linux/drivers/net/hyperv/netvsc.c

951 lines
25 KiB
C
Raw Normal View History

/*
* Copyright (c) 2009, Microsoft Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, see <http://www.gnu.org/licenses/>.
*
* Authors:
* Haiyang Zhang <haiyangz@microsoft.com>
* Hank Janssen <hjanssen@microsoft.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/mm.h>
#include <linux/delay.h>
#include <linux/io.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/netdevice.h>
#include <linux/if_ether.h>
#include "hyperv_net.h"
static struct netvsc_device *alloc_net_device(struct hv_device *device)
{
struct netvsc_device *net_device;
struct net_device *ndev = hv_get_drvdata(device);
net_device = kzalloc(sizeof(struct netvsc_device), GFP_KERNEL);
if (!net_device)
return NULL;
init_waitqueue_head(&net_device->wait_drain);
net_device->start_remove = false;
net_device->destroy = false;
net_device->dev = device;
net_device->ndev = ndev;
hv_set_drvdata(device, net_device);
return net_device;
}
static struct netvsc_device *get_outbound_net_device(struct hv_device *device)
{
struct netvsc_device *net_device;
net_device = hv_get_drvdata(device);
if (net_device && net_device->destroy)
net_device = NULL;
return net_device;
}
static struct netvsc_device *get_inbound_net_device(struct hv_device *device)
{
struct netvsc_device *net_device;
net_device = hv_get_drvdata(device);
if (!net_device)
goto get_in_err;
if (net_device->destroy &&
atomic_read(&net_device->num_outstanding_sends) == 0)
net_device = NULL;
get_in_err:
return net_device;
}
static int netvsc_destroy_recv_buf(struct netvsc_device *net_device)
{
struct nvsp_message *revoke_packet;
int ret = 0;
struct net_device *ndev = net_device->ndev;
/*
* If we got a section count, it means we received a
* SendReceiveBufferComplete msg (ie sent
* NvspMessage1TypeSendReceiveBuffer msg) therefore, we need
* to send a revoke msg here
*/
if (net_device->recv_section_cnt) {
/* Send the revoke receive buffer */
revoke_packet = &net_device->revoke_packet;
memset(revoke_packet, 0, sizeof(struct nvsp_message));
revoke_packet->hdr.msg_type =
NVSP_MSG1_TYPE_REVOKE_RECV_BUF;
revoke_packet->msg.v1_msg.
revoke_recv_buf.id = NETVSC_RECEIVE_BUFFER_ID;
ret = vmbus_sendpacket(net_device->dev->channel,
revoke_packet,
sizeof(struct nvsp_message),
(unsigned long)revoke_packet,
VM_PKT_DATA_INBAND, 0);
/*
* If we failed here, we might as well return and
* have a leak rather than continue and a bugchk
*/
if (ret != 0) {
netdev_err(ndev, "unable to send "
"revoke receive buffer to netvsp\n");
return ret;
}
}
/* Teardown the gpadl on the vsp end */
if (net_device->recv_buf_gpadl_handle) {
ret = vmbus_teardown_gpadl(net_device->dev->channel,
net_device->recv_buf_gpadl_handle);
/* If we failed here, we might as well return and have a leak
* rather than continue and a bugchk
*/
if (ret != 0) {
netdev_err(ndev,
"unable to teardown receive buffer's gpadl\n");
return ret;
}
net_device->recv_buf_gpadl_handle = 0;
}
if (net_device->recv_buf) {
/* Free up the receive buffer */
vfree(net_device->recv_buf);
net_device->recv_buf = NULL;
}
if (net_device->recv_section) {
net_device->recv_section_cnt = 0;
kfree(net_device->recv_section);
net_device->recv_section = NULL;
}
return ret;
}
static int netvsc_init_recv_buf(struct hv_device *device)
{
int ret = 0;
int t;
struct netvsc_device *net_device;
struct nvsp_message *init_packet;
struct net_device *ndev;
net_device = get_outbound_net_device(device);
if (!net_device)
return -ENODEV;
ndev = net_device->ndev;
net_device->recv_buf = vzalloc(net_device->recv_buf_size);
if (!net_device->recv_buf) {
netdev_err(ndev, "unable to allocate receive "
"buffer of size %d\n", net_device->recv_buf_size);
ret = -ENOMEM;
goto cleanup;
}
/*
* Establish the gpadl handle for this buffer on this
* channel. Note: This call uses the vmbus connection rather
* than the channel to establish the gpadl handle.
*/
ret = vmbus_establish_gpadl(device->channel, net_device->recv_buf,
net_device->recv_buf_size,
&net_device->recv_buf_gpadl_handle);
if (ret != 0) {
netdev_err(ndev,
"unable to establish receive buffer's gpadl\n");
goto cleanup;
}
/* Notify the NetVsp of the gpadl handle */
init_packet = &net_device->channel_init_pkt;
memset(init_packet, 0, sizeof(struct nvsp_message));
init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_RECV_BUF;
init_packet->msg.v1_msg.send_recv_buf.
gpadl_handle = net_device->recv_buf_gpadl_handle;
init_packet->msg.v1_msg.
send_recv_buf.id = NETVSC_RECEIVE_BUFFER_ID;
/* Send the gpadl notification request */
ret = vmbus_sendpacket(device->channel, init_packet,
sizeof(struct nvsp_message),
(unsigned long)init_packet,
VM_PKT_DATA_INBAND,
VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
if (ret != 0) {
netdev_err(ndev,
"unable to send receive buffer's gpadl to netvsp\n");
goto cleanup;
}
t = wait_for_completion_timeout(&net_device->channel_init_wait, 5*HZ);
BUG_ON(t == 0);
/* Check the response */
if (init_packet->msg.v1_msg.
send_recv_buf_complete.status != NVSP_STAT_SUCCESS) {
netdev_err(ndev, "Unable to complete receive buffer "
"initialization with NetVsp - status %d\n",
init_packet->msg.v1_msg.
send_recv_buf_complete.status);
ret = -EINVAL;
goto cleanup;
}
/* Parse the response */
net_device->recv_section_cnt = init_packet->msg.
v1_msg.send_recv_buf_complete.num_sections;
net_device->recv_section = kmemdup(
init_packet->msg.v1_msg.send_recv_buf_complete.sections,
net_device->recv_section_cnt *
sizeof(struct nvsp_1_receive_buffer_section),
GFP_KERNEL);
if (net_device->recv_section == NULL) {
ret = -EINVAL;
goto cleanup;
}
/*
* For 1st release, there should only be 1 section that represents the
* entire receive buffer
*/
if (net_device->recv_section_cnt != 1 ||
net_device->recv_section->offset != 0) {
ret = -EINVAL;
goto cleanup;
}
goto exit;
cleanup:
netvsc_destroy_recv_buf(net_device);
exit:
return ret;
}
/* Negotiate NVSP protocol version */
static int negotiate_nvsp_ver(struct hv_device *device,
struct netvsc_device *net_device,
struct nvsp_message *init_packet,
u32 nvsp_ver)
{
int ret, t;
memset(init_packet, 0, sizeof(struct nvsp_message));
init_packet->hdr.msg_type = NVSP_MSG_TYPE_INIT;
init_packet->msg.init_msg.init.min_protocol_ver = nvsp_ver;
init_packet->msg.init_msg.init.max_protocol_ver = nvsp_ver;
/* Send the init request */
ret = vmbus_sendpacket(device->channel, init_packet,
sizeof(struct nvsp_message),
(unsigned long)init_packet,
VM_PKT_DATA_INBAND,
VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
if (ret != 0)
return ret;
t = wait_for_completion_timeout(&net_device->channel_init_wait, 5*HZ);
if (t == 0)
return -ETIMEDOUT;
if (init_packet->msg.init_msg.init_complete.status !=
NVSP_STAT_SUCCESS)
return -EINVAL;
if (nvsp_ver != NVSP_PROTOCOL_VERSION_2)
return 0;
/* NVSPv2 only: Send NDIS config */
memset(init_packet, 0, sizeof(struct nvsp_message));
init_packet->hdr.msg_type = NVSP_MSG2_TYPE_SEND_NDIS_CONFIG;
init_packet->msg.v2_msg.send_ndis_config.mtu = net_device->ndev->mtu;
init_packet->msg.v2_msg.send_ndis_config.capability.ieee8021q = 1;
ret = vmbus_sendpacket(device->channel, init_packet,
sizeof(struct nvsp_message),
(unsigned long)init_packet,
VM_PKT_DATA_INBAND, 0);
return ret;
}
static int netvsc_connect_vsp(struct hv_device *device)
{
int ret;
struct netvsc_device *net_device;
struct nvsp_message *init_packet;
int ndis_version;
struct net_device *ndev;
net_device = get_outbound_net_device(device);
if (!net_device)
return -ENODEV;
ndev = net_device->ndev;
init_packet = &net_device->channel_init_pkt;
/* Negotiate the latest NVSP protocol supported */
if (negotiate_nvsp_ver(device, net_device, init_packet,
NVSP_PROTOCOL_VERSION_2) == 0) {
net_device->nvsp_version = NVSP_PROTOCOL_VERSION_2;
} else if (negotiate_nvsp_ver(device, net_device, init_packet,
NVSP_PROTOCOL_VERSION_1) == 0) {
net_device->nvsp_version = NVSP_PROTOCOL_VERSION_1;
} else {
ret = -EPROTO;
goto cleanup;
}
pr_debug("Negotiated NVSP version:%x\n", net_device->nvsp_version);
/* Send the ndis version */
memset(init_packet, 0, sizeof(struct nvsp_message));
ndis_version = 0x00050001;
init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_NDIS_VER;
init_packet->msg.v1_msg.
send_ndis_ver.ndis_major_ver =
(ndis_version & 0xFFFF0000) >> 16;
init_packet->msg.v1_msg.
send_ndis_ver.ndis_minor_ver =
ndis_version & 0xFFFF;
/* Send the init request */
ret = vmbus_sendpacket(device->channel, init_packet,
sizeof(struct nvsp_message),
(unsigned long)init_packet,
VM_PKT_DATA_INBAND, 0);
if (ret != 0)
goto cleanup;
/* Post the big receive buffer to NetVSP */
ret = netvsc_init_recv_buf(device);
cleanup:
return ret;
}
static void netvsc_disconnect_vsp(struct netvsc_device *net_device)
{
netvsc_destroy_recv_buf(net_device);
}
/*
* netvsc_device_remove - Callback when the root bus device is removed
*/
int netvsc_device_remove(struct hv_device *device)
{
struct netvsc_device *net_device;
struct hv_netvsc_packet *netvsc_packet, *pos;
unsigned long flags;
net_device = hv_get_drvdata(device);
netvsc_disconnect_vsp(net_device);
/*
* Since we have already drained, we don't need to busy wait
* as was done in final_release_stor_device()
* Note that we cannot set the ext pointer to NULL until
* we have drained - to drain the outgoing packets, we need to
* allow incoming packets.
*/
spin_lock_irqsave(&device->channel->inbound_lock, flags);
hv_set_drvdata(device, NULL);
spin_unlock_irqrestore(&device->channel->inbound_lock, flags);
/*
* At this point, no one should be accessing net_device
* except in here
*/
dev_notice(&device->device, "net device safe to remove\n");
/* Now, we can close the channel safely */
vmbus_close(device->channel);
/* Release all resources */
list_for_each_entry_safe(netvsc_packet, pos,
&net_device->recv_pkt_list, list_ent) {
list_del(&netvsc_packet->list_ent);
kfree(netvsc_packet);
}
kfree(net_device);
return 0;
}
#define RING_AVAIL_PERCENT_HIWATER 20
#define RING_AVAIL_PERCENT_LOWATER 10
/*
* Get the percentage of available bytes to write in the ring.
* The return value is in range from 0 to 100.
*/
static inline u32 hv_ringbuf_avail_percent(
struct hv_ring_buffer_info *ring_info)
{
u32 avail_read, avail_write;
hv_get_ringbuffer_availbytes(ring_info, &avail_read, &avail_write);
return avail_write * 100 / ring_info->ring_datasize;
}
static void netvsc_send_completion(struct netvsc_device *net_device,
struct hv_device *device,
struct vmpacket_descriptor *packet)
{
struct nvsp_message *nvsp_packet;
struct hv_netvsc_packet *nvsc_packet;
struct net_device *ndev;
ndev = net_device->ndev;
nvsp_packet = (struct nvsp_message *)((unsigned long)packet +
(packet->offset8 << 3));
if ((nvsp_packet->hdr.msg_type == NVSP_MSG_TYPE_INIT_COMPLETE) ||
(nvsp_packet->hdr.msg_type ==
NVSP_MSG1_TYPE_SEND_RECV_BUF_COMPLETE) ||
(nvsp_packet->hdr.msg_type ==
NVSP_MSG1_TYPE_SEND_SEND_BUF_COMPLETE)) {
/* Copy the response back */
memcpy(&net_device->channel_init_pkt, nvsp_packet,
sizeof(struct nvsp_message));
complete(&net_device->channel_init_wait);
} else if (nvsp_packet->hdr.msg_type ==
NVSP_MSG1_TYPE_SEND_RNDIS_PKT_COMPLETE) {
int num_outstanding_sends;
/* Get the send context */
nvsc_packet = (struct hv_netvsc_packet *)(unsigned long)
packet->trans_id;
/* Notify the layer above us */
if (nvsc_packet)
nvsc_packet->completion.send.send_completion(
nvsc_packet->completion.send.
send_completion_ctx);
num_outstanding_sends =
atomic_dec_return(&net_device->num_outstanding_sends);
if (net_device->destroy && num_outstanding_sends == 0)
wake_up(&net_device->wait_drain);
if (netif_queue_stopped(ndev) && !net_device->start_remove &&
(hv_ringbuf_avail_percent(&device->channel->outbound)
> RING_AVAIL_PERCENT_HIWATER ||
num_outstanding_sends < 1))
netif_wake_queue(ndev);
} else {
netdev_err(ndev, "Unknown send completion packet type- "
"%d received!!\n", nvsp_packet->hdr.msg_type);
}
}
int netvsc_send(struct hv_device *device,
struct hv_netvsc_packet *packet)
{
struct netvsc_device *net_device;
int ret = 0;
struct nvsp_message sendMessage;
struct net_device *ndev;
u64 req_id;
net_device = get_outbound_net_device(device);
if (!net_device)
return -ENODEV;
ndev = net_device->ndev;
sendMessage.hdr.msg_type = NVSP_MSG1_TYPE_SEND_RNDIS_PKT;
if (packet->is_data_pkt) {
/* 0 is RMC_DATA; */
sendMessage.msg.v1_msg.send_rndis_pkt.channel_type = 0;
} else {
/* 1 is RMC_CONTROL; */
sendMessage.msg.v1_msg.send_rndis_pkt.channel_type = 1;
}
/* Not using send buffer section */
sendMessage.msg.v1_msg.send_rndis_pkt.send_buf_section_index =
0xFFFFFFFF;
sendMessage.msg.v1_msg.send_rndis_pkt.send_buf_section_size = 0;
if (packet->completion.send.send_completion)
req_id = (ulong)packet;
else
req_id = 0;
if (packet->page_buf_cnt) {
ret = vmbus_sendpacket_pagebuffer(device->channel,
packet->page_buf,
packet->page_buf_cnt,
&sendMessage,
sizeof(struct nvsp_message),
req_id);
} else {
ret = vmbus_sendpacket(device->channel, &sendMessage,
sizeof(struct nvsp_message),
req_id,
VM_PKT_DATA_INBAND,
VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
}
if (ret == 0) {
atomic_inc(&net_device->num_outstanding_sends);
if (hv_ringbuf_avail_percent(&device->channel->outbound) <
RING_AVAIL_PERCENT_LOWATER) {
netif_stop_queue(ndev);
if (atomic_read(&net_device->
num_outstanding_sends) < 1)
netif_wake_queue(ndev);
}
} else if (ret == -EAGAIN) {
netif_stop_queue(ndev);
if (atomic_read(&net_device->num_outstanding_sends) < 1) {
netif_wake_queue(ndev);
ret = -ENOSPC;
}
} else {
netdev_err(ndev, "Unable to send packet %p ret %d\n",
packet, ret);
}
return ret;
}
static void netvsc_send_recv_completion(struct hv_device *device,
struct netvsc_device *net_device,
u64 transaction_id, u32 status)
{
struct nvsp_message recvcompMessage;
int retries = 0;
int ret;
struct net_device *ndev;
ndev = net_device->ndev;
recvcompMessage.hdr.msg_type =
NVSP_MSG1_TYPE_SEND_RNDIS_PKT_COMPLETE;
recvcompMessage.msg.v1_msg.send_rndis_pkt_complete.status = status;
retry_send_cmplt:
/* Send the completion */
ret = vmbus_sendpacket(device->channel, &recvcompMessage,
sizeof(struct nvsp_message), transaction_id,
VM_PKT_COMP, 0);
if (ret == 0) {
/* success */
/* no-op */
} else if (ret == -EAGAIN) {
/* no more room...wait a bit and attempt to retry 3 times */
retries++;
netdev_err(ndev, "unable to send receive completion pkt"
" (tid %llx)...retrying %d\n", transaction_id, retries);
if (retries < 4) {
udelay(100);
goto retry_send_cmplt;
} else {
netdev_err(ndev, "unable to send receive "
"completion pkt (tid %llx)...give up retrying\n",
transaction_id);
}
} else {
netdev_err(ndev, "unable to send receive "
"completion pkt - %llx\n", transaction_id);
}
}
/* Send a receive completion packet to RNDIS device (ie NetVsp) */
static void netvsc_receive_completion(void *context)
{
struct hv_netvsc_packet *packet = context;
struct hv_device *device = packet->device;
struct netvsc_device *net_device;
u64 transaction_id = 0;
bool fsend_receive_comp = false;
unsigned long flags;
struct net_device *ndev;
u32 status = NVSP_STAT_NONE;
/*
* Even though it seems logical to do a GetOutboundNetDevice() here to
* send out receive completion, we are using GetInboundNetDevice()
* since we may have disable outbound traffic already.
*/
net_device = get_inbound_net_device(device);
if (!net_device)
return;
ndev = net_device->ndev;
/* Overloading use of the lock. */
spin_lock_irqsave(&net_device->recv_pkt_list_lock, flags);
if (packet->status != NVSP_STAT_SUCCESS)
packet->xfer_page_pkt->status = NVSP_STAT_FAIL;
packet->xfer_page_pkt->count--;
/*
* Last one in the line that represent 1 xfer page packet.
* Return the xfer page packet itself to the freelist
*/
if (packet->xfer_page_pkt->count == 0) {
fsend_receive_comp = true;
transaction_id = packet->completion.recv.recv_completion_tid;
status = packet->xfer_page_pkt->status;
list_add_tail(&packet->xfer_page_pkt->list_ent,
&net_device->recv_pkt_list);
}
/* Put the packet back */
list_add_tail(&packet->list_ent, &net_device->recv_pkt_list);
spin_unlock_irqrestore(&net_device->recv_pkt_list_lock, flags);
/* Send a receive completion for the xfer page packet */
if (fsend_receive_comp)
netvsc_send_recv_completion(device, net_device, transaction_id,
status);
}
static void netvsc_receive(struct netvsc_device *net_device,
struct hv_device *device,
struct vmpacket_descriptor *packet)
{
struct vmtransfer_page_packet_header *vmxferpage_packet;
struct nvsp_message *nvsp_packet;
struct hv_netvsc_packet *netvsc_packet = NULL;
/* struct netvsc_driver *netvscDriver; */
struct xferpage_packet *xferpage_packet = NULL;
int i;
int count = 0;
unsigned long flags;
struct net_device *ndev;
LIST_HEAD(listHead);
ndev = net_device->ndev;
/*
* All inbound packets other than send completion should be xfer page
* packet
*/
if (packet->type != VM_PKT_DATA_USING_XFER_PAGES) {
netdev_err(ndev, "Unknown packet type received - %d\n",
packet->type);
return;
}
nvsp_packet = (struct nvsp_message *)((unsigned long)packet +
(packet->offset8 << 3));
/* Make sure this is a valid nvsp packet */
if (nvsp_packet->hdr.msg_type !=
NVSP_MSG1_TYPE_SEND_RNDIS_PKT) {
netdev_err(ndev, "Unknown nvsp packet type received-"
" %d\n", nvsp_packet->hdr.msg_type);
return;
}
vmxferpage_packet = (struct vmtransfer_page_packet_header *)packet;
if (vmxferpage_packet->xfer_pageset_id != NETVSC_RECEIVE_BUFFER_ID) {
netdev_err(ndev, "Invalid xfer page set id - "
"expecting %x got %x\n", NETVSC_RECEIVE_BUFFER_ID,
vmxferpage_packet->xfer_pageset_id);
return;
}
/*
* Grab free packets (range count + 1) to represent this xfer
* page packet. +1 to represent the xfer page packet itself.
* We grab it here so that we know exactly how many we can
* fulfil
*/
spin_lock_irqsave(&net_device->recv_pkt_list_lock, flags);
while (!list_empty(&net_device->recv_pkt_list)) {
list_move_tail(net_device->recv_pkt_list.next, &listHead);
if (++count == vmxferpage_packet->range_cnt + 1)
break;
}
spin_unlock_irqrestore(&net_device->recv_pkt_list_lock, flags);
/*
* We need at least 2 netvsc pkts (1 to represent the xfer
* page and at least 1 for the range) i.e. we can handled
* some of the xfer page packet ranges...
*/
if (count < 2) {
netdev_err(ndev, "Got only %d netvsc pkt...needed "
"%d pkts. Dropping this xfer page packet completely!\n",
count, vmxferpage_packet->range_cnt + 1);
/* Return it to the freelist */
spin_lock_irqsave(&net_device->recv_pkt_list_lock, flags);
for (i = count; i != 0; i--) {
list_move_tail(listHead.next,
&net_device->recv_pkt_list);
}
spin_unlock_irqrestore(&net_device->recv_pkt_list_lock,
flags);
netvsc_send_recv_completion(device, net_device,
vmxferpage_packet->d.trans_id,
NVSP_STAT_FAIL);
return;
}
/* Remove the 1st packet to represent the xfer page packet itself */
xferpage_packet = (struct xferpage_packet *)listHead.next;
list_del(&xferpage_packet->list_ent);
xferpage_packet->status = NVSP_STAT_SUCCESS;
/* This is how much we can satisfy */
xferpage_packet->count = count - 1;
if (xferpage_packet->count != vmxferpage_packet->range_cnt) {
netdev_err(ndev, "Needed %d netvsc pkts to satisfy "
"this xfer page...got %d\n",
vmxferpage_packet->range_cnt, xferpage_packet->count);
}
/* Each range represents 1 RNDIS pkt that contains 1 ethernet frame */
for (i = 0; i < (count - 1); i++) {
netvsc_packet = (struct hv_netvsc_packet *)listHead.next;
list_del(&netvsc_packet->list_ent);
/* Initialize the netvsc packet */
netvsc_packet->status = NVSP_STAT_SUCCESS;
netvsc_packet->xfer_page_pkt = xferpage_packet;
netvsc_packet->completion.recv.recv_completion =
netvsc_receive_completion;
netvsc_packet->completion.recv.recv_completion_ctx =
netvsc_packet;
netvsc_packet->device = device;
/* Save this so that we can send it back */
netvsc_packet->completion.recv.recv_completion_tid =
vmxferpage_packet->d.trans_id;
netvsc_packet->data = (void *)((unsigned long)net_device->
recv_buf + vmxferpage_packet->ranges[i].byte_offset);
netvsc_packet->total_data_buflen =
vmxferpage_packet->ranges[i].byte_count;
/* Pass it to the upper layer */
rndis_filter_receive(device, netvsc_packet);
netvsc_receive_completion(netvsc_packet->
completion.recv.recv_completion_ctx);
}
}
static void netvsc_channel_cb(void *context)
{
int ret;
struct hv_device *device = context;
struct netvsc_device *net_device;
u32 bytes_recvd;
u64 request_id;
struct vmpacket_descriptor *desc;
unsigned char *buffer;
int bufferlen = NETVSC_PACKET_SIZE;
struct net_device *ndev;
net_device = get_inbound_net_device(device);
if (!net_device)
return;
ndev = net_device->ndev;
buffer = net_device->cb_buffer;
do {
ret = vmbus_recvpacket_raw(device->channel, buffer, bufferlen,
&bytes_recvd, &request_id);
if (ret == 0) {
if (bytes_recvd > 0) {
desc = (struct vmpacket_descriptor *)buffer;
switch (desc->type) {
case VM_PKT_COMP:
netvsc_send_completion(net_device,
device, desc);
break;
case VM_PKT_DATA_USING_XFER_PAGES:
netvsc_receive(net_device,
device, desc);
break;
default:
netdev_err(ndev,
"unhandled packet type %d, "
"tid %llx len %d\n",
desc->type, request_id,
bytes_recvd);
break;
}
} else {
/*
* We are done for this pass.
*/
break;
}
} else if (ret == -ENOBUFS) {
if (bufferlen > NETVSC_PACKET_SIZE)
kfree(buffer);
/* Handle large packet */
buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
if (buffer == NULL) {
/* Try again next time around */
netdev_err(ndev,
"unable to allocate buffer of size "
"(%d)!!\n", bytes_recvd);
break;
}
bufferlen = bytes_recvd;
}
} while (1);
if (bufferlen > NETVSC_PACKET_SIZE)
kfree(buffer);
return;
}
/*
* netvsc_device_add - Callback when the device belonging to this
* driver is added
*/
int netvsc_device_add(struct hv_device *device, void *additional_info)
{
int ret = 0;
int i;
int ring_size =
((struct netvsc_device_info *)additional_info)->ring_size;
struct netvsc_device *net_device;
struct hv_netvsc_packet *packet, *pos;
struct net_device *ndev;
net_device = alloc_net_device(device);
if (!net_device) {
ret = -ENOMEM;
goto cleanup;
}
/*
* Coming into this function, struct net_device * is
* registered as the driver private data.
* In alloc_net_device(), we register struct netvsc_device *
* as the driver private data and stash away struct net_device *
* in struct netvsc_device *.
*/
ndev = net_device->ndev;
/* Initialize the NetVSC channel extension */
net_device->recv_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
spin_lock_init(&net_device->recv_pkt_list_lock);
INIT_LIST_HEAD(&net_device->recv_pkt_list);
for (i = 0; i < NETVSC_RECEIVE_PACKETLIST_COUNT; i++) {
packet = kzalloc(sizeof(struct hv_netvsc_packet), GFP_KERNEL);
if (!packet)
break;
list_add_tail(&packet->list_ent,
&net_device->recv_pkt_list);
}
init_completion(&net_device->channel_init_wait);
/* Open the channel */
ret = vmbus_open(device->channel, ring_size * PAGE_SIZE,
ring_size * PAGE_SIZE, NULL, 0,
netvsc_channel_cb, device);
if (ret != 0) {
netdev_err(ndev, "unable to open channel: %d\n", ret);
goto cleanup;
}
/* Channel is opened */
pr_info("hv_netvsc channel opened successfully\n");
/* Connect with the NetVsp */
ret = netvsc_connect_vsp(device);
if (ret != 0) {
netdev_err(ndev,
"unable to connect to NetVSP - %d\n", ret);
goto close;
}
return ret;
close:
/* Now, we can close the channel safely */
vmbus_close(device->channel);
cleanup:
if (net_device) {
list_for_each_entry_safe(packet, pos,
&net_device->recv_pkt_list,
list_ent) {
list_del(&packet->list_ent);
kfree(packet);
}
kfree(net_device);
}
return ret;
}