linux/drivers/ata/libata.h

241 lines
9.9 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* libata.h - helper library for ATA
*
* Copyright 2003-2004 Red Hat, Inc. All rights reserved.
* Copyright 2003-2004 Jeff Garzik
*
* libata documentation is available via 'make {ps|pdf}docs',
* as Documentation/driver-api/libata.rst
*/
#ifndef __LIBATA_H__
#define __LIBATA_H__
#define DRV_NAME "libata"
#define DRV_VERSION "3.00" /* must be exactly four chars */
/* libata-core.c */
enum {
/* flags for ata_dev_read_id() */
ATA_READID_POSTRESET = (1 << 0), /* reading ID after reset */
/* selector for ata_down_xfermask_limit() */
ATA_DNXFER_PIO = 0, /* speed down PIO */
ATA_DNXFER_DMA = 1, /* speed down DMA */
ATA_DNXFER_40C = 2, /* apply 40c cable limit */
ATA_DNXFER_FORCE_PIO = 3, /* force PIO */
ATA_DNXFER_FORCE_PIO0 = 4, /* force PIO0 */
ATA_DNXFER_QUIET = (1 << 31),
};
#define ATA_PORT_TYPE_NAME "ata_port"
extern int atapi_passthru16;
extern int libata_fua;
extern int libata_noacpi;
extern int libata_allow_tpm;
extern const struct device_type ata_port_type;
libata: implement slave_link Explanation taken from the comment of ata_slave_link_init(). In libata, a port contains links and a link contains devices. There is single host link but if a PMP is attached to it, there can be multiple fan-out links. On SATA, there's usually a single device connected to a link but PATA and SATA controllers emulating TF based interface can have two - master and slave. However, there are a few controllers which don't fit into this abstraction too well - SATA controllers which emulate TF interface with both master and slave devices but also have separate SCR register sets for each device. These controllers need separate links for physical link handling (e.g. onlineness, link speed) but should be treated like a traditional M/S controller for everything else (e.g. command issue, softreset). slave_link is libata's way of handling this class of controllers without impacting core layer too much. For anything other than physical link handling, the default host link is used for both master and slave. For physical link handling, separate @ap->slave_link is used. All dirty details are implemented inside libata core layer. From LLD's POV, the only difference is that prereset, hardreset and postreset are called once more for the slave link, so the reset sequence looks like the following. prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> softreset(M) -> postreset(M) -> postreset(S) Note that softreset is called only for the master. Softreset resets both M/S by definition, so SRST on master should handle both (the standard method will work just fine). As slave_link excludes PMP support and only code paths which deal with the attributes of physical link are affected, all the changes are localized to libata.h, libata-core.c and libata-eh.c. * ata_is_host_link() updated so that slave_link is considered as host link too. * iterator extended to iterate over the slave_link when using the underbarred version. * force param handling updated such that devno 16 is mapped to the slave link/device. * ata_link_on/offline() updated to return the combined result from master and slave link. ata_phys_link_on/offline() are the direct versions. * EH autopsy and report are performed separately for master slave links. Reset is udpated to implement the above described reset sequence. Except for reset update, most changes are minor, many of them just modifying dev->link to ata_dev_phys_link(dev) or using phys online test instead. After this update, LLDs can take full advantage of per-dev SCR registers by simply turning on slave link. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
2008-07-31 08:02:43 +00:00
extern struct ata_link *ata_dev_phys_link(struct ata_device *dev);
#ifdef CONFIG_ATA_FORCE
extern void ata_force_cbl(struct ata_port *ap);
#else
static inline void ata_force_cbl(struct ata_port *ap) { }
#endif
extern u64 ata_tf_to_lba(const struct ata_taskfile *tf);
extern u64 ata_tf_to_lba48(const struct ata_taskfile *tf);
extern int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block,
unsigned int tf_flags, int dld, int class);
extern u64 ata_tf_read_block(const struct ata_taskfile *tf,
struct ata_device *dev);
unsigned int ata_exec_internal(struct ata_device *dev, struct ata_taskfile *tf,
const u8 *cdb, enum dma_data_direction dma_dir,
void *buf, unsigned int buflen,
unsigned int timeout);
extern int ata_wait_ready(struct ata_link *link, unsigned long deadline,
int (*check_ready)(struct ata_link *link));
extern int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
unsigned int flags, u16 *id);
extern int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags);
extern int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
unsigned int readid_flags);
extern int ata_dev_configure(struct ata_device *dev);
extern bool ata_dev_power_init_tf(struct ata_device *dev,
struct ata_taskfile *tf, bool set_active);
ata: libata-scsi: Disable scsi device manage_system_start_stop The introduction of a device link to create a consumer/supplier relationship between the scsi device of an ATA device and the ATA port of that ATA device fixes the ordering of system suspend and resume operations. For suspend, the scsi device is suspended first and the ata port after it. This is fine as this allows the synchronize cache and START STOP UNIT commands issued by the scsi disk driver to be executed before the ata port is disabled. For resume operations, the ata port is resumed first, followed by the scsi device. This allows having the request queue of the scsi device to be unfrozen after the ata port resume is scheduled in EH, thus avoiding to see new requests prematurely issued to the ATA device. Since libata sets manage_system_start_stop to 1, the scsi disk resume operation also results in issuing a START STOP UNIT command to the device being resumed so that the device exits standby power mode. However, restoring the ATA device to the active power mode must be synchronized with libata EH processing of the port resume operation to avoid either 1) seeing the start stop unit command being received too early when the port is not yet resumed and ready to accept commands, or after the port resume process issues commands such as IDENTIFY to revalidate the device. In this last case, the risk is that the device revalidation fails with timeout errors as the drive is still spun down. Commit 0a8589055936 ("ata,scsi: do not issue START STOP UNIT on resume") disabled issuing the START STOP UNIT command to avoid issues with it. But this is incorrect as transitioning a device to the active power mode from the standby power mode set on suspend requires a media access command. The IDENTIFY, READ LOG and SET FEATURES commands executed in libata EH context triggered by the ata port resume operation may thus fail. Fix these synchronization issues is by handling a device power mode transitions for system suspend and resume directly in libata EH context, without relying on the scsi disk driver management triggered with the manage_system_start_stop flag. To do this, the following libata helper functions are introduced: 1) ata_dev_power_set_standby(): This function issues a STANDBY IMMEDIATE command to transitiom a device to the standby power mode. For HDDs, this spins down the disks. This function applies only to ATA and ZAC devices and does nothing otherwise. This function also does nothing for devices that have the ATA_FLAG_NO_POWEROFF_SPINDOWN or ATA_FLAG_NO_HIBERNATE_SPINDOWN flag set. For suspend, call ata_dev_power_set_standby() in ata_eh_handle_port_suspend() before the port is disabled and frozen. ata_eh_unload() is also modified to transition all enabled devices to the standby power mode when the system is shutdown or devices removed. 2) ata_dev_power_set_active() and This function applies to ATA or ZAC devices and issues a VERIFY command for 1 sector at LBA 0 to transition the device to the active power mode. For HDDs, since this function will complete only once the disk spin up. Its execution uses the same timeouts as for reset, to give the drive enough time to complete spinup without triggering a command timeout. For resume, call ata_dev_power_set_active() in ata_eh_revalidate_and_attach() after the port has been enabled and before any other command is issued to the device. With these changes, the manage_system_start_stop and no_start_on_resume scsi device flags do not need to be set in ata_scsi_dev_config(). The flag manage_runtime_start_stop is still set to allow the sd driver to spinup/spindown a disk through the sd runtime operations. Fixes: 0a8589055936 ("ata,scsi: do not issue START STOP UNIT on resume") Cc: stable@vger.kernel.org Signed-off-by: Damien Le Moal <dlemoal@kernel.org> Reviewed-by: Hannes Reinecke <hare@suse.de> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
2023-08-26 00:43:39 +00:00
extern void ata_dev_power_set_standby(struct ata_device *dev);
extern void ata_dev_power_set_active(struct ata_device *dev);
extern int sata_down_spd_limit(struct ata_link *link, u32 spd_limit);
extern int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel);
extern unsigned int ata_dev_set_feature(struct ata_device *dev,
u8 subcmd, u8 action);
extern void ata_qc_free(struct ata_queued_cmd *qc);
extern void ata_qc_issue(struct ata_queued_cmd *qc);
extern void __ata_qc_complete(struct ata_queued_cmd *qc);
extern int atapi_check_dma(struct ata_queued_cmd *qc);
extern void swap_buf_le16(u16 *buf, unsigned int buf_words);
libata: implement slave_link Explanation taken from the comment of ata_slave_link_init(). In libata, a port contains links and a link contains devices. There is single host link but if a PMP is attached to it, there can be multiple fan-out links. On SATA, there's usually a single device connected to a link but PATA and SATA controllers emulating TF based interface can have two - master and slave. However, there are a few controllers which don't fit into this abstraction too well - SATA controllers which emulate TF interface with both master and slave devices but also have separate SCR register sets for each device. These controllers need separate links for physical link handling (e.g. onlineness, link speed) but should be treated like a traditional M/S controller for everything else (e.g. command issue, softreset). slave_link is libata's way of handling this class of controllers without impacting core layer too much. For anything other than physical link handling, the default host link is used for both master and slave. For physical link handling, separate @ap->slave_link is used. All dirty details are implemented inside libata core layer. From LLD's POV, the only difference is that prereset, hardreset and postreset are called once more for the slave link, so the reset sequence looks like the following. prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> softreset(M) -> postreset(M) -> postreset(S) Note that softreset is called only for the master. Softreset resets both M/S by definition, so SRST on master should handle both (the standard method will work just fine). As slave_link excludes PMP support and only code paths which deal with the attributes of physical link are affected, all the changes are localized to libata.h, libata-core.c and libata-eh.c. * ata_is_host_link() updated so that slave_link is considered as host link too. * iterator extended to iterate over the slave_link when using the underbarred version. * force param handling updated such that devno 16 is mapped to the slave link/device. * ata_link_on/offline() updated to return the combined result from master and slave link. ata_phys_link_on/offline() are the direct versions. * EH autopsy and report are performed separately for master slave links. Reset is udpated to implement the above described reset sequence. Except for reset update, most changes are minor, many of them just modifying dev->link to ata_dev_phys_link(dev) or using phys online test instead. After this update, LLDs can take full advantage of per-dev SCR registers by simply turning on slave link. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
2008-07-31 08:02:43 +00:00
extern bool ata_phys_link_online(struct ata_link *link);
extern bool ata_phys_link_offline(struct ata_link *link);
extern void ata_dev_init(struct ata_device *dev);
extern void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp);
extern int sata_link_init_spd(struct ata_link *link);
extern int ata_task_ioctl(struct scsi_device *scsidev, void __user *arg);
extern int ata_cmd_ioctl(struct scsi_device *scsidev, void __user *arg);
extern const char *sata_spd_string(unsigned int spd);
extern unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
u8 page, void *buf, unsigned int sectors);
#define to_ata_port(d) container_of(d, struct ata_port, tdev)
/* libata-acpi.c */
#ifdef CONFIG_ATA_ACPI
extern unsigned int ata_acpi_gtf_filter;
extern void ata_acpi_dissociate(struct ata_host *host);
extern void ata_acpi_on_resume(struct ata_port *ap);
extern int ata_acpi_on_devcfg(struct ata_device *dev);
extern void ata_acpi_on_disable(struct ata_device *dev);
extern void ata_acpi_set_state(struct ata_port *ap, pm_message_t state);
extern void ata_acpi_bind_port(struct ata_port *ap);
extern void ata_acpi_bind_dev(struct ata_device *dev);
extern acpi_handle ata_dev_acpi_handle(struct ata_device *dev);
#else
static inline void ata_acpi_dissociate(struct ata_host *host) { }
static inline void ata_acpi_on_resume(struct ata_port *ap) { }
static inline int ata_acpi_on_devcfg(struct ata_device *dev) { return 0; }
static inline void ata_acpi_on_disable(struct ata_device *dev) { }
static inline void ata_acpi_set_state(struct ata_port *ap,
pm_message_t state) { }
static inline void ata_acpi_bind_port(struct ata_port *ap) {}
static inline void ata_acpi_bind_dev(struct ata_device *dev) {}
#endif
/* libata-scsi.c */
extern struct ata_device *ata_scsi_find_dev(struct ata_port *ap,
const struct scsi_device *scsidev);
extern int ata_scsi_add_hosts(struct ata_host *host,
const struct scsi_host_template *sht);
extern void ata_scsi_scan_host(struct ata_port *ap, int sync);
extern int ata_scsi_offline_dev(struct ata_device *dev);
extern bool ata_scsi_sense_is_valid(u8 sk, u8 asc, u8 ascq);
extern void ata_scsi_set_sense(struct ata_device *dev,
struct scsi_cmnd *cmd, u8 sk, u8 asc, u8 ascq);
extern void ata_scsi_set_sense_information(struct ata_device *dev,
struct scsi_cmnd *cmd,
const struct ata_taskfile *tf);
extern void ata_scsi_media_change_notify(struct ata_device *dev);
2006-11-22 14:55:48 +00:00
extern void ata_scsi_hotplug(struct work_struct *work);
extern void ata_schedule_scsi_eh(struct Scsi_Host *shost);
2006-11-22 14:55:48 +00:00
extern void ata_scsi_dev_rescan(struct work_struct *work);
extern int ata_scsi_user_scan(struct Scsi_Host *shost, unsigned int channel,
unsigned int id, u64 lun);
void ata_scsi_sdev_config(struct scsi_device *sdev);
int ata_scsi_dev_config(struct scsi_device *sdev, struct queue_limits *lim,
struct ata_device *dev);
int __ata_scsi_queuecmd(struct scsi_cmnd *scmd, struct ata_device *dev);
/* libata-eh.c */
extern unsigned int ata_internal_cmd_timeout(struct ata_device *dev, u8 cmd);
extern void ata_internal_cmd_timed_out(struct ata_device *dev, u8 cmd);
libata: implement cross-port EH exclusion In libata, the non-EH code paths should always take and release ap->lock explicitly when accessing hardware or shared data structures. However, once EH is active, it's assumed that the port is owned by EH and EH methods don't explicitly take ap->lock unless race from irq handler or other code paths are expected. However, libata EH didn't guarantee exclusion among EHs for ports of the same host. IOW, multiple EHs may execute in parallel on multiple ports of the same controller. In many cases, especially in SATA, the ports are completely independent of each other and this doesn't cause problems; however, there are cases where different ports share the same resource, which lead to obscure timing related bugs such as the one fixed by commit 213373cf (ata_piix: fix locking around SIDPR access). This patch implements exclusion among EHs of the same host. When EH begins, it acquires per-host EH ownership by calling ata_eh_acquire(). When EH finishes, the ownership is released by calling ata_eh_release(). EH ownership is also released whenever the EH thread goes to sleep from ata_msleep() or explicitly and reacquired after waking up. This ensures that while EH is actively accessing the hardware, it has exclusive access to it while allowing EHs to interleave and progress in parallel as they hit waiting stages, which dominate the time spent in EH. This achieves cross-port EH exclusion without pervasive and fragile changes while still allowing parallel EH for the most part. This was first reported by yuanding02@gmail.com more than three years ago in the following bugzilla. :-) https://bugzilla.kernel.org/show_bug.cgi?id=8223 Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Alan Cox <alan@lxorguk.ukuu.org.uk> Reported-by: yuanding02@gmail.com Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
2010-09-06 15:57:14 +00:00
extern void ata_eh_acquire(struct ata_port *ap);
extern void ata_eh_release(struct ata_port *ap);
extern void ata_scsi_error(struct Scsi_Host *host);
extern void ata_eh_fastdrain_timerfn(struct timer_list *t);
extern void ata_qc_schedule_eh(struct ata_queued_cmd *qc);
extern void ata_dev_disable(struct ata_device *dev);
extern void ata_eh_detach_dev(struct ata_device *dev);
extern void ata_eh_about_to_do(struct ata_link *link, struct ata_device *dev,
unsigned int action);
extern void ata_eh_done(struct ata_link *link, struct ata_device *dev,
unsigned int action);
extern void ata_eh_autopsy(struct ata_port *ap);
const char *ata_get_cmd_name(u8 command);
extern void ata_eh_report(struct ata_port *ap);
extern int ata_eh_reset(struct ata_link *link, int classify,
ata_prereset_fn_t prereset, ata_reset_fn_t softreset,
ata_reset_fn_t hardreset, ata_postreset_fn_t postreset);
extern int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev);
extern int ata_eh_recover(struct ata_port *ap, ata_prereset_fn_t prereset,
ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
ata_postreset_fn_t postreset,
struct ata_link **r_failed_disk);
extern void ata_eh_finish(struct ata_port *ap);
extern int ata_ering_map(struct ata_ering *ering,
int (*map_fn)(struct ata_ering_entry *, void *),
void *arg);
libata: check zero power ready status for ZPODD Per the Mount Fuji spec, the ODD is considered zero power ready when: - For slot type ODD, no media inside; - For tray type ODD, no media inside and tray closed. The information can be retrieved by either the returned information of command GET_EVENT_STATUS_NOTIFICATION(the command is used to poll for media event) or sense code. The information provided by the media status byte is not accurate, it is possible that after a new disc is just inserted, the status byte still returns media not present. So this information can not be used as the deciding factor, we use sense code to decide if zpready status is true. When we first sensed the ODD in the zero power ready state, the zp_sampled will be set and timestamp will be recoreded. And after ODD stayed in this state for some pre-defined period, the ODD is considered as power off ready and the zp_ready flag will be set. The zp_ready flag serves as the deciding factor other code will use to see if power off is OK for the ODD. The Mount Fuji spec suggests a delay should be used here, to avoid the case user ejects the ODD and then instantly inserts a new one again, so that we can avoid a power transition. And some ODDs may be slow to place its head to the home position after disc is ejected, so a delay here is generally a good idea. And the delay time can be changed via the module param zpodd_poweroff_delay. The zero power ready status check is performed in the ata port's runtime suspend code path, when port is not frozen yet, as we need to issue some IOs to the ODD. Signed-off-by: Aaron Lu <aaron.lu@intel.com> Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
2013-01-15 09:21:00 +00:00
extern unsigned int atapi_eh_tur(struct ata_device *dev, u8 *r_sense_key);
extern unsigned int atapi_eh_request_sense(struct ata_device *dev,
u8 *sense_buf, u8 dfl_sense_key);
/* libata-pmp.c */
#ifdef CONFIG_SATA_PMP
extern int sata_pmp_scr_read(struct ata_link *link, int reg, u32 *val);
extern int sata_pmp_scr_write(struct ata_link *link, int reg, u32 val);
extern int sata_pmp_set_lpm(struct ata_link *link, enum ata_lpm_policy policy,
unsigned hints);
extern int sata_pmp_attach(struct ata_device *dev);
#else /* CONFIG_SATA_PMP */
static inline int sata_pmp_scr_read(struct ata_link *link, int reg, u32 *val)
{
return -EINVAL;
}
static inline int sata_pmp_scr_write(struct ata_link *link, int reg, u32 val)
{
return -EINVAL;
}
static inline int sata_pmp_set_lpm(struct ata_link *link,
enum ata_lpm_policy policy, unsigned hints)
{
return -EINVAL;
}
static inline int sata_pmp_attach(struct ata_device *dev)
{
return -EINVAL;
}
#endif /* CONFIG_SATA_PMP */
/* libata-sff.c */
#ifdef CONFIG_ATA_SFF
extern void ata_sff_flush_pio_task(struct ata_port *ap);
extern void ata_sff_port_init(struct ata_port *ap);
extern int ata_sff_init(void);
extern void ata_sff_exit(void);
#else /* CONFIG_ATA_SFF */
static inline void ata_sff_flush_pio_task(struct ata_port *ap)
{ }
static inline void ata_sff_port_init(struct ata_port *ap)
{ }
static inline int ata_sff_init(void)
{ return 0; }
static inline void ata_sff_exit(void)
{ }
#endif /* CONFIG_ATA_SFF */
/* libata-zpodd.c */
#ifdef CONFIG_SATA_ZPODD
void zpodd_init(struct ata_device *dev);
void zpodd_exit(struct ata_device *dev);
static inline bool zpodd_dev_enabled(struct ata_device *dev)
{
return dev->zpodd != NULL;
}
libata: check zero power ready status for ZPODD Per the Mount Fuji spec, the ODD is considered zero power ready when: - For slot type ODD, no media inside; - For tray type ODD, no media inside and tray closed. The information can be retrieved by either the returned information of command GET_EVENT_STATUS_NOTIFICATION(the command is used to poll for media event) or sense code. The information provided by the media status byte is not accurate, it is possible that after a new disc is just inserted, the status byte still returns media not present. So this information can not be used as the deciding factor, we use sense code to decide if zpready status is true. When we first sensed the ODD in the zero power ready state, the zp_sampled will be set and timestamp will be recoreded. And after ODD stayed in this state for some pre-defined period, the ODD is considered as power off ready and the zp_ready flag will be set. The zp_ready flag serves as the deciding factor other code will use to see if power off is OK for the ODD. The Mount Fuji spec suggests a delay should be used here, to avoid the case user ejects the ODD and then instantly inserts a new one again, so that we can avoid a power transition. And some ODDs may be slow to place its head to the home position after disc is ejected, so a delay here is generally a good idea. And the delay time can be changed via the module param zpodd_poweroff_delay. The zero power ready status check is performed in the ata port's runtime suspend code path, when port is not frozen yet, as we need to issue some IOs to the ODD. Signed-off-by: Aaron Lu <aaron.lu@intel.com> Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
2013-01-15 09:21:00 +00:00
void zpodd_on_suspend(struct ata_device *dev);
bool zpodd_zpready(struct ata_device *dev);
void zpodd_enable_run_wake(struct ata_device *dev);
void zpodd_disable_run_wake(struct ata_device *dev);
void zpodd_post_poweron(struct ata_device *dev);
#else /* CONFIG_SATA_ZPODD */
static inline void zpodd_init(struct ata_device *dev) {}
static inline void zpodd_exit(struct ata_device *dev) {}
static inline bool zpodd_dev_enabled(struct ata_device *dev) { return false; }
libata: check zero power ready status for ZPODD Per the Mount Fuji spec, the ODD is considered zero power ready when: - For slot type ODD, no media inside; - For tray type ODD, no media inside and tray closed. The information can be retrieved by either the returned information of command GET_EVENT_STATUS_NOTIFICATION(the command is used to poll for media event) or sense code. The information provided by the media status byte is not accurate, it is possible that after a new disc is just inserted, the status byte still returns media not present. So this information can not be used as the deciding factor, we use sense code to decide if zpready status is true. When we first sensed the ODD in the zero power ready state, the zp_sampled will be set and timestamp will be recoreded. And after ODD stayed in this state for some pre-defined period, the ODD is considered as power off ready and the zp_ready flag will be set. The zp_ready flag serves as the deciding factor other code will use to see if power off is OK for the ODD. The Mount Fuji spec suggests a delay should be used here, to avoid the case user ejects the ODD and then instantly inserts a new one again, so that we can avoid a power transition. And some ODDs may be slow to place its head to the home position after disc is ejected, so a delay here is generally a good idea. And the delay time can be changed via the module param zpodd_poweroff_delay. The zero power ready status check is performed in the ata port's runtime suspend code path, when port is not frozen yet, as we need to issue some IOs to the ODD. Signed-off-by: Aaron Lu <aaron.lu@intel.com> Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
2013-01-15 09:21:00 +00:00
static inline void zpodd_on_suspend(struct ata_device *dev) {}
static inline bool zpodd_zpready(struct ata_device *dev) { return false; }
static inline void zpodd_enable_run_wake(struct ata_device *dev) {}
static inline void zpodd_disable_run_wake(struct ata_device *dev) {}
static inline void zpodd_post_poweron(struct ata_device *dev) {}
#endif /* CONFIG_SATA_ZPODD */
#endif /* __LIBATA_H__ */