2018-09-12 01:16:07 +00:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
2012-11-29 04:28:09 +00:00
|
|
|
/*
|
2012-11-14 07:59:04 +00:00
|
|
|
* fs/f2fs/hash.c
|
|
|
|
*
|
|
|
|
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
|
|
|
* http://www.samsung.com/
|
|
|
|
*
|
|
|
|
* Portions of this code from linux/fs/ext3/hash.c
|
|
|
|
*
|
|
|
|
* Copyright (C) 2002 by Theodore Ts'o
|
|
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/fs.h>
|
|
|
|
#include <linux/f2fs_fs.h>
|
|
|
|
#include <linux/pagemap.h>
|
f2fs: Support case-insensitive file name lookups
Modeled after commit b886ee3e778e ("ext4: Support case-insensitive file
name lookups")
"""
This patch implements the actual support for case-insensitive file name
lookups in f2fs, based on the feature bit and the encoding stored in the
superblock.
A filesystem that has the casefold feature set is able to configure
directories with the +F (F2FS_CASEFOLD_FL) attribute, enabling lookups
to succeed in that directory in a case-insensitive fashion, i.e: match
a directory entry even if the name used by userspace is not a byte per
byte match with the disk name, but is an equivalent case-insensitive
version of the Unicode string. This operation is called a
case-insensitive file name lookup.
The feature is configured as an inode attribute applied to directories
and inherited by its children. This attribute can only be enabled on
empty directories for filesystems that support the encoding feature,
thus preventing collision of file names that only differ by case.
* dcache handling:
For a +F directory, F2Fs only stores the first equivalent name dentry
used in the dcache. This is done to prevent unintentional duplication of
dentries in the dcache, while also allowing the VFS code to quickly find
the right entry in the cache despite which equivalent string was used in
a previous lookup, without having to resort to ->lookup().
d_hash() of casefolded directories is implemented as the hash of the
casefolded string, such that we always have a well-known bucket for all
the equivalencies of the same string. d_compare() uses the
utf8_strncasecmp() infrastructure, which handles the comparison of
equivalent, same case, names as well.
For now, negative lookups are not inserted in the dcache, since they
would need to be invalidated anyway, because we can't trust missing file
dentries. This is bad for performance but requires some leveraging of
the vfs layer to fix. We can live without that for now, and so does
everyone else.
* on-disk data:
Despite using a specific version of the name as the internal
representation within the dcache, the name stored and fetched from the
disk is a byte-per-byte match with what the user requested, making this
implementation 'name-preserving'. i.e. no actual information is lost
when writing to storage.
DX is supported by modifying the hashes used in +F directories to make
them case/encoding-aware. The new disk hashes are calculated as the
hash of the full casefolded string, instead of the string directly.
This allows us to efficiently search for file names in the htree without
requiring the user to provide an exact name.
* Dealing with invalid sequences:
By default, when a invalid UTF-8 sequence is identified, ext4 will treat
it as an opaque byte sequence, ignoring the encoding and reverting to
the old behavior for that unique file. This means that case-insensitive
file name lookup will not work only for that file. An optional bit can
be set in the superblock telling the filesystem code and userspace tools
to enforce the encoding. When that optional bit is set, any attempt to
create a file name using an invalid UTF-8 sequence will fail and return
an error to userspace.
* Normalization algorithm:
The UTF-8 algorithms used to compare strings in f2fs is implemented
in fs/unicode, and is based on a previous version developed by
SGI. It implements the Canonical decomposition (NFD) algorithm
described by the Unicode specification 12.1, or higher, combined with
the elimination of ignorable code points (NFDi) and full
case-folding (CF) as documented in fs/unicode/utf8_norm.c.
NFD seems to be the best normalization method for F2FS because:
- It has a lower cost than NFC/NFKC (which requires
decomposing to NFD as an intermediary step)
- It doesn't eliminate important semantic meaning like
compatibility decompositions.
Although:
- This implementation is not completely linguistic accurate, because
different languages have conflicting rules, which would require the
specialization of the filesystem to a given locale, which brings all
sorts of problems for removable media and for users who use more than
one language.
"""
Signed-off-by: Daniel Rosenberg <drosen@google.com>
Reviewed-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2019-07-23 23:05:29 +00:00
|
|
|
#include <linux/unicode.h>
|
2012-11-14 07:59:04 +00:00
|
|
|
|
|
|
|
#include "f2fs.h"
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Hashing code copied from ext3
|
|
|
|
*/
|
|
|
|
#define DELTA 0x9E3779B9
|
|
|
|
|
|
|
|
static void TEA_transform(unsigned int buf[4], unsigned int const in[])
|
|
|
|
{
|
|
|
|
__u32 sum = 0;
|
|
|
|
__u32 b0 = buf[0], b1 = buf[1];
|
|
|
|
__u32 a = in[0], b = in[1], c = in[2], d = in[3];
|
|
|
|
int n = 16;
|
|
|
|
|
|
|
|
do {
|
|
|
|
sum += DELTA;
|
|
|
|
b0 += ((b1 << 4)+a) ^ (b1+sum) ^ ((b1 >> 5)+b);
|
|
|
|
b1 += ((b0 << 4)+c) ^ (b0+sum) ^ ((b0 >> 5)+d);
|
|
|
|
} while (--n);
|
|
|
|
|
|
|
|
buf[0] += b0;
|
|
|
|
buf[1] += b1;
|
|
|
|
}
|
|
|
|
|
2014-08-29 07:26:50 +00:00
|
|
|
static void str2hashbuf(const unsigned char *msg, size_t len,
|
|
|
|
unsigned int *buf, int num)
|
2012-11-14 07:59:04 +00:00
|
|
|
{
|
|
|
|
unsigned pad, val;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
pad = (__u32)len | ((__u32)len << 8);
|
|
|
|
pad |= pad << 16;
|
|
|
|
|
|
|
|
val = pad;
|
|
|
|
if (len > num * 4)
|
|
|
|
len = num * 4;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
|
|
if ((i % 4) == 0)
|
|
|
|
val = pad;
|
|
|
|
val = msg[i] + (val << 8);
|
|
|
|
if ((i % 4) == 3) {
|
|
|
|
*buf++ = val;
|
|
|
|
val = pad;
|
|
|
|
num--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (--num >= 0)
|
|
|
|
*buf++ = val;
|
|
|
|
while (--num >= 0)
|
|
|
|
*buf++ = pad;
|
|
|
|
}
|
|
|
|
|
f2fs: rework filename handling
Rework f2fs's handling of filenames to use a new 'struct f2fs_filename'.
Similar to 'struct ext4_filename', this stores the usr_fname, disk_name,
dirhash, crypto_buf, and casefolded name. Some of these names can be
NULL in some cases. 'struct f2fs_filename' differs from
'struct fscrypt_name' mainly in that the casefolded name is included.
For user-initiated directory operations like lookup() and create(),
initialize the f2fs_filename by translating the corresponding
fscrypt_name, then computing the dirhash and casefolded name if needed.
This makes the dirhash and casefolded name be cached for each syscall,
so we don't have to recompute them repeatedly. (Previously, f2fs
computed the dirhash once per directory level, and the casefolded name
once per directory block.) This improves performance.
This rework also makes it much easier to correctly handle all
combinations of normal, encrypted, casefolded, and encrypted+casefolded
directories. (The fourth isn't supported yet but is being worked on.)
The only other cases where an f2fs_filename gets initialized are for two
filesystem-internal operations: (1) when converting an inline directory
to a regular one, we grab the needed disk_name and hash from an existing
f2fs_dir_entry; and (2) when roll-forward recovering a new dentry, we
grab the needed disk_name from f2fs_inode::i_name and compute the hash.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2020-05-07 07:59:04 +00:00
|
|
|
static u32 TEA_hash_name(const u8 *p, size_t len)
|
2012-11-14 07:59:04 +00:00
|
|
|
{
|
|
|
|
__u32 in[8], buf[4];
|
2012-12-13 14:44:11 +00:00
|
|
|
|
2012-11-14 07:59:04 +00:00
|
|
|
/* Initialize the default seed for the hash checksum functions */
|
|
|
|
buf[0] = 0x67452301;
|
|
|
|
buf[1] = 0xefcdab89;
|
|
|
|
buf[2] = 0x98badcfe;
|
|
|
|
buf[3] = 0x10325476;
|
|
|
|
|
2012-12-27 17:55:46 +00:00
|
|
|
while (1) {
|
2012-11-14 07:59:04 +00:00
|
|
|
str2hashbuf(p, len, in, 4);
|
|
|
|
TEA_transform(buf, in);
|
|
|
|
p += 16;
|
2012-12-27 17:55:46 +00:00
|
|
|
if (len <= 16)
|
|
|
|
break;
|
|
|
|
len -= 16;
|
2012-11-14 07:59:04 +00:00
|
|
|
}
|
f2fs: rework filename handling
Rework f2fs's handling of filenames to use a new 'struct f2fs_filename'.
Similar to 'struct ext4_filename', this stores the usr_fname, disk_name,
dirhash, crypto_buf, and casefolded name. Some of these names can be
NULL in some cases. 'struct f2fs_filename' differs from
'struct fscrypt_name' mainly in that the casefolded name is included.
For user-initiated directory operations like lookup() and create(),
initialize the f2fs_filename by translating the corresponding
fscrypt_name, then computing the dirhash and casefolded name if needed.
This makes the dirhash and casefolded name be cached for each syscall,
so we don't have to recompute them repeatedly. (Previously, f2fs
computed the dirhash once per directory level, and the casefolded name
once per directory block.) This improves performance.
This rework also makes it much easier to correctly handle all
combinations of normal, encrypted, casefolded, and encrypted+casefolded
directories. (The fourth isn't supported yet but is being worked on.)
The only other cases where an f2fs_filename gets initialized are for two
filesystem-internal operations: (1) when converting an inline directory
to a regular one, we grab the needed disk_name and hash from an existing
f2fs_dir_entry; and (2) when roll-forward recovering a new dentry, we
grab the needed disk_name from f2fs_inode::i_name and compute the hash.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2020-05-07 07:59:04 +00:00
|
|
|
return buf[0] & ~F2FS_HASH_COL_BIT;
|
2012-11-14 07:59:04 +00:00
|
|
|
}
|
f2fs: Support case-insensitive file name lookups
Modeled after commit b886ee3e778e ("ext4: Support case-insensitive file
name lookups")
"""
This patch implements the actual support for case-insensitive file name
lookups in f2fs, based on the feature bit and the encoding stored in the
superblock.
A filesystem that has the casefold feature set is able to configure
directories with the +F (F2FS_CASEFOLD_FL) attribute, enabling lookups
to succeed in that directory in a case-insensitive fashion, i.e: match
a directory entry even if the name used by userspace is not a byte per
byte match with the disk name, but is an equivalent case-insensitive
version of the Unicode string. This operation is called a
case-insensitive file name lookup.
The feature is configured as an inode attribute applied to directories
and inherited by its children. This attribute can only be enabled on
empty directories for filesystems that support the encoding feature,
thus preventing collision of file names that only differ by case.
* dcache handling:
For a +F directory, F2Fs only stores the first equivalent name dentry
used in the dcache. This is done to prevent unintentional duplication of
dentries in the dcache, while also allowing the VFS code to quickly find
the right entry in the cache despite which equivalent string was used in
a previous lookup, without having to resort to ->lookup().
d_hash() of casefolded directories is implemented as the hash of the
casefolded string, such that we always have a well-known bucket for all
the equivalencies of the same string. d_compare() uses the
utf8_strncasecmp() infrastructure, which handles the comparison of
equivalent, same case, names as well.
For now, negative lookups are not inserted in the dcache, since they
would need to be invalidated anyway, because we can't trust missing file
dentries. This is bad for performance but requires some leveraging of
the vfs layer to fix. We can live without that for now, and so does
everyone else.
* on-disk data:
Despite using a specific version of the name as the internal
representation within the dcache, the name stored and fetched from the
disk is a byte-per-byte match with what the user requested, making this
implementation 'name-preserving'. i.e. no actual information is lost
when writing to storage.
DX is supported by modifying the hashes used in +F directories to make
them case/encoding-aware. The new disk hashes are calculated as the
hash of the full casefolded string, instead of the string directly.
This allows us to efficiently search for file names in the htree without
requiring the user to provide an exact name.
* Dealing with invalid sequences:
By default, when a invalid UTF-8 sequence is identified, ext4 will treat
it as an opaque byte sequence, ignoring the encoding and reverting to
the old behavior for that unique file. This means that case-insensitive
file name lookup will not work only for that file. An optional bit can
be set in the superblock telling the filesystem code and userspace tools
to enforce the encoding. When that optional bit is set, any attempt to
create a file name using an invalid UTF-8 sequence will fail and return
an error to userspace.
* Normalization algorithm:
The UTF-8 algorithms used to compare strings in f2fs is implemented
in fs/unicode, and is based on a previous version developed by
SGI. It implements the Canonical decomposition (NFD) algorithm
described by the Unicode specification 12.1, or higher, combined with
the elimination of ignorable code points (NFDi) and full
case-folding (CF) as documented in fs/unicode/utf8_norm.c.
NFD seems to be the best normalization method for F2FS because:
- It has a lower cost than NFC/NFKC (which requires
decomposing to NFD as an intermediary step)
- It doesn't eliminate important semantic meaning like
compatibility decompositions.
Although:
- This implementation is not completely linguistic accurate, because
different languages have conflicting rules, which would require the
specialization of the filesystem to a given locale, which brings all
sorts of problems for removable media and for users who use more than
one language.
"""
Signed-off-by: Daniel Rosenberg <drosen@google.com>
Reviewed-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2019-07-23 23:05:29 +00:00
|
|
|
|
f2fs: rework filename handling
Rework f2fs's handling of filenames to use a new 'struct f2fs_filename'.
Similar to 'struct ext4_filename', this stores the usr_fname, disk_name,
dirhash, crypto_buf, and casefolded name. Some of these names can be
NULL in some cases. 'struct f2fs_filename' differs from
'struct fscrypt_name' mainly in that the casefolded name is included.
For user-initiated directory operations like lookup() and create(),
initialize the f2fs_filename by translating the corresponding
fscrypt_name, then computing the dirhash and casefolded name if needed.
This makes the dirhash and casefolded name be cached for each syscall,
so we don't have to recompute them repeatedly. (Previously, f2fs
computed the dirhash once per directory level, and the casefolded name
once per directory block.) This improves performance.
This rework also makes it much easier to correctly handle all
combinations of normal, encrypted, casefolded, and encrypted+casefolded
directories. (The fourth isn't supported yet but is being worked on.)
The only other cases where an f2fs_filename gets initialized are for two
filesystem-internal operations: (1) when converting an inline directory
to a regular one, we grab the needed disk_name and hash from an existing
f2fs_dir_entry; and (2) when roll-forward recovering a new dentry, we
grab the needed disk_name from f2fs_inode::i_name and compute the hash.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2020-05-07 07:59:04 +00:00
|
|
|
/*
|
|
|
|
* Compute @fname->hash. For all directories, @fname->disk_name must be set.
|
|
|
|
* For casefolded directories, @fname->usr_fname must be set, and also
|
|
|
|
* @fname->cf_name if the filename is valid Unicode.
|
|
|
|
*/
|
|
|
|
void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname)
|
f2fs: Support case-insensitive file name lookups
Modeled after commit b886ee3e778e ("ext4: Support case-insensitive file
name lookups")
"""
This patch implements the actual support for case-insensitive file name
lookups in f2fs, based on the feature bit and the encoding stored in the
superblock.
A filesystem that has the casefold feature set is able to configure
directories with the +F (F2FS_CASEFOLD_FL) attribute, enabling lookups
to succeed in that directory in a case-insensitive fashion, i.e: match
a directory entry even if the name used by userspace is not a byte per
byte match with the disk name, but is an equivalent case-insensitive
version of the Unicode string. This operation is called a
case-insensitive file name lookup.
The feature is configured as an inode attribute applied to directories
and inherited by its children. This attribute can only be enabled on
empty directories for filesystems that support the encoding feature,
thus preventing collision of file names that only differ by case.
* dcache handling:
For a +F directory, F2Fs only stores the first equivalent name dentry
used in the dcache. This is done to prevent unintentional duplication of
dentries in the dcache, while also allowing the VFS code to quickly find
the right entry in the cache despite which equivalent string was used in
a previous lookup, without having to resort to ->lookup().
d_hash() of casefolded directories is implemented as the hash of the
casefolded string, such that we always have a well-known bucket for all
the equivalencies of the same string. d_compare() uses the
utf8_strncasecmp() infrastructure, which handles the comparison of
equivalent, same case, names as well.
For now, negative lookups are not inserted in the dcache, since they
would need to be invalidated anyway, because we can't trust missing file
dentries. This is bad for performance but requires some leveraging of
the vfs layer to fix. We can live without that for now, and so does
everyone else.
* on-disk data:
Despite using a specific version of the name as the internal
representation within the dcache, the name stored and fetched from the
disk is a byte-per-byte match with what the user requested, making this
implementation 'name-preserving'. i.e. no actual information is lost
when writing to storage.
DX is supported by modifying the hashes used in +F directories to make
them case/encoding-aware. The new disk hashes are calculated as the
hash of the full casefolded string, instead of the string directly.
This allows us to efficiently search for file names in the htree without
requiring the user to provide an exact name.
* Dealing with invalid sequences:
By default, when a invalid UTF-8 sequence is identified, ext4 will treat
it as an opaque byte sequence, ignoring the encoding and reverting to
the old behavior for that unique file. This means that case-insensitive
file name lookup will not work only for that file. An optional bit can
be set in the superblock telling the filesystem code and userspace tools
to enforce the encoding. When that optional bit is set, any attempt to
create a file name using an invalid UTF-8 sequence will fail and return
an error to userspace.
* Normalization algorithm:
The UTF-8 algorithms used to compare strings in f2fs is implemented
in fs/unicode, and is based on a previous version developed by
SGI. It implements the Canonical decomposition (NFD) algorithm
described by the Unicode specification 12.1, or higher, combined with
the elimination of ignorable code points (NFDi) and full
case-folding (CF) as documented in fs/unicode/utf8_norm.c.
NFD seems to be the best normalization method for F2FS because:
- It has a lower cost than NFC/NFKC (which requires
decomposing to NFD as an intermediary step)
- It doesn't eliminate important semantic meaning like
compatibility decompositions.
Although:
- This implementation is not completely linguistic accurate, because
different languages have conflicting rules, which would require the
specialization of the filesystem to a given locale, which brings all
sorts of problems for removable media and for users who use more than
one language.
"""
Signed-off-by: Daniel Rosenberg <drosen@google.com>
Reviewed-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2019-07-23 23:05:29 +00:00
|
|
|
{
|
f2fs: rework filename handling
Rework f2fs's handling of filenames to use a new 'struct f2fs_filename'.
Similar to 'struct ext4_filename', this stores the usr_fname, disk_name,
dirhash, crypto_buf, and casefolded name. Some of these names can be
NULL in some cases. 'struct f2fs_filename' differs from
'struct fscrypt_name' mainly in that the casefolded name is included.
For user-initiated directory operations like lookup() and create(),
initialize the f2fs_filename by translating the corresponding
fscrypt_name, then computing the dirhash and casefolded name if needed.
This makes the dirhash and casefolded name be cached for each syscall,
so we don't have to recompute them repeatedly. (Previously, f2fs
computed the dirhash once per directory level, and the casefolded name
once per directory block.) This improves performance.
This rework also makes it much easier to correctly handle all
combinations of normal, encrypted, casefolded, and encrypted+casefolded
directories. (The fourth isn't supported yet but is being worked on.)
The only other cases where an f2fs_filename gets initialized are for two
filesystem-internal operations: (1) when converting an inline directory
to a regular one, we grab the needed disk_name and hash from an existing
f2fs_dir_entry; and (2) when roll-forward recovering a new dentry, we
grab the needed disk_name from f2fs_inode::i_name and compute the hash.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2020-05-07 07:59:04 +00:00
|
|
|
const u8 *name = fname->disk_name.name;
|
|
|
|
size_t len = fname->disk_name.len;
|
f2fs: Support case-insensitive file name lookups
Modeled after commit b886ee3e778e ("ext4: Support case-insensitive file
name lookups")
"""
This patch implements the actual support for case-insensitive file name
lookups in f2fs, based on the feature bit and the encoding stored in the
superblock.
A filesystem that has the casefold feature set is able to configure
directories with the +F (F2FS_CASEFOLD_FL) attribute, enabling lookups
to succeed in that directory in a case-insensitive fashion, i.e: match
a directory entry even if the name used by userspace is not a byte per
byte match with the disk name, but is an equivalent case-insensitive
version of the Unicode string. This operation is called a
case-insensitive file name lookup.
The feature is configured as an inode attribute applied to directories
and inherited by its children. This attribute can only be enabled on
empty directories for filesystems that support the encoding feature,
thus preventing collision of file names that only differ by case.
* dcache handling:
For a +F directory, F2Fs only stores the first equivalent name dentry
used in the dcache. This is done to prevent unintentional duplication of
dentries in the dcache, while also allowing the VFS code to quickly find
the right entry in the cache despite which equivalent string was used in
a previous lookup, without having to resort to ->lookup().
d_hash() of casefolded directories is implemented as the hash of the
casefolded string, such that we always have a well-known bucket for all
the equivalencies of the same string. d_compare() uses the
utf8_strncasecmp() infrastructure, which handles the comparison of
equivalent, same case, names as well.
For now, negative lookups are not inserted in the dcache, since they
would need to be invalidated anyway, because we can't trust missing file
dentries. This is bad for performance but requires some leveraging of
the vfs layer to fix. We can live without that for now, and so does
everyone else.
* on-disk data:
Despite using a specific version of the name as the internal
representation within the dcache, the name stored and fetched from the
disk is a byte-per-byte match with what the user requested, making this
implementation 'name-preserving'. i.e. no actual information is lost
when writing to storage.
DX is supported by modifying the hashes used in +F directories to make
them case/encoding-aware. The new disk hashes are calculated as the
hash of the full casefolded string, instead of the string directly.
This allows us to efficiently search for file names in the htree without
requiring the user to provide an exact name.
* Dealing with invalid sequences:
By default, when a invalid UTF-8 sequence is identified, ext4 will treat
it as an opaque byte sequence, ignoring the encoding and reverting to
the old behavior for that unique file. This means that case-insensitive
file name lookup will not work only for that file. An optional bit can
be set in the superblock telling the filesystem code and userspace tools
to enforce the encoding. When that optional bit is set, any attempt to
create a file name using an invalid UTF-8 sequence will fail and return
an error to userspace.
* Normalization algorithm:
The UTF-8 algorithms used to compare strings in f2fs is implemented
in fs/unicode, and is based on a previous version developed by
SGI. It implements the Canonical decomposition (NFD) algorithm
described by the Unicode specification 12.1, or higher, combined with
the elimination of ignorable code points (NFDi) and full
case-folding (CF) as documented in fs/unicode/utf8_norm.c.
NFD seems to be the best normalization method for F2FS because:
- It has a lower cost than NFC/NFKC (which requires
decomposing to NFD as an intermediary step)
- It doesn't eliminate important semantic meaning like
compatibility decompositions.
Although:
- This implementation is not completely linguistic accurate, because
different languages have conflicting rules, which would require the
specialization of the filesystem to a given locale, which brings all
sorts of problems for removable media and for users who use more than
one language.
"""
Signed-off-by: Daniel Rosenberg <drosen@google.com>
Reviewed-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2019-07-23 23:05:29 +00:00
|
|
|
|
f2fs: rework filename handling
Rework f2fs's handling of filenames to use a new 'struct f2fs_filename'.
Similar to 'struct ext4_filename', this stores the usr_fname, disk_name,
dirhash, crypto_buf, and casefolded name. Some of these names can be
NULL in some cases. 'struct f2fs_filename' differs from
'struct fscrypt_name' mainly in that the casefolded name is included.
For user-initiated directory operations like lookup() and create(),
initialize the f2fs_filename by translating the corresponding
fscrypt_name, then computing the dirhash and casefolded name if needed.
This makes the dirhash and casefolded name be cached for each syscall,
so we don't have to recompute them repeatedly. (Previously, f2fs
computed the dirhash once per directory level, and the casefolded name
once per directory block.) This improves performance.
This rework also makes it much easier to correctly handle all
combinations of normal, encrypted, casefolded, and encrypted+casefolded
directories. (The fourth isn't supported yet but is being worked on.)
The only other cases where an f2fs_filename gets initialized are for two
filesystem-internal operations: (1) when converting an inline directory
to a regular one, we grab the needed disk_name and hash from an existing
f2fs_dir_entry; and (2) when roll-forward recovering a new dentry, we
grab the needed disk_name from f2fs_inode::i_name and compute the hash.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2020-05-07 07:59:04 +00:00
|
|
|
WARN_ON_ONCE(!name);
|
f2fs: Support case-insensitive file name lookups
Modeled after commit b886ee3e778e ("ext4: Support case-insensitive file
name lookups")
"""
This patch implements the actual support for case-insensitive file name
lookups in f2fs, based on the feature bit and the encoding stored in the
superblock.
A filesystem that has the casefold feature set is able to configure
directories with the +F (F2FS_CASEFOLD_FL) attribute, enabling lookups
to succeed in that directory in a case-insensitive fashion, i.e: match
a directory entry even if the name used by userspace is not a byte per
byte match with the disk name, but is an equivalent case-insensitive
version of the Unicode string. This operation is called a
case-insensitive file name lookup.
The feature is configured as an inode attribute applied to directories
and inherited by its children. This attribute can only be enabled on
empty directories for filesystems that support the encoding feature,
thus preventing collision of file names that only differ by case.
* dcache handling:
For a +F directory, F2Fs only stores the first equivalent name dentry
used in the dcache. This is done to prevent unintentional duplication of
dentries in the dcache, while also allowing the VFS code to quickly find
the right entry in the cache despite which equivalent string was used in
a previous lookup, without having to resort to ->lookup().
d_hash() of casefolded directories is implemented as the hash of the
casefolded string, such that we always have a well-known bucket for all
the equivalencies of the same string. d_compare() uses the
utf8_strncasecmp() infrastructure, which handles the comparison of
equivalent, same case, names as well.
For now, negative lookups are not inserted in the dcache, since they
would need to be invalidated anyway, because we can't trust missing file
dentries. This is bad for performance but requires some leveraging of
the vfs layer to fix. We can live without that for now, and so does
everyone else.
* on-disk data:
Despite using a specific version of the name as the internal
representation within the dcache, the name stored and fetched from the
disk is a byte-per-byte match with what the user requested, making this
implementation 'name-preserving'. i.e. no actual information is lost
when writing to storage.
DX is supported by modifying the hashes used in +F directories to make
them case/encoding-aware. The new disk hashes are calculated as the
hash of the full casefolded string, instead of the string directly.
This allows us to efficiently search for file names in the htree without
requiring the user to provide an exact name.
* Dealing with invalid sequences:
By default, when a invalid UTF-8 sequence is identified, ext4 will treat
it as an opaque byte sequence, ignoring the encoding and reverting to
the old behavior for that unique file. This means that case-insensitive
file name lookup will not work only for that file. An optional bit can
be set in the superblock telling the filesystem code and userspace tools
to enforce the encoding. When that optional bit is set, any attempt to
create a file name using an invalid UTF-8 sequence will fail and return
an error to userspace.
* Normalization algorithm:
The UTF-8 algorithms used to compare strings in f2fs is implemented
in fs/unicode, and is based on a previous version developed by
SGI. It implements the Canonical decomposition (NFD) algorithm
described by the Unicode specification 12.1, or higher, combined with
the elimination of ignorable code points (NFDi) and full
case-folding (CF) as documented in fs/unicode/utf8_norm.c.
NFD seems to be the best normalization method for F2FS because:
- It has a lower cost than NFC/NFKC (which requires
decomposing to NFD as an intermediary step)
- It doesn't eliminate important semantic meaning like
compatibility decompositions.
Although:
- This implementation is not completely linguistic accurate, because
different languages have conflicting rules, which would require the
specialization of the filesystem to a given locale, which brings all
sorts of problems for removable media and for users who use more than
one language.
"""
Signed-off-by: Daniel Rosenberg <drosen@google.com>
Reviewed-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2019-07-23 23:05:29 +00:00
|
|
|
|
f2fs: rework filename handling
Rework f2fs's handling of filenames to use a new 'struct f2fs_filename'.
Similar to 'struct ext4_filename', this stores the usr_fname, disk_name,
dirhash, crypto_buf, and casefolded name. Some of these names can be
NULL in some cases. 'struct f2fs_filename' differs from
'struct fscrypt_name' mainly in that the casefolded name is included.
For user-initiated directory operations like lookup() and create(),
initialize the f2fs_filename by translating the corresponding
fscrypt_name, then computing the dirhash and casefolded name if needed.
This makes the dirhash and casefolded name be cached for each syscall,
so we don't have to recompute them repeatedly. (Previously, f2fs
computed the dirhash once per directory level, and the casefolded name
once per directory block.) This improves performance.
This rework also makes it much easier to correctly handle all
combinations of normal, encrypted, casefolded, and encrypted+casefolded
directories. (The fourth isn't supported yet but is being worked on.)
The only other cases where an f2fs_filename gets initialized are for two
filesystem-internal operations: (1) when converting an inline directory
to a regular one, we grab the needed disk_name and hash from an existing
f2fs_dir_entry; and (2) when roll-forward recovering a new dentry, we
grab the needed disk_name from f2fs_inode::i_name and compute the hash.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2020-05-07 07:59:04 +00:00
|
|
|
if (is_dot_dotdot(name, len)) {
|
|
|
|
fname->hash = 0;
|
|
|
|
return;
|
f2fs: Support case-insensitive file name lookups
Modeled after commit b886ee3e778e ("ext4: Support case-insensitive file
name lookups")
"""
This patch implements the actual support for case-insensitive file name
lookups in f2fs, based on the feature bit and the encoding stored in the
superblock.
A filesystem that has the casefold feature set is able to configure
directories with the +F (F2FS_CASEFOLD_FL) attribute, enabling lookups
to succeed in that directory in a case-insensitive fashion, i.e: match
a directory entry even if the name used by userspace is not a byte per
byte match with the disk name, but is an equivalent case-insensitive
version of the Unicode string. This operation is called a
case-insensitive file name lookup.
The feature is configured as an inode attribute applied to directories
and inherited by its children. This attribute can only be enabled on
empty directories for filesystems that support the encoding feature,
thus preventing collision of file names that only differ by case.
* dcache handling:
For a +F directory, F2Fs only stores the first equivalent name dentry
used in the dcache. This is done to prevent unintentional duplication of
dentries in the dcache, while also allowing the VFS code to quickly find
the right entry in the cache despite which equivalent string was used in
a previous lookup, without having to resort to ->lookup().
d_hash() of casefolded directories is implemented as the hash of the
casefolded string, such that we always have a well-known bucket for all
the equivalencies of the same string. d_compare() uses the
utf8_strncasecmp() infrastructure, which handles the comparison of
equivalent, same case, names as well.
For now, negative lookups are not inserted in the dcache, since they
would need to be invalidated anyway, because we can't trust missing file
dentries. This is bad for performance but requires some leveraging of
the vfs layer to fix. We can live without that for now, and so does
everyone else.
* on-disk data:
Despite using a specific version of the name as the internal
representation within the dcache, the name stored and fetched from the
disk is a byte-per-byte match with what the user requested, making this
implementation 'name-preserving'. i.e. no actual information is lost
when writing to storage.
DX is supported by modifying the hashes used in +F directories to make
them case/encoding-aware. The new disk hashes are calculated as the
hash of the full casefolded string, instead of the string directly.
This allows us to efficiently search for file names in the htree without
requiring the user to provide an exact name.
* Dealing with invalid sequences:
By default, when a invalid UTF-8 sequence is identified, ext4 will treat
it as an opaque byte sequence, ignoring the encoding and reverting to
the old behavior for that unique file. This means that case-insensitive
file name lookup will not work only for that file. An optional bit can
be set in the superblock telling the filesystem code and userspace tools
to enforce the encoding. When that optional bit is set, any attempt to
create a file name using an invalid UTF-8 sequence will fail and return
an error to userspace.
* Normalization algorithm:
The UTF-8 algorithms used to compare strings in f2fs is implemented
in fs/unicode, and is based on a previous version developed by
SGI. It implements the Canonical decomposition (NFD) algorithm
described by the Unicode specification 12.1, or higher, combined with
the elimination of ignorable code points (NFDi) and full
case-folding (CF) as documented in fs/unicode/utf8_norm.c.
NFD seems to be the best normalization method for F2FS because:
- It has a lower cost than NFC/NFKC (which requires
decomposing to NFD as an intermediary step)
- It doesn't eliminate important semantic meaning like
compatibility decompositions.
Although:
- This implementation is not completely linguistic accurate, because
different languages have conflicting rules, which would require the
specialization of the filesystem to a given locale, which brings all
sorts of problems for removable media and for users who use more than
one language.
"""
Signed-off-by: Daniel Rosenberg <drosen@google.com>
Reviewed-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2019-07-23 23:05:29 +00:00
|
|
|
}
|
|
|
|
|
f2fs: rework filename handling
Rework f2fs's handling of filenames to use a new 'struct f2fs_filename'.
Similar to 'struct ext4_filename', this stores the usr_fname, disk_name,
dirhash, crypto_buf, and casefolded name. Some of these names can be
NULL in some cases. 'struct f2fs_filename' differs from
'struct fscrypt_name' mainly in that the casefolded name is included.
For user-initiated directory operations like lookup() and create(),
initialize the f2fs_filename by translating the corresponding
fscrypt_name, then computing the dirhash and casefolded name if needed.
This makes the dirhash and casefolded name be cached for each syscall,
so we don't have to recompute them repeatedly. (Previously, f2fs
computed the dirhash once per directory level, and the casefolded name
once per directory block.) This improves performance.
This rework also makes it much easier to correctly handle all
combinations of normal, encrypted, casefolded, and encrypted+casefolded
directories. (The fourth isn't supported yet but is being worked on.)
The only other cases where an f2fs_filename gets initialized are for two
filesystem-internal operations: (1) when converting an inline directory
to a regular one, we grab the needed disk_name and hash from an existing
f2fs_dir_entry; and (2) when roll-forward recovering a new dentry, we
grab the needed disk_name from f2fs_inode::i_name and compute the hash.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2020-05-07 07:59:04 +00:00
|
|
|
#ifdef CONFIG_UNICODE
|
|
|
|
if (IS_CASEFOLDED(dir)) {
|
|
|
|
/*
|
|
|
|
* If the casefolded name is provided, hash it instead of the
|
|
|
|
* on-disk name. If the casefolded name is *not* provided, that
|
|
|
|
* should only be because the name wasn't valid Unicode, so fall
|
2020-11-19 06:09:04 +00:00
|
|
|
* back to treating the name as an opaque byte sequence. Note
|
|
|
|
* that to handle encrypted directories, the fallback must use
|
|
|
|
* usr_fname (plaintext) rather than disk_name (ciphertext).
|
f2fs: rework filename handling
Rework f2fs's handling of filenames to use a new 'struct f2fs_filename'.
Similar to 'struct ext4_filename', this stores the usr_fname, disk_name,
dirhash, crypto_buf, and casefolded name. Some of these names can be
NULL in some cases. 'struct f2fs_filename' differs from
'struct fscrypt_name' mainly in that the casefolded name is included.
For user-initiated directory operations like lookup() and create(),
initialize the f2fs_filename by translating the corresponding
fscrypt_name, then computing the dirhash and casefolded name if needed.
This makes the dirhash and casefolded name be cached for each syscall,
so we don't have to recompute them repeatedly. (Previously, f2fs
computed the dirhash once per directory level, and the casefolded name
once per directory block.) This improves performance.
This rework also makes it much easier to correctly handle all
combinations of normal, encrypted, casefolded, and encrypted+casefolded
directories. (The fourth isn't supported yet but is being worked on.)
The only other cases where an f2fs_filename gets initialized are for two
filesystem-internal operations: (1) when converting an inline directory
to a regular one, we grab the needed disk_name and hash from an existing
f2fs_dir_entry; and (2) when roll-forward recovering a new dentry, we
grab the needed disk_name from f2fs_inode::i_name and compute the hash.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2020-05-07 07:59:04 +00:00
|
|
|
*/
|
|
|
|
WARN_ON_ONCE(!fname->usr_fname->name);
|
|
|
|
if (fname->cf_name.name) {
|
|
|
|
name = fname->cf_name.name;
|
|
|
|
len = fname->cf_name.len;
|
|
|
|
} else {
|
|
|
|
name = fname->usr_fname->name;
|
|
|
|
len = fname->usr_fname->len;
|
|
|
|
}
|
2020-11-19 06:09:04 +00:00
|
|
|
if (IS_ENCRYPTED(dir)) {
|
|
|
|
struct qstr tmp = QSTR_INIT(name, len);
|
|
|
|
|
|
|
|
fname->hash =
|
|
|
|
cpu_to_le32(fscrypt_fname_siphash(dir, &tmp));
|
|
|
|
return;
|
|
|
|
}
|
f2fs: rework filename handling
Rework f2fs's handling of filenames to use a new 'struct f2fs_filename'.
Similar to 'struct ext4_filename', this stores the usr_fname, disk_name,
dirhash, crypto_buf, and casefolded name. Some of these names can be
NULL in some cases. 'struct f2fs_filename' differs from
'struct fscrypt_name' mainly in that the casefolded name is included.
For user-initiated directory operations like lookup() and create(),
initialize the f2fs_filename by translating the corresponding
fscrypt_name, then computing the dirhash and casefolded name if needed.
This makes the dirhash and casefolded name be cached for each syscall,
so we don't have to recompute them repeatedly. (Previously, f2fs
computed the dirhash once per directory level, and the casefolded name
once per directory block.) This improves performance.
This rework also makes it much easier to correctly handle all
combinations of normal, encrypted, casefolded, and encrypted+casefolded
directories. (The fourth isn't supported yet but is being worked on.)
The only other cases where an f2fs_filename gets initialized are for two
filesystem-internal operations: (1) when converting an inline directory
to a regular one, we grab the needed disk_name and hash from an existing
f2fs_dir_entry; and (2) when roll-forward recovering a new dentry, we
grab the needed disk_name from f2fs_inode::i_name and compute the hash.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2020-05-07 07:59:04 +00:00
|
|
|
}
|
f2fs: Support case-insensitive file name lookups
Modeled after commit b886ee3e778e ("ext4: Support case-insensitive file
name lookups")
"""
This patch implements the actual support for case-insensitive file name
lookups in f2fs, based on the feature bit and the encoding stored in the
superblock.
A filesystem that has the casefold feature set is able to configure
directories with the +F (F2FS_CASEFOLD_FL) attribute, enabling lookups
to succeed in that directory in a case-insensitive fashion, i.e: match
a directory entry even if the name used by userspace is not a byte per
byte match with the disk name, but is an equivalent case-insensitive
version of the Unicode string. This operation is called a
case-insensitive file name lookup.
The feature is configured as an inode attribute applied to directories
and inherited by its children. This attribute can only be enabled on
empty directories for filesystems that support the encoding feature,
thus preventing collision of file names that only differ by case.
* dcache handling:
For a +F directory, F2Fs only stores the first equivalent name dentry
used in the dcache. This is done to prevent unintentional duplication of
dentries in the dcache, while also allowing the VFS code to quickly find
the right entry in the cache despite which equivalent string was used in
a previous lookup, without having to resort to ->lookup().
d_hash() of casefolded directories is implemented as the hash of the
casefolded string, such that we always have a well-known bucket for all
the equivalencies of the same string. d_compare() uses the
utf8_strncasecmp() infrastructure, which handles the comparison of
equivalent, same case, names as well.
For now, negative lookups are not inserted in the dcache, since they
would need to be invalidated anyway, because we can't trust missing file
dentries. This is bad for performance but requires some leveraging of
the vfs layer to fix. We can live without that for now, and so does
everyone else.
* on-disk data:
Despite using a specific version of the name as the internal
representation within the dcache, the name stored and fetched from the
disk is a byte-per-byte match with what the user requested, making this
implementation 'name-preserving'. i.e. no actual information is lost
when writing to storage.
DX is supported by modifying the hashes used in +F directories to make
them case/encoding-aware. The new disk hashes are calculated as the
hash of the full casefolded string, instead of the string directly.
This allows us to efficiently search for file names in the htree without
requiring the user to provide an exact name.
* Dealing with invalid sequences:
By default, when a invalid UTF-8 sequence is identified, ext4 will treat
it as an opaque byte sequence, ignoring the encoding and reverting to
the old behavior for that unique file. This means that case-insensitive
file name lookup will not work only for that file. An optional bit can
be set in the superblock telling the filesystem code and userspace tools
to enforce the encoding. When that optional bit is set, any attempt to
create a file name using an invalid UTF-8 sequence will fail and return
an error to userspace.
* Normalization algorithm:
The UTF-8 algorithms used to compare strings in f2fs is implemented
in fs/unicode, and is based on a previous version developed by
SGI. It implements the Canonical decomposition (NFD) algorithm
described by the Unicode specification 12.1, or higher, combined with
the elimination of ignorable code points (NFDi) and full
case-folding (CF) as documented in fs/unicode/utf8_norm.c.
NFD seems to be the best normalization method for F2FS because:
- It has a lower cost than NFC/NFKC (which requires
decomposing to NFD as an intermediary step)
- It doesn't eliminate important semantic meaning like
compatibility decompositions.
Although:
- This implementation is not completely linguistic accurate, because
different languages have conflicting rules, which would require the
specialization of the filesystem to a given locale, which brings all
sorts of problems for removable media and for users who use more than
one language.
"""
Signed-off-by: Daniel Rosenberg <drosen@google.com>
Reviewed-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2019-07-23 23:05:29 +00:00
|
|
|
#endif
|
f2fs: rework filename handling
Rework f2fs's handling of filenames to use a new 'struct f2fs_filename'.
Similar to 'struct ext4_filename', this stores the usr_fname, disk_name,
dirhash, crypto_buf, and casefolded name. Some of these names can be
NULL in some cases. 'struct f2fs_filename' differs from
'struct fscrypt_name' mainly in that the casefolded name is included.
For user-initiated directory operations like lookup() and create(),
initialize the f2fs_filename by translating the corresponding
fscrypt_name, then computing the dirhash and casefolded name if needed.
This makes the dirhash and casefolded name be cached for each syscall,
so we don't have to recompute them repeatedly. (Previously, f2fs
computed the dirhash once per directory level, and the casefolded name
once per directory block.) This improves performance.
This rework also makes it much easier to correctly handle all
combinations of normal, encrypted, casefolded, and encrypted+casefolded
directories. (The fourth isn't supported yet but is being worked on.)
The only other cases where an f2fs_filename gets initialized are for two
filesystem-internal operations: (1) when converting an inline directory
to a regular one, we grab the needed disk_name and hash from an existing
f2fs_dir_entry; and (2) when roll-forward recovering a new dentry, we
grab the needed disk_name from f2fs_inode::i_name and compute the hash.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2020-05-07 07:59:04 +00:00
|
|
|
fname->hash = cpu_to_le32(TEA_hash_name(name, len));
|
f2fs: Support case-insensitive file name lookups
Modeled after commit b886ee3e778e ("ext4: Support case-insensitive file
name lookups")
"""
This patch implements the actual support for case-insensitive file name
lookups in f2fs, based on the feature bit and the encoding stored in the
superblock.
A filesystem that has the casefold feature set is able to configure
directories with the +F (F2FS_CASEFOLD_FL) attribute, enabling lookups
to succeed in that directory in a case-insensitive fashion, i.e: match
a directory entry even if the name used by userspace is not a byte per
byte match with the disk name, but is an equivalent case-insensitive
version of the Unicode string. This operation is called a
case-insensitive file name lookup.
The feature is configured as an inode attribute applied to directories
and inherited by its children. This attribute can only be enabled on
empty directories for filesystems that support the encoding feature,
thus preventing collision of file names that only differ by case.
* dcache handling:
For a +F directory, F2Fs only stores the first equivalent name dentry
used in the dcache. This is done to prevent unintentional duplication of
dentries in the dcache, while also allowing the VFS code to quickly find
the right entry in the cache despite which equivalent string was used in
a previous lookup, without having to resort to ->lookup().
d_hash() of casefolded directories is implemented as the hash of the
casefolded string, such that we always have a well-known bucket for all
the equivalencies of the same string. d_compare() uses the
utf8_strncasecmp() infrastructure, which handles the comparison of
equivalent, same case, names as well.
For now, negative lookups are not inserted in the dcache, since they
would need to be invalidated anyway, because we can't trust missing file
dentries. This is bad for performance but requires some leveraging of
the vfs layer to fix. We can live without that for now, and so does
everyone else.
* on-disk data:
Despite using a specific version of the name as the internal
representation within the dcache, the name stored and fetched from the
disk is a byte-per-byte match with what the user requested, making this
implementation 'name-preserving'. i.e. no actual information is lost
when writing to storage.
DX is supported by modifying the hashes used in +F directories to make
them case/encoding-aware. The new disk hashes are calculated as the
hash of the full casefolded string, instead of the string directly.
This allows us to efficiently search for file names in the htree without
requiring the user to provide an exact name.
* Dealing with invalid sequences:
By default, when a invalid UTF-8 sequence is identified, ext4 will treat
it as an opaque byte sequence, ignoring the encoding and reverting to
the old behavior for that unique file. This means that case-insensitive
file name lookup will not work only for that file. An optional bit can
be set in the superblock telling the filesystem code and userspace tools
to enforce the encoding. When that optional bit is set, any attempt to
create a file name using an invalid UTF-8 sequence will fail and return
an error to userspace.
* Normalization algorithm:
The UTF-8 algorithms used to compare strings in f2fs is implemented
in fs/unicode, and is based on a previous version developed by
SGI. It implements the Canonical decomposition (NFD) algorithm
described by the Unicode specification 12.1, or higher, combined with
the elimination of ignorable code points (NFDi) and full
case-folding (CF) as documented in fs/unicode/utf8_norm.c.
NFD seems to be the best normalization method for F2FS because:
- It has a lower cost than NFC/NFKC (which requires
decomposing to NFD as an intermediary step)
- It doesn't eliminate important semantic meaning like
compatibility decompositions.
Although:
- This implementation is not completely linguistic accurate, because
different languages have conflicting rules, which would require the
specialization of the filesystem to a given locale, which brings all
sorts of problems for removable media and for users who use more than
one language.
"""
Signed-off-by: Daniel Rosenberg <drosen@google.com>
Reviewed-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2019-07-23 23:05:29 +00:00
|
|
|
}
|