linux/drivers/block/zram/zram_drv.h

130 lines
3.7 KiB
C
Raw Normal View History

/*
* Compressed RAM block device
*
* Copyright (C) 2008, 2009, 2010 Nitin Gupta
* 2012, 2013 Minchan Kim
*
* This code is released using a dual license strategy: BSD/GPL
* You can choose the licence that better fits your requirements.
*
* Released under the terms of 3-clause BSD License
* Released under the terms of GNU General Public License Version 2.0
*
*/
#ifndef _ZRAM_DRV_H_
#define _ZRAM_DRV_H_
zram: use crypto api to check alg availability There is no way to get a string with all the crypto comp algorithms supported by the crypto comp engine, so we need to maintain our own backends list. At the same time we additionally need to use crypto_has_comp() to make sure that the user has requested a compression algorithm that is recognized by the crypto comp engine. Relying on /proc/crypto is not an options here, because it does not show not-yet-inserted compression modules. Example: modprobe zram cat /proc/crypto | grep -i lz4 modprobe lz4 cat /proc/crypto | grep -i lz4 name : lz4 driver : lz4-generic module : lz4 So the user can't tell exactly if the lz4 is really supported from /proc/crypto output, unless someone or something has loaded it. This patch also adds crypto_has_comp() to zcomp_available_show(). We store all the compression algorithms names in zcomp's `backends' array, regardless the CONFIG_CRYPTO_FOO configuration, but show only those that are also supported by crypto engine. This helps user to know the exact list of compression algorithms that can be used. Example: module lz4 is not loaded yet, but is supported by the crypto engine. /proc/crypto has no information on this module, while zram's `comp_algorithm' lists it: cat /proc/crypto | grep -i lz4 cat /sys/block/zram0/comp_algorithm [lzo] lz4 deflate lz4hc 842 We still use the `backends' array to determine if the requested compression backend is known to crypto api. This array, however, may not contain some entries, therefore as the last step we call crypto_has_comp() function which attempts to insmod the requested compression algorithm to determine if crypto api supports it. The advantage of this method is that now we permit the usage of out-of-tree crypto compression modules (implementing S/W or H/W compression). [sergey.senozhatsky@gmail.com: zram-use-crypto-api-to-check-alg-availability-v3] Link: http://lkml.kernel.org/r/20160604024902.11778-4-sergey.senozhatsky@gmail.com Link: http://lkml.kernel.org/r/20160531122017.2878-5-sergey.senozhatsky@gmail.com Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 22:22:48 +00:00
#include <linux/rwsem.h>
zsmalloc: move it under mm This patch moves zsmalloc under mm directory. Before that, description will explain why we have needed custom allocator. Zsmalloc is a new slab-based memory allocator for storing compressed pages. It is designed for low fragmentation and high allocation success rate on large object, but <= PAGE_SIZE allocations. zsmalloc differs from the kernel slab allocator in two primary ways to achieve these design goals. zsmalloc never requires high order page allocations to back slabs, or "size classes" in zsmalloc terms. Instead it allows multiple single-order pages to be stitched together into a "zspage" which backs the slab. This allows for higher allocation success rate under memory pressure. Also, zsmalloc allows objects to span page boundaries within the zspage. This allows for lower fragmentation than could be had with the kernel slab allocator for objects between PAGE_SIZE/2 and PAGE_SIZE. With the kernel slab allocator, if a page compresses to 60% of it original size, the memory savings gained through compression is lost in fragmentation because another object of the same size can't be stored in the leftover space. This ability to span pages results in zsmalloc allocations not being directly addressable by the user. The user is given an non-dereferencable handle in response to an allocation request. That handle must be mapped, using zs_map_object(), which returns a pointer to the mapped region that can be used. The mapping is necessary since the object data may reside in two different noncontigious pages. The zsmalloc fulfills the allocation needs for zram perfectly [sjenning@linux.vnet.ibm.com: borrow Seth's quote] Signed-off-by: Minchan Kim <minchan@kernel.org> Acked-by: Nitin Gupta <ngupta@vflare.org> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hugh Dickins <hughd@google.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Pekka Enberg <penberg@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-30 23:45:50 +00:00
#include <linux/zsmalloc.h>
zram: use crypto api to check alg availability There is no way to get a string with all the crypto comp algorithms supported by the crypto comp engine, so we need to maintain our own backends list. At the same time we additionally need to use crypto_has_comp() to make sure that the user has requested a compression algorithm that is recognized by the crypto comp engine. Relying on /proc/crypto is not an options here, because it does not show not-yet-inserted compression modules. Example: modprobe zram cat /proc/crypto | grep -i lz4 modprobe lz4 cat /proc/crypto | grep -i lz4 name : lz4 driver : lz4-generic module : lz4 So the user can't tell exactly if the lz4 is really supported from /proc/crypto output, unless someone or something has loaded it. This patch also adds crypto_has_comp() to zcomp_available_show(). We store all the compression algorithms names in zcomp's `backends' array, regardless the CONFIG_CRYPTO_FOO configuration, but show only those that are also supported by crypto engine. This helps user to know the exact list of compression algorithms that can be used. Example: module lz4 is not loaded yet, but is supported by the crypto engine. /proc/crypto has no information on this module, while zram's `comp_algorithm' lists it: cat /proc/crypto | grep -i lz4 cat /sys/block/zram0/comp_algorithm [lzo] lz4 deflate lz4hc 842 We still use the `backends' array to determine if the requested compression backend is known to crypto api. This array, however, may not contain some entries, therefore as the last step we call crypto_has_comp() function which attempts to insmod the requested compression algorithm to determine if crypto api supports it. The advantage of this method is that now we permit the usage of out-of-tree crypto compression modules (implementing S/W or H/W compression). [sergey.senozhatsky@gmail.com: zram-use-crypto-api-to-check-alg-availability-v3] Link: http://lkml.kernel.org/r/20160604024902.11778-4-sergey.senozhatsky@gmail.com Link: http://lkml.kernel.org/r/20160531122017.2878-5-sergey.senozhatsky@gmail.com Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 22:22:48 +00:00
#include <linux/crypto.h>
#include "zcomp.h"
#define SECTORS_PER_PAGE_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
#define SECTORS_PER_PAGE (1 << SECTORS_PER_PAGE_SHIFT)
#define ZRAM_LOGICAL_BLOCK_SHIFT 12
#define ZRAM_LOGICAL_BLOCK_SIZE (1 << ZRAM_LOGICAL_BLOCK_SHIFT)
#define ZRAM_SECTOR_PER_LOGICAL_BLOCK \
(1 << (ZRAM_LOGICAL_BLOCK_SHIFT - SECTOR_SHIFT))
zram: replace global tb_lock with fine grain lock Currently, we use a rwlock tb_lock to protect concurrent access to the whole zram meta table. However, according to the actual access model, there is only a small chance for upper user to access the same table[index], so the current lock granularity is too big. The idea of optimization is to change the lock granularity from whole meta table to per table entry (table -> table[index]), so that we can protect concurrent access to the same table[index], meanwhile allow the maximum concurrency. With this in mind, several kinds of locks which could be used as a per-entry lock were tested and compared: Test environment: x86-64 Intel Core2 Q8400, system memory 4GB, Ubuntu 12.04, kernel v3.15.0-rc3 as base, zram with 4 max_comp_streams LZO. iozone test: iozone -t 4 -R -r 16K -s 200M -I +Z (1GB zram with ext4 filesystem, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------------- Initial write 1381094 1425435 1422860 1423075 1421521 Rewrite 1529479 1641199 1668762 1672855 1654910 Read 8468009 11324979 11305569 11117273 10997202 Re-read 8467476 11260914 11248059 11145336 10906486 Reverse Read 6821393 8106334 8282174 8279195 8109186 Stride read 7191093 8994306 9153982 8961224 9004434 Random read 7156353 8957932 9167098 8980465 8940476 Mixed workload 4172747 5680814 5927825 5489578 5972253 Random write 1483044 1605588 1594329 1600453 1596010 Pwrite 1276644 1303108 1311612 1314228 1300960 Pread 4324337 4632869 4618386 4457870 4500166 To enhance the possibility of access the same table[index] concurrently, set zram a small disksize(10MB) and let threads run with large loop count. fio test: fio --bs=32k --randrepeat=1 --randseed=100 --refill_buffers --scramble_buffers=1 --direct=1 --loops=3000 --numjobs=4 --filename=/dev/zram0 --name=seq-write --rw=write --stonewall --name=seq-read --rw=read --stonewall --name=seq-readwrite --rw=rw --stonewall --name=rand-readwrite --rw=randrw --stonewall (10MB zram raw block device, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------- seq-write 933789 999357 1003298 995961 1001958 seq-read 5634130 6577930 6380861 6243912 6230006 seq-rw 1405687 1638117 1640256 1633903 1634459 rand-rw 1386119 1614664 1617211 1609267 1612471 All the optimization methods show a higher performance than the base, however, it is hard to say which method is the most appropriate. On the other hand, zram is mostly used on small embedded system, so we don't want to increase any memory footprint. This patch pick the bit_spinlock method, pack object size and page_flag into an unsigned long table.value, so as to not increase any memory overhead on both 32-bit and 64-bit system. On the third hand, even though different kinds of locks have different performances, we can ignore this difference, because: if zram is used as zram swapfile, the swap subsystem can prevent concurrent access to the same swapslot; if zram is used as zram-blk for set up filesystem on it, the upper filesystem and the page cache also prevent concurrent access of the same block mostly. So we can ignore the different performances among locks. Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Signed-off-by: Weijie Yang <weijie.yang@samsung.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 23:08:31 +00:00
/*
* The lower ZRAM_FLAG_SHIFT bits of table.flags is for
zram: replace global tb_lock with fine grain lock Currently, we use a rwlock tb_lock to protect concurrent access to the whole zram meta table. However, according to the actual access model, there is only a small chance for upper user to access the same table[index], so the current lock granularity is too big. The idea of optimization is to change the lock granularity from whole meta table to per table entry (table -> table[index]), so that we can protect concurrent access to the same table[index], meanwhile allow the maximum concurrency. With this in mind, several kinds of locks which could be used as a per-entry lock were tested and compared: Test environment: x86-64 Intel Core2 Q8400, system memory 4GB, Ubuntu 12.04, kernel v3.15.0-rc3 as base, zram with 4 max_comp_streams LZO. iozone test: iozone -t 4 -R -r 16K -s 200M -I +Z (1GB zram with ext4 filesystem, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------------- Initial write 1381094 1425435 1422860 1423075 1421521 Rewrite 1529479 1641199 1668762 1672855 1654910 Read 8468009 11324979 11305569 11117273 10997202 Re-read 8467476 11260914 11248059 11145336 10906486 Reverse Read 6821393 8106334 8282174 8279195 8109186 Stride read 7191093 8994306 9153982 8961224 9004434 Random read 7156353 8957932 9167098 8980465 8940476 Mixed workload 4172747 5680814 5927825 5489578 5972253 Random write 1483044 1605588 1594329 1600453 1596010 Pwrite 1276644 1303108 1311612 1314228 1300960 Pread 4324337 4632869 4618386 4457870 4500166 To enhance the possibility of access the same table[index] concurrently, set zram a small disksize(10MB) and let threads run with large loop count. fio test: fio --bs=32k --randrepeat=1 --randseed=100 --refill_buffers --scramble_buffers=1 --direct=1 --loops=3000 --numjobs=4 --filename=/dev/zram0 --name=seq-write --rw=write --stonewall --name=seq-read --rw=read --stonewall --name=seq-readwrite --rw=rw --stonewall --name=rand-readwrite --rw=randrw --stonewall (10MB zram raw block device, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------- seq-write 933789 999357 1003298 995961 1001958 seq-read 5634130 6577930 6380861 6243912 6230006 seq-rw 1405687 1638117 1640256 1633903 1634459 rand-rw 1386119 1614664 1617211 1609267 1612471 All the optimization methods show a higher performance than the base, however, it is hard to say which method is the most appropriate. On the other hand, zram is mostly used on small embedded system, so we don't want to increase any memory footprint. This patch pick the bit_spinlock method, pack object size and page_flag into an unsigned long table.value, so as to not increase any memory overhead on both 32-bit and 64-bit system. On the third hand, even though different kinds of locks have different performances, we can ignore this difference, because: if zram is used as zram swapfile, the swap subsystem can prevent concurrent access to the same swapslot; if zram is used as zram-blk for set up filesystem on it, the upper filesystem and the page cache also prevent concurrent access of the same block mostly. So we can ignore the different performances among locks. Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Signed-off-by: Weijie Yang <weijie.yang@samsung.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 23:08:31 +00:00
* object size (excluding header), the higher bits is for
* zram_pageflags.
*
* zram is mainly used for memory efficiency so we want to keep memory
* footprint small so we can squeeze size and flags into a field.
* The lower ZRAM_FLAG_SHIFT bits is for object size (excluding header),
* the higher bits is for zram_pageflags.
*/
#define ZRAM_FLAG_SHIFT 24
/* Flags for zram pages (table[page_no].flags) */
enum zram_pageflags {
zram: correct flag name of ZRAM_ACCESS Patch series "zram memory tracking", v5. zRam as swap is useful for small memory device. However, swap means those pages on zram are mostly cold pages due to VM's LRU algorithm. Especially, once init data for application are touched for launching, they tend to be not accessed any more and finally swapped out. zRAM can store such cold pages as compressed form but it's pointless to keep in memory. As well, it's pointless to store incompressible pages to zram so better idea is app developers manages them directly like free or mlock rather than remaining them on heap. This patch provides a debugfs /sys/kernel/debug/zram/zram0/block_state to represent each block's state so admin can investigate what memory is cold|incompressible|same page with using pagemap once the pages are swapped out. The output is as follows: 300 75.033841 .wh 301 63.806904 s.. 302 63.806919 ..h First column is zram's block index and 3rh one represents symbol (s: same page w: written page to backing store h: huge page) of the block state. Second column represents usec time unit of the block was last accessed. So above example means the 300th block is accessed at 75.033851 second and it was huge so it was written to the backing store. This patch (of 4): ZRAM_ACCESS is used for locking a slot of zram so correct the name. It is also not a common flag to indicate status of the block so move the declare position on top of the flag. Lastly, let's move the function to the top of source code to be able to use it easily without forward declaration. Link: http://lkml.kernel.org/r/20180416090946.63057-2-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-08 00:05:39 +00:00
/* zram slot is locked */
ZRAM_LOCK = ZRAM_FLAG_SHIFT,
ZRAM_SAME, /* Page consists the same element */
ZRAM_WB, /* page is stored on backing_device */
zram: support idle/huge page writeback Add a new feature "zram idle/huge page writeback". In the zram-swap use case, zram usually has many idle/huge swap pages. It's pointless to keep them in memory (ie, zram). To solve this problem, this feature introduces idle/huge page writeback to the backing device so the goal is to save more memory space on embedded systems. Normal sequence to use idle/huge page writeback feature is as follows, while (1) { # mark allocated zram slot to idle echo all > /sys/block/zram0/idle # leave system working for several hours # Unless there is no access for some blocks on zram, # they are still IDLE marked pages. echo "idle" > /sys/block/zram0/writeback or/and echo "huge" > /sys/block/zram0/writeback # write the IDLE or/and huge marked slot into backing device # and free the memory. } Per the discussion at https://lore.kernel.org/lkml/20181122065926.GG3441@jagdpanzerIV/T/#u, This patch removes direct incommpressibe page writeback feature (d2afd25114f4 ("zram: write incompressible pages to backing device")). Below concerns from Sergey: == &< == "IDLE writeback" is superior to "incompressible writeback". "incompressible writeback" is completely unpredictable and uncontrollable; it depens on data patterns and compression algorithms. While "IDLE writeback" is predictable. I even suspect, that, *ideally*, we can remove "incompressible writeback". "IDLE pages" is a super set which also includes "incompressible" pages. So, technically, we still can do "incompressible writeback" from "IDLE writeback" path; but a much more reasonable one, based on a page idling period. I understand that you want to keep "direct incompressible writeback" around. ZRAM is especially popular on devices which do suffer from flash wearout, so I can see "incompressible writeback" path becoming a dead code, long term. == &< == Below concerns from Minchan: == &< == My concern is if we enable CONFIG_ZRAM_WRITEBACK in this implementation, both hugepage/idlepage writeck will turn on. However someuser want to enable only idlepage writeback so we need to introduce turn on/off knob for hugepage or new CONFIG_ZRAM_IDLEPAGE_WRITEBACK for those usecase. I don't want to make it complicated *if possible*. Long term, I imagine we need to make VM aware of new swap hierarchy a little bit different with as-is. For example, first high priority swap can return -EIO or -ENOCOMP, swap try to fallback to next lower priority swap device. With that, hugepage writeback will work tranparently. So we could regard it as regression because incompressible pages doesn't go to backing storage automatically. Instead, user should do it via "echo huge" > /sys/block/zram/writeback" manually. == &< == Link: http://lkml.kernel.org/r/20181127055429.251614-6-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Joey Pabalinas <joeypabalinas@gmail.com> Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:36:47 +00:00
ZRAM_UNDER_WB, /* page is under writeback */
ZRAM_HUGE, /* Incompressible page */
ZRAM_IDLE, /* not accessed page since last idle marking */
__NR_ZRAM_PAGEFLAGS,
};
/*-- Data structures */
/* Allocated for each disk page */
struct zram_table_entry {
zram: extend zero pages to same element pages The idea is that without doing more calculations we extend zero pages to same element pages for zram. zero page is special case of same element page with zero element. 1. the test is done under android 7.0 2. startup too many applications circularly 3. sample the zero pages, same pages (none-zero element) and total pages in function page_zero_filled the result is listed as below: ZERO SAME TOTAL 36214 17842 598196 ZERO/TOTAL SAME/TOTAL (ZERO+SAME)/TOTAL ZERO/SAME AVERAGE 0.060631909 0.024990816 0.085622726 2.663825038 STDEV 0.00674612 0.005887625 0.009707034 2.115881328 MAX 0.069698422 0.030046087 0.094975336 7.56043956 MIN 0.03959586 0.007332205 0.056055193 1.928985507 from the above data, the benefit is about 2.5% and up to 3% of total swapout pages. The defect of the patch is that when we recovery a page from non-zero element the operations are low efficient for partial read. This patch extends zero_page to same_page so if there is any user to have monitored zero_pages, he will be surprised if the number is increased but it's not harmful, I believe. [minchan@kernel.org: do not free same element pages in zram_meta_free] Link: http://lkml.kernel.org/r/20170207065741.GA2567@bbox Link: http://lkml.kernel.org/r/1483692145-75357-1-git-send-email-zhouxianrong@huawei.com Link: http://lkml.kernel.org/r/1486307804-27903-1-git-send-email-minchan@kernel.org Signed-off-by: zhouxianrong <zhouxianrong@huawei.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 22:59:27 +00:00
union {
unsigned long handle;
unsigned long element;
};
unsigned long flags;
zram: introduce zram memory tracking zRam as swap is useful for small memory device. However, swap means those pages on zram are mostly cold pages due to VM's LRU algorithm. Especially, once init data for application are touched for launching, they tend to be not accessed any more and finally swapped out. zRAM can store such cold pages as compressed form but it's pointless to keep in memory. Better idea is app developers free them directly rather than remaining them on heap. This patch tell us last access time of each block of zram via "cat /sys/kernel/debug/zram/zram0/block_state". The output is as follows, 300 75.033841 .wh 301 63.806904 s.. 302 63.806919 ..h First column is zram's block index and 3rh one represents symbol (s: same page w: written page to backing store h: huge page) of the block state. Second column represents usec time unit of the block was last accessed. So above example means the 300th block is accessed at 75.033851 second and it was huge so it was written to the backing store. Admin can leverage this information to catch cold|incompressible pages of process with *pagemap* once part of heaps are swapped out. I used the feature a few years ago to find memory hoggers in userspace to notify them what memory they have wasted without touch for a long time. With it, they could reduce unnecessary memory space. However, at that time, I hacked up zram for the feature but now I need the feature again so I decided it would be better to upstream rather than keeping it alone. I hope I submit the userspace tool to use the feature soon. [akpm@linux-foundation.org: fix i386 printk warning] [minchan@kernel.org: use ktime_get_boottime() instead of sched_clock()] Link: http://lkml.kernel.org/r/20180420063525.GA253739@rodete-desktop-imager.corp.google.com [akpm@linux-foundation.org: documentation tweak] [akpm@linux-foundation.org: fix i386 printk warning] [minchan@kernel.org: fix compile warning] Link: http://lkml.kernel.org/r/20180508104849.GA8209@rodete-desktop-imager.corp.google.com [rdunlap@infradead.org: fix printk formats] Link: http://lkml.kernel.org/r/3652ccb1-96ef-0b0b-05d1-f661d7733dcc@infradead.org Link: http://lkml.kernel.org/r/20180416090946.63057-5-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-08 00:05:49 +00:00
#ifdef CONFIG_ZRAM_MEMORY_TRACKING
ktime_t ac_time;
#endif
zram: replace global tb_lock with fine grain lock Currently, we use a rwlock tb_lock to protect concurrent access to the whole zram meta table. However, according to the actual access model, there is only a small chance for upper user to access the same table[index], so the current lock granularity is too big. The idea of optimization is to change the lock granularity from whole meta table to per table entry (table -> table[index]), so that we can protect concurrent access to the same table[index], meanwhile allow the maximum concurrency. With this in mind, several kinds of locks which could be used as a per-entry lock were tested and compared: Test environment: x86-64 Intel Core2 Q8400, system memory 4GB, Ubuntu 12.04, kernel v3.15.0-rc3 as base, zram with 4 max_comp_streams LZO. iozone test: iozone -t 4 -R -r 16K -s 200M -I +Z (1GB zram with ext4 filesystem, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------------- Initial write 1381094 1425435 1422860 1423075 1421521 Rewrite 1529479 1641199 1668762 1672855 1654910 Read 8468009 11324979 11305569 11117273 10997202 Re-read 8467476 11260914 11248059 11145336 10906486 Reverse Read 6821393 8106334 8282174 8279195 8109186 Stride read 7191093 8994306 9153982 8961224 9004434 Random read 7156353 8957932 9167098 8980465 8940476 Mixed workload 4172747 5680814 5927825 5489578 5972253 Random write 1483044 1605588 1594329 1600453 1596010 Pwrite 1276644 1303108 1311612 1314228 1300960 Pread 4324337 4632869 4618386 4457870 4500166 To enhance the possibility of access the same table[index] concurrently, set zram a small disksize(10MB) and let threads run with large loop count. fio test: fio --bs=32k --randrepeat=1 --randseed=100 --refill_buffers --scramble_buffers=1 --direct=1 --loops=3000 --numjobs=4 --filename=/dev/zram0 --name=seq-write --rw=write --stonewall --name=seq-read --rw=read --stonewall --name=seq-readwrite --rw=rw --stonewall --name=rand-readwrite --rw=randrw --stonewall (10MB zram raw block device, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------- seq-write 933789 999357 1003298 995961 1001958 seq-read 5634130 6577930 6380861 6243912 6230006 seq-rw 1405687 1638117 1640256 1633903 1634459 rand-rw 1386119 1614664 1617211 1609267 1612471 All the optimization methods show a higher performance than the base, however, it is hard to say which method is the most appropriate. On the other hand, zram is mostly used on small embedded system, so we don't want to increase any memory footprint. This patch pick the bit_spinlock method, pack object size and page_flag into an unsigned long table.value, so as to not increase any memory overhead on both 32-bit and 64-bit system. On the third hand, even though different kinds of locks have different performances, we can ignore this difference, because: if zram is used as zram swapfile, the swap subsystem can prevent concurrent access to the same swapslot; if zram is used as zram-blk for set up filesystem on it, the upper filesystem and the page cache also prevent concurrent access of the same block mostly. So we can ignore the different performances among locks. Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Signed-off-by: Weijie Yang <weijie.yang@samsung.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 23:08:31 +00:00
};
struct zram_stats {
atomic64_t compr_data_size; /* compressed size of pages stored */
atomic64_t num_reads; /* failed + successful */
atomic64_t num_writes; /* --do-- */
atomic64_t failed_reads; /* can happen when memory is too low */
atomic64_t failed_writes; /* can happen when memory is too low */
atomic64_t invalid_io; /* non-page-aligned I/O requests */
atomic64_t notify_free; /* no. of swap slot free notifications */
zram: extend zero pages to same element pages The idea is that without doing more calculations we extend zero pages to same element pages for zram. zero page is special case of same element page with zero element. 1. the test is done under android 7.0 2. startup too many applications circularly 3. sample the zero pages, same pages (none-zero element) and total pages in function page_zero_filled the result is listed as below: ZERO SAME TOTAL 36214 17842 598196 ZERO/TOTAL SAME/TOTAL (ZERO+SAME)/TOTAL ZERO/SAME AVERAGE 0.060631909 0.024990816 0.085622726 2.663825038 STDEV 0.00674612 0.005887625 0.009707034 2.115881328 MAX 0.069698422 0.030046087 0.094975336 7.56043956 MIN 0.03959586 0.007332205 0.056055193 1.928985507 from the above data, the benefit is about 2.5% and up to 3% of total swapout pages. The defect of the patch is that when we recovery a page from non-zero element the operations are low efficient for partial read. This patch extends zero_page to same_page so if there is any user to have monitored zero_pages, he will be surprised if the number is increased but it's not harmful, I believe. [minchan@kernel.org: do not free same element pages in zram_meta_free] Link: http://lkml.kernel.org/r/20170207065741.GA2567@bbox Link: http://lkml.kernel.org/r/1483692145-75357-1-git-send-email-zhouxianrong@huawei.com Link: http://lkml.kernel.org/r/1486307804-27903-1-git-send-email-minchan@kernel.org Signed-off-by: zhouxianrong <zhouxianrong@huawei.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 22:59:27 +00:00
atomic64_t same_pages; /* no. of same element filled pages */
atomic64_t huge_pages; /* no. of huge pages */
atomic64_t pages_stored; /* no. of pages currently stored */
atomic_long_t max_used_pages; /* no. of maximum pages stored */
atomic64_t writestall; /* no. of write slow paths */
zram: fix lockdep warning of free block handling Patch series "zram idle page writeback", v3. Inherently, swap device has many idle pages which are rare touched since it was allocated. It is never problem if we use storage device as swap. However, it's just waste for zram-swap. This patchset supports zram idle page writeback feature. * Admin can define what is idle page "no access since X time ago" * Admin can define when zram should writeback them * Admin can define when zram should stop writeback to prevent wearout Details are in each patch's description. This patch (of 7): ================================ WARNING: inconsistent lock state 4.19.0+ #390 Not tainted -------------------------------- inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} usage. zram_verify/2095 [HC0[0]:SC1[1]:HE1:SE0] takes: 00000000b1828693 (&(&zram->bitmap_lock)->rlock){+.?.}, at: put_entry_bdev+0x1e/0x50 {SOFTIRQ-ON-W} state was registered at: _raw_spin_lock+0x2c/0x40 zram_make_request+0x755/0xdc9 generic_make_request+0x373/0x6a0 submit_bio+0x6c/0x140 __swap_writepage+0x3a8/0x480 shrink_page_list+0x1102/0x1a60 shrink_inactive_list+0x21b/0x3f0 shrink_node_memcg.constprop.99+0x4f8/0x7e0 shrink_node+0x7d/0x2f0 do_try_to_free_pages+0xe0/0x300 try_to_free_pages+0x116/0x2b0 __alloc_pages_slowpath+0x3f4/0xf80 __alloc_pages_nodemask+0x2a2/0x2f0 __handle_mm_fault+0x42e/0xb50 handle_mm_fault+0x55/0xb0 __do_page_fault+0x235/0x4b0 page_fault+0x1e/0x30 irq event stamp: 228412 hardirqs last enabled at (228412): [<ffffffff98245846>] __slab_free+0x3e6/0x600 hardirqs last disabled at (228411): [<ffffffff98245625>] __slab_free+0x1c5/0x600 softirqs last enabled at (228396): [<ffffffff98e0031e>] __do_softirq+0x31e/0x427 softirqs last disabled at (228403): [<ffffffff98072051>] irq_exit+0xd1/0xe0 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&(&zram->bitmap_lock)->rlock); <Interrupt> lock(&(&zram->bitmap_lock)->rlock); *** DEADLOCK *** no locks held by zram_verify/2095. stack backtrace: CPU: 5 PID: 2095 Comm: zram_verify Not tainted 4.19.0+ #390 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014 Call Trace: <IRQ> dump_stack+0x67/0x9b print_usage_bug+0x1bd/0x1d3 mark_lock+0x4aa/0x540 __lock_acquire+0x51d/0x1300 lock_acquire+0x90/0x180 _raw_spin_lock+0x2c/0x40 put_entry_bdev+0x1e/0x50 zram_free_page+0xf6/0x110 zram_slot_free_notify+0x42/0xa0 end_swap_bio_read+0x5b/0x170 blk_update_request+0x8f/0x340 scsi_end_request+0x2c/0x1e0 scsi_io_completion+0x98/0x650 blk_done_softirq+0x9e/0xd0 __do_softirq+0xcc/0x427 irq_exit+0xd1/0xe0 do_IRQ+0x93/0x120 common_interrupt+0xf/0xf </IRQ> With writeback feature, zram_slot_free_notify could be called in softirq context by end_swap_bio_read. However, bitmap_lock is not aware of that so lockdep yell out: get_entry_bdev spin_lock(bitmap->lock); irq softirq end_swap_bio_read zram_slot_free_notify zram_slot_lock <-- deadlock prone zram_free_page put_entry_bdev spin_lock(bitmap->lock); <-- deadlock prone With akpm's suggestion (i.e. bitmap operation is already atomic), we could remove bitmap lock. It might fail to find a empty slot if serious contention happens. However, it's not severe problem because huge page writeback has already possiblity to fail if there is severe memory pressure. Worst case is just keeping the incompressible in memory, not storage. The other problem is zram_slot_lock in zram_slot_slot_free_notify. To make it safe is this patch introduces zram_slot_trylock where zram_slot_free_notify uses it. Although it's rare to be contented, this patch adds new debug stat "miss_free" to keep monitoring how often it happens. Link: http://lkml.kernel.org/r/20181127055429.251614-2-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reviewed-by: Joey Pabalinas <joeypabalinas@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:36:33 +00:00
atomic64_t miss_free; /* no. of missed free */
#ifdef CONFIG_ZRAM_WRITEBACK
atomic64_t bd_count; /* no. of pages in backing device */
atomic64_t bd_reads; /* no. of reads from backing device */
atomic64_t bd_writes; /* no. of writes from backing device */
#endif
};
struct zram {
struct zram_table_entry *table;
struct zs_pool *mem_pool;
zram: remove init_lock in zram_make_request Admin could reset zram during I/O operation going on so we have used zram->init_lock as read-side lock in I/O path to prevent sudden zram meta freeing. However, the init_lock is really troublesome. We can't do call zram_meta_alloc under init_lock due to lockdep splat because zram_rw_page is one of the function under reclaim path and hold it as read_lock while other places in process context hold it as write_lock. So, we have used allocation out of the lock to avoid lockdep warn but it's not good for readability and fainally, I met another lockdep splat between init_lock and cpu_hotplug from kmem_cache_destroy during working zsmalloc compaction. :( Yes, the ideal is to remove horrible init_lock of zram in rw path. This patch removes it in rw path and instead, add atomic refcount for meta lifetime management and completion to free meta in process context. It's important to free meta in process context because some of resource destruction needs mutex lock, which could be held if we releases the resource in reclaim context so it's deadlock, again. As a bonus, we could remove init_done check in rw path because zram_meta_get will do a role for it, instead. Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Ganesh Mahendran <opensource.ganesh@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 23:00:45 +00:00
struct zcomp *comp;
struct gendisk *disk;
zram: remove init_lock in zram_make_request Admin could reset zram during I/O operation going on so we have used zram->init_lock as read-side lock in I/O path to prevent sudden zram meta freeing. However, the init_lock is really troublesome. We can't do call zram_meta_alloc under init_lock due to lockdep splat because zram_rw_page is one of the function under reclaim path and hold it as read_lock while other places in process context hold it as write_lock. So, we have used allocation out of the lock to avoid lockdep warn but it's not good for readability and fainally, I met another lockdep splat between init_lock and cpu_hotplug from kmem_cache_destroy during working zsmalloc compaction. :( Yes, the ideal is to remove horrible init_lock of zram in rw path. This patch removes it in rw path and instead, add atomic refcount for meta lifetime management and completion to free meta in process context. It's important to free meta in process context because some of resource destruction needs mutex lock, which could be held if we releases the resource in reclaim context so it's deadlock, again. As a bonus, we could remove init_done check in rw path because zram_meta_get will do a role for it, instead. Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Ganesh Mahendran <opensource.ganesh@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 23:00:45 +00:00
/* Prevent concurrent execution of device init */
struct rw_semaphore init_lock;
/*
zram: remove init_lock in zram_make_request Admin could reset zram during I/O operation going on so we have used zram->init_lock as read-side lock in I/O path to prevent sudden zram meta freeing. However, the init_lock is really troublesome. We can't do call zram_meta_alloc under init_lock due to lockdep splat because zram_rw_page is one of the function under reclaim path and hold it as read_lock while other places in process context hold it as write_lock. So, we have used allocation out of the lock to avoid lockdep warn but it's not good for readability and fainally, I met another lockdep splat between init_lock and cpu_hotplug from kmem_cache_destroy during working zsmalloc compaction. :( Yes, the ideal is to remove horrible init_lock of zram in rw path. This patch removes it in rw path and instead, add atomic refcount for meta lifetime management and completion to free meta in process context. It's important to free meta in process context because some of resource destruction needs mutex lock, which could be held if we releases the resource in reclaim context so it's deadlock, again. As a bonus, we could remove init_done check in rw path because zram_meta_get will do a role for it, instead. Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Ganesh Mahendran <opensource.ganesh@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 23:00:45 +00:00
* the number of pages zram can consume for storing compressed data
*/
zram: remove init_lock in zram_make_request Admin could reset zram during I/O operation going on so we have used zram->init_lock as read-side lock in I/O path to prevent sudden zram meta freeing. However, the init_lock is really troublesome. We can't do call zram_meta_alloc under init_lock due to lockdep splat because zram_rw_page is one of the function under reclaim path and hold it as read_lock while other places in process context hold it as write_lock. So, we have used allocation out of the lock to avoid lockdep warn but it's not good for readability and fainally, I met another lockdep splat between init_lock and cpu_hotplug from kmem_cache_destroy during working zsmalloc compaction. :( Yes, the ideal is to remove horrible init_lock of zram in rw path. This patch removes it in rw path and instead, add atomic refcount for meta lifetime management and completion to free meta in process context. It's important to free meta in process context because some of resource destruction needs mutex lock, which could be held if we releases the resource in reclaim context so it's deadlock, again. As a bonus, we could remove init_done check in rw path because zram_meta_get will do a role for it, instead. Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Ganesh Mahendran <opensource.ganesh@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 23:00:45 +00:00
unsigned long limit_pages;
struct zram_stats stats;
/*
zram: remove init_lock in zram_make_request Admin could reset zram during I/O operation going on so we have used zram->init_lock as read-side lock in I/O path to prevent sudden zram meta freeing. However, the init_lock is really troublesome. We can't do call zram_meta_alloc under init_lock due to lockdep splat because zram_rw_page is one of the function under reclaim path and hold it as read_lock while other places in process context hold it as write_lock. So, we have used allocation out of the lock to avoid lockdep warn but it's not good for readability and fainally, I met another lockdep splat between init_lock and cpu_hotplug from kmem_cache_destroy during working zsmalloc compaction. :( Yes, the ideal is to remove horrible init_lock of zram in rw path. This patch removes it in rw path and instead, add atomic refcount for meta lifetime management and completion to free meta in process context. It's important to free meta in process context because some of resource destruction needs mutex lock, which could be held if we releases the resource in reclaim context so it's deadlock, again. As a bonus, we could remove init_done check in rw path because zram_meta_get will do a role for it, instead. Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Ganesh Mahendran <opensource.ganesh@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 23:00:45 +00:00
* This is the limit on amount of *uncompressed* worth of data
* we can store in a disk.
*/
zram: remove init_lock in zram_make_request Admin could reset zram during I/O operation going on so we have used zram->init_lock as read-side lock in I/O path to prevent sudden zram meta freeing. However, the init_lock is really troublesome. We can't do call zram_meta_alloc under init_lock due to lockdep splat because zram_rw_page is one of the function under reclaim path and hold it as read_lock while other places in process context hold it as write_lock. So, we have used allocation out of the lock to avoid lockdep warn but it's not good for readability and fainally, I met another lockdep splat between init_lock and cpu_hotplug from kmem_cache_destroy during working zsmalloc compaction. :( Yes, the ideal is to remove horrible init_lock of zram in rw path. This patch removes it in rw path and instead, add atomic refcount for meta lifetime management and completion to free meta in process context. It's important to free meta in process context because some of resource destruction needs mutex lock, which could be held if we releases the resource in reclaim context so it's deadlock, again. As a bonus, we could remove init_done check in rw path because zram_meta_get will do a role for it, instead. Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Ganesh Mahendran <opensource.ganesh@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 23:00:45 +00:00
u64 disksize; /* bytes */
zram: use crypto api to check alg availability There is no way to get a string with all the crypto comp algorithms supported by the crypto comp engine, so we need to maintain our own backends list. At the same time we additionally need to use crypto_has_comp() to make sure that the user has requested a compression algorithm that is recognized by the crypto comp engine. Relying on /proc/crypto is not an options here, because it does not show not-yet-inserted compression modules. Example: modprobe zram cat /proc/crypto | grep -i lz4 modprobe lz4 cat /proc/crypto | grep -i lz4 name : lz4 driver : lz4-generic module : lz4 So the user can't tell exactly if the lz4 is really supported from /proc/crypto output, unless someone or something has loaded it. This patch also adds crypto_has_comp() to zcomp_available_show(). We store all the compression algorithms names in zcomp's `backends' array, regardless the CONFIG_CRYPTO_FOO configuration, but show only those that are also supported by crypto engine. This helps user to know the exact list of compression algorithms that can be used. Example: module lz4 is not loaded yet, but is supported by the crypto engine. /proc/crypto has no information on this module, while zram's `comp_algorithm' lists it: cat /proc/crypto | grep -i lz4 cat /sys/block/zram0/comp_algorithm [lzo] lz4 deflate lz4hc 842 We still use the `backends' array to determine if the requested compression backend is known to crypto api. This array, however, may not contain some entries, therefore as the last step we call crypto_has_comp() function which attempts to insmod the requested compression algorithm to determine if crypto api supports it. The advantage of this method is that now we permit the usage of out-of-tree crypto compression modules (implementing S/W or H/W compression). [sergey.senozhatsky@gmail.com: zram-use-crypto-api-to-check-alg-availability-v3] Link: http://lkml.kernel.org/r/20160604024902.11778-4-sergey.senozhatsky@gmail.com Link: http://lkml.kernel.org/r/20160531122017.2878-5-sergey.senozhatsky@gmail.com Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 22:22:48 +00:00
char compressor[CRYPTO_MAX_ALG_NAME];
/*
* zram is claimed so open request will be failed
*/
bool claim; /* Protected by bdev->bd_mutex */
struct file *backing_dev;
#ifdef CONFIG_ZRAM_WRITEBACK
zram: idle writeback fixes and cleanup This patch includes some fixes and cleanup for idle-page writeback. 1. writeback_limit interface Now writeback_limit interface is rather conusing. For example, once writeback limit budget is exausted, admin can see 0 from /sys/block/zramX/writeback_limit which is same semantic with disable writeback_limit at this moment. IOW, admin cannot tell that zero came from disable writeback limit or exausted writeback limit. To make the interface clear, let's sepatate enable of writeback limit to another knob - /sys/block/zram0/writeback_limit_enable * before: while true : # to re-enable writeback limit once previous one is used up echo 0 > /sys/block/zram0/writeback_limit echo $((200<<20)) > /sys/block/zram0/writeback_limit .. .. # used up the writeback limit budget * new # To enable writeback limit, from the beginning, admin should # enable it. echo $((200<<20)) > /sys/block/zram0/writeback_limit echo 1 > /sys/block/zram/0/writeback_limit_enable while true : echo $((200<<20)) > /sys/block/zram0/writeback_limit .. .. # used up the writeback limit budget It's much strightforward. 2. fix condition check idle/huge writeback mode check The mode in writeback_store is not bit opeartion any more so no need to use bit operations. Furthermore, current condition check is broken in that it does writeback every pages regardless of huge/idle. 3. clean up idle_store No need to use goto. [minchan@kernel.org: missed spin_lock_init] Link: http://lkml.kernel.org/r/20190103001601.GA255139@google.com Link: http://lkml.kernel.org/r/20181224033529.19450-1-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Suggested-by: John Dias <joaodias@google.com> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Cc: John Dias <joaodias@google.com> Cc: Srinivas Paladugu <srnvs@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-08 23:22:53 +00:00
spinlock_t wb_limit_lock;
bool wb_limit_enable;
u64 bd_wb_limit;
struct block_device *bdev;
unsigned int old_block_size;
unsigned long *bitmap;
unsigned long nr_pages;
#endif
zram: introduce zram memory tracking zRam as swap is useful for small memory device. However, swap means those pages on zram are mostly cold pages due to VM's LRU algorithm. Especially, once init data for application are touched for launching, they tend to be not accessed any more and finally swapped out. zRAM can store such cold pages as compressed form but it's pointless to keep in memory. Better idea is app developers free them directly rather than remaining them on heap. This patch tell us last access time of each block of zram via "cat /sys/kernel/debug/zram/zram0/block_state". The output is as follows, 300 75.033841 .wh 301 63.806904 s.. 302 63.806919 ..h First column is zram's block index and 3rh one represents symbol (s: same page w: written page to backing store h: huge page) of the block state. Second column represents usec time unit of the block was last accessed. So above example means the 300th block is accessed at 75.033851 second and it was huge so it was written to the backing store. Admin can leverage this information to catch cold|incompressible pages of process with *pagemap* once part of heaps are swapped out. I used the feature a few years ago to find memory hoggers in userspace to notify them what memory they have wasted without touch for a long time. With it, they could reduce unnecessary memory space. However, at that time, I hacked up zram for the feature but now I need the feature again so I decided it would be better to upstream rather than keeping it alone. I hope I submit the userspace tool to use the feature soon. [akpm@linux-foundation.org: fix i386 printk warning] [minchan@kernel.org: use ktime_get_boottime() instead of sched_clock()] Link: http://lkml.kernel.org/r/20180420063525.GA253739@rodete-desktop-imager.corp.google.com [akpm@linux-foundation.org: documentation tweak] [akpm@linux-foundation.org: fix i386 printk warning] [minchan@kernel.org: fix compile warning] Link: http://lkml.kernel.org/r/20180508104849.GA8209@rodete-desktop-imager.corp.google.com [rdunlap@infradead.org: fix printk formats] Link: http://lkml.kernel.org/r/3652ccb1-96ef-0b0b-05d1-f661d7733dcc@infradead.org Link: http://lkml.kernel.org/r/20180416090946.63057-5-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-08 00:05:49 +00:00
#ifdef CONFIG_ZRAM_MEMORY_TRACKING
struct dentry *debugfs_dir;
#endif
};
#endif