2011-04-14 22:25:47 +00:00
|
|
|
/******************************************************************************
|
|
|
|
*
|
|
|
|
* Back-end of the driver for virtual block devices. This portion of the
|
|
|
|
* driver exports a 'unified' block-device interface that can be accessed
|
|
|
|
* by any operating system that implements a compatible front end. A
|
|
|
|
* reference front-end implementation can be found in:
|
2011-04-14 21:05:23 +00:00
|
|
|
* drivers/block/xen-blkfront.c
|
2011-04-14 22:25:47 +00:00
|
|
|
*
|
|
|
|
* Copyright (c) 2003-2004, Keir Fraser & Steve Hand
|
|
|
|
* Copyright (c) 2005, Christopher Clark
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License version 2
|
|
|
|
* as published by the Free Software Foundation; or, when distributed
|
|
|
|
* separately from the Linux kernel or incorporated into other
|
|
|
|
* software packages, subject to the following license:
|
|
|
|
*
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
|
|
* of this source file (the "Software"), to deal in the Software without
|
|
|
|
* restriction, including without limitation the rights to use, copy, modify,
|
|
|
|
* merge, publish, distribute, sublicense, and/or sell copies of the Software,
|
|
|
|
* and to permit persons to whom the Software is furnished to do so, subject to
|
|
|
|
* the following conditions:
|
|
|
|
*
|
|
|
|
* The above copyright notice and this permission notice shall be included in
|
|
|
|
* all copies or substantial portions of the Software.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
|
|
* IN THE SOFTWARE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/spinlock.h>
|
|
|
|
#include <linux/kthread.h>
|
|
|
|
#include <linux/list.h>
|
|
|
|
#include <linux/delay.h>
|
2009-02-09 20:05:51 +00:00
|
|
|
#include <linux/freezer.h>
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
#include <linux/bitmap.h>
|
2009-09-15 21:12:37 +00:00
|
|
|
|
2009-02-09 20:05:51 +00:00
|
|
|
#include <xen/events.h>
|
|
|
|
#include <xen/page.h>
|
2012-08-08 17:21:14 +00:00
|
|
|
#include <xen/xen.h>
|
2009-02-09 20:05:51 +00:00
|
|
|
#include <asm/xen/hypervisor.h>
|
|
|
|
#include <asm/xen/hypercall.h>
|
2013-02-14 10:12:09 +00:00
|
|
|
#include <xen/balloon.h>
|
2011-04-14 22:25:47 +00:00
|
|
|
#include "common.h"
|
|
|
|
|
2013-04-17 18:18:56 +00:00
|
|
|
/*
|
|
|
|
* Maximum number of unused free pages to keep in the internal buffer.
|
|
|
|
* Setting this to a value too low will reduce memory used in each backend,
|
|
|
|
* but can have a performance penalty.
|
|
|
|
*
|
|
|
|
* A sane value is xen_blkif_reqs * BLKIF_MAX_SEGMENTS_PER_REQUEST, but can
|
|
|
|
* be set to a lower value that might degrade performance on some intensive
|
|
|
|
* IO workloads.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static int xen_blkif_max_buffer_pages = 704;
|
|
|
|
module_param_named(max_buffer_pages, xen_blkif_max_buffer_pages, int, 0644);
|
|
|
|
MODULE_PARM_DESC(max_buffer_pages,
|
|
|
|
"Maximum number of free pages to keep in each block backend buffer");
|
|
|
|
|
2013-04-17 18:18:57 +00:00
|
|
|
/*
|
|
|
|
* Maximum number of grants to map persistently in blkback. For maximum
|
|
|
|
* performance this should be the total numbers of grants that can be used
|
|
|
|
* to fill the ring, but since this might become too high, specially with
|
|
|
|
* the use of indirect descriptors, we set it to a value that provides good
|
|
|
|
* performance without using too much memory.
|
|
|
|
*
|
|
|
|
* When the list of persistent grants is full we clean it up using a LRU
|
|
|
|
* algorithm.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static int xen_blkif_max_pgrants = 352;
|
|
|
|
module_param_named(max_persistent_grants, xen_blkif_max_pgrants, int, 0644);
|
|
|
|
MODULE_PARM_DESC(max_persistent_grants,
|
|
|
|
"Maximum number of grants to map persistently");
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The LRU mechanism to clean the lists of persistent grants needs to
|
|
|
|
* be executed periodically. The time interval between consecutive executions
|
|
|
|
* of the purge mechanism is set in ms.
|
|
|
|
*/
|
|
|
|
#define LRU_INTERVAL 100
|
|
|
|
|
|
|
|
/*
|
|
|
|
* When the persistent grants list is full we will remove unused grants
|
|
|
|
* from the list. The percent number of grants to be removed at each LRU
|
|
|
|
* execution.
|
|
|
|
*/
|
|
|
|
#define LRU_PERCENT_CLEAN 5
|
|
|
|
|
2011-04-14 22:25:47 +00:00
|
|
|
/* Run-time switchable: /sys/module/blkback/parameters/ */
|
2011-04-14 21:42:07 +00:00
|
|
|
static unsigned int log_stats;
|
2011-04-14 22:25:47 +00:00
|
|
|
module_param(log_stats, int, 0644);
|
|
|
|
|
|
|
|
#define BLKBACK_INVALID_HANDLE (~0)
|
|
|
|
|
2013-04-17 18:18:56 +00:00
|
|
|
/* Number of free pages to remove on each call to free_xenballooned_pages */
|
|
|
|
#define NUM_BATCH_FREE_PAGES 10
|
|
|
|
|
|
|
|
static inline int get_free_page(struct xen_blkif *blkif, struct page **page)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&blkif->free_pages_lock, flags);
|
|
|
|
if (list_empty(&blkif->free_pages)) {
|
|
|
|
BUG_ON(blkif->free_pages_num != 0);
|
|
|
|
spin_unlock_irqrestore(&blkif->free_pages_lock, flags);
|
|
|
|
return alloc_xenballooned_pages(1, page, false);
|
|
|
|
}
|
|
|
|
BUG_ON(blkif->free_pages_num == 0);
|
|
|
|
page[0] = list_first_entry(&blkif->free_pages, struct page, lru);
|
|
|
|
list_del(&page[0]->lru);
|
|
|
|
blkif->free_pages_num--;
|
|
|
|
spin_unlock_irqrestore(&blkif->free_pages_lock, flags);
|
2010-02-05 19:19:33 +00:00
|
|
|
|
2013-04-17 18:18:56 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void put_free_pages(struct xen_blkif *blkif, struct page **page,
|
|
|
|
int num)
|
2011-04-14 22:25:47 +00:00
|
|
|
{
|
2013-04-17 18:18:56 +00:00
|
|
|
unsigned long flags;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&blkif->free_pages_lock, flags);
|
|
|
|
for (i = 0; i < num; i++)
|
|
|
|
list_add(&page[i]->lru, &blkif->free_pages);
|
|
|
|
blkif->free_pages_num += num;
|
|
|
|
spin_unlock_irqrestore(&blkif->free_pages_lock, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void shrink_free_pagepool(struct xen_blkif *blkif, int num)
|
|
|
|
{
|
|
|
|
/* Remove requested pages in batches of NUM_BATCH_FREE_PAGES */
|
|
|
|
struct page *page[NUM_BATCH_FREE_PAGES];
|
|
|
|
unsigned int num_pages = 0;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&blkif->free_pages_lock, flags);
|
|
|
|
while (blkif->free_pages_num > num) {
|
|
|
|
BUG_ON(list_empty(&blkif->free_pages));
|
|
|
|
page[num_pages] = list_first_entry(&blkif->free_pages,
|
|
|
|
struct page, lru);
|
|
|
|
list_del(&page[num_pages]->lru);
|
|
|
|
blkif->free_pages_num--;
|
|
|
|
if (++num_pages == NUM_BATCH_FREE_PAGES) {
|
|
|
|
spin_unlock_irqrestore(&blkif->free_pages_lock, flags);
|
|
|
|
free_xenballooned_pages(num_pages, page);
|
|
|
|
spin_lock_irqsave(&blkif->free_pages_lock, flags);
|
|
|
|
num_pages = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&blkif->free_pages_lock, flags);
|
|
|
|
if (num_pages != 0)
|
|
|
|
free_xenballooned_pages(num_pages, page);
|
2011-04-14 22:25:47 +00:00
|
|
|
}
|
|
|
|
|
2013-04-17 18:18:56 +00:00
|
|
|
#define vaddr(page) ((unsigned long)pfn_to_kaddr(page_to_pfn(page)))
|
|
|
|
|
2011-04-14 22:25:47 +00:00
|
|
|
#define pending_handle(_req, _seg) \
|
2013-04-17 18:18:58 +00:00
|
|
|
(_req->grant_handles[_seg])
|
2011-04-14 22:25:47 +00:00
|
|
|
|
|
|
|
|
2011-05-12 20:47:48 +00:00
|
|
|
static int do_block_io_op(struct xen_blkif *blkif);
|
|
|
|
static int dispatch_rw_block_io(struct xen_blkif *blkif,
|
2011-05-05 17:37:23 +00:00
|
|
|
struct blkif_request *req,
|
|
|
|
struct pending_req *pending_req);
|
2011-05-12 20:47:48 +00:00
|
|
|
static void make_response(struct xen_blkif *blkif, u64 id,
|
2011-04-14 22:25:47 +00:00
|
|
|
unsigned short op, int st);
|
|
|
|
|
2012-12-04 14:21:52 +00:00
|
|
|
#define foreach_grant_safe(pos, n, rbtree, node) \
|
|
|
|
for ((pos) = container_of(rb_first((rbtree)), typeof(*(pos)), node), \
|
2013-03-18 16:49:33 +00:00
|
|
|
(n) = (&(pos)->node != NULL) ? rb_next(&(pos)->node) : NULL; \
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
&(pos)->node != NULL; \
|
2012-12-04 14:21:52 +00:00
|
|
|
(pos) = container_of(n, typeof(*(pos)), node), \
|
|
|
|
(n) = (&(pos)->node != NULL) ? rb_next(&(pos)->node) : NULL)
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
|
|
|
|
|
2013-04-17 18:18:57 +00:00
|
|
|
/*
|
|
|
|
* We don't need locking around the persistent grant helpers
|
|
|
|
* because blkback uses a single-thread for each backed, so we
|
|
|
|
* can be sure that this functions will never be called recursively.
|
|
|
|
*
|
|
|
|
* The only exception to that is put_persistent_grant, that can be called
|
|
|
|
* from interrupt context (by xen_blkbk_unmap), so we have to use atomic
|
|
|
|
* bit operations to modify the flags of a persistent grant and to count
|
|
|
|
* the number of used grants.
|
|
|
|
*/
|
|
|
|
static int add_persistent_gnt(struct xen_blkif *blkif,
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
struct persistent_gnt *persistent_gnt)
|
|
|
|
{
|
2013-04-17 18:18:57 +00:00
|
|
|
struct rb_node **new = NULL, *parent = NULL;
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
struct persistent_gnt *this;
|
|
|
|
|
2013-04-17 18:18:57 +00:00
|
|
|
if (blkif->persistent_gnt_c >= xen_blkif_max_pgrants) {
|
|
|
|
if (!blkif->vbd.overflow_max_grants)
|
|
|
|
blkif->vbd.overflow_max_grants = 1;
|
|
|
|
return -EBUSY;
|
|
|
|
}
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
/* Figure out where to put new node */
|
2013-04-17 18:18:57 +00:00
|
|
|
new = &blkif->persistent_gnts.rb_node;
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
while (*new) {
|
|
|
|
this = container_of(*new, struct persistent_gnt, node);
|
|
|
|
|
|
|
|
parent = *new;
|
|
|
|
if (persistent_gnt->gnt < this->gnt)
|
|
|
|
new = &((*new)->rb_left);
|
|
|
|
else if (persistent_gnt->gnt > this->gnt)
|
|
|
|
new = &((*new)->rb_right);
|
|
|
|
else {
|
2013-04-17 18:18:56 +00:00
|
|
|
pr_alert_ratelimited(DRV_PFX " trying to add a gref that's already in the tree\n");
|
|
|
|
return -EINVAL;
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-04-17 18:18:57 +00:00
|
|
|
bitmap_zero(persistent_gnt->flags, PERSISTENT_GNT_FLAGS_SIZE);
|
|
|
|
set_bit(PERSISTENT_GNT_ACTIVE, persistent_gnt->flags);
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
/* Add new node and rebalance tree. */
|
|
|
|
rb_link_node(&(persistent_gnt->node), parent, new);
|
2013-04-17 18:18:57 +00:00
|
|
|
rb_insert_color(&(persistent_gnt->node), &blkif->persistent_gnts);
|
|
|
|
blkif->persistent_gnt_c++;
|
|
|
|
atomic_inc(&blkif->persistent_gnt_in_use);
|
2013-04-17 18:18:56 +00:00
|
|
|
return 0;
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
}
|
|
|
|
|
2013-04-17 18:18:57 +00:00
|
|
|
static struct persistent_gnt *get_persistent_gnt(struct xen_blkif *blkif,
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
grant_ref_t gref)
|
|
|
|
{
|
|
|
|
struct persistent_gnt *data;
|
2013-04-17 18:18:57 +00:00
|
|
|
struct rb_node *node = NULL;
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
|
2013-04-17 18:18:57 +00:00
|
|
|
node = blkif->persistent_gnts.rb_node;
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
while (node) {
|
|
|
|
data = container_of(node, struct persistent_gnt, node);
|
|
|
|
|
|
|
|
if (gref < data->gnt)
|
|
|
|
node = node->rb_left;
|
|
|
|
else if (gref > data->gnt)
|
|
|
|
node = node->rb_right;
|
2013-04-17 18:18:57 +00:00
|
|
|
else {
|
|
|
|
if(test_bit(PERSISTENT_GNT_ACTIVE, data->flags)) {
|
|
|
|
pr_alert_ratelimited(DRV_PFX " requesting a grant already in use\n");
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
set_bit(PERSISTENT_GNT_ACTIVE, data->flags);
|
|
|
|
atomic_inc(&blkif->persistent_gnt_in_use);
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
return data;
|
2013-04-17 18:18:57 +00:00
|
|
|
}
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
}
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2013-04-17 18:18:57 +00:00
|
|
|
static void put_persistent_gnt(struct xen_blkif *blkif,
|
|
|
|
struct persistent_gnt *persistent_gnt)
|
|
|
|
{
|
|
|
|
if(!test_bit(PERSISTENT_GNT_ACTIVE, persistent_gnt->flags))
|
|
|
|
pr_alert_ratelimited(DRV_PFX " freeing a grant already unused");
|
|
|
|
set_bit(PERSISTENT_GNT_WAS_ACTIVE, persistent_gnt->flags);
|
|
|
|
clear_bit(PERSISTENT_GNT_ACTIVE, persistent_gnt->flags);
|
|
|
|
atomic_dec(&blkif->persistent_gnt_in_use);
|
|
|
|
}
|
|
|
|
|
2013-04-17 18:18:56 +00:00
|
|
|
static void free_persistent_gnts(struct xen_blkif *blkif, struct rb_root *root,
|
|
|
|
unsigned int num)
|
2012-11-16 18:26:48 +00:00
|
|
|
{
|
|
|
|
struct gnttab_unmap_grant_ref unmap[BLKIF_MAX_SEGMENTS_PER_REQUEST];
|
|
|
|
struct page *pages[BLKIF_MAX_SEGMENTS_PER_REQUEST];
|
|
|
|
struct persistent_gnt *persistent_gnt;
|
2012-12-04 14:21:52 +00:00
|
|
|
struct rb_node *n;
|
2012-11-16 18:26:48 +00:00
|
|
|
int ret = 0;
|
|
|
|
int segs_to_unmap = 0;
|
|
|
|
|
2012-12-04 14:21:52 +00:00
|
|
|
foreach_grant_safe(persistent_gnt, n, root, node) {
|
2012-11-16 18:26:48 +00:00
|
|
|
BUG_ON(persistent_gnt->handle ==
|
|
|
|
BLKBACK_INVALID_HANDLE);
|
|
|
|
gnttab_set_unmap_op(&unmap[segs_to_unmap],
|
|
|
|
(unsigned long) pfn_to_kaddr(page_to_pfn(
|
|
|
|
persistent_gnt->page)),
|
|
|
|
GNTMAP_host_map,
|
|
|
|
persistent_gnt->handle);
|
|
|
|
|
|
|
|
pages[segs_to_unmap] = persistent_gnt->page;
|
|
|
|
|
|
|
|
if (++segs_to_unmap == BLKIF_MAX_SEGMENTS_PER_REQUEST ||
|
|
|
|
!rb_next(&persistent_gnt->node)) {
|
|
|
|
ret = gnttab_unmap_refs(unmap, NULL, pages,
|
|
|
|
segs_to_unmap);
|
|
|
|
BUG_ON(ret);
|
2013-04-17 18:18:56 +00:00
|
|
|
put_free_pages(blkif, pages, segs_to_unmap);
|
2012-11-16 18:26:48 +00:00
|
|
|
segs_to_unmap = 0;
|
|
|
|
}
|
2012-12-04 14:21:52 +00:00
|
|
|
|
|
|
|
rb_erase(&persistent_gnt->node, root);
|
|
|
|
kfree(persistent_gnt);
|
|
|
|
num--;
|
2012-11-16 18:26:48 +00:00
|
|
|
}
|
|
|
|
BUG_ON(num != 0);
|
|
|
|
}
|
|
|
|
|
2013-04-17 18:18:57 +00:00
|
|
|
static void unmap_purged_grants(struct work_struct *work)
|
|
|
|
{
|
|
|
|
struct gnttab_unmap_grant_ref unmap[BLKIF_MAX_SEGMENTS_PER_REQUEST];
|
|
|
|
struct page *pages[BLKIF_MAX_SEGMENTS_PER_REQUEST];
|
|
|
|
struct persistent_gnt *persistent_gnt;
|
|
|
|
int ret, segs_to_unmap = 0;
|
|
|
|
struct xen_blkif *blkif = container_of(work, typeof(*blkif), persistent_purge_work);
|
|
|
|
|
|
|
|
while(!list_empty(&blkif->persistent_purge_list)) {
|
|
|
|
persistent_gnt = list_first_entry(&blkif->persistent_purge_list,
|
|
|
|
struct persistent_gnt,
|
|
|
|
remove_node);
|
|
|
|
list_del(&persistent_gnt->remove_node);
|
|
|
|
|
|
|
|
gnttab_set_unmap_op(&unmap[segs_to_unmap],
|
|
|
|
vaddr(persistent_gnt->page),
|
|
|
|
GNTMAP_host_map,
|
|
|
|
persistent_gnt->handle);
|
|
|
|
|
|
|
|
pages[segs_to_unmap] = persistent_gnt->page;
|
|
|
|
|
|
|
|
if (++segs_to_unmap == BLKIF_MAX_SEGMENTS_PER_REQUEST) {
|
|
|
|
ret = gnttab_unmap_refs(unmap, NULL, pages,
|
|
|
|
segs_to_unmap);
|
|
|
|
BUG_ON(ret);
|
|
|
|
put_free_pages(blkif, pages, segs_to_unmap);
|
|
|
|
segs_to_unmap = 0;
|
|
|
|
}
|
|
|
|
kfree(persistent_gnt);
|
|
|
|
}
|
|
|
|
if (segs_to_unmap > 0) {
|
|
|
|
ret = gnttab_unmap_refs(unmap, NULL, pages, segs_to_unmap);
|
|
|
|
BUG_ON(ret);
|
|
|
|
put_free_pages(blkif, pages, segs_to_unmap);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void purge_persistent_gnt(struct xen_blkif *blkif)
|
|
|
|
{
|
|
|
|
struct persistent_gnt *persistent_gnt;
|
|
|
|
struct rb_node *n;
|
|
|
|
unsigned int num_clean, total;
|
|
|
|
bool scan_used = false;
|
|
|
|
struct rb_root *root;
|
|
|
|
|
|
|
|
if (blkif->persistent_gnt_c < xen_blkif_max_pgrants ||
|
|
|
|
(blkif->persistent_gnt_c == xen_blkif_max_pgrants &&
|
|
|
|
!blkif->vbd.overflow_max_grants)) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (work_pending(&blkif->persistent_purge_work)) {
|
|
|
|
pr_alert_ratelimited(DRV_PFX "Scheduled work from previous purge is still pending, cannot purge list\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
num_clean = (xen_blkif_max_pgrants / 100) * LRU_PERCENT_CLEAN;
|
|
|
|
num_clean = blkif->persistent_gnt_c - xen_blkif_max_pgrants + num_clean;
|
|
|
|
num_clean = min(blkif->persistent_gnt_c, num_clean);
|
|
|
|
if (num_clean >
|
|
|
|
(blkif->persistent_gnt_c -
|
|
|
|
atomic_read(&blkif->persistent_gnt_in_use)))
|
|
|
|
return;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* At this point, we can assure that there will be no calls
|
|
|
|
* to get_persistent_grant (because we are executing this code from
|
|
|
|
* xen_blkif_schedule), there can only be calls to put_persistent_gnt,
|
|
|
|
* which means that the number of currently used grants will go down,
|
|
|
|
* but never up, so we will always be able to remove the requested
|
|
|
|
* number of grants.
|
|
|
|
*/
|
|
|
|
|
|
|
|
total = num_clean;
|
|
|
|
|
|
|
|
pr_debug(DRV_PFX "Going to purge %u persistent grants\n", num_clean);
|
|
|
|
|
|
|
|
INIT_LIST_HEAD(&blkif->persistent_purge_list);
|
|
|
|
root = &blkif->persistent_gnts;
|
|
|
|
purge_list:
|
|
|
|
foreach_grant_safe(persistent_gnt, n, root, node) {
|
|
|
|
BUG_ON(persistent_gnt->handle ==
|
|
|
|
BLKBACK_INVALID_HANDLE);
|
|
|
|
|
|
|
|
if (test_bit(PERSISTENT_GNT_ACTIVE, persistent_gnt->flags))
|
|
|
|
continue;
|
|
|
|
if (!scan_used &&
|
|
|
|
(test_bit(PERSISTENT_GNT_WAS_ACTIVE, persistent_gnt->flags)))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
rb_erase(&persistent_gnt->node, root);
|
|
|
|
list_add(&persistent_gnt->remove_node,
|
|
|
|
&blkif->persistent_purge_list);
|
|
|
|
if (--num_clean == 0)
|
|
|
|
goto finished;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* If we get here it means we also need to start cleaning
|
|
|
|
* grants that were used since last purge in order to cope
|
|
|
|
* with the requested num
|
|
|
|
*/
|
|
|
|
if (!scan_used) {
|
|
|
|
pr_debug(DRV_PFX "Still missing %u purged frames\n", num_clean);
|
|
|
|
scan_used = true;
|
|
|
|
goto purge_list;
|
|
|
|
}
|
|
|
|
finished:
|
|
|
|
/* Remove the "used" flag from all the persistent grants */
|
|
|
|
foreach_grant_safe(persistent_gnt, n, root, node) {
|
|
|
|
BUG_ON(persistent_gnt->handle ==
|
|
|
|
BLKBACK_INVALID_HANDLE);
|
|
|
|
clear_bit(PERSISTENT_GNT_WAS_ACTIVE, persistent_gnt->flags);
|
|
|
|
}
|
|
|
|
blkif->persistent_gnt_c -= (total - num_clean);
|
|
|
|
blkif->vbd.overflow_max_grants = 0;
|
|
|
|
|
|
|
|
/* We can defer this work */
|
|
|
|
INIT_WORK(&blkif->persistent_purge_work, unmap_purged_grants);
|
|
|
|
schedule_work(&blkif->persistent_purge_work);
|
|
|
|
pr_debug(DRV_PFX "Purged %u/%u\n", (total - num_clean), total);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2011-04-14 21:05:23 +00:00
|
|
|
/*
|
|
|
|
* Retrieve from the 'pending_reqs' a free pending_req structure to be used.
|
2011-04-14 22:25:47 +00:00
|
|
|
*/
|
2013-04-17 18:18:59 +00:00
|
|
|
static struct pending_req *alloc_req(struct xen_blkif *blkif)
|
2011-04-14 22:25:47 +00:00
|
|
|
{
|
2011-04-14 21:42:07 +00:00
|
|
|
struct pending_req *req = NULL;
|
2011-04-14 22:25:47 +00:00
|
|
|
unsigned long flags;
|
|
|
|
|
2013-04-17 18:18:59 +00:00
|
|
|
spin_lock_irqsave(&blkif->pending_free_lock, flags);
|
|
|
|
if (!list_empty(&blkif->pending_free)) {
|
|
|
|
req = list_entry(blkif->pending_free.next, struct pending_req,
|
2011-04-14 21:42:07 +00:00
|
|
|
free_list);
|
2011-04-14 22:25:47 +00:00
|
|
|
list_del(&req->free_list);
|
|
|
|
}
|
2013-04-17 18:18:59 +00:00
|
|
|
spin_unlock_irqrestore(&blkif->pending_free_lock, flags);
|
2011-04-14 22:25:47 +00:00
|
|
|
return req;
|
|
|
|
}
|
|
|
|
|
2011-04-14 21:05:23 +00:00
|
|
|
/*
|
|
|
|
* Return the 'pending_req' structure back to the freepool. We also
|
|
|
|
* wake up the thread if it was waiting for a free page.
|
|
|
|
*/
|
2013-04-17 18:18:59 +00:00
|
|
|
static void free_req(struct xen_blkif *blkif, struct pending_req *req)
|
2011-04-14 22:25:47 +00:00
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
int was_empty;
|
|
|
|
|
2013-04-17 18:18:59 +00:00
|
|
|
spin_lock_irqsave(&blkif->pending_free_lock, flags);
|
|
|
|
was_empty = list_empty(&blkif->pending_free);
|
|
|
|
list_add(&req->free_list, &blkif->pending_free);
|
|
|
|
spin_unlock_irqrestore(&blkif->pending_free_lock, flags);
|
2011-04-14 22:25:47 +00:00
|
|
|
if (was_empty)
|
2013-04-17 18:18:59 +00:00
|
|
|
wake_up(&blkif->pending_free_wq);
|
2011-04-14 22:25:47 +00:00
|
|
|
}
|
|
|
|
|
2011-04-20 14:57:29 +00:00
|
|
|
/*
|
|
|
|
* Routines for managing virtual block devices (vbds).
|
|
|
|
*/
|
2011-05-12 20:53:56 +00:00
|
|
|
static int xen_vbd_translate(struct phys_req *req, struct xen_blkif *blkif,
|
|
|
|
int operation)
|
2011-04-20 14:57:29 +00:00
|
|
|
{
|
2011-05-12 20:53:56 +00:00
|
|
|
struct xen_vbd *vbd = &blkif->vbd;
|
2011-04-20 14:57:29 +00:00
|
|
|
int rc = -EACCES;
|
|
|
|
|
|
|
|
if ((operation != READ) && vbd->readonly)
|
|
|
|
goto out;
|
|
|
|
|
2011-05-17 10:07:05 +00:00
|
|
|
if (likely(req->nr_sects)) {
|
|
|
|
blkif_sector_t end = req->sector_number + req->nr_sects;
|
|
|
|
|
|
|
|
if (unlikely(end < req->sector_number))
|
|
|
|
goto out;
|
|
|
|
if (unlikely(end > vbd_sz(vbd)))
|
|
|
|
goto out;
|
|
|
|
}
|
2011-04-20 14:57:29 +00:00
|
|
|
|
|
|
|
req->dev = vbd->pdevice;
|
|
|
|
req->bdev = vbd->bdev;
|
|
|
|
rc = 0;
|
|
|
|
|
|
|
|
out:
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
2011-05-12 20:53:56 +00:00
|
|
|
static void xen_vbd_resize(struct xen_blkif *blkif)
|
2011-04-20 14:57:29 +00:00
|
|
|
{
|
2011-05-12 20:53:56 +00:00
|
|
|
struct xen_vbd *vbd = &blkif->vbd;
|
2011-04-20 14:57:29 +00:00
|
|
|
struct xenbus_transaction xbt;
|
|
|
|
int err;
|
2011-04-20 15:50:43 +00:00
|
|
|
struct xenbus_device *dev = xen_blkbk_xenbus(blkif->be);
|
2011-04-20 15:21:43 +00:00
|
|
|
unsigned long long new_size = vbd_sz(vbd);
|
2011-04-20 14:57:29 +00:00
|
|
|
|
2011-05-12 20:43:12 +00:00
|
|
|
pr_info(DRV_PFX "VBD Resize: Domid: %d, Device: (%d, %d)\n",
|
2011-04-20 14:57:29 +00:00
|
|
|
blkif->domid, MAJOR(vbd->pdevice), MINOR(vbd->pdevice));
|
2011-05-12 20:43:12 +00:00
|
|
|
pr_info(DRV_PFX "VBD Resize: new size %llu\n", new_size);
|
2011-04-20 14:57:29 +00:00
|
|
|
vbd->size = new_size;
|
|
|
|
again:
|
|
|
|
err = xenbus_transaction_start(&xbt);
|
|
|
|
if (err) {
|
2011-05-12 20:43:12 +00:00
|
|
|
pr_warn(DRV_PFX "Error starting transaction");
|
2011-04-20 14:57:29 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
err = xenbus_printf(xbt, dev->nodename, "sectors", "%llu",
|
2011-04-20 15:21:43 +00:00
|
|
|
(unsigned long long)vbd_sz(vbd));
|
2011-04-20 14:57:29 +00:00
|
|
|
if (err) {
|
2011-05-12 20:43:12 +00:00
|
|
|
pr_warn(DRV_PFX "Error writing new size");
|
2011-04-20 14:57:29 +00:00
|
|
|
goto abort;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Write the current state; we will use this to synchronize
|
|
|
|
* the front-end. If the current state is "connected" the
|
|
|
|
* front-end will get the new size information online.
|
|
|
|
*/
|
|
|
|
err = xenbus_printf(xbt, dev->nodename, "state", "%d", dev->state);
|
|
|
|
if (err) {
|
2011-05-12 20:43:12 +00:00
|
|
|
pr_warn(DRV_PFX "Error writing the state");
|
2011-04-20 14:57:29 +00:00
|
|
|
goto abort;
|
|
|
|
}
|
|
|
|
|
|
|
|
err = xenbus_transaction_end(xbt, 0);
|
|
|
|
if (err == -EAGAIN)
|
|
|
|
goto again;
|
|
|
|
if (err)
|
2011-05-12 20:43:12 +00:00
|
|
|
pr_warn(DRV_PFX "Error ending transaction");
|
2011-05-13 13:45:40 +00:00
|
|
|
return;
|
2011-04-20 14:57:29 +00:00
|
|
|
abort:
|
|
|
|
xenbus_transaction_end(xbt, 1);
|
|
|
|
}
|
|
|
|
|
2011-04-14 21:05:23 +00:00
|
|
|
/*
|
2011-04-15 14:58:05 +00:00
|
|
|
* Notification from the guest OS.
|
|
|
|
*/
|
2011-05-12 20:47:48 +00:00
|
|
|
static void blkif_notify_work(struct xen_blkif *blkif)
|
2011-04-14 22:25:47 +00:00
|
|
|
{
|
2011-04-15 14:58:05 +00:00
|
|
|
blkif->waiting_reqs = 1;
|
|
|
|
wake_up(&blkif->wq);
|
|
|
|
}
|
2011-04-14 22:25:47 +00:00
|
|
|
|
2011-04-20 15:50:43 +00:00
|
|
|
irqreturn_t xen_blkif_be_int(int irq, void *dev_id)
|
2011-04-15 14:58:05 +00:00
|
|
|
{
|
|
|
|
blkif_notify_work(dev_id);
|
|
|
|
return IRQ_HANDLED;
|
2011-04-14 22:25:47 +00:00
|
|
|
}
|
|
|
|
|
2011-04-14 21:42:07 +00:00
|
|
|
/*
|
2011-04-14 22:25:47 +00:00
|
|
|
* SCHEDULER FUNCTIONS
|
|
|
|
*/
|
|
|
|
|
2011-05-12 20:47:48 +00:00
|
|
|
static void print_stats(struct xen_blkif *blkif)
|
2011-04-14 22:25:47 +00:00
|
|
|
{
|
2013-03-11 16:15:50 +00:00
|
|
|
pr_info("xen-blkback (%s): oo %3llu | rd %4llu | wr %4llu | f %4llu"
|
2013-04-17 18:18:57 +00:00
|
|
|
" | ds %4llu | pg: %4u/%4d\n",
|
2011-05-12 20:42:31 +00:00
|
|
|
current->comm, blkif->st_oo_req,
|
2011-09-01 10:39:10 +00:00
|
|
|
blkif->st_rd_req, blkif->st_wr_req,
|
2013-04-17 18:18:55 +00:00
|
|
|
blkif->st_f_req, blkif->st_ds_req,
|
|
|
|
blkif->persistent_gnt_c,
|
2013-04-17 18:18:57 +00:00
|
|
|
xen_blkif_max_pgrants);
|
2011-04-14 22:25:47 +00:00
|
|
|
blkif->st_print = jiffies + msecs_to_jiffies(10 * 1000);
|
|
|
|
blkif->st_rd_req = 0;
|
|
|
|
blkif->st_wr_req = 0;
|
|
|
|
blkif->st_oo_req = 0;
|
2011-09-01 10:39:10 +00:00
|
|
|
blkif->st_ds_req = 0;
|
2011-04-14 22:25:47 +00:00
|
|
|
}
|
|
|
|
|
2011-04-20 15:50:43 +00:00
|
|
|
int xen_blkif_schedule(void *arg)
|
2011-04-14 22:25:47 +00:00
|
|
|
{
|
2011-05-12 20:47:48 +00:00
|
|
|
struct xen_blkif *blkif = arg;
|
2011-05-12 20:53:56 +00:00
|
|
|
struct xen_vbd *vbd = &blkif->vbd;
|
2013-04-17 18:18:57 +00:00
|
|
|
unsigned long timeout;
|
2011-04-14 22:25:47 +00:00
|
|
|
|
2011-04-20 15:50:43 +00:00
|
|
|
xen_blkif_get(blkif);
|
2011-04-14 22:25:47 +00:00
|
|
|
|
|
|
|
while (!kthread_should_stop()) {
|
|
|
|
if (try_to_freeze())
|
|
|
|
continue;
|
2011-04-20 15:21:43 +00:00
|
|
|
if (unlikely(vbd->size != vbd_sz(vbd)))
|
2011-05-12 20:53:56 +00:00
|
|
|
xen_vbd_resize(blkif);
|
2011-04-14 22:25:47 +00:00
|
|
|
|
2013-04-17 18:18:57 +00:00
|
|
|
timeout = msecs_to_jiffies(LRU_INTERVAL);
|
|
|
|
|
|
|
|
timeout = wait_event_interruptible_timeout(
|
2011-04-14 22:25:47 +00:00
|
|
|
blkif->wq,
|
2013-04-17 18:18:57 +00:00
|
|
|
blkif->waiting_reqs || kthread_should_stop(),
|
|
|
|
timeout);
|
|
|
|
if (timeout == 0)
|
|
|
|
goto purge_gnt_list;
|
|
|
|
timeout = wait_event_interruptible_timeout(
|
2013-04-17 18:18:59 +00:00
|
|
|
blkif->pending_free_wq,
|
|
|
|
!list_empty(&blkif->pending_free) ||
|
2013-04-17 18:18:57 +00:00
|
|
|
kthread_should_stop(),
|
|
|
|
timeout);
|
|
|
|
if (timeout == 0)
|
|
|
|
goto purge_gnt_list;
|
2011-04-14 22:25:47 +00:00
|
|
|
|
|
|
|
blkif->waiting_reqs = 0;
|
|
|
|
smp_mb(); /* clear flag *before* checking for work */
|
|
|
|
|
|
|
|
if (do_block_io_op(blkif))
|
|
|
|
blkif->waiting_reqs = 1;
|
|
|
|
|
2013-04-17 18:18:57 +00:00
|
|
|
purge_gnt_list:
|
|
|
|
if (blkif->vbd.feature_gnt_persistent &&
|
|
|
|
time_after(jiffies, blkif->next_lru)) {
|
|
|
|
purge_persistent_gnt(blkif);
|
|
|
|
blkif->next_lru = jiffies + msecs_to_jiffies(LRU_INTERVAL);
|
|
|
|
}
|
|
|
|
|
2013-04-17 18:18:56 +00:00
|
|
|
/* Shrink if we have more than xen_blkif_max_buffer_pages */
|
|
|
|
shrink_free_pagepool(blkif, xen_blkif_max_buffer_pages);
|
|
|
|
|
2011-04-14 22:25:47 +00:00
|
|
|
if (log_stats && time_after(jiffies, blkif->st_print))
|
|
|
|
print_stats(blkif);
|
|
|
|
}
|
|
|
|
|
2013-04-17 18:18:56 +00:00
|
|
|
/* Since we are shutting down remove all pages from the buffer */
|
|
|
|
shrink_free_pagepool(blkif, 0 /* All */);
|
|
|
|
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
/* Free all persistent grant pages */
|
2012-11-16 18:26:48 +00:00
|
|
|
if (!RB_EMPTY_ROOT(&blkif->persistent_gnts))
|
2013-04-17 18:18:56 +00:00
|
|
|
free_persistent_gnts(blkif, &blkif->persistent_gnts,
|
2012-11-16 18:26:48 +00:00
|
|
|
blkif->persistent_gnt_c);
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
|
|
|
|
BUG_ON(!RB_EMPTY_ROOT(&blkif->persistent_gnts));
|
2012-11-16 18:26:48 +00:00
|
|
|
blkif->persistent_gnt_c = 0;
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
|
2011-04-14 22:25:47 +00:00
|
|
|
if (log_stats)
|
|
|
|
print_stats(blkif);
|
|
|
|
|
|
|
|
blkif->xenblkd = NULL;
|
2011-04-20 15:50:43 +00:00
|
|
|
xen_blkif_put(blkif);
|
2011-04-14 22:25:47 +00:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2011-04-15 15:35:13 +00:00
|
|
|
struct seg_buf {
|
2013-03-18 16:49:32 +00:00
|
|
|
unsigned int offset;
|
2011-04-15 15:35:13 +00:00
|
|
|
unsigned int nsec;
|
|
|
|
};
|
2011-04-15 14:58:05 +00:00
|
|
|
/*
|
|
|
|
* Unmap the grant references, and also remove the M2P over-rides
|
|
|
|
* used in the 'pending_req'.
|
2011-05-11 19:57:09 +00:00
|
|
|
*/
|
2011-04-15 15:50:34 +00:00
|
|
|
static void xen_blkbk_unmap(struct pending_req *req)
|
2011-04-15 14:58:05 +00:00
|
|
|
{
|
|
|
|
struct gnttab_unmap_grant_ref unmap[BLKIF_MAX_SEGMENTS_PER_REQUEST];
|
2011-11-28 16:49:03 +00:00
|
|
|
struct page *pages[BLKIF_MAX_SEGMENTS_PER_REQUEST];
|
2011-04-15 14:58:05 +00:00
|
|
|
unsigned int i, invcount = 0;
|
|
|
|
grant_handle_t handle;
|
2013-04-17 18:18:56 +00:00
|
|
|
struct xen_blkif *blkif = req->blkif;
|
2011-04-15 14:58:05 +00:00
|
|
|
int ret;
|
|
|
|
|
|
|
|
for (i = 0; i < req->nr_pages; i++) {
|
2013-04-17 18:18:57 +00:00
|
|
|
if (req->persistent_gnts[i] != NULL) {
|
|
|
|
put_persistent_gnt(blkif, req->persistent_gnts[i]);
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
continue;
|
2013-04-17 18:18:57 +00:00
|
|
|
}
|
2011-04-15 14:58:05 +00:00
|
|
|
handle = pending_handle(req, i);
|
2013-04-17 18:18:56 +00:00
|
|
|
pages[invcount] = req->pages[i];
|
2011-04-15 14:58:05 +00:00
|
|
|
if (handle == BLKBACK_INVALID_HANDLE)
|
|
|
|
continue;
|
2013-04-17 18:18:56 +00:00
|
|
|
gnttab_set_unmap_op(&unmap[invcount], vaddr(pages[invcount]),
|
2011-04-15 14:58:05 +00:00
|
|
|
GNTMAP_host_map, handle);
|
|
|
|
pending_handle(req, i) = BLKBACK_INVALID_HANDLE;
|
|
|
|
invcount++;
|
|
|
|
}
|
|
|
|
|
2012-09-12 11:44:30 +00:00
|
|
|
ret = gnttab_unmap_refs(unmap, NULL, pages, invcount);
|
2011-04-15 14:58:05 +00:00
|
|
|
BUG_ON(ret);
|
2013-04-17 18:18:56 +00:00
|
|
|
put_free_pages(blkif, pages, invcount);
|
2011-04-15 14:58:05 +00:00
|
|
|
}
|
2011-05-11 19:57:09 +00:00
|
|
|
|
|
|
|
static int xen_blkbk_map(struct blkif_request *req,
|
|
|
|
struct pending_req *pending_req,
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
struct seg_buf seg[],
|
|
|
|
struct page *pages[])
|
2011-04-15 15:35:13 +00:00
|
|
|
{
|
|
|
|
struct gnttab_map_grant_ref map[BLKIF_MAX_SEGMENTS_PER_REQUEST];
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
struct page *pages_to_gnt[BLKIF_MAX_SEGMENTS_PER_REQUEST];
|
2013-04-17 18:18:57 +00:00
|
|
|
struct persistent_gnt **persistent_gnts = pending_req->persistent_gnts;
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
struct persistent_gnt *persistent_gnt = NULL;
|
|
|
|
struct xen_blkif *blkif = pending_req->blkif;
|
|
|
|
phys_addr_t addr = 0;
|
2013-04-17 18:18:56 +00:00
|
|
|
int i, seg_idx, new_map_idx;
|
2011-10-12 16:12:36 +00:00
|
|
|
int nseg = req->u.rw.nr_segments;
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
int segs_to_map = 0;
|
2011-04-15 15:35:13 +00:00
|
|
|
int ret = 0;
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
int use_persistent_gnts;
|
|
|
|
|
|
|
|
use_persistent_gnts = (blkif->vbd.feature_gnt_persistent);
|
|
|
|
|
2011-05-11 19:57:09 +00:00
|
|
|
/*
|
|
|
|
* Fill out preq.nr_sects with proper amount of sectors, and setup
|
2011-04-15 15:35:13 +00:00
|
|
|
* assign map[..] with the PFN of the page in our domain with the
|
|
|
|
* corresponding grant reference for each page.
|
|
|
|
*/
|
|
|
|
for (i = 0; i < nseg; i++) {
|
|
|
|
uint32_t flags;
|
|
|
|
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
if (use_persistent_gnts)
|
|
|
|
persistent_gnt = get_persistent_gnt(
|
2013-04-17 18:18:57 +00:00
|
|
|
blkif,
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
req->u.rw.seg[i].gref);
|
|
|
|
|
|
|
|
if (persistent_gnt) {
|
|
|
|
/*
|
|
|
|
* We are using persistent grants and
|
|
|
|
* the grant is already mapped
|
|
|
|
*/
|
|
|
|
pages[i] = persistent_gnt->page;
|
|
|
|
persistent_gnts[i] = persistent_gnt;
|
|
|
|
} else {
|
2013-04-17 18:18:56 +00:00
|
|
|
if (get_free_page(blkif, &pages[i]))
|
|
|
|
goto out_of_memory;
|
|
|
|
addr = vaddr(pages[i]);
|
|
|
|
pages_to_gnt[segs_to_map] = pages[i];
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
persistent_gnts[i] = NULL;
|
|
|
|
flags = GNTMAP_host_map;
|
2013-04-17 18:18:56 +00:00
|
|
|
if (!use_persistent_gnts &&
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
(pending_req->operation != BLKIF_OP_READ))
|
|
|
|
flags |= GNTMAP_readonly;
|
|
|
|
gnttab_set_map_op(&map[segs_to_map++], addr,
|
|
|
|
flags, req->u.rw.seg[i].gref,
|
|
|
|
blkif->domid);
|
|
|
|
}
|
2011-04-15 15:35:13 +00:00
|
|
|
}
|
|
|
|
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
if (segs_to_map) {
|
|
|
|
ret = gnttab_map_refs(map, NULL, pages_to_gnt, segs_to_map);
|
|
|
|
BUG_ON(ret);
|
|
|
|
}
|
2011-04-15 15:35:13 +00:00
|
|
|
|
2011-05-11 19:57:09 +00:00
|
|
|
/*
|
|
|
|
* Now swizzle the MFN in our domain with the MFN from the other domain
|
2011-04-15 15:35:13 +00:00
|
|
|
* so that when we access vaddr(pending_req,i) it has the contents of
|
|
|
|
* the page from the other domain.
|
|
|
|
*/
|
2013-04-17 18:18:56 +00:00
|
|
|
for (seg_idx = 0, new_map_idx = 0; seg_idx < nseg; seg_idx++) {
|
|
|
|
if (!persistent_gnts[seg_idx]) {
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
/* This is a newly mapped grant */
|
2013-04-17 18:18:56 +00:00
|
|
|
BUG_ON(new_map_idx >= segs_to_map);
|
|
|
|
if (unlikely(map[new_map_idx].status != 0)) {
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
pr_debug(DRV_PFX "invalid buffer -- could not remap it\n");
|
2013-04-17 18:18:56 +00:00
|
|
|
pending_handle(pending_req, seg_idx) = BLKBACK_INVALID_HANDLE;
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
ret |= 1;
|
2013-04-17 18:18:56 +00:00
|
|
|
new_map_idx++;
|
|
|
|
/*
|
|
|
|
* No need to set unmap_seg bit, since
|
|
|
|
* we can not unmap this grant because
|
|
|
|
* the handle is invalid.
|
|
|
|
*/
|
|
|
|
continue;
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
}
|
2013-04-17 18:18:56 +00:00
|
|
|
pending_handle(pending_req, seg_idx) = map[new_map_idx].handle;
|
|
|
|
} else {
|
|
|
|
/* This grant is persistent and already mapped */
|
|
|
|
goto next;
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
}
|
2013-04-17 18:18:56 +00:00
|
|
|
if (use_persistent_gnts &&
|
2013-04-17 18:18:57 +00:00
|
|
|
blkif->persistent_gnt_c < xen_blkif_max_pgrants) {
|
2013-04-17 18:18:56 +00:00
|
|
|
/*
|
|
|
|
* We are using persistent grants, the grant is
|
2013-04-17 18:18:57 +00:00
|
|
|
* not mapped but we might have room for it.
|
2013-04-17 18:18:56 +00:00
|
|
|
*/
|
|
|
|
persistent_gnt = kmalloc(sizeof(struct persistent_gnt),
|
|
|
|
GFP_KERNEL);
|
|
|
|
if (!persistent_gnt) {
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
/*
|
2013-04-17 18:18:56 +00:00
|
|
|
* If we don't have enough memory to
|
|
|
|
* allocate the persistent_gnt struct
|
|
|
|
* map this grant non-persistenly
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
*/
|
2013-04-17 18:18:56 +00:00
|
|
|
goto next_unmap;
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
}
|
2013-04-17 18:18:56 +00:00
|
|
|
persistent_gnt->gnt = map[new_map_idx].ref;
|
|
|
|
persistent_gnt->handle = map[new_map_idx].handle;
|
|
|
|
persistent_gnt->page = pages[seg_idx];
|
2013-04-17 18:18:57 +00:00
|
|
|
if (add_persistent_gnt(blkif,
|
2013-04-17 18:18:56 +00:00
|
|
|
persistent_gnt)) {
|
|
|
|
kfree(persistent_gnt);
|
|
|
|
persistent_gnt = NULL;
|
|
|
|
goto next_unmap;
|
|
|
|
}
|
2013-04-17 18:18:57 +00:00
|
|
|
persistent_gnts[seg_idx] = persistent_gnt;
|
2013-04-17 18:18:56 +00:00
|
|
|
pr_debug(DRV_PFX " grant %u added to the tree of persistent grants, using %u/%u\n",
|
|
|
|
persistent_gnt->gnt, blkif->persistent_gnt_c,
|
2013-04-17 18:18:57 +00:00
|
|
|
xen_blkif_max_pgrants);
|
2013-04-17 18:18:56 +00:00
|
|
|
new_map_idx++;
|
|
|
|
goto next;
|
|
|
|
}
|
|
|
|
if (use_persistent_gnts && !blkif->vbd.overflow_max_grants) {
|
|
|
|
blkif->vbd.overflow_max_grants = 1;
|
|
|
|
pr_debug(DRV_PFX " domain %u, device %#x is using maximum number of persistent grants\n",
|
|
|
|
blkif->domid, blkif->vbd.handle);
|
2011-04-15 15:35:13 +00:00
|
|
|
}
|
2013-04-17 18:18:56 +00:00
|
|
|
next_unmap:
|
|
|
|
/*
|
|
|
|
* We could not map this grant persistently, so use it as
|
|
|
|
* a non-persistent grant.
|
|
|
|
*/
|
|
|
|
new_map_idx++;
|
|
|
|
next:
|
|
|
|
seg[seg_idx].offset = (req->u.rw.seg[seg_idx].first_sect << 9);
|
2011-04-15 15:35:13 +00:00
|
|
|
}
|
|
|
|
return ret;
|
2013-04-17 18:18:56 +00:00
|
|
|
|
|
|
|
out_of_memory:
|
|
|
|
pr_alert(DRV_PFX "%s: out of memory\n", __func__);
|
|
|
|
put_free_pages(blkif, pages_to_gnt, segs_to_map);
|
|
|
|
return -ENOMEM;
|
2011-04-15 15:35:13 +00:00
|
|
|
}
|
|
|
|
|
2011-10-12 21:26:47 +00:00
|
|
|
static int dispatch_discard_io(struct xen_blkif *blkif,
|
|
|
|
struct blkif_request *req)
|
2011-09-01 10:39:10 +00:00
|
|
|
{
|
|
|
|
int err = 0;
|
|
|
|
int status = BLKIF_RSP_OKAY;
|
|
|
|
struct block_device *bdev = blkif->vbd.bdev;
|
2012-03-13 22:43:23 +00:00
|
|
|
unsigned long secure;
|
2011-09-01 10:39:10 +00:00
|
|
|
|
2011-10-12 21:26:47 +00:00
|
|
|
blkif->st_ds_req++;
|
|
|
|
|
|
|
|
xen_blkif_get(blkif);
|
2012-03-13 22:43:23 +00:00
|
|
|
secure = (blkif->vbd.discard_secure &&
|
|
|
|
(req->u.discard.flag & BLKIF_DISCARD_SECURE)) ?
|
|
|
|
BLKDEV_DISCARD_SECURE : 0;
|
|
|
|
|
|
|
|
err = blkdev_issue_discard(bdev, req->u.discard.sector_number,
|
|
|
|
req->u.discard.nr_sectors,
|
|
|
|
GFP_KERNEL, secure);
|
2011-09-01 10:39:10 +00:00
|
|
|
|
|
|
|
if (err == -EOPNOTSUPP) {
|
|
|
|
pr_debug(DRV_PFX "discard op failed, not supported\n");
|
|
|
|
status = BLKIF_RSP_EOPNOTSUPP;
|
|
|
|
} else if (err)
|
|
|
|
status = BLKIF_RSP_ERROR;
|
|
|
|
|
2011-10-12 16:12:36 +00:00
|
|
|
make_response(blkif, req->u.discard.id, req->operation, status);
|
2011-10-12 21:26:47 +00:00
|
|
|
xen_blkif_put(blkif);
|
|
|
|
return err;
|
2011-09-01 10:39:10 +00:00
|
|
|
}
|
|
|
|
|
2013-03-07 17:32:01 +00:00
|
|
|
static int dispatch_other_io(struct xen_blkif *blkif,
|
|
|
|
struct blkif_request *req,
|
|
|
|
struct pending_req *pending_req)
|
|
|
|
{
|
2013-04-17 18:18:59 +00:00
|
|
|
free_req(blkif, pending_req);
|
2013-03-07 17:32:01 +00:00
|
|
|
make_response(blkif, req->u.other.id, req->operation,
|
|
|
|
BLKIF_RSP_EOPNOTSUPP);
|
|
|
|
return -EIO;
|
|
|
|
}
|
|
|
|
|
2011-10-10 04:42:22 +00:00
|
|
|
static void xen_blk_drain_io(struct xen_blkif *blkif)
|
|
|
|
{
|
|
|
|
atomic_set(&blkif->drain, 1);
|
|
|
|
do {
|
2011-10-17 18:27:48 +00:00
|
|
|
/* The initial value is one, and one refcnt taken at the
|
|
|
|
* start of the xen_blkif_schedule thread. */
|
|
|
|
if (atomic_read(&blkif->refcnt) <= 2)
|
|
|
|
break;
|
2011-10-10 04:42:22 +00:00
|
|
|
wait_for_completion_interruptible_timeout(
|
|
|
|
&blkif->drain_complete, HZ);
|
|
|
|
|
|
|
|
if (!atomic_read(&blkif->drain))
|
|
|
|
break;
|
|
|
|
} while (!kthread_should_stop());
|
|
|
|
atomic_set(&blkif->drain, 0);
|
|
|
|
}
|
|
|
|
|
2011-04-14 21:05:23 +00:00
|
|
|
/*
|
|
|
|
* Completion callback on the bio's. Called as bh->b_end_io()
|
2011-04-14 22:25:47 +00:00
|
|
|
*/
|
|
|
|
|
2011-04-14 21:42:07 +00:00
|
|
|
static void __end_block_io_op(struct pending_req *pending_req, int error)
|
2011-04-14 22:25:47 +00:00
|
|
|
{
|
|
|
|
/* An error fails the entire request. */
|
2011-05-04 21:07:27 +00:00
|
|
|
if ((pending_req->operation == BLKIF_OP_FLUSH_DISKCACHE) &&
|
2011-04-14 22:25:47 +00:00
|
|
|
(error == -EOPNOTSUPP)) {
|
2011-05-12 20:43:12 +00:00
|
|
|
pr_debug(DRV_PFX "flush diskcache op failed, not supported\n");
|
2011-05-04 21:07:27 +00:00
|
|
|
xen_blkbk_flush_diskcache(XBT_NIL, pending_req->blkif->be, 0);
|
2011-04-14 22:25:47 +00:00
|
|
|
pending_req->status = BLKIF_RSP_EOPNOTSUPP;
|
2011-10-10 04:42:22 +00:00
|
|
|
} else if ((pending_req->operation == BLKIF_OP_WRITE_BARRIER) &&
|
|
|
|
(error == -EOPNOTSUPP)) {
|
|
|
|
pr_debug(DRV_PFX "write barrier op failed, not supported\n");
|
|
|
|
xen_blkbk_barrier(XBT_NIL, pending_req->blkif->be, 0);
|
|
|
|
pending_req->status = BLKIF_RSP_EOPNOTSUPP;
|
2011-04-14 22:25:47 +00:00
|
|
|
} else if (error) {
|
2011-05-12 20:43:12 +00:00
|
|
|
pr_debug(DRV_PFX "Buffer not up-to-date at end of operation,"
|
2011-05-12 20:42:31 +00:00
|
|
|
" error=%d\n", error);
|
2011-04-14 22:25:47 +00:00
|
|
|
pending_req->status = BLKIF_RSP_ERROR;
|
|
|
|
}
|
|
|
|
|
2011-05-11 19:57:09 +00:00
|
|
|
/*
|
|
|
|
* If all of the bio's have completed it is time to unmap
|
2011-04-14 21:05:23 +00:00
|
|
|
* the grant references associated with 'request' and provide
|
2011-04-14 21:42:07 +00:00
|
|
|
* the proper response on the ring.
|
|
|
|
*/
|
2011-04-14 22:25:47 +00:00
|
|
|
if (atomic_dec_and_test(&pending_req->pendcnt)) {
|
2011-04-15 15:50:34 +00:00
|
|
|
xen_blkbk_unmap(pending_req);
|
2011-04-14 22:25:47 +00:00
|
|
|
make_response(pending_req->blkif, pending_req->id,
|
|
|
|
pending_req->operation, pending_req->status);
|
2011-04-20 15:50:43 +00:00
|
|
|
xen_blkif_put(pending_req->blkif);
|
2011-10-10 04:42:22 +00:00
|
|
|
if (atomic_read(&pending_req->blkif->refcnt) <= 2) {
|
|
|
|
if (atomic_read(&pending_req->blkif->drain))
|
|
|
|
complete(&pending_req->blkif->drain_complete);
|
|
|
|
}
|
2013-04-17 18:18:59 +00:00
|
|
|
free_req(pending_req->blkif, pending_req);
|
2011-04-14 22:25:47 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2011-04-14 21:05:23 +00:00
|
|
|
/*
|
|
|
|
* bio callback.
|
|
|
|
*/
|
2009-02-09 20:05:51 +00:00
|
|
|
static void end_block_io_op(struct bio *bio, int error)
|
2011-04-14 22:25:47 +00:00
|
|
|
{
|
|
|
|
__end_block_io_op(bio->bi_private, error);
|
|
|
|
bio_put(bio);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
2011-04-14 21:05:23 +00:00
|
|
|
/*
|
|
|
|
* Function to copy the from the ring buffer the 'struct blkif_request'
|
|
|
|
* (which has the sectors we want, number of them, grant references, etc),
|
|
|
|
* and transmute it to the block API to hand it over to the proper block disk.
|
2011-04-14 22:25:47 +00:00
|
|
|
*/
|
2011-05-28 20:21:10 +00:00
|
|
|
static int
|
|
|
|
__do_block_io_op(struct xen_blkif *blkif)
|
2011-04-14 22:25:47 +00:00
|
|
|
{
|
2009-02-09 20:05:51 +00:00
|
|
|
union blkif_back_rings *blk_rings = &blkif->blk_rings;
|
|
|
|
struct blkif_request req;
|
2011-04-14 21:42:07 +00:00
|
|
|
struct pending_req *pending_req;
|
2011-04-14 22:25:47 +00:00
|
|
|
RING_IDX rc, rp;
|
|
|
|
int more_to_do = 0;
|
|
|
|
|
|
|
|
rc = blk_rings->common.req_cons;
|
|
|
|
rp = blk_rings->common.sring->req_prod;
|
|
|
|
rmb(); /* Ensure we see queued requests up to 'rp'. */
|
|
|
|
|
|
|
|
while (rc != rp) {
|
|
|
|
|
|
|
|
if (RING_REQUEST_CONS_OVERFLOW(&blk_rings->common, rc))
|
|
|
|
break;
|
|
|
|
|
2009-03-06 08:29:15 +00:00
|
|
|
if (kthread_should_stop()) {
|
2011-04-14 22:25:47 +00:00
|
|
|
more_to_do = 1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2013-04-17 18:18:59 +00:00
|
|
|
pending_req = alloc_req(blkif);
|
2009-03-06 08:29:15 +00:00
|
|
|
if (NULL == pending_req) {
|
|
|
|
blkif->st_oo_req++;
|
2011-04-14 22:25:47 +00:00
|
|
|
more_to_do = 1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (blkif->blk_protocol) {
|
|
|
|
case BLKIF_PROTOCOL_NATIVE:
|
|
|
|
memcpy(&req, RING_GET_REQUEST(&blk_rings->native, rc), sizeof(req));
|
|
|
|
break;
|
|
|
|
case BLKIF_PROTOCOL_X86_32:
|
|
|
|
blkif_get_x86_32_req(&req, RING_GET_REQUEST(&blk_rings->x86_32, rc));
|
|
|
|
break;
|
|
|
|
case BLKIF_PROTOCOL_X86_64:
|
|
|
|
blkif_get_x86_64_req(&req, RING_GET_REQUEST(&blk_rings->x86_64, rc));
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
blk_rings->common.req_cons = ++rc; /* before make_response() */
|
|
|
|
|
|
|
|
/* Apply all sanity checks to /private copy/ of request. */
|
|
|
|
barrier();
|
2013-03-07 17:32:01 +00:00
|
|
|
|
|
|
|
switch (req.operation) {
|
|
|
|
case BLKIF_OP_READ:
|
|
|
|
case BLKIF_OP_WRITE:
|
|
|
|
case BLKIF_OP_WRITE_BARRIER:
|
|
|
|
case BLKIF_OP_FLUSH_DISKCACHE:
|
|
|
|
if (dispatch_rw_block_io(blkif, &req, pending_req))
|
|
|
|
goto done;
|
|
|
|
break;
|
|
|
|
case BLKIF_OP_DISCARD:
|
2013-04-17 18:18:59 +00:00
|
|
|
free_req(blkif, pending_req);
|
2011-10-12 21:26:47 +00:00
|
|
|
if (dispatch_discard_io(blkif, &req))
|
2013-03-07 17:32:01 +00:00
|
|
|
goto done;
|
2011-04-14 22:25:47 +00:00
|
|
|
break;
|
2013-03-07 17:32:01 +00:00
|
|
|
default:
|
|
|
|
if (dispatch_other_io(blkif, &req, pending_req))
|
|
|
|
goto done;
|
|
|
|
break;
|
|
|
|
}
|
2011-04-14 22:25:47 +00:00
|
|
|
|
|
|
|
/* Yield point for this unbounded loop. */
|
|
|
|
cond_resched();
|
|
|
|
}
|
2013-03-07 17:32:01 +00:00
|
|
|
done:
|
2011-04-14 22:25:47 +00:00
|
|
|
return more_to_do;
|
|
|
|
}
|
|
|
|
|
2011-05-28 20:21:10 +00:00
|
|
|
static int
|
|
|
|
do_block_io_op(struct xen_blkif *blkif)
|
|
|
|
{
|
|
|
|
union blkif_back_rings *blk_rings = &blkif->blk_rings;
|
|
|
|
int more_to_do;
|
|
|
|
|
|
|
|
do {
|
|
|
|
more_to_do = __do_block_io_op(blkif);
|
|
|
|
if (more_to_do)
|
|
|
|
break;
|
|
|
|
|
|
|
|
RING_FINAL_CHECK_FOR_REQUESTS(&blk_rings->common, more_to_do);
|
|
|
|
} while (more_to_do);
|
|
|
|
|
|
|
|
return more_to_do;
|
|
|
|
}
|
2011-04-14 21:05:23 +00:00
|
|
|
/*
|
2011-05-11 19:57:09 +00:00
|
|
|
* Transmutation of the 'struct blkif_request' to a proper 'struct bio'
|
|
|
|
* and call the 'submit_bio' to pass it to the underlying storage.
|
2011-04-14 21:05:23 +00:00
|
|
|
*/
|
2011-05-12 20:47:48 +00:00
|
|
|
static int dispatch_rw_block_io(struct xen_blkif *blkif,
|
|
|
|
struct blkif_request *req,
|
|
|
|
struct pending_req *pending_req)
|
2011-04-14 22:25:47 +00:00
|
|
|
{
|
|
|
|
struct phys_req preq;
|
2011-04-15 15:35:13 +00:00
|
|
|
struct seg_buf seg[BLKIF_MAX_SEGMENTS_PER_REQUEST];
|
2011-04-14 22:25:47 +00:00
|
|
|
unsigned int nseg;
|
|
|
|
struct bio *bio = NULL;
|
2011-04-15 14:51:27 +00:00
|
|
|
struct bio *biolist[BLKIF_MAX_SEGMENTS_PER_REQUEST];
|
2011-04-15 15:35:13 +00:00
|
|
|
int i, nbio = 0;
|
2011-04-14 22:25:47 +00:00
|
|
|
int operation;
|
2011-04-27 16:40:11 +00:00
|
|
|
struct blk_plug plug;
|
2011-10-10 04:42:22 +00:00
|
|
|
bool drain = false;
|
2013-04-17 18:18:56 +00:00
|
|
|
struct page **pages = pending_req->pages;
|
2011-04-14 22:25:47 +00:00
|
|
|
|
|
|
|
switch (req->operation) {
|
|
|
|
case BLKIF_OP_READ:
|
2011-05-05 17:37:23 +00:00
|
|
|
blkif->st_rd_req++;
|
2011-04-14 22:25:47 +00:00
|
|
|
operation = READ;
|
|
|
|
break;
|
|
|
|
case BLKIF_OP_WRITE:
|
2011-05-05 17:37:23 +00:00
|
|
|
blkif->st_wr_req++;
|
2011-04-26 20:24:18 +00:00
|
|
|
operation = WRITE_ODIRECT;
|
2011-04-14 22:25:47 +00:00
|
|
|
break;
|
2011-10-10 04:42:22 +00:00
|
|
|
case BLKIF_OP_WRITE_BARRIER:
|
|
|
|
drain = true;
|
2011-05-04 21:07:27 +00:00
|
|
|
case BLKIF_OP_FLUSH_DISKCACHE:
|
2011-05-05 17:37:23 +00:00
|
|
|
blkif->st_f_req++;
|
2011-05-04 21:07:27 +00:00
|
|
|
operation = WRITE_FLUSH;
|
2011-04-14 22:25:47 +00:00
|
|
|
break;
|
|
|
|
default:
|
|
|
|
operation = 0; /* make gcc happy */
|
2011-05-05 17:37:23 +00:00
|
|
|
goto fail_response;
|
|
|
|
break;
|
2011-04-14 22:25:47 +00:00
|
|
|
}
|
|
|
|
|
2011-10-12 21:26:47 +00:00
|
|
|
/* Check that the number of segments is sane. */
|
|
|
|
nseg = req->u.rw.nr_segments;
|
2011-10-12 16:12:36 +00:00
|
|
|
|
2011-10-12 21:26:47 +00:00
|
|
|
if (unlikely(nseg == 0 && operation != WRITE_FLUSH) ||
|
2011-04-14 22:25:47 +00:00
|
|
|
unlikely(nseg > BLKIF_MAX_SEGMENTS_PER_REQUEST)) {
|
2011-05-12 20:43:12 +00:00
|
|
|
pr_debug(DRV_PFX "Bad number of segments in request (%d)\n",
|
2011-05-12 20:42:31 +00:00
|
|
|
nseg);
|
2011-04-15 15:35:13 +00:00
|
|
|
/* Haven't submitted any bio's yet. */
|
2011-04-14 22:25:47 +00:00
|
|
|
goto fail_response;
|
|
|
|
}
|
|
|
|
|
2011-03-01 21:22:28 +00:00
|
|
|
preq.sector_number = req->u.rw.sector_number;
|
2011-04-14 22:25:47 +00:00
|
|
|
preq.nr_sects = 0;
|
|
|
|
|
|
|
|
pending_req->blkif = blkif;
|
2011-10-12 16:12:36 +00:00
|
|
|
pending_req->id = req->u.rw.id;
|
2011-04-14 22:25:47 +00:00
|
|
|
pending_req->operation = req->operation;
|
|
|
|
pending_req->status = BLKIF_RSP_OKAY;
|
|
|
|
pending_req->nr_pages = nseg;
|
2011-04-18 15:34:55 +00:00
|
|
|
|
2011-04-14 22:25:47 +00:00
|
|
|
for (i = 0; i < nseg; i++) {
|
2011-03-01 21:22:28 +00:00
|
|
|
seg[i].nsec = req->u.rw.seg[i].last_sect -
|
|
|
|
req->u.rw.seg[i].first_sect + 1;
|
|
|
|
if ((req->u.rw.seg[i].last_sect >= (PAGE_SIZE >> 9)) ||
|
|
|
|
(req->u.rw.seg[i].last_sect < req->u.rw.seg[i].first_sect))
|
2011-04-14 22:25:47 +00:00
|
|
|
goto fail_response;
|
|
|
|
preq.nr_sects += seg[i].nsec;
|
2011-04-15 15:38:29 +00:00
|
|
|
|
2011-04-14 22:25:47 +00:00
|
|
|
}
|
|
|
|
|
2011-05-12 20:53:56 +00:00
|
|
|
if (xen_vbd_translate(&preq, blkif, operation) != 0) {
|
2011-05-12 20:43:12 +00:00
|
|
|
pr_debug(DRV_PFX "access denied: %s of [%llu,%llu] on dev=%04x\n",
|
2011-05-12 20:42:31 +00:00
|
|
|
operation == READ ? "read" : "write",
|
|
|
|
preq.sector_number,
|
2013-02-28 02:34:23 +00:00
|
|
|
preq.sector_number + preq.nr_sects,
|
|
|
|
blkif->vbd.pdevice);
|
2011-04-15 15:35:13 +00:00
|
|
|
goto fail_response;
|
2011-04-14 22:25:47 +00:00
|
|
|
}
|
2011-05-11 19:57:09 +00:00
|
|
|
|
|
|
|
/*
|
2011-05-12 20:53:56 +00:00
|
|
|
* This check _MUST_ be done after xen_vbd_translate as the preq.bdev
|
2011-05-11 19:57:09 +00:00
|
|
|
* is set there.
|
|
|
|
*/
|
2011-04-18 15:34:55 +00:00
|
|
|
for (i = 0; i < nseg; i++) {
|
|
|
|
if (((int)preq.sector_number|(int)seg[i].nsec) &
|
|
|
|
((bdev_logical_block_size(preq.bdev) >> 9) - 1)) {
|
2011-05-12 20:43:12 +00:00
|
|
|
pr_debug(DRV_PFX "Misaligned I/O request from domain %d",
|
2011-05-12 20:42:31 +00:00
|
|
|
blkif->domid);
|
2011-04-18 15:34:55 +00:00
|
|
|
goto fail_response;
|
|
|
|
}
|
|
|
|
}
|
2011-05-11 19:57:09 +00:00
|
|
|
|
2011-10-10 04:42:22 +00:00
|
|
|
/* Wait on all outstanding I/O's and once that has been completed
|
|
|
|
* issue the WRITE_FLUSH.
|
|
|
|
*/
|
|
|
|
if (drain)
|
|
|
|
xen_blk_drain_io(pending_req->blkif);
|
|
|
|
|
2011-05-11 19:57:09 +00:00
|
|
|
/*
|
|
|
|
* If we have failed at this point, we need to undo the M2P override,
|
2011-04-14 21:42:07 +00:00
|
|
|
* set gnttab_set_unmap_op on all of the grant references and perform
|
|
|
|
* the hypercall to unmap the grants - that is all done in
|
2011-04-15 15:50:34 +00:00
|
|
|
* xen_blkbk_unmap.
|
2011-04-14 21:42:07 +00:00
|
|
|
*/
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
if (xen_blkbk_map(req, pending_req, seg, pages))
|
2011-04-14 22:25:47 +00:00
|
|
|
goto fail_flush;
|
|
|
|
|
2011-09-01 10:39:10 +00:00
|
|
|
/*
|
|
|
|
* This corresponding xen_blkif_put is done in __end_block_io_op, or
|
|
|
|
* below (in "!bio") if we are handling a BLKIF_OP_DISCARD.
|
|
|
|
*/
|
2011-04-20 15:50:43 +00:00
|
|
|
xen_blkif_get(blkif);
|
2011-04-14 22:25:47 +00:00
|
|
|
|
|
|
|
for (i = 0; i < nseg; i++) {
|
|
|
|
while ((bio == NULL) ||
|
|
|
|
(bio_add_page(bio,
|
xen/blkback: Persistent grant maps for xen blk drivers
This patch implements persistent grants for the xen-blk{front,back}
mechanism. The effect of this change is to reduce the number of unmap
operations performed, since they cause a (costly) TLB shootdown. This
allows the I/O performance to scale better when a large number of VMs
are performing I/O.
Previously, the blkfront driver was supplied a bvec[] from the request
queue. This was granted to dom0; dom0 performed the I/O and wrote
directly into the grant-mapped memory and unmapped it; blkfront then
removed foreign access for that grant. The cost of unmapping scales
badly with the number of CPUs in Dom0. An experiment showed that when
Dom0 has 24 VCPUs, and guests are performing parallel I/O to a
ramdisk, the IPIs from performing unmap's is a bottleneck at 5 guests
(at which point 650,000 IOPS are being performed in total). If more
than 5 guests are used, the performance declines. By 10 guests, only
400,000 IOPS are being performed.
This patch improves performance by only unmapping when the connection
between blkfront and back is broken.
On startup blkfront notifies blkback that it is using persistent
grants, and blkback will do the same. If blkback is not capable of
persistent mapping, blkfront will still use the same grants, since it
is compatible with the previous protocol, and simplifies the code
complexity in blkfront.
To perform a read, in persistent mode, blkfront uses a separate pool
of pages that it maps to dom0. When a request comes in, blkfront
transmutes the request so that blkback will write into one of these
free pages. Blkback keeps note of which grefs it has already
mapped. When a new ring request comes to blkback, it looks to see if
it has already mapped that page. If so, it will not map it again. If
the page hasn't been previously mapped, it is mapped now, and a record
is kept of this mapping. Blkback proceeds as usual. When blkfront is
notified that blkback has completed a request, it memcpy's from the
shared memory, into the bvec supplied. A record that the {gref, page}
tuple is mapped, and not inflight is kept.
Writes are similar, except that the memcpy is peformed from the
supplied bvecs, into the shared pages, before the request is put onto
the ring.
Blkback stores a mapping of grefs=>{page mapped to by gref} in
a red-black tree. As the grefs are not known apriori, and provide no
guarantees on their ordering, we have to perform a search
through this tree to find the page, for every gref we receive. This
operation takes O(log n) time in the worst case. In blkfront grants
are stored using a single linked list.
The maximum number of grants that blkback will persistenly map is
currently set to RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, to
prevent a malicios guest from attempting a DoS, by supplying fresh
grefs, causing the Dom0 kernel to map excessively. If a guest
is using persistent grants and exceeds the maximum number of grants to
map persistenly the newly passed grefs will be mapped and unmaped.
Using this approach, we can have requests that mix persistent and
non-persistent grants, and we need to handle them correctly.
This allows us to set the maximum number of persistent grants to a
lower value than RING_SIZE * BLKIF_MAX_SEGMENTS_PER_REQUEST, although
setting it will lead to unpredictable performance.
In writing this patch, the question arrises as to if the additional
cost of performing memcpys in the guest (to/from the pool of granted
pages) outweigh the gains of not performing TLB shootdowns. The answer
to that question is `no'. There appears to be very little, if any
additional cost to the guest of using persistent grants. There is
perhaps a small saving, from the reduced number of hypercalls
performed in granting, and ending foreign access.
Signed-off-by: Oliver Chick <oliver.chick@citrix.com>
Signed-off-by: Roger Pau Monne <roger.pau@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v1: Fixed up the misuse of bool as int]
2012-10-24 16:58:45 +00:00
|
|
|
pages[i],
|
2011-04-14 22:25:47 +00:00
|
|
|
seg[i].nsec << 9,
|
2013-03-18 16:49:32 +00:00
|
|
|
seg[i].offset) == 0)) {
|
2011-04-14 21:42:07 +00:00
|
|
|
|
2011-05-12 20:19:23 +00:00
|
|
|
bio = bio_alloc(GFP_KERNEL, nseg-i);
|
2011-04-14 22:25:47 +00:00
|
|
|
if (unlikely(bio == NULL))
|
|
|
|
goto fail_put_bio;
|
|
|
|
|
2011-05-12 20:19:23 +00:00
|
|
|
biolist[nbio++] = bio;
|
2011-04-14 22:25:47 +00:00
|
|
|
bio->bi_bdev = preq.bdev;
|
|
|
|
bio->bi_private = pending_req;
|
|
|
|
bio->bi_end_io = end_block_io_op;
|
|
|
|
bio->bi_sector = preq.sector_number;
|
|
|
|
}
|
|
|
|
|
|
|
|
preq.sector_number += seg[i].nsec;
|
|
|
|
}
|
|
|
|
|
2011-09-01 10:39:10 +00:00
|
|
|
/* This will be hit if the operation was a flush or discard. */
|
2011-04-14 22:25:47 +00:00
|
|
|
if (!bio) {
|
2011-10-12 21:26:47 +00:00
|
|
|
BUG_ON(operation != WRITE_FLUSH);
|
2011-05-12 20:23:06 +00:00
|
|
|
|
2011-10-12 21:26:47 +00:00
|
|
|
bio = bio_alloc(GFP_KERNEL, 0);
|
|
|
|
if (unlikely(bio == NULL))
|
|
|
|
goto fail_put_bio;
|
2011-04-14 22:25:47 +00:00
|
|
|
|
2011-10-12 21:26:47 +00:00
|
|
|
biolist[nbio++] = bio;
|
|
|
|
bio->bi_bdev = preq.bdev;
|
|
|
|
bio->bi_private = pending_req;
|
|
|
|
bio->bi_end_io = end_block_io_op;
|
2011-04-14 22:25:47 +00:00
|
|
|
}
|
|
|
|
|
2011-04-15 14:51:27 +00:00
|
|
|
atomic_set(&pending_req->pendcnt, nbio);
|
2011-04-27 16:40:11 +00:00
|
|
|
blk_start_plug(&plug);
|
|
|
|
|
2011-04-15 14:51:27 +00:00
|
|
|
for (i = 0; i < nbio; i++)
|
|
|
|
submit_bio(operation, biolist[i]);
|
|
|
|
|
2011-04-27 16:40:11 +00:00
|
|
|
/* Let the I/Os go.. */
|
2011-05-05 17:42:10 +00:00
|
|
|
blk_finish_plug(&plug);
|
2011-04-27 16:40:11 +00:00
|
|
|
|
2011-04-14 22:25:47 +00:00
|
|
|
if (operation == READ)
|
|
|
|
blkif->st_rd_sect += preq.nr_sects;
|
2011-10-10 16:33:21 +00:00
|
|
|
else if (operation & WRITE)
|
2011-04-14 22:25:47 +00:00
|
|
|
blkif->st_wr_sect += preq.nr_sects;
|
|
|
|
|
2011-05-05 17:37:23 +00:00
|
|
|
return 0;
|
2011-04-14 22:25:47 +00:00
|
|
|
|
|
|
|
fail_flush:
|
2011-04-15 15:50:34 +00:00
|
|
|
xen_blkbk_unmap(pending_req);
|
2011-04-14 22:25:47 +00:00
|
|
|
fail_response:
|
2011-04-14 21:58:19 +00:00
|
|
|
/* Haven't submitted any bio's yet. */
|
2011-10-12 16:12:36 +00:00
|
|
|
make_response(blkif, req->u.rw.id, req->operation, BLKIF_RSP_ERROR);
|
2013-04-17 18:18:59 +00:00
|
|
|
free_req(blkif, pending_req);
|
2011-04-14 22:25:47 +00:00
|
|
|
msleep(1); /* back off a bit */
|
2011-05-05 17:37:23 +00:00
|
|
|
return -EIO;
|
2011-04-14 22:25:47 +00:00
|
|
|
|
|
|
|
fail_put_bio:
|
2011-05-12 20:19:23 +00:00
|
|
|
for (i = 0; i < nbio; i++)
|
2011-04-15 14:51:27 +00:00
|
|
|
bio_put(biolist[i]);
|
2013-03-11 09:39:55 +00:00
|
|
|
atomic_set(&pending_req->pendcnt, 1);
|
2011-04-14 22:25:47 +00:00
|
|
|
__end_block_io_op(pending_req, -EINVAL);
|
|
|
|
msleep(1); /* back off a bit */
|
2011-05-05 17:37:23 +00:00
|
|
|
return -EIO;
|
2011-04-14 22:25:47 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
2011-04-14 21:05:23 +00:00
|
|
|
/*
|
|
|
|
* Put a response on the ring on how the operation fared.
|
2011-04-14 22:25:47 +00:00
|
|
|
*/
|
2011-05-12 20:47:48 +00:00
|
|
|
static void make_response(struct xen_blkif *blkif, u64 id,
|
2011-04-14 22:25:47 +00:00
|
|
|
unsigned short op, int st)
|
|
|
|
{
|
2009-02-09 20:05:51 +00:00
|
|
|
struct blkif_response resp;
|
2011-04-14 22:25:47 +00:00
|
|
|
unsigned long flags;
|
2009-02-09 20:05:51 +00:00
|
|
|
union blkif_back_rings *blk_rings = &blkif->blk_rings;
|
2011-04-14 22:25:47 +00:00
|
|
|
int notify;
|
|
|
|
|
|
|
|
resp.id = id;
|
|
|
|
resp.operation = op;
|
|
|
|
resp.status = st;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&blkif->blk_ring_lock, flags);
|
|
|
|
/* Place on the response ring for the relevant domain. */
|
|
|
|
switch (blkif->blk_protocol) {
|
|
|
|
case BLKIF_PROTOCOL_NATIVE:
|
|
|
|
memcpy(RING_GET_RESPONSE(&blk_rings->native, blk_rings->native.rsp_prod_pvt),
|
|
|
|
&resp, sizeof(resp));
|
|
|
|
break;
|
|
|
|
case BLKIF_PROTOCOL_X86_32:
|
|
|
|
memcpy(RING_GET_RESPONSE(&blk_rings->x86_32, blk_rings->x86_32.rsp_prod_pvt),
|
|
|
|
&resp, sizeof(resp));
|
|
|
|
break;
|
|
|
|
case BLKIF_PROTOCOL_X86_64:
|
|
|
|
memcpy(RING_GET_RESPONSE(&blk_rings->x86_64, blk_rings->x86_64.rsp_prod_pvt),
|
|
|
|
&resp, sizeof(resp));
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
blk_rings->common.rsp_prod_pvt++;
|
|
|
|
RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&blk_rings->common, notify);
|
|
|
|
spin_unlock_irqrestore(&blkif->blk_ring_lock, flags);
|
|
|
|
if (notify)
|
|
|
|
notify_remote_via_irq(blkif->irq);
|
|
|
|
}
|
|
|
|
|
2011-04-20 15:50:43 +00:00
|
|
|
static int __init xen_blkif_init(void)
|
2011-04-14 22:25:47 +00:00
|
|
|
{
|
2009-10-08 17:23:09 +00:00
|
|
|
int rc = 0;
|
2011-04-14 22:25:47 +00:00
|
|
|
|
2011-11-28 16:49:05 +00:00
|
|
|
if (!xen_domain())
|
2011-04-14 22:25:47 +00:00
|
|
|
return -ENODEV;
|
|
|
|
|
2011-04-20 15:50:43 +00:00
|
|
|
rc = xen_blkif_interface_init();
|
2009-10-08 17:23:09 +00:00
|
|
|
if (rc)
|
|
|
|
goto failed_init;
|
2011-04-14 22:25:47 +00:00
|
|
|
|
2011-04-20 15:50:43 +00:00
|
|
|
rc = xen_blkif_xenbus_init();
|
2009-10-08 17:23:09 +00:00
|
|
|
if (rc)
|
|
|
|
goto failed_init;
|
2011-04-14 22:25:47 +00:00
|
|
|
|
2009-10-08 17:23:09 +00:00
|
|
|
failed_init:
|
|
|
|
return rc;
|
2011-04-14 22:25:47 +00:00
|
|
|
}
|
|
|
|
|
2011-04-20 15:50:43 +00:00
|
|
|
module_init(xen_blkif_init);
|
2011-04-14 22:25:47 +00:00
|
|
|
|
|
|
|
MODULE_LICENSE("Dual BSD/GPL");
|
2011-06-29 12:40:50 +00:00
|
|
|
MODULE_ALIAS("xen-backend:vbd");
|