1 - t0; std::cout << dt.count() << ' '; return 0; } P.S.: Explicit randomization marker is added because adding non-function pointer will silently disable structure layout randomization. [akpm@linux-foundation.org: coding style fixes] Reported-by: kbuild test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Joe Perches <joe@perches.com> Link: http://lkml.kernel.org/r/20200222201539.GA22576@avx2 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:09:01 +00:00
get_area = pde->proc_ops->proc_get_unmapped_area;
#ifdef CONFIG_MMU
proc: faster open/read/close with "permanent" files Now that "struct proc_ops" exist we can start putting there stuff which could not fly with VFS "struct file_operations"... Most of fs/proc/inode.c file is dedicated to make open/read/.../close reliable in the event of disappearing /proc entries which usually happens if module is getting removed. Files like /proc/cpuinfo which never disappear simply do not need such protection. Save 2 atomic ops, 1 allocation, 1 free per open/read/close sequence for such "permanent" files. Enable "permanent" flag for /proc/cpuinfo /proc/kmsg /proc/modules /proc/slabinfo /proc/stat /proc/sysvipc/* /proc/swaps More will come once I figure out foolproof way to prevent out module authors from marking their stuff "permanent" for performance reasons when it is not. This should help with scalability: benchmark is "read /proc/cpuinfo R times by N threads scattered over the system". N R t, s (before) t, s (after) ----------------------------------------------------- 64 4096 1.582458 1.530502 -3.2% 256 4096 6.371926 6.125168 -3.9% 1024 4096 25.64888 24.47528 -4.6% Benchmark source: #include <chrono> #include <iostream> #include <thread> #include <vector> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> const int NR_CPUS = sysconf(_SC_NPROCESSORS_ONLN); int N; const char *filename; int R; int xxx = 0; int glue(int n) { cpu_set_t m; CPU_ZERO(&m); CPU_SET(n, &m); return sched_setaffinity(0, sizeof(cpu_set_t), &m); } void f(int n) { glue(n % NR_CPUS); while (*(volatile int *)&xxx == 0) { } for (int i = 0; i < R; i++) { int fd = open(filename, O_RDONLY); char buf[4096]; ssize_t rv = read(fd, buf, sizeof(buf)); asm volatile ("" :: "g" (rv)); close(fd); } } int main(int argc, char *argv[]) { if (argc < 4) { std::cerr << "usage: " << argv[0] << ' ' << "N /proc/filename R "; return 1; } N = atoi(argv[1]); filename = argv[2]; R = atoi(argv[3]); for (int i = 0; i < NR_CPUS; i++) { if (glue(i) == 0) break; } std::vector<std::thread> T; T.reserve(N); for (int i = 0; i < N; i++) { T.emplace_back(f, i); } auto t0 = std::chrono::system_clock::now(); { *(volatile int *)&xxx = 1; for (auto& t: T) { t.join(); } } auto t1 = std::chrono::system_clock::now(); std::chrono::duration<double> dt = t1 - t0; std::cout << dt.count() << ' '; return 0; } P.S.: Explicit randomization marker is added because adding non-function pointer will silently disable structure layout randomization. [akpm@linux-foundation.org: coding style fixes] Reported-by: kbuild test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Joe Perches <joe@perches.com> Link: http://lkml.kernel.org/r/20200222201539.GA22576@avx2 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:09:01 +00:00
if (!get_area)
get_area = current->mm->get_unmapped_area;
#endif
proc: faster open/read/close with "permanent" files Now that "struct proc_ops" exist we can start putting there stuff which could not fly with VFS "struct file_operations"... Most of fs/proc/inode.c file is dedicated to make open/read/.../close reliable in the event of disappearing /proc entries which usually happens if module is getting removed. Files like /proc/cpuinfo which never disappear simply do not need such protection. Save 2 atomic ops, 1 allocation, 1 free per open/read/close sequence for such "permanent" files. Enable "permanent" flag for /proc/cpuinfo /proc/kmsg /proc/modules /proc/slabinfo /proc/stat /proc/sysvipc/* /proc/swaps More will come once I figure out foolproof way to prevent out module authors from marking their stuff "permanent" for performance reasons when it is not. This should help with scalability: benchmark is "read /proc/cpuinfo R times by N threads scattered over the system". N R t, s (before) t, s (after) ----------------------------------------------------- 64 4096 1.582458 1.530502 -3.2% 256 4096 6.371926 6.125168 -3.9% 1024 4096 25.64888 24.47528 -4.6% Benchmark source: #include <chrono> #include <iostream> #include <thread> #include <vector> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> const int NR_CPUS = sysconf(_SC_NPROCESSORS_ONLN); int N; const char *filename; int R; int xxx = 0; int glue(int n) { cpu_set_t m; CPU_ZERO(&m); CPU_SET(n, &m); return sched_setaffinity(0, sizeof(cpu_set_t), &m); } void f(int n) { glue(n % NR_CPUS); while (*(volatile int *)&xxx == 0) { } for (int i = 0; i < R; i++) { int fd = open(filename, O_RDONLY); char buf[4096]; ssize_t rv = read(fd, buf, sizeof(buf)); asm volatile ("" :: "g" (rv)); close(fd); } } int main(int argc, char *argv[]) { if (argc < 4) { std::cerr << "usage: " << argv[0] << ' ' << "N /proc/filename R "; return 1; } N = atoi(argv[1]); filename = argv[2]; R = atoi(argv[3]); for (int i = 0; i < NR_CPUS; i++) { if (glue(i) == 0) break; } std::vector<std::thread> T; T.reserve(N); for (int i = 0; i < N; i++) { T.emplace_back(f, i); } auto t0 = std::chrono::system_clock::now(); { *(volatile int *)&xxx = 1; for (auto& t: T) { t.join(); } } auto t1 = std::chrono::system_clock::now(); std::chrono::duration<double> dt = t1 - t0; std::cout << dt.count() << ' '; return 0; } P.S.: Explicit randomization marker is added because adding non-function pointer will silently disable structure layout randomization. [akpm@linux-foundation.org: coding style fixes] Reported-by: kbuild test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Joe Perches <joe@perches.com> Link: http://lkml.kernel.org/r/20200222201539.GA22576@avx2 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:09:01 +00:00
if (get_area)
return get_area(file, orig_addr, len, pgoff, flags);
return orig_addr;
}
static unsigned long
proc_reg_get_unmapped_area(struct file *file, unsigned long orig_addr,
unsigned long len, unsigned long pgoff,
unsigned long flags)
{
struct proc_dir_entry *pde = PDE(file_inode(file));
unsigned long rv = -EIO;
proc: faster open/read/close with "permanent" files Now that "struct proc_ops" exist we can start putting there stuff which could not fly with VFS "struct file_operations"... Most of fs/proc/inode.c file is dedicated to make open/read/.../close reliable in the event of disappearing /proc entries which usually happens if module is getting removed. Files like /proc/cpuinfo which never disappear simply do not need such protection. Save 2 atomic ops, 1 allocation, 1 free per open/read/close sequence for such "permanent" files. Enable "permanent" flag for /proc/cpuinfo /proc/kmsg /proc/modules /proc/slabinfo /proc/stat /proc/sysvipc/* /proc/swaps More will come once I figure out foolproof way to prevent out module authors from marking their stuff "permanent" for performance reasons when it is not. This should help with scalability: benchmark is "read /proc/cpuinfo R times by N threads scattered over the system". N R t, s (before) t, s (after) ----------------------------------------------------- 64 4096 1.582458 1.530502 -3.2% 256 4096 6.371926 6.125168 -3.9% 1024 4096 25.64888 24.47528 -4.6% Benchmark source: #include <chrono> #include <iostream> #include <thread> #include <vector> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> const int NR_CPUS = sysconf(_SC_NPROCESSORS_ONLN); int N; const char *filename; int R; int xxx = 0; int glue(int n) { cpu_set_t m; CPU_ZERO(&m); CPU_SET(n, &m); return sched_setaffinity(0, sizeof(cpu_set_t), &m); } void f(int n) { glue(n % NR_CPUS); while (*(volatile int *)&xxx == 0) { } for (int i = 0; i < R; i++) { int fd = open(filename, O_RDONLY); char buf[4096]; ssize_t rv = read(fd, buf, sizeof(buf)); asm volatile ("" :: "g" (rv)); close(fd); } } int main(int argc, char *argv[]) { if (argc < 4) { std::cerr << "usage: " << argv[0] << ' ' << "N /proc/filename R "; return 1; } N = atoi(argv[1]); filename = argv[2]; R = atoi(argv[3]); for (int i = 0; i < NR_CPUS; i++) { if (glue(i) == 0) break; } std::vector<std::thread> T; T.reserve(N); for (int i = 0; i < N; i++) { T.emplace_back(f, i); } auto t0 = std::chrono::system_clock::now(); { *(volatile int *)&xxx = 1; for (auto& t: T) { t.join(); } } auto t1 = std::chrono::system_clock::now(); std::chrono::duration<double> dt = t1 - t0; std::cout << dt.count() << ' '; return 0; } P.S.: Explicit randomization marker is added because adding non-function pointer will silently disable structure layout randomization. [akpm@linux-foundation.org: coding style fixes] Reported-by: kbuild test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Joe Perches <joe@perches.com> Link: http://lkml.kernel.org/r/20200222201539.GA22576@avx2 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:09:01 +00:00
if (pde_is_permanent(pde)) {
return pde_get_unmapped_area(pde, file, orig_addr, len, pgoff, flags);
} else if (use_pde(pde)) {
rv = pde_get_unmapped_area(pde, file, orig_addr, len, pgoff, flags);
unuse_pde(pde);
}
return rv;
}
2007-07-16 06:39:00 +00:00
static int proc_reg_open(struct inode *inode, struct file *file)
{
struct proc_dir_entry *pde = PDE(inode);
int rv = 0;
typeof_member(struct proc_ops, proc_open) open;
typeof_member(struct proc_ops, proc_release) release;
struct pde_opener *pdeo;
if (!pde->proc_ops->proc_lseek)
file->f_mode &= ~FMODE_LSEEK;
proc: faster open/read/close with "permanent" files Now that "struct proc_ops" exist we can start putting there stuff which could not fly with VFS "struct file_operations"... Most of fs/proc/inode.c file is dedicated to make open/read/.../close reliable in the event of disappearing /proc entries which usually happens if module is getting removed. Files like /proc/cpuinfo which never disappear simply do not need such protection. Save 2 atomic ops, 1 allocation, 1 free per open/read/close sequence for such "permanent" files. Enable "permanent" flag for /proc/cpuinfo /proc/kmsg /proc/modules /proc/slabinfo /proc/stat /proc/sysvipc/* /proc/swaps More will come once I figure out foolproof way to prevent out module authors from marking their stuff "permanent" for performance reasons when it is not. This should help with scalability: benchmark is "read /proc/cpuinfo R times by N threads scattered over the system". N R t, s (before) t, s (after) ----------------------------------------------------- 64 4096 1.582458 1.530502 -3.2% 256 4096 6.371926 6.125168 -3.9% 1024 4096 25.64888 24.47528 -4.6% Benchmark source: #include <chrono> #include <iostream> #include <thread> #include <vector> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> const int NR_CPUS = sysconf(_SC_NPROCESSORS_ONLN); int N; const char *filename; int R; int xxx = 0; int glue(int n) { cpu_set_t m; CPU_ZERO(&m); CPU_SET(n, &m); return sched_setaffinity(0, sizeof(cpu_set_t), &m); } void f(int n) { glue(n % NR_CPUS); while (*(volatile int *)&xxx == 0) { } for (int i = 0; i < R; i++) { int fd = open(filename, O_RDONLY); char buf[4096]; ssize_t rv = read(fd, buf, sizeof(buf)); asm volatile ("" :: "g" (rv)); close(fd); } } int main(int argc, char *argv[]) { if (argc < 4) { std::cerr << "usage: " << argv[0] << ' ' << "N /proc/filename R "; return 1; } N = atoi(argv[1]); filename = argv[2]; R = atoi(argv[3]); for (int i = 0; i < NR_CPUS; i++) { if (glue(i) == 0) break; } std::vector<std::thread> T; T.reserve(N); for (int i = 0; i < N; i++) { T.emplace_back(f, i); } auto t0 = std::chrono::system_clock::now(); { *(volatile int *)&xxx = 1; for (auto& t: T) { t.join(); } } auto t1 = std::chrono::system_clock::now(); std::chrono::duration<double> dt = t1 - t0; std::cout << dt.count() << ' '; return 0; } P.S.: Explicit randomization marker is added because adding non-function pointer will silently disable structure layout randomization. [akpm@linux-foundation.org: coding style fixes] Reported-by: kbuild test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Joe Perches <joe@perches.com> Link: http://lkml.kernel.org/r/20200222201539.GA22576@avx2 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:09:01 +00:00
if (pde_is_permanent(pde)) {
open = pde->proc_ops->proc_open;
if (open)
rv = open(inode, file);
return rv;
}
/*
* Ensure that
* 1) PDE's ->release hook will be called no matter what
* either normally by close()/->release, or forcefully by
* rmmod/remove_proc_entry.
*
* 2) rmmod isn't blocked by opening file in /proc and sitting on
* the descriptor (including "rmmod foo </proc/foo" scenario).
*
* Save every "struct file" with custom ->release hook.
*/
if (!use_pde(pde))
return -ENOENT;
release = pde->proc_ops->proc_release;
if (release) {
pdeo = kmem_cache_alloc(pde_opener_cache, GFP_KERNEL);
if (!pdeo) {
rv = -ENOMEM;
goto out_unuse;
}
}
2007-07-16 06:39:00 +00:00
open = pde->proc_ops->proc_open;
2007-07-16 06:39:00 +00:00
if (open)
rv = open(inode, file);
if (release) {
if (rv == 0) {
/* To know what to release. */
pdeo->file = file;
pdeo->closing = false;
pdeo->c = NULL;
spin_lock(&pde->pde_unload_lock);
list_add(&pdeo->lh, &pde->pde_openers);
spin_unlock(&pde->pde_unload_lock);
} else
kmem_cache_free(pde_opener_cache, pdeo);
}
out_unuse:
unuse_pde(pde);
2007-07-16 06:39:00 +00:00
return rv;
}
static int proc_reg_release(struct inode *inode, struct file *file)
{
struct proc_dir_entry *pde = PDE(inode);
struct pde_opener *pdeo;
proc: faster open/read/close with "permanent" files Now that "struct proc_ops" exist we can start putting there stuff which could not fly with VFS "struct file_operations"... Most of fs/proc/inode.c file is dedicated to make open/read/.../close reliable in the event of disappearing /proc entries which usually happens if module is getting removed. Files like /proc/cpuinfo which never disappear simply do not need such protection. Save 2 atomic ops, 1 allocation, 1 free per open/read/close sequence for such "permanent" files. Enable "permanent" flag for /proc/cpuinfo /proc/kmsg /proc/modules /proc/slabinfo /proc/stat /proc/sysvipc/* /proc/swaps More will come once I figure out foolproof way to prevent out module authors from marking their stuff "permanent" for performance reasons when it is not. This should help with scalability: benchmark is "read /proc/cpuinfo R times by N threads scattered over the system". N R t, s (before) t, s (after) ----------------------------------------------------- 64 4096 1.582458 1.530502 -3.2% 256 4096 6.371926 6.125168 -3.9% 1024 4096 25.64888 24.47528 -4.6% Benchmark source: #include <chrono> #include <iostream> #include <thread> #include <vector> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> const int NR_CPUS = sysconf(_SC_NPROCESSORS_ONLN); int N; const char *filename; int R; int xxx = 0; int glue(int n) { cpu_set_t m; CPU_ZERO(&m); CPU_SET(n, &m); return sched_setaffinity(0, sizeof(cpu_set_t), &m); } void f(int n) { glue(n % NR_CPUS); while (*(volatile int *)&xxx == 0) { } for (int i = 0; i < R; i++) { int fd = open(filename, O_RDONLY); char buf[4096]; ssize_t rv = read(fd, buf, sizeof(buf)); asm volatile ("" :: "g" (rv)); close(fd); } } int main(int argc, char *argv[]) { if (argc < 4) { std::cerr << "usage: " << argv[0] << ' ' << "N /proc/filename R "; return 1; } N = atoi(argv[1]); filename = argv[2]; R = atoi(argv[3]); for (int i = 0; i < NR_CPUS; i++) { if (glue(i) == 0) break; } std::vector<std::thread> T; T.reserve(N); for (int i = 0; i < N; i++) { T.emplace_back(f, i); } auto t0 = std::chrono::system_clock::now(); { *(volatile int *)&xxx = 1; for (auto& t: T) { t.join(); } } auto t1 = std::chrono::system_clock::now(); std::chrono::duration<double> dt = t1 - t0; std::cout << dt.count() << ' '; return 0; } P.S.: Explicit randomization marker is added because adding non-function pointer will silently disable structure layout randomization. [akpm@linux-foundation.org: coding style fixes] Reported-by: kbuild test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Joe Perches <joe@perches.com> Link: http://lkml.kernel.org/r/20200222201539.GA22576@avx2 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 03:09:01 +00:00
if (pde_is_permanent(pde)) {
typeof_member(struct proc_ops, proc_release) release;
release = pde->proc_ops->proc_release;
if (release) {
return release(inode, file);
}
return 0;
}
2007-07-16 06:39:00 +00:00
spin_lock(&pde->pde_unload_lock);
list_for_each_entry(pdeo, &pde->pde_openers, lh) {
if (pdeo->file == file) {
close_pdeo(pde, pdeo);
proc: do less stuff under ->pde_unload_lock Commit ca469f35a8e9ef ("deal with races between remove_proc_entry() and proc_reg_release()") moved too much stuff under ->pde_unload_lock making a problem described at series "[PATCH v5] procfs: Improve Scaling in proc" worse. While RCU is being figured out, move kfree() out of ->pde_unload_lock. On my potato, difference is only 0.5% speedup with concurrent open+read+close of /proc/cmdline, but the effect should be more noticeable on more capable machines. $ perf stat -r 16 -- ./proc-j 16 Performance counter stats for './proc-j 16' (16 runs): 130569.502377 task-clock (msec) # 15.872 CPUs utilized ( +- 0.05% ) 19,169 context-switches # 0.147 K/sec ( +- 0.18% ) 15 cpu-migrations # 0.000 K/sec ( +- 3.27% ) 437 page-faults # 0.003 K/sec ( +- 1.25% ) 300,172,097,675 cycles # 2.299 GHz ( +- 0.05% ) 96,793,267,308 instructions # 0.32 insn per cycle ( +- 0.04% ) 22,798,342,298 branches # 174.607 M/sec ( +- 0.04% ) 111,764,687 branch-misses # 0.49% of all branches ( +- 0.47% ) 8.226574400 seconds time elapsed ( +- 0.05% ) ^^^^^^^^^^^ $ perf stat -r 16 -- ./proc-j 16 Performance counter stats for './proc-j 16' (16 runs): 129866.777392 task-clock (msec) # 15.869 CPUs utilized ( +- 0.04% ) 19,154 context-switches # 0.147 K/sec ( +- 0.66% ) 14 cpu-migrations # 0.000 K/sec ( +- 1.73% ) 431 page-faults # 0.003 K/sec ( +- 1.09% ) 298,556,520,546 cycles # 2.299 GHz ( +- 0.04% ) 96,525,366,833 instructions # 0.32 insn per cycle ( +- 0.04% ) 22,730,194,043 branches # 175.027 M/sec ( +- 0.04% ) 111,506,074 branch-misses # 0.49% of all branches ( +- 0.18% ) 8.183629778 seconds time elapsed ( +- 0.04% ) ^^^^^^^^^^^ Link: http://lkml.kernel.org/r/20180213132911.GA24298@avx2 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-10 23:30:54 +00:00
return 0;
}
}
2007-07-16 06:39:00 +00:00
spin_unlock(&pde->pde_unload_lock);
return 0;
2007-07-16 06:39:00 +00:00
}
static const struct file_operations proc_reg_file_ops = {
.llseek = proc_reg_llseek,
.read = proc_reg_read,
.write = proc_reg_write,
.poll = proc_reg_poll,
.unlocked_ioctl = proc_reg_unlocked_ioctl,
.mmap = proc_reg_mmap,
.get_unmapped_area = proc_reg_get_unmapped_area,
2007-07-16 06:39:00 +00:00
.open = proc_reg_open,
.release = proc_reg_release,
};
static const struct file_operations proc_iter_file_ops = {
.llseek = proc_reg_llseek,
.read_iter = proc_reg_read_iter,
.write = proc_reg_write,
.splice_read = copy_splice_read,
.poll = proc_reg_poll,
.unlocked_ioctl = proc_reg_unlocked_ioctl,
.mmap = proc_reg_mmap,
.get_unmapped_area = proc_reg_get_unmapped_area,
.open = proc_reg_open,
.release = proc_reg_release,
};
#ifdef CONFIG_COMPAT
static const struct file_operations proc_reg_file_ops_compat = {
.llseek = proc_reg_llseek,
.read = proc_reg_read,
.write = proc_reg_write,
.poll = proc_reg_poll,
.unlocked_ioctl = proc_reg_unlocked_ioctl,
.compat_ioctl = proc_reg_compat_ioctl,
.mmap = proc_reg_mmap,
.get_unmapped_area = proc_reg_get_unmapped_area,
.open = proc_reg_open,
.release = proc_reg_release,
};
static const struct file_operations proc_iter_file_ops_compat = {
.llseek = proc_reg_llseek,
.read_iter = proc_reg_read_iter,
.splice_read = copy_splice_read,
.write = proc_reg_write,
.poll = proc_reg_poll,
.unlocked_ioctl = proc_reg_unlocked_ioctl,
.compat_ioctl = proc_reg_compat_ioctl,
.mmap = proc_reg_mmap,
.get_unmapped_area = proc_reg_get_unmapped_area,
.open = proc_reg_open,
.release = proc_reg_release,
};
#endif
static void proc_put_link(void *p)
{
unuse_pde(p);
}
static const char *proc_get_link(struct dentry *dentry,
struct inode *inode,
struct delayed_call *done)
{
struct proc_dir_entry *pde = PDE(inode);
if (!use_pde(pde))
return ERR_PTR(-EINVAL);
set_delayed_call(done, proc_put_link, pde);
return pde->data;
}
const struct inode_operations proc_link_inode_operations = {
.get_link = proc_get_link,
};
struct inode *proc_get_inode(struct super_block *sb, struct proc_dir_entry *de)
{
proc: Use new_inode not new_inode_pseudo Recently syzbot reported that unmounting proc when there is an ongoing inotify watch on the root directory of proc could result in a use after free when the watch is removed after the unmount of proc when the watcher exits. Commit 69879c01a0c3 ("proc: Remove the now unnecessary internal mount of proc") made it easier to unmount proc and allowed syzbot to see the problem, but looking at the code it has been around for a long time. Looking at the code the fsnotify watch should have been removed by fsnotify_sb_delete in generic_shutdown_super. Unfortunately the inode was allocated with new_inode_pseudo instead of new_inode so the inode was not on the sb->s_inodes list. Which prevented fsnotify_unmount_inodes from finding the inode and removing the watch as well as made it so the "VFS: Busy inodes after unmount" warning could not find the inodes to warn about them. Make all of the inodes in proc visible to generic_shutdown_super, and fsnotify_sb_delete by using new_inode instead of new_inode_pseudo. The only functional difference is that new_inode places the inodes on the sb->s_inodes list. I wrote a small test program and I can verify that without changes it can trigger this issue, and by replacing new_inode_pseudo with new_inode the issues goes away. Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/000000000000d788c905a7dfa3f4@google.com Reported-by: syzbot+7d2debdcdb3cb93c1e5e@syzkaller.appspotmail.com Fixes: 0097875bd415 ("proc: Implement /proc/thread-self to point at the directory of the current thread") Fixes: 021ada7dff22 ("procfs: switch /proc/self away from proc_dir_entry") Fixes: 51f0885e5415 ("vfs,proc: guarantee unique inodes in /proc") Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2020-06-12 14:42:03 +00:00
struct inode *inode = new_inode(sb);
if (!inode) {
pde_put(de);
return NULL;
}
inode->i_private = de->data;
inode->i_ino = de->low_ino;
simple_inode_init_ts(inode);
PROC_I(inode)->pde = de;
if (is_empty_pde(de)) {
make_empty_dir_inode(inode);
return inode;
}
if (de->mode) {
inode->i_mode = de->mode;
inode->i_uid = de->uid;
inode->i_gid = de->gid;
}
if (de->size)
inode->i_size = de->size;
if (de->nlink)
set_nlink(inode, de->nlink);
if (S_ISREG(inode->i_mode)) {
inode->i_op = de->proc_iops;
if (de->proc_ops->proc_read_iter)
inode->i_fop = &proc_iter_file_ops;
else
inode->i_fop = &proc_reg_file_ops;
#ifdef CONFIG_COMPAT
if (de->proc_ops->proc_compat_ioctl) {
if (de->proc_ops->proc_read_iter)
inode->i_fop = &proc_iter_file_ops_compat;
else
inode->i_fop = &proc_reg_file_ops_compat;
}
#endif
} else if (S_ISDIR(inode->i_mode)) {
inode->i_op = de->proc_iops;
inode->i_fop = de->proc_dir_ops;
} else if (S_ISLNK(inode->i_mode)) {
inode->i_op = de->proc_iops;
inode->i_fop = NULL;
} else {
BUG();
}
return inode;
}