linux/drivers/iio/adc/stm32-dfsdm-core.c

465 lines
12 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* This file is part the core part STM32 DFSDM driver
*
* Copyright (C) 2017, STMicroelectronics - All Rights Reserved
* Author(s): Arnaud Pouliquen <arnaud.pouliquen@st.com> for STMicroelectronics.
*/
#include <linux/clk.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/pinctrl/consumer.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include "stm32-dfsdm.h"
struct stm32_dfsdm_dev_data {
unsigned int num_filters;
unsigned int num_channels;
const struct regmap_config *regmap_cfg;
};
#define STM32H7_DFSDM_NUM_FILTERS 4
#define STM32H7_DFSDM_NUM_CHANNELS 8
#define STM32MP1_DFSDM_NUM_FILTERS 6
#define STM32MP1_DFSDM_NUM_CHANNELS 8
static bool stm32_dfsdm_volatile_reg(struct device *dev, unsigned int reg)
{
if (reg < DFSDM_FILTER_BASE_ADR)
return false;
/*
* Mask is done on register to avoid to list registers of all
* filter instances.
*/
switch (reg & DFSDM_FILTER_REG_MASK) {
case DFSDM_CR1(0) & DFSDM_FILTER_REG_MASK:
case DFSDM_ISR(0) & DFSDM_FILTER_REG_MASK:
case DFSDM_JDATAR(0) & DFSDM_FILTER_REG_MASK:
case DFSDM_RDATAR(0) & DFSDM_FILTER_REG_MASK:
return true;
}
return false;
}
static const struct regmap_config stm32h7_dfsdm_regmap_cfg = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = sizeof(u32),
.max_register = 0x2B8,
.volatile_reg = stm32_dfsdm_volatile_reg,
.fast_io = true,
};
static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_data = {
.num_filters = STM32H7_DFSDM_NUM_FILTERS,
.num_channels = STM32H7_DFSDM_NUM_CHANNELS,
.regmap_cfg = &stm32h7_dfsdm_regmap_cfg,
};
static const struct regmap_config stm32mp1_dfsdm_regmap_cfg = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = sizeof(u32),
.max_register = 0x7fc,
.volatile_reg = stm32_dfsdm_volatile_reg,
.fast_io = true,
};
static const struct stm32_dfsdm_dev_data stm32mp1_dfsdm_data = {
.num_filters = STM32MP1_DFSDM_NUM_FILTERS,
.num_channels = STM32MP1_DFSDM_NUM_CHANNELS,
.regmap_cfg = &stm32mp1_dfsdm_regmap_cfg,
};
struct dfsdm_priv {
struct platform_device *pdev; /* platform device */
struct stm32_dfsdm dfsdm; /* common data exported for all instances */
unsigned int spi_clk_out_div; /* SPI clkout divider value */
atomic_t n_active_ch; /* number of current active channels */
struct clk *clk; /* DFSDM clock */
struct clk *aclk; /* audio clock */
};
static inline struct dfsdm_priv *to_stm32_dfsdm_priv(struct stm32_dfsdm *dfsdm)
{
return container_of(dfsdm, struct dfsdm_priv, dfsdm);
}
static int stm32_dfsdm_clk_prepare_enable(struct stm32_dfsdm *dfsdm)
{
struct dfsdm_priv *priv = to_stm32_dfsdm_priv(dfsdm);
int ret;
ret = clk_prepare_enable(priv->clk);
if (ret || !priv->aclk)
return ret;
ret = clk_prepare_enable(priv->aclk);
if (ret)
clk_disable_unprepare(priv->clk);
return ret;
}
static void stm32_dfsdm_clk_disable_unprepare(struct stm32_dfsdm *dfsdm)
{
struct dfsdm_priv *priv = to_stm32_dfsdm_priv(dfsdm);
if (priv->aclk)
clk_disable_unprepare(priv->aclk);
clk_disable_unprepare(priv->clk);
}
/**
* stm32_dfsdm_start_dfsdm - start global dfsdm interface.
*
* Enable interface if n_active_ch is not null.
* @dfsdm: Handle used to retrieve dfsdm context.
*/
int stm32_dfsdm_start_dfsdm(struct stm32_dfsdm *dfsdm)
{
struct dfsdm_priv *priv = to_stm32_dfsdm_priv(dfsdm);
struct device *dev = &priv->pdev->dev;
unsigned int clk_div = priv->spi_clk_out_div, clk_src;
int ret;
if (atomic_inc_return(&priv->n_active_ch) == 1) {
ret = pm_runtime_get_sync(dev);
if (ret < 0) {
pm_runtime_put_noidle(dev);
goto error_ret;
}
/* select clock source, e.g. 0 for "dfsdm" or 1 for "audio" */
clk_src = priv->aclk ? 1 : 0;
ret = regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(0),
DFSDM_CHCFGR1_CKOUTSRC_MASK,
DFSDM_CHCFGR1_CKOUTSRC(clk_src));
if (ret < 0)
goto pm_put;
/* Output the SPI CLKOUT (if clk_div == 0 clock if OFF) */
ret = regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(0),
DFSDM_CHCFGR1_CKOUTDIV_MASK,
DFSDM_CHCFGR1_CKOUTDIV(clk_div));
if (ret < 0)
goto pm_put;
/* Global enable of DFSDM interface */
ret = regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(0),
DFSDM_CHCFGR1_DFSDMEN_MASK,
DFSDM_CHCFGR1_DFSDMEN(1));
if (ret < 0)
goto pm_put;
}
dev_dbg(dev, "%s: n_active_ch %d\n", __func__,
atomic_read(&priv->n_active_ch));
return 0;
pm_put:
pm_runtime_put_sync(dev);
error_ret:
atomic_dec(&priv->n_active_ch);
return ret;
}
EXPORT_SYMBOL_GPL(stm32_dfsdm_start_dfsdm);
/**
* stm32_dfsdm_stop_dfsdm - stop global DFSDM interface.
*
* Disable interface if n_active_ch is null
* @dfsdm: Handle used to retrieve dfsdm context.
*/
int stm32_dfsdm_stop_dfsdm(struct stm32_dfsdm *dfsdm)
{
struct dfsdm_priv *priv = to_stm32_dfsdm_priv(dfsdm);
int ret;
if (atomic_dec_and_test(&priv->n_active_ch)) {
/* Global disable of DFSDM interface */
ret = regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(0),
DFSDM_CHCFGR1_DFSDMEN_MASK,
DFSDM_CHCFGR1_DFSDMEN(0));
if (ret < 0)
return ret;
/* Stop SPI CLKOUT */
ret = regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(0),
DFSDM_CHCFGR1_CKOUTDIV_MASK,
DFSDM_CHCFGR1_CKOUTDIV(0));
if (ret < 0)
return ret;
pm_runtime_put_sync(&priv->pdev->dev);
}
dev_dbg(&priv->pdev->dev, "%s: n_active_ch %d\n", __func__,
atomic_read(&priv->n_active_ch));
return 0;
}
EXPORT_SYMBOL_GPL(stm32_dfsdm_stop_dfsdm);
static int stm32_dfsdm_parse_of(struct platform_device *pdev,
struct dfsdm_priv *priv)
{
struct device_node *node = pdev->dev.of_node;
struct resource *res;
unsigned long clk_freq, divider;
unsigned int spi_freq, rem;
int ret;
if (!node)
return -EINVAL;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(&pdev->dev, "Failed to get memory resource\n");
return -ENODEV;
}
priv->dfsdm.phys_base = res->start;
priv->dfsdm.base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(priv->dfsdm.base))
return PTR_ERR(priv->dfsdm.base);
/*
* "dfsdm" clock is mandatory for DFSDM peripheral clocking.
* "dfsdm" or "audio" clocks can be used as source clock for
* the SPI clock out signal and internal processing, depending
* on use case.
*/
priv->clk = devm_clk_get(&pdev->dev, "dfsdm");
if (IS_ERR(priv->clk)) {
ret = PTR_ERR(priv->clk);
if (ret != -EPROBE_DEFER)
dev_err(&pdev->dev, "Failed to get clock (%d)\n", ret);
return ret;
}
priv->aclk = devm_clk_get(&pdev->dev, "audio");
if (IS_ERR(priv->aclk))
priv->aclk = NULL;
if (priv->aclk)
clk_freq = clk_get_rate(priv->aclk);
else
clk_freq = clk_get_rate(priv->clk);
/* SPI clock out frequency */
ret = of_property_read_u32(pdev->dev.of_node, "spi-max-frequency",
&spi_freq);
if (ret < 0) {
/* No SPI master mode */
return 0;
}
divider = div_u64_rem(clk_freq, spi_freq, &rem);
/* Round up divider when ckout isn't precise, not to exceed spi_freq */
if (rem)
divider++;
/* programmable divider is in range of [2:256] */
if (divider < 2 || divider > 256) {
dev_err(&pdev->dev, "spi-max-frequency not achievable\n");
return -EINVAL;
}
/* SPI clock output divider is: divider = CKOUTDIV + 1 */
priv->spi_clk_out_div = divider - 1;
priv->dfsdm.spi_master_freq = clk_freq / (priv->spi_clk_out_div + 1);
if (rem) {
dev_warn(&pdev->dev, "SPI clock not accurate\n");
dev_warn(&pdev->dev, "%ld = %d * %d + %d\n",
clk_freq, spi_freq, priv->spi_clk_out_div + 1, rem);
}
return 0;
};
static const struct of_device_id stm32_dfsdm_of_match[] = {
{
.compatible = "st,stm32h7-dfsdm",
.data = &stm32h7_dfsdm_data,
},
{
.compatible = "st,stm32mp1-dfsdm",
.data = &stm32mp1_dfsdm_data,
},
{}
};
MODULE_DEVICE_TABLE(of, stm32_dfsdm_of_match);
static int stm32_dfsdm_probe(struct platform_device *pdev)
{
struct dfsdm_priv *priv;
const struct stm32_dfsdm_dev_data *dev_data;
struct stm32_dfsdm *dfsdm;
int ret;
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->pdev = pdev;
dev_data = of_device_get_match_data(&pdev->dev);
dfsdm = &priv->dfsdm;
dfsdm->fl_list = devm_kcalloc(&pdev->dev, dev_data->num_filters,
sizeof(*dfsdm->fl_list), GFP_KERNEL);
if (!dfsdm->fl_list)
return -ENOMEM;
dfsdm->num_fls = dev_data->num_filters;
dfsdm->ch_list = devm_kcalloc(&pdev->dev, dev_data->num_channels,
sizeof(*dfsdm->ch_list),
GFP_KERNEL);
if (!dfsdm->ch_list)
return -ENOMEM;
dfsdm->num_chs = dev_data->num_channels;
ret = stm32_dfsdm_parse_of(pdev, priv);
if (ret < 0)
return ret;
dfsdm->regmap = devm_regmap_init_mmio_clk(&pdev->dev, "dfsdm",
dfsdm->base,
dev_data->regmap_cfg);
if (IS_ERR(dfsdm->regmap)) {
ret = PTR_ERR(dfsdm->regmap);
dev_err(&pdev->dev, "%s: Failed to allocate regmap: %d\n",
__func__, ret);
return ret;
}
platform_set_drvdata(pdev, dfsdm);
ret = stm32_dfsdm_clk_prepare_enable(dfsdm);
if (ret) {
dev_err(&pdev->dev, "Failed to start clock\n");
return ret;
}
pm_runtime_get_noresume(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
ret = of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev);
if (ret)
goto pm_put;
pm_runtime_put(&pdev->dev);
return 0;
pm_put:
pm_runtime_disable(&pdev->dev);
pm_runtime_set_suspended(&pdev->dev);
pm_runtime_put_noidle(&pdev->dev);
stm32_dfsdm_clk_disable_unprepare(dfsdm);
return ret;
}
static int stm32_dfsdm_core_remove(struct platform_device *pdev)
{
struct stm32_dfsdm *dfsdm = platform_get_drvdata(pdev);
pm_runtime_get_sync(&pdev->dev);
of_platform_depopulate(&pdev->dev);
pm_runtime_disable(&pdev->dev);
pm_runtime_set_suspended(&pdev->dev);
pm_runtime_put_noidle(&pdev->dev);
stm32_dfsdm_clk_disable_unprepare(dfsdm);
return 0;
}
static int __maybe_unused stm32_dfsdm_core_suspend(struct device *dev)
{
struct stm32_dfsdm *dfsdm = dev_get_drvdata(dev);
struct dfsdm_priv *priv = to_stm32_dfsdm_priv(dfsdm);
int ret;
ret = pm_runtime_force_suspend(dev);
if (ret)
return ret;
/* Balance devm_regmap_init_mmio_clk() clk_prepare() */
clk_unprepare(priv->clk);
return pinctrl_pm_select_sleep_state(dev);
}
static int __maybe_unused stm32_dfsdm_core_resume(struct device *dev)
{
struct stm32_dfsdm *dfsdm = dev_get_drvdata(dev);
struct dfsdm_priv *priv = to_stm32_dfsdm_priv(dfsdm);
int ret;
ret = pinctrl_pm_select_default_state(dev);
if (ret)
return ret;
ret = clk_prepare(priv->clk);
if (ret)
return ret;
return pm_runtime_force_resume(dev);
}
static int __maybe_unused stm32_dfsdm_core_runtime_suspend(struct device *dev)
{
struct stm32_dfsdm *dfsdm = dev_get_drvdata(dev);
stm32_dfsdm_clk_disable_unprepare(dfsdm);
return 0;
}
static int __maybe_unused stm32_dfsdm_core_runtime_resume(struct device *dev)
{
struct stm32_dfsdm *dfsdm = dev_get_drvdata(dev);
return stm32_dfsdm_clk_prepare_enable(dfsdm);
}
static const struct dev_pm_ops stm32_dfsdm_core_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(stm32_dfsdm_core_suspend,
stm32_dfsdm_core_resume)
SET_RUNTIME_PM_OPS(stm32_dfsdm_core_runtime_suspend,
stm32_dfsdm_core_runtime_resume,
NULL)
};
static struct platform_driver stm32_dfsdm_driver = {
.probe = stm32_dfsdm_probe,
.remove = stm32_dfsdm_core_remove,
.driver = {
.name = "stm32-dfsdm",
.of_match_table = stm32_dfsdm_of_match,
.pm = &stm32_dfsdm_core_pm_ops,
},
};
module_platform_driver(stm32_dfsdm_driver);
MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
MODULE_DESCRIPTION("STMicroelectronics STM32 dfsdm driver");
MODULE_LICENSE("GPL v2");