linux/fs/bcachefs/bkey_methods.c

276 lines
6.4 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "bkey_methods.h"
#include "btree_types.h"
#include "alloc_background.h"
#include "dirent.h"
#include "ec.h"
#include "error.h"
#include "extents.h"
#include "inode.h"
#include "quota.h"
#include "reflink.h"
#include "xattr.h"
const char * const bch2_bkey_types[] = {
#define x(name, nr) #name,
BCH_BKEY_TYPES()
#undef x
NULL
};
static const char *deleted_key_invalid(const struct bch_fs *c,
struct bkey_s_c k)
{
return NULL;
}
#define bch2_bkey_ops_deleted (struct bkey_ops) { \
.key_invalid = deleted_key_invalid, \
}
#define bch2_bkey_ops_discard (struct bkey_ops) { \
.key_invalid = deleted_key_invalid, \
}
static const char *empty_val_key_invalid(const struct bch_fs *c, struct bkey_s_c k)
{
if (bkey_val_bytes(k.k))
return "value size should be zero";
return NULL;
}
#define bch2_bkey_ops_error (struct bkey_ops) { \
.key_invalid = empty_val_key_invalid, \
}
static const char *key_type_cookie_invalid(const struct bch_fs *c,
struct bkey_s_c k)
{
if (bkey_val_bytes(k.k) != sizeof(struct bch_cookie))
return "incorrect value size";
return NULL;
}
#define bch2_bkey_ops_cookie (struct bkey_ops) { \
.key_invalid = key_type_cookie_invalid, \
}
#define bch2_bkey_ops_whiteout (struct bkey_ops) { \
.key_invalid = empty_val_key_invalid, \
}
static const char *key_type_inline_data_invalid(const struct bch_fs *c,
struct bkey_s_c k)
{
return NULL;
}
static void key_type_inline_data_to_text(struct printbuf *out, struct bch_fs *c,
struct bkey_s_c k)
{
pr_buf(out, "(%zu bytes)", bkey_val_bytes(k.k));
}
#define bch2_bkey_ops_inline_data (struct bkey_ops) { \
.key_invalid = key_type_inline_data_invalid, \
.val_to_text = key_type_inline_data_to_text, \
}
static const struct bkey_ops bch2_bkey_ops[] = {
#define x(name, nr) [KEY_TYPE_##name] = bch2_bkey_ops_##name,
BCH_BKEY_TYPES()
#undef x
};
const char *bch2_bkey_val_invalid(struct bch_fs *c, struct bkey_s_c k)
{
if (k.k->type >= KEY_TYPE_MAX)
return "invalid type";
return bch2_bkey_ops[k.k->type].key_invalid(c, k);
}
const char *__bch2_bkey_invalid(struct bch_fs *c, struct bkey_s_c k,
enum btree_node_type type)
{
if (k.k->u64s < BKEY_U64s)
return "u64s too small";
if (type == BKEY_TYPE_BTREE &&
bkey_val_u64s(k.k) > BKEY_BTREE_PTR_VAL_U64s_MAX)
return "value too big";
if (btree_node_type_is_extents(type)) {
if ((k.k->size == 0) != bkey_deleted(k.k))
return "bad size field";
if (k.k->size > k.k->p.offset)
return "size greater than offset";
} else {
if (k.k->size)
return "nonzero size field";
}
if (k.k->p.snapshot)
return "nonzero snapshot";
if (type != BKEY_TYPE_BTREE &&
!bkey_cmp(k.k->p, POS_MAX))
return "POS_MAX key";
return NULL;
}
const char *bch2_bkey_invalid(struct bch_fs *c, struct bkey_s_c k,
enum btree_node_type type)
{
return __bch2_bkey_invalid(c, k, type) ?:
bch2_bkey_val_invalid(c, k);
}
const char *bch2_bkey_in_btree_node(struct btree *b, struct bkey_s_c k)
{
if (bkey_cmp(k.k->p, b->data->min_key) < 0)
return "key before start of btree node";
if (bkey_cmp(k.k->p, b->data->max_key) > 0)
return "key past end of btree node";
return NULL;
}
void bch2_bkey_debugcheck(struct bch_fs *c, struct btree *b, struct bkey_s_c k)
{
const struct bkey_ops *ops = &bch2_bkey_ops[k.k->type];
const char *invalid;
BUG_ON(!k.k->u64s);
invalid = bch2_bkey_invalid(c, k, btree_node_type(b)) ?:
bch2_bkey_in_btree_node(b, k);
if (invalid) {
char buf[160];
bch2_bkey_val_to_text(&PBUF(buf), c, k);
bch2_fs_inconsistent(c, "invalid bkey %s: %s", buf, invalid);
return;
}
if (ops->key_debugcheck)
ops->key_debugcheck(c, k);
}
void bch2_bpos_to_text(struct printbuf *out, struct bpos pos)
{
if (!bkey_cmp(pos, POS_MIN))
pr_buf(out, "POS_MIN");
else if (!bkey_cmp(pos, POS_MAX))
pr_buf(out, "POS_MAX");
else
pr_buf(out, "%llu:%llu", pos.inode, pos.offset);
}
void bch2_bkey_to_text(struct printbuf *out, const struct bkey *k)
{
pr_buf(out, "u64s %u type %s ", k->u64s,
bch2_bkey_types[k->type]);
bch2_bpos_to_text(out, k->p);
pr_buf(out, " snap %u len %u ver %llu",
k->p.snapshot, k->size, k->version.lo);
}
void bch2_val_to_text(struct printbuf *out, struct bch_fs *c,
struct bkey_s_c k)
{
const struct bkey_ops *ops = &bch2_bkey_ops[k.k->type];
if (likely(ops->val_to_text))
ops->val_to_text(out, c, k);
}
void bch2_bkey_val_to_text(struct printbuf *out, struct bch_fs *c,
struct bkey_s_c k)
{
bch2_bkey_to_text(out, k.k);
pr_buf(out, ": ");
bch2_val_to_text(out, c, k);
}
void bch2_bkey_swab_val(struct bkey_s k)
{
const struct bkey_ops *ops = &bch2_bkey_ops[k.k->type];
if (ops->swab)
ops->swab(k);
}
bool bch2_bkey_normalize(struct bch_fs *c, struct bkey_s k)
{
const struct bkey_ops *ops = &bch2_bkey_ops[k.k->type];
return ops->key_normalize
? ops->key_normalize(c, k)
: false;
}
enum merge_result bch2_bkey_merge(struct bch_fs *c,
struct bkey_s l, struct bkey_s r)
{
const struct bkey_ops *ops = &bch2_bkey_ops[l.k->type];
enum merge_result ret;
if (key_merging_disabled(c) ||
!ops->key_merge ||
l.k->type != r.k->type ||
bversion_cmp(l.k->version, r.k->version) ||
bkey_cmp(l.k->p, bkey_start_pos(r.k)))
return BCH_MERGE_NOMERGE;
ret = ops->key_merge(c, l, r);
if (ret != BCH_MERGE_NOMERGE)
l.k->needs_whiteout |= r.k->needs_whiteout;
return ret;
}
static const struct old_bkey_type {
u8 btree_node_type;
u8 old;
u8 new;
} bkey_renumber_table[] = {
{BKEY_TYPE_BTREE, 128, KEY_TYPE_btree_ptr },
{BKEY_TYPE_EXTENTS, 128, KEY_TYPE_extent },
{BKEY_TYPE_EXTENTS, 129, KEY_TYPE_extent },
{BKEY_TYPE_EXTENTS, 130, KEY_TYPE_reservation },
{BKEY_TYPE_INODES, 128, KEY_TYPE_inode },
{BKEY_TYPE_INODES, 130, KEY_TYPE_inode_generation },
{BKEY_TYPE_DIRENTS, 128, KEY_TYPE_dirent },
{BKEY_TYPE_DIRENTS, 129, KEY_TYPE_whiteout },
{BKEY_TYPE_XATTRS, 128, KEY_TYPE_xattr },
{BKEY_TYPE_XATTRS, 129, KEY_TYPE_whiteout },
{BKEY_TYPE_ALLOC, 128, KEY_TYPE_alloc },
{BKEY_TYPE_QUOTAS, 128, KEY_TYPE_quota },
};
void bch2_bkey_renumber(enum btree_node_type btree_node_type,
struct bkey_packed *k,
int write)
{
const struct old_bkey_type *i;
for (i = bkey_renumber_table;
i < bkey_renumber_table + ARRAY_SIZE(bkey_renumber_table);
i++)
if (btree_node_type == i->btree_node_type &&
k->type == (write ? i->new : i->old)) {
k->type = write ? i->old : i->new;
break;
}
}