2008-10-23 05:26:29 +00:00
|
|
|
#ifndef _ASM_X86_CMPXCHG_32_H
|
|
|
|
#define _ASM_X86_CMPXCHG_32_H
|
2007-05-08 07:35:02 +00:00
|
|
|
|
2007-07-19 11:30:14 +00:00
|
|
|
/*
|
|
|
|
* Note: if you use set64_bit(), __cmpxchg64(), or their variants, you
|
|
|
|
* you need to test for the feature in boot_cpu_data.
|
|
|
|
*/
|
|
|
|
|
2007-05-08 07:35:02 +00:00
|
|
|
/*
|
2010-07-28 06:29:52 +00:00
|
|
|
* CMPXCHG8B only writes to the target if we had the previous
|
|
|
|
* value in registers, otherwise it acts as a read and gives us the
|
|
|
|
* "new previous" value. That is why there is a loop. Preloading
|
|
|
|
* EDX:EAX is a performance optimization: in the common case it means
|
|
|
|
* we need only one locked operation.
|
2007-05-08 07:35:02 +00:00
|
|
|
*
|
2010-07-28 06:29:52 +00:00
|
|
|
* A SIMD/3DNOW!/MMX/FPU 64-bit store here would require at the very
|
|
|
|
* least an FPU save and/or %cr0.ts manipulation.
|
|
|
|
*
|
|
|
|
* cmpxchg8b must be used with the lock prefix here to allow the
|
|
|
|
* instruction to be executed atomically. We need to have the reader
|
|
|
|
* side to see the coherent 64bit value.
|
2007-05-08 07:35:02 +00:00
|
|
|
*/
|
2010-07-28 06:29:52 +00:00
|
|
|
static inline void set_64bit(volatile u64 *ptr, u64 value)
|
2007-05-08 07:35:02 +00:00
|
|
|
{
|
2010-07-28 06:29:52 +00:00
|
|
|
u32 low = value;
|
|
|
|
u32 high = value >> 32;
|
|
|
|
u64 prev = *ptr;
|
|
|
|
|
2008-03-23 08:01:51 +00:00
|
|
|
asm volatile("\n1:\t"
|
2010-07-28 06:29:52 +00:00
|
|
|
LOCK_PREFIX "cmpxchg8b %0\n\t"
|
2008-03-23 08:01:51 +00:00
|
|
|
"jnz 1b"
|
2010-07-28 06:29:52 +00:00
|
|
|
: "=m" (*ptr), "+A" (prev)
|
|
|
|
: "b" (low), "c" (high)
|
|
|
|
: "memory");
|
2007-05-08 07:35:02 +00:00
|
|
|
}
|
|
|
|
|
x86: fall back on interrupt disable in cmpxchg8b on 80386 and 80486
Actually, on 386, cmpxchg and cmpxchg_local fall back on
cmpxchg_386_u8/16/32: it disables interruptions around non atomic
updates to mimic the cmpxchg behavior.
The comment:
/* Poor man's cmpxchg for 386. Unsuitable for SMP */
already present in cmpxchg_386_u32 tells much about how this cmpxchg
implementation should not be used in a SMP context. However, the cmpxchg_local
can perfectly use this fallback, since it only needs to be atomic wrt the local
cpu.
This patch adds a cmpxchg_486_u64 and uses it as a fallback for cmpxchg64
and cmpxchg64_local on 80386 and 80486.
Q:
but why is it called cmpxchg_486 when the other functions are called
A:
Because the standard cmpxchg is missing only on 386, but cmpxchg8b is
missing both on 386 and 486.
Citing Intel's Instruction set reference:
cmpxchg:
This instruction is not supported on Intel processors earlier than the
Intel486 processors.
cmpxchg8b:
This instruction encoding is not supported on Intel processors earlier
than the Pentium processors.
Q:
What's the reason to have cmpxchg64_local on 32 bit architectures?
Without that need all this would just be a few simple defines.
A:
cmpxchg64_local on 32 bits architectures takes unsigned long long
parameters, but cmpxchg_local only takes longs. Since we have cmpxchg8b
to execute a 8 byte cmpxchg atomically on pentium and +, it makes sense
to provide a flavor of cmpxchg and cmpxchg_local using this instruction.
Also, for 32 bits architectures lacking the 64 bits atomic cmpxchg, it
makes sense _not_ to define cmpxchg64 while cmpxchg could still be
available.
Moreover, the fallback for cmpxchg8b on i386 for 386 and 486 is a
However, cmpxchg64_local will be emulated by disabling interrupts on all
architectures where it is not supported atomically.
Therefore, we *could* turn cmpxchg64_local into a cmpxchg_local, but it
would make the 386/486 fallbacks ugly, make its design different from
cmpxchg/cmpxchg64 (which really depends on atomic operations and cannot
be emulated) and require the __cmpxchg_local to be expressed as a macro
rather than an inline function so the parameters would not be fixed to
unsigned long long in every case.
So I think cmpxchg64_local makes sense there, but I am open to
suggestions.
Q:
Are there any callers?
A:
I am actually using it in LTTng in my timestamping code. I use it to
work around CPUs with asynchronous TSCs. I need to update 64 bits
values atomically on this 32 bits architecture.
Changelog:
- Ran though checkpatch.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 12:30:47 +00:00
|
|
|
#ifdef CONFIG_X86_CMPXCHG64
|
2008-03-23 08:01:51 +00:00
|
|
|
#define cmpxchg64(ptr, o, n) \
|
|
|
|
((__typeof__(*(ptr)))__cmpxchg64((ptr), (unsigned long long)(o), \
|
|
|
|
(unsigned long long)(n)))
|
|
|
|
#define cmpxchg64_local(ptr, o, n) \
|
|
|
|
((__typeof__(*(ptr)))__cmpxchg64_local((ptr), (unsigned long long)(o), \
|
|
|
|
(unsigned long long)(n)))
|
2007-05-08 07:35:02 +00:00
|
|
|
#endif
|
|
|
|
|
2010-07-28 22:18:35 +00:00
|
|
|
static inline u64 __cmpxchg64(volatile u64 *ptr, u64 old, u64 new)
|
x86: fall back on interrupt disable in cmpxchg8b on 80386 and 80486
Actually, on 386, cmpxchg and cmpxchg_local fall back on
cmpxchg_386_u8/16/32: it disables interruptions around non atomic
updates to mimic the cmpxchg behavior.
The comment:
/* Poor man's cmpxchg for 386. Unsuitable for SMP */
already present in cmpxchg_386_u32 tells much about how this cmpxchg
implementation should not be used in a SMP context. However, the cmpxchg_local
can perfectly use this fallback, since it only needs to be atomic wrt the local
cpu.
This patch adds a cmpxchg_486_u64 and uses it as a fallback for cmpxchg64
and cmpxchg64_local on 80386 and 80486.
Q:
but why is it called cmpxchg_486 when the other functions are called
A:
Because the standard cmpxchg is missing only on 386, but cmpxchg8b is
missing both on 386 and 486.
Citing Intel's Instruction set reference:
cmpxchg:
This instruction is not supported on Intel processors earlier than the
Intel486 processors.
cmpxchg8b:
This instruction encoding is not supported on Intel processors earlier
than the Pentium processors.
Q:
What's the reason to have cmpxchg64_local on 32 bit architectures?
Without that need all this would just be a few simple defines.
A:
cmpxchg64_local on 32 bits architectures takes unsigned long long
parameters, but cmpxchg_local only takes longs. Since we have cmpxchg8b
to execute a 8 byte cmpxchg atomically on pentium and +, it makes sense
to provide a flavor of cmpxchg and cmpxchg_local using this instruction.
Also, for 32 bits architectures lacking the 64 bits atomic cmpxchg, it
makes sense _not_ to define cmpxchg64 while cmpxchg could still be
available.
Moreover, the fallback for cmpxchg8b on i386 for 386 and 486 is a
However, cmpxchg64_local will be emulated by disabling interrupts on all
architectures where it is not supported atomically.
Therefore, we *could* turn cmpxchg64_local into a cmpxchg_local, but it
would make the 386/486 fallbacks ugly, make its design different from
cmpxchg/cmpxchg64 (which really depends on atomic operations and cannot
be emulated) and require the __cmpxchg_local to be expressed as a macro
rather than an inline function so the parameters would not be fixed to
unsigned long long in every case.
So I think cmpxchg64_local makes sense there, but I am open to
suggestions.
Q:
Are there any callers?
A:
I am actually using it in LTTng in my timestamping code. I use it to
work around CPUs with asynchronous TSCs. I need to update 64 bits
values atomically on this 32 bits architecture.
Changelog:
- Ran though checkpatch.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 12:30:47 +00:00
|
|
|
{
|
2010-07-28 22:18:35 +00:00
|
|
|
u64 prev;
|
2010-07-28 00:01:49 +00:00
|
|
|
asm volatile(LOCK_PREFIX "cmpxchg8b %1"
|
|
|
|
: "=A" (prev),
|
2010-07-28 22:18:35 +00:00
|
|
|
"+m" (*ptr)
|
|
|
|
: "b" ((u32)new),
|
|
|
|
"c" ((u32)(new >> 32)),
|
2010-07-28 00:01:49 +00:00
|
|
|
"0" (old)
|
2008-03-23 08:01:51 +00:00
|
|
|
: "memory");
|
x86: fall back on interrupt disable in cmpxchg8b on 80386 and 80486
Actually, on 386, cmpxchg and cmpxchg_local fall back on
cmpxchg_386_u8/16/32: it disables interruptions around non atomic
updates to mimic the cmpxchg behavior.
The comment:
/* Poor man's cmpxchg for 386. Unsuitable for SMP */
already present in cmpxchg_386_u32 tells much about how this cmpxchg
implementation should not be used in a SMP context. However, the cmpxchg_local
can perfectly use this fallback, since it only needs to be atomic wrt the local
cpu.
This patch adds a cmpxchg_486_u64 and uses it as a fallback for cmpxchg64
and cmpxchg64_local on 80386 and 80486.
Q:
but why is it called cmpxchg_486 when the other functions are called
A:
Because the standard cmpxchg is missing only on 386, but cmpxchg8b is
missing both on 386 and 486.
Citing Intel's Instruction set reference:
cmpxchg:
This instruction is not supported on Intel processors earlier than the
Intel486 processors.
cmpxchg8b:
This instruction encoding is not supported on Intel processors earlier
than the Pentium processors.
Q:
What's the reason to have cmpxchg64_local on 32 bit architectures?
Without that need all this would just be a few simple defines.
A:
cmpxchg64_local on 32 bits architectures takes unsigned long long
parameters, but cmpxchg_local only takes longs. Since we have cmpxchg8b
to execute a 8 byte cmpxchg atomically on pentium and +, it makes sense
to provide a flavor of cmpxchg and cmpxchg_local using this instruction.
Also, for 32 bits architectures lacking the 64 bits atomic cmpxchg, it
makes sense _not_ to define cmpxchg64 while cmpxchg could still be
available.
Moreover, the fallback for cmpxchg8b on i386 for 386 and 486 is a
However, cmpxchg64_local will be emulated by disabling interrupts on all
architectures where it is not supported atomically.
Therefore, we *could* turn cmpxchg64_local into a cmpxchg_local, but it
would make the 386/486 fallbacks ugly, make its design different from
cmpxchg/cmpxchg64 (which really depends on atomic operations and cannot
be emulated) and require the __cmpxchg_local to be expressed as a macro
rather than an inline function so the parameters would not be fixed to
unsigned long long in every case.
So I think cmpxchg64_local makes sense there, but I am open to
suggestions.
Q:
Are there any callers?
A:
I am actually using it in LTTng in my timestamping code. I use it to
work around CPUs with asynchronous TSCs. I need to update 64 bits
values atomically on this 32 bits architecture.
Changelog:
- Ran though checkpatch.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 12:30:47 +00:00
|
|
|
return prev;
|
|
|
|
}
|
|
|
|
|
2010-07-28 22:18:35 +00:00
|
|
|
static inline u64 __cmpxchg64_local(volatile u64 *ptr, u64 old, u64 new)
|
x86: fall back on interrupt disable in cmpxchg8b on 80386 and 80486
Actually, on 386, cmpxchg and cmpxchg_local fall back on
cmpxchg_386_u8/16/32: it disables interruptions around non atomic
updates to mimic the cmpxchg behavior.
The comment:
/* Poor man's cmpxchg for 386. Unsuitable for SMP */
already present in cmpxchg_386_u32 tells much about how this cmpxchg
implementation should not be used in a SMP context. However, the cmpxchg_local
can perfectly use this fallback, since it only needs to be atomic wrt the local
cpu.
This patch adds a cmpxchg_486_u64 and uses it as a fallback for cmpxchg64
and cmpxchg64_local on 80386 and 80486.
Q:
but why is it called cmpxchg_486 when the other functions are called
A:
Because the standard cmpxchg is missing only on 386, but cmpxchg8b is
missing both on 386 and 486.
Citing Intel's Instruction set reference:
cmpxchg:
This instruction is not supported on Intel processors earlier than the
Intel486 processors.
cmpxchg8b:
This instruction encoding is not supported on Intel processors earlier
than the Pentium processors.
Q:
What's the reason to have cmpxchg64_local on 32 bit architectures?
Without that need all this would just be a few simple defines.
A:
cmpxchg64_local on 32 bits architectures takes unsigned long long
parameters, but cmpxchg_local only takes longs. Since we have cmpxchg8b
to execute a 8 byte cmpxchg atomically on pentium and +, it makes sense
to provide a flavor of cmpxchg and cmpxchg_local using this instruction.
Also, for 32 bits architectures lacking the 64 bits atomic cmpxchg, it
makes sense _not_ to define cmpxchg64 while cmpxchg could still be
available.
Moreover, the fallback for cmpxchg8b on i386 for 386 and 486 is a
However, cmpxchg64_local will be emulated by disabling interrupts on all
architectures where it is not supported atomically.
Therefore, we *could* turn cmpxchg64_local into a cmpxchg_local, but it
would make the 386/486 fallbacks ugly, make its design different from
cmpxchg/cmpxchg64 (which really depends on atomic operations and cannot
be emulated) and require the __cmpxchg_local to be expressed as a macro
rather than an inline function so the parameters would not be fixed to
unsigned long long in every case.
So I think cmpxchg64_local makes sense there, but I am open to
suggestions.
Q:
Are there any callers?
A:
I am actually using it in LTTng in my timestamping code. I use it to
work around CPUs with asynchronous TSCs. I need to update 64 bits
values atomically on this 32 bits architecture.
Changelog:
- Ran though checkpatch.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 12:30:47 +00:00
|
|
|
{
|
2010-07-28 22:18:35 +00:00
|
|
|
u64 prev;
|
2010-07-28 00:01:49 +00:00
|
|
|
asm volatile("cmpxchg8b %1"
|
|
|
|
: "=A" (prev),
|
2010-07-28 22:18:35 +00:00
|
|
|
"+m" (*ptr)
|
|
|
|
: "b" ((u32)new),
|
|
|
|
"c" ((u32)(new >> 32)),
|
2010-07-28 00:01:49 +00:00
|
|
|
"0" (old)
|
2008-03-23 08:01:51 +00:00
|
|
|
: "memory");
|
x86: fall back on interrupt disable in cmpxchg8b on 80386 and 80486
Actually, on 386, cmpxchg and cmpxchg_local fall back on
cmpxchg_386_u8/16/32: it disables interruptions around non atomic
updates to mimic the cmpxchg behavior.
The comment:
/* Poor man's cmpxchg for 386. Unsuitable for SMP */
already present in cmpxchg_386_u32 tells much about how this cmpxchg
implementation should not be used in a SMP context. However, the cmpxchg_local
can perfectly use this fallback, since it only needs to be atomic wrt the local
cpu.
This patch adds a cmpxchg_486_u64 and uses it as a fallback for cmpxchg64
and cmpxchg64_local on 80386 and 80486.
Q:
but why is it called cmpxchg_486 when the other functions are called
A:
Because the standard cmpxchg is missing only on 386, but cmpxchg8b is
missing both on 386 and 486.
Citing Intel's Instruction set reference:
cmpxchg:
This instruction is not supported on Intel processors earlier than the
Intel486 processors.
cmpxchg8b:
This instruction encoding is not supported on Intel processors earlier
than the Pentium processors.
Q:
What's the reason to have cmpxchg64_local on 32 bit architectures?
Without that need all this would just be a few simple defines.
A:
cmpxchg64_local on 32 bits architectures takes unsigned long long
parameters, but cmpxchg_local only takes longs. Since we have cmpxchg8b
to execute a 8 byte cmpxchg atomically on pentium and +, it makes sense
to provide a flavor of cmpxchg and cmpxchg_local using this instruction.
Also, for 32 bits architectures lacking the 64 bits atomic cmpxchg, it
makes sense _not_ to define cmpxchg64 while cmpxchg could still be
available.
Moreover, the fallback for cmpxchg8b on i386 for 386 and 486 is a
However, cmpxchg64_local will be emulated by disabling interrupts on all
architectures where it is not supported atomically.
Therefore, we *could* turn cmpxchg64_local into a cmpxchg_local, but it
would make the 386/486 fallbacks ugly, make its design different from
cmpxchg/cmpxchg64 (which really depends on atomic operations and cannot
be emulated) and require the __cmpxchg_local to be expressed as a macro
rather than an inline function so the parameters would not be fixed to
unsigned long long in every case.
So I think cmpxchg64_local makes sense there, but I am open to
suggestions.
Q:
Are there any callers?
A:
I am actually using it in LTTng in my timestamping code. I use it to
work around CPUs with asynchronous TSCs. I need to update 64 bits
values atomically on this 32 bits architecture.
Changelog:
- Ran though checkpatch.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 12:30:47 +00:00
|
|
|
return prev;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef CONFIG_X86_CMPXCHG64
|
|
|
|
/*
|
|
|
|
* Building a kernel capable running on 80386 and 80486. It may be necessary
|
|
|
|
* to simulate the cmpxchg8b on the 80386 and 80486 CPU.
|
|
|
|
*/
|
2007-05-08 07:35:02 +00:00
|
|
|
|
2009-09-30 15:07:54 +00:00
|
|
|
#define cmpxchg64(ptr, o, n) \
|
|
|
|
({ \
|
|
|
|
__typeof__(*(ptr)) __ret; \
|
|
|
|
__typeof__(*(ptr)) __old = (o); \
|
|
|
|
__typeof__(*(ptr)) __new = (n); \
|
2010-02-24 09:54:23 +00:00
|
|
|
alternative_io(LOCK_PREFIX_HERE \
|
|
|
|
"call cmpxchg8b_emu", \
|
2009-09-30 15:07:54 +00:00
|
|
|
"lock; cmpxchg8b (%%esi)" , \
|
|
|
|
X86_FEATURE_CX8, \
|
|
|
|
"=A" (__ret), \
|
|
|
|
"S" ((ptr)), "0" (__old), \
|
|
|
|
"b" ((unsigned int)__new), \
|
|
|
|
"c" ((unsigned int)(__new>>32)) \
|
|
|
|
: "memory"); \
|
|
|
|
__ret; })
|
|
|
|
|
|
|
|
|
2010-07-29 00:05:11 +00:00
|
|
|
#define cmpxchg64_local(ptr, o, n) \
|
|
|
|
({ \
|
|
|
|
__typeof__(*(ptr)) __ret; \
|
|
|
|
__typeof__(*(ptr)) __old = (o); \
|
|
|
|
__typeof__(*(ptr)) __new = (n); \
|
|
|
|
alternative_io("call cmpxchg8b_emu", \
|
|
|
|
"cmpxchg8b (%%esi)" , \
|
|
|
|
X86_FEATURE_CX8, \
|
|
|
|
"=A" (__ret), \
|
|
|
|
"S" ((ptr)), "0" (__old), \
|
|
|
|
"b" ((unsigned int)__new), \
|
|
|
|
"c" ((unsigned int)(__new>>32)) \
|
|
|
|
: "memory"); \
|
|
|
|
__ret; })
|
x86: fall back on interrupt disable in cmpxchg8b on 80386 and 80486
Actually, on 386, cmpxchg and cmpxchg_local fall back on
cmpxchg_386_u8/16/32: it disables interruptions around non atomic
updates to mimic the cmpxchg behavior.
The comment:
/* Poor man's cmpxchg for 386. Unsuitable for SMP */
already present in cmpxchg_386_u32 tells much about how this cmpxchg
implementation should not be used in a SMP context. However, the cmpxchg_local
can perfectly use this fallback, since it only needs to be atomic wrt the local
cpu.
This patch adds a cmpxchg_486_u64 and uses it as a fallback for cmpxchg64
and cmpxchg64_local on 80386 and 80486.
Q:
but why is it called cmpxchg_486 when the other functions are called
A:
Because the standard cmpxchg is missing only on 386, but cmpxchg8b is
missing both on 386 and 486.
Citing Intel's Instruction set reference:
cmpxchg:
This instruction is not supported on Intel processors earlier than the
Intel486 processors.
cmpxchg8b:
This instruction encoding is not supported on Intel processors earlier
than the Pentium processors.
Q:
What's the reason to have cmpxchg64_local on 32 bit architectures?
Without that need all this would just be a few simple defines.
A:
cmpxchg64_local on 32 bits architectures takes unsigned long long
parameters, but cmpxchg_local only takes longs. Since we have cmpxchg8b
to execute a 8 byte cmpxchg atomically on pentium and +, it makes sense
to provide a flavor of cmpxchg and cmpxchg_local using this instruction.
Also, for 32 bits architectures lacking the 64 bits atomic cmpxchg, it
makes sense _not_ to define cmpxchg64 while cmpxchg could still be
available.
Moreover, the fallback for cmpxchg8b on i386 for 386 and 486 is a
However, cmpxchg64_local will be emulated by disabling interrupts on all
architectures where it is not supported atomically.
Therefore, we *could* turn cmpxchg64_local into a cmpxchg_local, but it
would make the 386/486 fallbacks ugly, make its design different from
cmpxchg/cmpxchg64 (which really depends on atomic operations and cannot
be emulated) and require the __cmpxchg_local to be expressed as a macro
rather than an inline function so the parameters would not be fixed to
unsigned long long in every case.
So I think cmpxchg64_local makes sense there, but I am open to
suggestions.
Q:
Are there any callers?
A:
I am actually using it in LTTng in my timestamping code. I use it to
work around CPUs with asynchronous TSCs. I need to update 64 bits
values atomically on this 32 bits architecture.
Changelog:
- Ran though checkpatch.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 12:30:47 +00:00
|
|
|
|
|
|
|
#endif
|
2007-05-08 07:35:02 +00:00
|
|
|
|
2011-06-01 17:25:47 +00:00
|
|
|
#define system_has_cmpxchg_double() cpu_has_cx8
|
|
|
|
|
2008-10-23 05:26:29 +00:00
|
|
|
#endif /* _ASM_X86_CMPXCHG_32_H */
|