linux/mm/slob.c

655 lines
16 KiB
C
Raw Normal View History

[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
/*
* SLOB Allocator: Simple List Of Blocks
*
* Matt Mackall <mpm@selenic.com> 12/30/03
*
slob: initial NUMA support This adds preliminary NUMA support to SLOB, primarily aimed at systems with small nodes (tested all the way down to a 128kB SRAM block), whether asymmetric or otherwise. We follow the same conventions as SLAB/SLUB, preferring current node placement for new pages, or with explicit placement, if a node has been specified. Presently on UP NUMA this has the side-effect of preferring node#0 allocations (since numa_node_id() == 0, though this could be reworked if we could hand off a pfn to determine node placement), so single-CPU NUMA systems will want to place smaller nodes further out in terms of node id. Once a page has been bound to a node (via explicit node id typing), we only do block allocations from partial free pages that have a matching node id in the page flags. The current implementation does have some scalability problems, in that all partial free pages are tracked in the global freelist (with contention due to the single spinlock). However, these are things that are being reworked for SMP scalability first, while things like per-node freelists can easily be built on top of this sort of functionality once it's been added. More background can be found in: http://marc.info/?l=linux-mm&m=118117916022379&w=2 http://marc.info/?l=linux-mm&m=118170446306199&w=2 http://marc.info/?l=linux-mm&m=118187859420048&w=2 and subsequent threads. Acked-by: Christoph Lameter <clameter@sgi.com> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Paul Mundt <lethal@linux-sh.org> Acked-by: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:22 +00:00
* NUMA support by Paul Mundt, 2007.
*
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
* How SLOB works:
*
* The core of SLOB is a traditional K&R style heap allocator, with
* support for returning aligned objects. The granularity of this
* allocator is as little as 2 bytes, however typically most architectures
* will require 4 bytes on 32-bit and 8 bytes on 64-bit.
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
*
* The slob heap is a set of linked list of pages from alloc_pages(),
* and within each page, there is a singly-linked list of free blocks
* (slob_t). The heap is grown on demand. To reduce fragmentation,
* heap pages are segregated into three lists, with objects less than
* 256 bytes, objects less than 1024 bytes, and all other objects.
*
* Allocation from heap involves first searching for a page with
* sufficient free blocks (using a next-fit-like approach) followed by
* a first-fit scan of the page. Deallocation inserts objects back
* into the free list in address order, so this is effectively an
* address-ordered first fit.
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
*
* Above this is an implementation of kmalloc/kfree. Blocks returned
* from kmalloc are prepended with a 4-byte header with the kmalloc size.
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
* If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
slob: initial NUMA support This adds preliminary NUMA support to SLOB, primarily aimed at systems with small nodes (tested all the way down to a 128kB SRAM block), whether asymmetric or otherwise. We follow the same conventions as SLAB/SLUB, preferring current node placement for new pages, or with explicit placement, if a node has been specified. Presently on UP NUMA this has the side-effect of preferring node#0 allocations (since numa_node_id() == 0, though this could be reworked if we could hand off a pfn to determine node placement), so single-CPU NUMA systems will want to place smaller nodes further out in terms of node id. Once a page has been bound to a node (via explicit node id typing), we only do block allocations from partial free pages that have a matching node id in the page flags. The current implementation does have some scalability problems, in that all partial free pages are tracked in the global freelist (with contention due to the single spinlock). However, these are things that are being reworked for SMP scalability first, while things like per-node freelists can easily be built on top of this sort of functionality once it's been added. More background can be found in: http://marc.info/?l=linux-mm&m=118117916022379&w=2 http://marc.info/?l=linux-mm&m=118170446306199&w=2 http://marc.info/?l=linux-mm&m=118187859420048&w=2 and subsequent threads. Acked-by: Christoph Lameter <clameter@sgi.com> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Paul Mundt <lethal@linux-sh.org> Acked-by: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:22 +00:00
* alloc_pages() directly, allocating compound pages so the page order
* does not have to be separately tracked.
* These objects are detected in kfree() because PageSlab()
* is false for them.
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
*
* SLAB is emulated on top of SLOB by simply calling constructors and
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
* destructors for every SLAB allocation. Objects are returned with the
* 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
* case the low-level allocator will fragment blocks to create the proper
* alignment. Again, objects of page-size or greater are allocated by
slob: initial NUMA support This adds preliminary NUMA support to SLOB, primarily aimed at systems with small nodes (tested all the way down to a 128kB SRAM block), whether asymmetric or otherwise. We follow the same conventions as SLAB/SLUB, preferring current node placement for new pages, or with explicit placement, if a node has been specified. Presently on UP NUMA this has the side-effect of preferring node#0 allocations (since numa_node_id() == 0, though this could be reworked if we could hand off a pfn to determine node placement), so single-CPU NUMA systems will want to place smaller nodes further out in terms of node id. Once a page has been bound to a node (via explicit node id typing), we only do block allocations from partial free pages that have a matching node id in the page flags. The current implementation does have some scalability problems, in that all partial free pages are tracked in the global freelist (with contention due to the single spinlock). However, these are things that are being reworked for SMP scalability first, while things like per-node freelists can easily be built on top of this sort of functionality once it's been added. More background can be found in: http://marc.info/?l=linux-mm&m=118117916022379&w=2 http://marc.info/?l=linux-mm&m=118170446306199&w=2 http://marc.info/?l=linux-mm&m=118187859420048&w=2 and subsequent threads. Acked-by: Christoph Lameter <clameter@sgi.com> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Paul Mundt <lethal@linux-sh.org> Acked-by: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:22 +00:00
* calling alloc_pages(). As SLAB objects know their size, no separate
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
* size bookkeeping is necessary and there is essentially no allocation
* space overhead, and compound pages aren't needed for multi-page
* allocations.
slob: initial NUMA support This adds preliminary NUMA support to SLOB, primarily aimed at systems with small nodes (tested all the way down to a 128kB SRAM block), whether asymmetric or otherwise. We follow the same conventions as SLAB/SLUB, preferring current node placement for new pages, or with explicit placement, if a node has been specified. Presently on UP NUMA this has the side-effect of preferring node#0 allocations (since numa_node_id() == 0, though this could be reworked if we could hand off a pfn to determine node placement), so single-CPU NUMA systems will want to place smaller nodes further out in terms of node id. Once a page has been bound to a node (via explicit node id typing), we only do block allocations from partial free pages that have a matching node id in the page flags. The current implementation does have some scalability problems, in that all partial free pages are tracked in the global freelist (with contention due to the single spinlock). However, these are things that are being reworked for SMP scalability first, while things like per-node freelists can easily be built on top of this sort of functionality once it's been added. More background can be found in: http://marc.info/?l=linux-mm&m=118117916022379&w=2 http://marc.info/?l=linux-mm&m=118170446306199&w=2 http://marc.info/?l=linux-mm&m=118187859420048&w=2 and subsequent threads. Acked-by: Christoph Lameter <clameter@sgi.com> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Paul Mundt <lethal@linux-sh.org> Acked-by: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:22 +00:00
*
* NUMA support in SLOB is fairly simplistic, pushing most of the real
* logic down to the page allocator, and simply doing the node accounting
* on the upper levels. In the event that a node id is explicitly
mm: rename alloc_pages_exact_node() to __alloc_pages_node() alloc_pages_exact_node() was introduced in commit 6484eb3e2a81 ("page allocator: do not check NUMA node ID when the caller knows the node is valid") as an optimized variant of alloc_pages_node(), that doesn't fallback to current node for nid == NUMA_NO_NODE. Unfortunately the name of the function can easily suggest that the allocation is restricted to the given node and fails otherwise. In truth, the node is only preferred, unless __GFP_THISNODE is passed among the gfp flags. The misleading name has lead to mistakes in the past, see for example commits 5265047ac301 ("mm, thp: really limit transparent hugepage allocation to local node") and b360edb43f8e ("mm, mempolicy: migrate_to_node should only migrate to node"). Another issue with the name is that there's a family of alloc_pages_exact*() functions where 'exact' means exact size (instead of page order), which leads to more confusion. To prevent further mistakes, this patch effectively renames alloc_pages_exact_node() to __alloc_pages_node() to better convey that it's an optimized variant of alloc_pages_node() not intended for general usage. Both functions get described in comments. It has been also considered to really provide a convenience function for allocations restricted to a node, but the major opinion seems to be that __GFP_THISNODE already provides that functionality and we shouldn't duplicate the API needlessly. The number of users would be small anyway. Existing callers of alloc_pages_exact_node() are simply converted to call __alloc_pages_node(), with the exception of sba_alloc_coherent() which open-codes the check for NUMA_NO_NODE, so it is converted to use alloc_pages_node() instead. This means it no longer performs some VM_BUG_ON checks, and since the current check for nid in alloc_pages_node() uses a 'nid < 0' comparison (which includes NUMA_NO_NODE), it may hide wrong values which would be previously exposed. Both differences will be rectified by the next patch. To sum up, this patch makes no functional changes, except temporarily hiding potentially buggy callers. Restricting the checks in alloc_pages_node() is left for the next patch which can in turn expose more existing buggy callers. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Robin Holt <robinmholt@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: Michael Ellerman <mpe@ellerman.id.au> Cc: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Gleb Natapov <gleb@kernel.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Cliff Whickman <cpw@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 22:03:50 +00:00
* provided, __alloc_pages_node() with the specified node id is used
slob: initial NUMA support This adds preliminary NUMA support to SLOB, primarily aimed at systems with small nodes (tested all the way down to a 128kB SRAM block), whether asymmetric or otherwise. We follow the same conventions as SLAB/SLUB, preferring current node placement for new pages, or with explicit placement, if a node has been specified. Presently on UP NUMA this has the side-effect of preferring node#0 allocations (since numa_node_id() == 0, though this could be reworked if we could hand off a pfn to determine node placement), so single-CPU NUMA systems will want to place smaller nodes further out in terms of node id. Once a page has been bound to a node (via explicit node id typing), we only do block allocations from partial free pages that have a matching node id in the page flags. The current implementation does have some scalability problems, in that all partial free pages are tracked in the global freelist (with contention due to the single spinlock). However, these are things that are being reworked for SMP scalability first, while things like per-node freelists can easily be built on top of this sort of functionality once it's been added. More background can be found in: http://marc.info/?l=linux-mm&m=118117916022379&w=2 http://marc.info/?l=linux-mm&m=118170446306199&w=2 http://marc.info/?l=linux-mm&m=118187859420048&w=2 and subsequent threads. Acked-by: Christoph Lameter <clameter@sgi.com> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Paul Mundt <lethal@linux-sh.org> Acked-by: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:22 +00:00
* instead. The common case (or when the node id isn't explicitly provided)
* will default to the current node, as per numa_node_id().
*
* Node aware pages are still inserted in to the global freelist, and
* these are scanned for by matching against the node id encoded in the
* page flags. As a result, block allocations that can be satisfied from
* the freelist will only be done so on pages residing on the same node,
* in order to prevent random node placement.
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
*/
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
#include <linux/kernel.h>
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
#include <linux/slab.h>
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
#include <linux/mm.h>
#include <linux/swap.h> /* struct reclaim_state */
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
#include <linux/cache.h>
#include <linux/init.h>
#include <linux/export.h>
#include <linux/rcupdate.h>
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
#include <linux/list.h>
#include <linux/kmemleak.h>
#include <trace/events/kmem.h>
#include <linux/atomic.h>
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
#include "slab.h"
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
/*
* slob_block has a field 'units', which indicates size of block if +ve,
* or offset of next block if -ve (in SLOB_UNITs).
*
* Free blocks of size 1 unit simply contain the offset of the next block.
* Those with larger size contain their size in the first SLOB_UNIT of
* memory, and the offset of the next free block in the second SLOB_UNIT.
*/
#if PAGE_SIZE <= (32767 * 2)
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
typedef s16 slobidx_t;
#else
typedef s32 slobidx_t;
#endif
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
struct slob_block {
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
slobidx_t units;
};
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
typedef struct slob_block slob_t;
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
/*
* All partially free slob pages go on these lists.
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
*/
#define SLOB_BREAK1 256
#define SLOB_BREAK2 1024
static LIST_HEAD(free_slob_small);
static LIST_HEAD(free_slob_medium);
static LIST_HEAD(free_slob_large);
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
/*
* slob_page_free: true for pages on free_slob_pages list.
*/
static inline int slob_page_free(struct page *sp)
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
{
return PageSlobFree(sp);
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
}
static void set_slob_page_free(struct page *sp, struct list_head *list)
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
{
list_add(&sp->lru, list);
__SetPageSlobFree(sp);
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
}
static inline void clear_slob_page_free(struct page *sp)
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
{
list_del(&sp->lru);
__ClearPageSlobFree(sp);
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
}
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
#define SLOB_UNIT sizeof(slob_t)
#define SLOB_UNITS(size) DIV_ROUND_UP(size, SLOB_UNIT)
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
/*
* struct slob_rcu is inserted at the tail of allocated slob blocks, which
* were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
* the block using call_rcu.
*/
struct slob_rcu {
struct rcu_head head;
int size;
};
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
/*
* slob_lock protects all slob allocator structures.
*/
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
static DEFINE_SPINLOCK(slob_lock);
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
/*
* Encode the given size and next info into a free slob block s.
*/
static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
{
slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
slobidx_t offset = next - base;
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
if (size > 1) {
s[0].units = size;
s[1].units = offset;
} else
s[0].units = -offset;
}
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
/*
* Return the size of a slob block.
*/
static slobidx_t slob_units(slob_t *s)
{
if (s->units > 0)
return s->units;
return 1;
}
/*
* Return the next free slob block pointer after this one.
*/
static slob_t *slob_next(slob_t *s)
{
slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
slobidx_t next;
if (s[0].units < 0)
next = -s[0].units;
else
next = s[1].units;
return base+next;
}
/*
* Returns true if s is the last free block in its page.
*/
static int slob_last(slob_t *s)
{
return !((unsigned long)slob_next(s) & ~PAGE_MASK);
}
static void *slob_new_pages(gfp_t gfp, int order, int node)
slob: initial NUMA support This adds preliminary NUMA support to SLOB, primarily aimed at systems with small nodes (tested all the way down to a 128kB SRAM block), whether asymmetric or otherwise. We follow the same conventions as SLAB/SLUB, preferring current node placement for new pages, or with explicit placement, if a node has been specified. Presently on UP NUMA this has the side-effect of preferring node#0 allocations (since numa_node_id() == 0, though this could be reworked if we could hand off a pfn to determine node placement), so single-CPU NUMA systems will want to place smaller nodes further out in terms of node id. Once a page has been bound to a node (via explicit node id typing), we only do block allocations from partial free pages that have a matching node id in the page flags. The current implementation does have some scalability problems, in that all partial free pages are tracked in the global freelist (with contention due to the single spinlock). However, these are things that are being reworked for SMP scalability first, while things like per-node freelists can easily be built on top of this sort of functionality once it's been added. More background can be found in: http://marc.info/?l=linux-mm&m=118117916022379&w=2 http://marc.info/?l=linux-mm&m=118170446306199&w=2 http://marc.info/?l=linux-mm&m=118187859420048&w=2 and subsequent threads. Acked-by: Christoph Lameter <clameter@sgi.com> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Paul Mundt <lethal@linux-sh.org> Acked-by: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:22 +00:00
{
void *page;
#ifdef CONFIG_NUMA
if (node != NUMA_NO_NODE)
mm: rename alloc_pages_exact_node() to __alloc_pages_node() alloc_pages_exact_node() was introduced in commit 6484eb3e2a81 ("page allocator: do not check NUMA node ID when the caller knows the node is valid") as an optimized variant of alloc_pages_node(), that doesn't fallback to current node for nid == NUMA_NO_NODE. Unfortunately the name of the function can easily suggest that the allocation is restricted to the given node and fails otherwise. In truth, the node is only preferred, unless __GFP_THISNODE is passed among the gfp flags. The misleading name has lead to mistakes in the past, see for example commits 5265047ac301 ("mm, thp: really limit transparent hugepage allocation to local node") and b360edb43f8e ("mm, mempolicy: migrate_to_node should only migrate to node"). Another issue with the name is that there's a family of alloc_pages_exact*() functions where 'exact' means exact size (instead of page order), which leads to more confusion. To prevent further mistakes, this patch effectively renames alloc_pages_exact_node() to __alloc_pages_node() to better convey that it's an optimized variant of alloc_pages_node() not intended for general usage. Both functions get described in comments. It has been also considered to really provide a convenience function for allocations restricted to a node, but the major opinion seems to be that __GFP_THISNODE already provides that functionality and we shouldn't duplicate the API needlessly. The number of users would be small anyway. Existing callers of alloc_pages_exact_node() are simply converted to call __alloc_pages_node(), with the exception of sba_alloc_coherent() which open-codes the check for NUMA_NO_NODE, so it is converted to use alloc_pages_node() instead. This means it no longer performs some VM_BUG_ON checks, and since the current check for nid in alloc_pages_node() uses a 'nid < 0' comparison (which includes NUMA_NO_NODE), it may hide wrong values which would be previously exposed. Both differences will be rectified by the next patch. To sum up, this patch makes no functional changes, except temporarily hiding potentially buggy callers. Restricting the checks in alloc_pages_node() is left for the next patch which can in turn expose more existing buggy callers. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Robin Holt <robinmholt@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: Michael Ellerman <mpe@ellerman.id.au> Cc: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Gleb Natapov <gleb@kernel.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Cliff Whickman <cpw@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 22:03:50 +00:00
page = __alloc_pages_node(node, gfp, order);
slob: initial NUMA support This adds preliminary NUMA support to SLOB, primarily aimed at systems with small nodes (tested all the way down to a 128kB SRAM block), whether asymmetric or otherwise. We follow the same conventions as SLAB/SLUB, preferring current node placement for new pages, or with explicit placement, if a node has been specified. Presently on UP NUMA this has the side-effect of preferring node#0 allocations (since numa_node_id() == 0, though this could be reworked if we could hand off a pfn to determine node placement), so single-CPU NUMA systems will want to place smaller nodes further out in terms of node id. Once a page has been bound to a node (via explicit node id typing), we only do block allocations from partial free pages that have a matching node id in the page flags. The current implementation does have some scalability problems, in that all partial free pages are tracked in the global freelist (with contention due to the single spinlock). However, these are things that are being reworked for SMP scalability first, while things like per-node freelists can easily be built on top of this sort of functionality once it's been added. More background can be found in: http://marc.info/?l=linux-mm&m=118117916022379&w=2 http://marc.info/?l=linux-mm&m=118170446306199&w=2 http://marc.info/?l=linux-mm&m=118187859420048&w=2 and subsequent threads. Acked-by: Christoph Lameter <clameter@sgi.com> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Paul Mundt <lethal@linux-sh.org> Acked-by: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:22 +00:00
else
#endif
page = alloc_pages(gfp, order);
if (!page)
return NULL;
return page_address(page);
}
static void slob_free_pages(void *b, int order)
{
if (current->reclaim_state)
current->reclaim_state->reclaimed_slab += 1 << order;
free_pages((unsigned long)b, order);
}
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
/*
* Allocate a slob block within a given slob_page sp.
*/
static void *slob_page_alloc(struct page *sp, size_t size, int align)
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
{
slob_t *prev, *cur, *aligned = NULL;
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
int delta = 0, units = SLOB_UNITS(size);
for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) {
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
slobidx_t avail = slob_units(cur);
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
if (align) {
aligned = (slob_t *)ALIGN((unsigned long)cur, align);
delta = aligned - cur;
}
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
if (avail >= units + delta) { /* room enough? */
slob_t *next;
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
if (delta) { /* need to fragment head to align? */
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
next = slob_next(cur);
set_slob(aligned, avail - delta, next);
set_slob(cur, delta, aligned);
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
prev = cur;
cur = aligned;
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
avail = slob_units(cur);
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
}
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
next = slob_next(cur);
if (avail == units) { /* exact fit? unlink. */
if (prev)
set_slob(prev, slob_units(prev), next);
else
sp->freelist = next;
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
} else { /* fragment */
if (prev)
set_slob(prev, slob_units(prev), cur + units);
else
sp->freelist = cur + units;
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
set_slob(cur + units, avail - units, next);
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
}
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
sp->units -= units;
if (!sp->units)
clear_slob_page_free(sp);
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
return cur;
}
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
if (slob_last(cur))
return NULL;
}
}
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
/*
* slob_alloc: entry point into the slob allocator.
*/
slob: initial NUMA support This adds preliminary NUMA support to SLOB, primarily aimed at systems with small nodes (tested all the way down to a 128kB SRAM block), whether asymmetric or otherwise. We follow the same conventions as SLAB/SLUB, preferring current node placement for new pages, or with explicit placement, if a node has been specified. Presently on UP NUMA this has the side-effect of preferring node#0 allocations (since numa_node_id() == 0, though this could be reworked if we could hand off a pfn to determine node placement), so single-CPU NUMA systems will want to place smaller nodes further out in terms of node id. Once a page has been bound to a node (via explicit node id typing), we only do block allocations from partial free pages that have a matching node id in the page flags. The current implementation does have some scalability problems, in that all partial free pages are tracked in the global freelist (with contention due to the single spinlock). However, these are things that are being reworked for SMP scalability first, while things like per-node freelists can easily be built on top of this sort of functionality once it's been added. More background can be found in: http://marc.info/?l=linux-mm&m=118117916022379&w=2 http://marc.info/?l=linux-mm&m=118170446306199&w=2 http://marc.info/?l=linux-mm&m=118187859420048&w=2 and subsequent threads. Acked-by: Christoph Lameter <clameter@sgi.com> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Paul Mundt <lethal@linux-sh.org> Acked-by: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:22 +00:00
static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
{
struct page *sp;
struct list_head *prev;
struct list_head *slob_list;
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
slob_t *b = NULL;
unsigned long flags;
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
if (size < SLOB_BREAK1)
slob_list = &free_slob_small;
else if (size < SLOB_BREAK2)
slob_list = &free_slob_medium;
else
slob_list = &free_slob_large;
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
spin_lock_irqsave(&slob_lock, flags);
/* Iterate through each partially free page, try to find room */
list_for_each_entry(sp, slob_list, lru) {
slob: initial NUMA support This adds preliminary NUMA support to SLOB, primarily aimed at systems with small nodes (tested all the way down to a 128kB SRAM block), whether asymmetric or otherwise. We follow the same conventions as SLAB/SLUB, preferring current node placement for new pages, or with explicit placement, if a node has been specified. Presently on UP NUMA this has the side-effect of preferring node#0 allocations (since numa_node_id() == 0, though this could be reworked if we could hand off a pfn to determine node placement), so single-CPU NUMA systems will want to place smaller nodes further out in terms of node id. Once a page has been bound to a node (via explicit node id typing), we only do block allocations from partial free pages that have a matching node id in the page flags. The current implementation does have some scalability problems, in that all partial free pages are tracked in the global freelist (with contention due to the single spinlock). However, these are things that are being reworked for SMP scalability first, while things like per-node freelists can easily be built on top of this sort of functionality once it's been added. More background can be found in: http://marc.info/?l=linux-mm&m=118117916022379&w=2 http://marc.info/?l=linux-mm&m=118170446306199&w=2 http://marc.info/?l=linux-mm&m=118187859420048&w=2 and subsequent threads. Acked-by: Christoph Lameter <clameter@sgi.com> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Paul Mundt <lethal@linux-sh.org> Acked-by: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:22 +00:00
#ifdef CONFIG_NUMA
/*
* If there's a node specification, search for a partial
* page with a matching node id in the freelist.
*/
if (node != NUMA_NO_NODE && page_to_nid(sp) != node)
slob: initial NUMA support This adds preliminary NUMA support to SLOB, primarily aimed at systems with small nodes (tested all the way down to a 128kB SRAM block), whether asymmetric or otherwise. We follow the same conventions as SLAB/SLUB, preferring current node placement for new pages, or with explicit placement, if a node has been specified. Presently on UP NUMA this has the side-effect of preferring node#0 allocations (since numa_node_id() == 0, though this could be reworked if we could hand off a pfn to determine node placement), so single-CPU NUMA systems will want to place smaller nodes further out in terms of node id. Once a page has been bound to a node (via explicit node id typing), we only do block allocations from partial free pages that have a matching node id in the page flags. The current implementation does have some scalability problems, in that all partial free pages are tracked in the global freelist (with contention due to the single spinlock). However, these are things that are being reworked for SMP scalability first, while things like per-node freelists can easily be built on top of this sort of functionality once it's been added. More background can be found in: http://marc.info/?l=linux-mm&m=118117916022379&w=2 http://marc.info/?l=linux-mm&m=118170446306199&w=2 http://marc.info/?l=linux-mm&m=118187859420048&w=2 and subsequent threads. Acked-by: Christoph Lameter <clameter@sgi.com> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Paul Mundt <lethal@linux-sh.org> Acked-by: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:22 +00:00
continue;
#endif
/* Enough room on this page? */
if (sp->units < SLOB_UNITS(size))
continue;
slob: initial NUMA support This adds preliminary NUMA support to SLOB, primarily aimed at systems with small nodes (tested all the way down to a 128kB SRAM block), whether asymmetric or otherwise. We follow the same conventions as SLAB/SLUB, preferring current node placement for new pages, or with explicit placement, if a node has been specified. Presently on UP NUMA this has the side-effect of preferring node#0 allocations (since numa_node_id() == 0, though this could be reworked if we could hand off a pfn to determine node placement), so single-CPU NUMA systems will want to place smaller nodes further out in terms of node id. Once a page has been bound to a node (via explicit node id typing), we only do block allocations from partial free pages that have a matching node id in the page flags. The current implementation does have some scalability problems, in that all partial free pages are tracked in the global freelist (with contention due to the single spinlock). However, these are things that are being reworked for SMP scalability first, while things like per-node freelists can easily be built on top of this sort of functionality once it's been added. More background can be found in: http://marc.info/?l=linux-mm&m=118117916022379&w=2 http://marc.info/?l=linux-mm&m=118170446306199&w=2 http://marc.info/?l=linux-mm&m=118187859420048&w=2 and subsequent threads. Acked-by: Christoph Lameter <clameter@sgi.com> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Paul Mundt <lethal@linux-sh.org> Acked-by: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:22 +00:00
/* Attempt to alloc */
prev = sp->lru.prev;
b = slob_page_alloc(sp, size, align);
if (!b)
continue;
/* Improve fragment distribution and reduce our average
* search time by starting our next search here. (see
* Knuth vol 1, sec 2.5, pg 449) */
if (prev != slob_list->prev &&
slob_list->next != prev->next)
list_move_tail(slob_list, prev->next);
break;
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
}
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
spin_unlock_irqrestore(&slob_lock, flags);
/* Not enough space: must allocate a new page */
if (!b) {
b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
if (!b)
return NULL;
sp = virt_to_page(b);
__SetPageSlab(sp);
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
spin_lock_irqsave(&slob_lock, flags);
sp->units = SLOB_UNITS(PAGE_SIZE);
sp->freelist = b;
INIT_LIST_HEAD(&sp->lru);
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
set_slob_page_free(sp, slob_list);
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
b = slob_page_alloc(sp, size, align);
BUG_ON(!b);
spin_unlock_irqrestore(&slob_lock, flags);
}
if (unlikely((gfp & __GFP_ZERO) && b))
memset(b, 0, size);
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
return b;
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
}
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
/*
* slob_free: entry point into the slob allocator.
*/
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
static void slob_free(void *block, int size)
{
struct page *sp;
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
slob_t *prev, *next, *b = (slob_t *)block;
slobidx_t units;
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
unsigned long flags;
struct list_head *slob_list;
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
if (unlikely(ZERO_OR_NULL_PTR(block)))
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
return;
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
BUG_ON(!size);
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
sp = virt_to_page(block);
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
units = SLOB_UNITS(size);
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
spin_lock_irqsave(&slob_lock, flags);
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
/* Go directly to page allocator. Do not pass slob allocator */
if (slob_page_free(sp))
clear_slob_page_free(sp);
spin_unlock_irqrestore(&slob_lock, flags);
__ClearPageSlab(sp);
page_mapcount_reset(sp);
slob_free_pages(b, 0);
return;
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
}
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
if (!slob_page_free(sp)) {
/* This slob page is about to become partially free. Easy! */
sp->units = units;
sp->freelist = b;
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
set_slob(b, units,
(void *)((unsigned long)(b +
SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
if (size < SLOB_BREAK1)
slob_list = &free_slob_small;
else if (size < SLOB_BREAK2)
slob_list = &free_slob_medium;
else
slob_list = &free_slob_large;
set_slob_page_free(sp, slob_list);
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
goto out;
}
/*
* Otherwise the page is already partially free, so find reinsertion
* point.
*/
sp->units += units;
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
if (b < (slob_t *)sp->freelist) {
if (b + units == sp->freelist) {
units += slob_units(sp->freelist);
sp->freelist = slob_next(sp->freelist);
}
set_slob(b, units, sp->freelist);
sp->freelist = b;
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
} else {
prev = sp->freelist;
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
next = slob_next(prev);
while (b > next) {
prev = next;
next = slob_next(prev);
}
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
if (!slob_last(prev) && b + units == next) {
units += slob_units(next);
set_slob(b, units, slob_next(next));
} else
set_slob(b, units, next);
if (prev + slob_units(prev) == b) {
units = slob_units(b) + slob_units(prev);
set_slob(prev, units, slob_next(b));
} else
set_slob(prev, slob_units(prev), b);
}
out:
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
spin_unlock_irqrestore(&slob_lock, flags);
}
slob: rework freelist handling Improve slob by turning the freelist into a list of pages using struct page fields, then each page has a singly linked freelist of slob blocks via a pointer in the struct page. - The first benefit is that the slob freelists can be indexed by a smaller type (2 bytes, if the PAGE_SIZE is reasonable). - Next is that freeing is much quicker because it does not have to traverse the entire freelist. Allocation can be slightly faster too, because we can skip almost-full freelist pages completely. - Slob pages are then freed immediately when they become empty, rather than having a periodic timer try to free them. This gives efficiency and memory consumption improvement. Then, we don't encode seperate size and next fields into each slob block, rather we use the sign bit to distinguish between "size" or "next". Then size 1 blocks contain a "next" offset, and others contain the "size" in the first unit and "next" in the second unit. - This allows minimum slob allocation alignment to go from 8 bytes to 2 bytes on 32-bit and 12 bytes to 2 bytes on 64-bit. In practice, it is best to align them to word size, however some architectures (eg. cris) could gain space savings from turning off this extra alignment. Then, make kmalloc use its own slob_block at the front of the allocation in order to encode allocation size, rather than rely on not overwriting slob's existing header block. - This reduces kmalloc allocation overhead similarly to alignment reductions. - Decouples kmalloc layer from the slob allocator. Then, add a page flag specific to slob pages. - This means kfree of a page aligned slob block doesn't have to traverse the bigblock list. I would get benchmarks, but my test box's network doesn't come up with slob before this patch. I think something is timing out. Anyway, things are faster after the patch. Code size goes up about 1K, however dynamic memory usage _should_ be lower even on relatively small memory systems. Future todo item is to restore the cyclic free list search, rather than to always begin at the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:07 +00:00
/*
* End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
*/
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t gfp, int node, unsigned long caller)
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
{
unsigned int *m;
int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
void *ret;
slob/lockdep: Fix gfp flags passed to lockdep Doing a ktest.pl randconfig, I stumbled across the following bug on boot up: ------------[ cut here ]------------ WARNING: at /home/rostedt/work/autotest/nobackup/linux-test.git/kernel/lockdep.c:2649 lockdep_trace_alloc+0xed/0x100() Hardware name: Modules linked in: Pid: 0, comm: swapper Not tainted 3.0.0-rc1-test-00054-g1d68b67 #1 Call Trace: [<ffffffff810626ad>] warn_slowpath_common+0xad/0xf0 [<ffffffff8106270a>] warn_slowpath_null+0x1a/0x20 [<ffffffff810b537d>] lockdep_trace_alloc+0xed/0x100 [<ffffffff81182fb0>] __kmalloc_node+0x30/0x2f0 [<ffffffff81153eda>] pcpu_mem_alloc+0x13a/0x180 [<ffffffff82be022c>] percpu_init_late+0x48/0xc2 [<ffffffff82bd630c>] ? mem_init+0xd8/0xe3 [<ffffffff82bbcc73>] start_kernel+0x1c2/0x449 [<ffffffff82bbc35c>] x86_64_start_reservations+0x163/0x167 [<ffffffff82bbc493>] x86_64_start_kernel+0x133/0x142^M ---[ end trace a7919e7f17c0a725 ]--- Then I ran a ktest.pl config_bisect and it came up with this config as the problem: CONFIG_SLOB Looking at what is different between SLOB and SLAB and SLUB, I found that the gfp flags are masked against gfp_allowed_mask in SLAB and SLUB, but not SLOB. On boot up, interrupts are disabled and lockdep will warn if some flags are set in gfp and interrupts are disabled. But these flags are masked off with the gfp_allowed_mask during boot. Because SLOB does not mask the flags against gfp_allowed_mask it triggers the warn on. Adding this mask fixes the bug. I also found that kmem_cache_alloc_node() was missing both the mask and the lockdep check, and that was added too. Acked-by: Matt Mackall <mpm@selenic.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Nick Piggin <npiggin@kernel.dk> Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Pekka Enberg <penberg@kernel.org>
2011-06-07 11:18:45 +00:00
gfp &= gfp_allowed_mask;
lockdep_trace_alloc(gfp);
lockdep: annotate reclaim context (__GFP_NOFS) Here is another version, with the incremental patch rolled up, and added reclaim context annotation to kswapd, and allocation tracing to slab allocators (which may only ever reach the page allocator in rare cases, so it is good to put annotations here too). Haven't tested this version as such, but it should be getting closer to merge worthy ;) -- After noticing some code in mm/filemap.c accidentally perform a __GFP_FS allocation when it should not have been, I thought it might be a good idea to try to catch this kind of thing with lockdep. I coded up a little idea that seems to work. Unfortunately the system has to actually be in __GFP_FS page reclaim, then take the lock, before it will mark it. But at least that might still be some orders of magnitude more common (and more debuggable) than an actual deadlock condition, so we have some improvement I hope (the concept is no less complete than discovery of a lock's interrupt contexts). I guess we could even do the same thing with __GFP_IO (normal reclaim), and even GFP_NOIO locks too... but filesystems will have the most locks and fiddly code paths, so let's start there and see how it goes. It *seems* to work. I did a quick test. ================================= [ INFO: inconsistent lock state ] 2.6.28-rc6-00007-ged31348-dirty #26 --------------------------------- inconsistent {in-reclaim-W} -> {ov-reclaim-W} usage. modprobe/8526 [HC0[0]:SC0[0]:HE1:SE1] takes: (testlock){--..}, at: [<ffffffffa0020055>] brd_init+0x55/0x216 [brd] {in-reclaim-W} state was registered at: [<ffffffff80267bdb>] __lock_acquire+0x75b/0x1a60 [<ffffffff80268f71>] lock_acquire+0x91/0xc0 [<ffffffff8070f0e1>] mutex_lock_nested+0xb1/0x310 [<ffffffffa002002b>] brd_init+0x2b/0x216 [brd] [<ffffffff8020903b>] _stext+0x3b/0x170 [<ffffffff80272ebf>] sys_init_module+0xaf/0x1e0 [<ffffffff8020c3fb>] system_call_fastpath+0x16/0x1b [<ffffffffffffffff>] 0xffffffffffffffff irq event stamp: 3929 hardirqs last enabled at (3929): [<ffffffff8070f2b5>] mutex_lock_nested+0x285/0x310 hardirqs last disabled at (3928): [<ffffffff8070f089>] mutex_lock_nested+0x59/0x310 softirqs last enabled at (3732): [<ffffffff8061f623>] sk_filter+0x83/0xe0 softirqs last disabled at (3730): [<ffffffff8061f5b6>] sk_filter+0x16/0xe0 other info that might help us debug this: 1 lock held by modprobe/8526: #0: (testlock){--..}, at: [<ffffffffa0020055>] brd_init+0x55/0x216 [brd] stack backtrace: Pid: 8526, comm: modprobe Not tainted 2.6.28-rc6-00007-ged31348-dirty #26 Call Trace: [<ffffffff80265483>] print_usage_bug+0x193/0x1d0 [<ffffffff80266530>] mark_lock+0xaf0/0xca0 [<ffffffff80266735>] mark_held_locks+0x55/0xc0 [<ffffffffa0020000>] ? brd_init+0x0/0x216 [brd] [<ffffffff802667ca>] trace_reclaim_fs+0x2a/0x60 [<ffffffff80285005>] __alloc_pages_internal+0x475/0x580 [<ffffffff8070f29e>] ? mutex_lock_nested+0x26e/0x310 [<ffffffffa0020000>] ? brd_init+0x0/0x216 [brd] [<ffffffffa002006a>] brd_init+0x6a/0x216 [brd] [<ffffffffa0020000>] ? brd_init+0x0/0x216 [brd] [<ffffffff8020903b>] _stext+0x3b/0x170 [<ffffffff8070f8b9>] ? mutex_unlock+0x9/0x10 [<ffffffff8070f83d>] ? __mutex_unlock_slowpath+0x10d/0x180 [<ffffffff802669ec>] ? trace_hardirqs_on_caller+0x12c/0x190 [<ffffffff80272ebf>] sys_init_module+0xaf/0x1e0 [<ffffffff8020c3fb>] system_call_fastpath+0x16/0x1b Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-01-21 07:12:39 +00:00
if (size < PAGE_SIZE - align) {
if (!size)
return ZERO_SIZE_PTR;
slob: initial NUMA support This adds preliminary NUMA support to SLOB, primarily aimed at systems with small nodes (tested all the way down to a 128kB SRAM block), whether asymmetric or otherwise. We follow the same conventions as SLAB/SLUB, preferring current node placement for new pages, or with explicit placement, if a node has been specified. Presently on UP NUMA this has the side-effect of preferring node#0 allocations (since numa_node_id() == 0, though this could be reworked if we could hand off a pfn to determine node placement), so single-CPU NUMA systems will want to place smaller nodes further out in terms of node id. Once a page has been bound to a node (via explicit node id typing), we only do block allocations from partial free pages that have a matching node id in the page flags. The current implementation does have some scalability problems, in that all partial free pages are tracked in the global freelist (with contention due to the single spinlock). However, these are things that are being reworked for SMP scalability first, while things like per-node freelists can easily be built on top of this sort of functionality once it's been added. More background can be found in: http://marc.info/?l=linux-mm&m=118117916022379&w=2 http://marc.info/?l=linux-mm&m=118170446306199&w=2 http://marc.info/?l=linux-mm&m=118187859420048&w=2 and subsequent threads. Acked-by: Christoph Lameter <clameter@sgi.com> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Paul Mundt <lethal@linux-sh.org> Acked-by: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:22 +00:00
m = slob_alloc(size + align, gfp, align, node);
if (!m)
return NULL;
*m = size;
ret = (void *)m + align;
trace_kmalloc_node(caller, ret,
size, size + align, gfp, node);
} else {
unsigned int order = get_order(size);
if (likely(order))
gfp |= __GFP_COMP;
ret = slob_new_pages(gfp, order, node);
trace_kmalloc_node(caller, ret,
size, PAGE_SIZE << order, gfp, node);
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
}
kmemleak_alloc(ret, size, 1, gfp);
return ret;
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
}
void *__kmalloc(size_t size, gfp_t gfp)
{
return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, _RET_IP_);
}
EXPORT_SYMBOL(__kmalloc);
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
void *__kmalloc_track_caller(size_t size, gfp_t gfp, unsigned long caller)
{
return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, caller);
}
#ifdef CONFIG_NUMA
mm, slob: fix build breakage in __kmalloc_node_track_caller On Sat, 8 Sep 2012, Ezequiel Garcia wrote: > @@ -454,15 +455,35 @@ void *__kmalloc_node(size_t size, gfp_t gfp, int node) > gfp |= __GFP_COMP; > ret = slob_new_pages(gfp, order, node); > > - trace_kmalloc_node(_RET_IP_, ret, > + trace_kmalloc_node(caller, ret, > size, PAGE_SIZE << order, gfp, node); > } > > kmemleak_alloc(ret, size, 1, gfp); > return ret; > } > + > +void *__kmalloc_node(size_t size, gfp_t gfp, int node) > +{ > + return __do_kmalloc_node(size, gfp, node, _RET_IP_); > +} > EXPORT_SYMBOL(__kmalloc_node); > > +#ifdef CONFIG_TRACING > +void *__kmalloc_track_caller(size_t size, gfp_t gfp, unsigned long caller) > +{ > + return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, caller); > +} > + > +#ifdef CONFIG_NUMA > +void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, > + int node, unsigned long caller) > +{ > + return __do_kmalloc_node(size, gfp, node, caller); > +} > +#endif This breaks Pekka's slab/next tree with this: mm/slob.c: In function '__kmalloc_node_track_caller': mm/slob.c:488: error: 'gfp' undeclared (first use in this function) mm/slob.c:488: error: (Each undeclared identifier is reported only once mm/slob.c:488: error: for each function it appears in.) mm, slob: fix build breakage in __kmalloc_node_track_caller "mm, slob: Add support for kmalloc_track_caller()" breaks the build because gfp is undeclared. Fix it. Acked-by: Ezequiel Garcia <elezegarcia@gmail.com> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
2012-09-25 19:53:51 +00:00
void *__kmalloc_node_track_caller(size_t size, gfp_t gfp,
int node, unsigned long caller)
{
return __do_kmalloc_node(size, gfp, node, caller);
}
#endif
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
void kfree(const void *block)
{
struct page *sp;
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
trace_kfree(_RET_IP_, block);
if (unlikely(ZERO_OR_NULL_PTR(block)))
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
return;
kmemleak_free(block);
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
sp = virt_to_page(block);
if (PageSlab(sp)) {
int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
unsigned int *m = (unsigned int *)(block - align);
slob_free(m, *m + align);
} else
__free_pages(sp, compound_order(sp));
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
}
EXPORT_SYMBOL(kfree);
/* can't use ksize for kmem_cache_alloc memory, only kmalloc */
size_t ksize(const void *block)
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
{
struct page *sp;
int align;
unsigned int *m;
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
BUG_ON(!block);
if (unlikely(block == ZERO_SIZE_PTR))
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
return 0;
sp = virt_to_page(block);
if (unlikely(!PageSlab(sp)))
return PAGE_SIZE << compound_order(sp);
align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
m = (unsigned int *)(block - align);
return SLOB_UNITS(*m) * SLOB_UNIT;
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
}
EXPORT_SYMBOL(ksize);
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
int __kmem_cache_create(struct kmem_cache *c, unsigned long flags)
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
{
if (flags & SLAB_DESTROY_BY_RCU) {
/* leave room for rcu footer at the end of object */
c->size += sizeof(struct slob_rcu);
}
c->flags = flags;
return 0;
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
}
static void *slob_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
{
void *b;
slob/lockdep: Fix gfp flags passed to lockdep Doing a ktest.pl randconfig, I stumbled across the following bug on boot up: ------------[ cut here ]------------ WARNING: at /home/rostedt/work/autotest/nobackup/linux-test.git/kernel/lockdep.c:2649 lockdep_trace_alloc+0xed/0x100() Hardware name: Modules linked in: Pid: 0, comm: swapper Not tainted 3.0.0-rc1-test-00054-g1d68b67 #1 Call Trace: [<ffffffff810626ad>] warn_slowpath_common+0xad/0xf0 [<ffffffff8106270a>] warn_slowpath_null+0x1a/0x20 [<ffffffff810b537d>] lockdep_trace_alloc+0xed/0x100 [<ffffffff81182fb0>] __kmalloc_node+0x30/0x2f0 [<ffffffff81153eda>] pcpu_mem_alloc+0x13a/0x180 [<ffffffff82be022c>] percpu_init_late+0x48/0xc2 [<ffffffff82bd630c>] ? mem_init+0xd8/0xe3 [<ffffffff82bbcc73>] start_kernel+0x1c2/0x449 [<ffffffff82bbc35c>] x86_64_start_reservations+0x163/0x167 [<ffffffff82bbc493>] x86_64_start_kernel+0x133/0x142^M ---[ end trace a7919e7f17c0a725 ]--- Then I ran a ktest.pl config_bisect and it came up with this config as the problem: CONFIG_SLOB Looking at what is different between SLOB and SLAB and SLUB, I found that the gfp flags are masked against gfp_allowed_mask in SLAB and SLUB, but not SLOB. On boot up, interrupts are disabled and lockdep will warn if some flags are set in gfp and interrupts are disabled. But these flags are masked off with the gfp_allowed_mask during boot. Because SLOB does not mask the flags against gfp_allowed_mask it triggers the warn on. Adding this mask fixes the bug. I also found that kmem_cache_alloc_node() was missing both the mask and the lockdep check, and that was added too. Acked-by: Matt Mackall <mpm@selenic.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Nick Piggin <npiggin@kernel.dk> Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Pekka Enberg <penberg@kernel.org>
2011-06-07 11:18:45 +00:00
flags &= gfp_allowed_mask;
lockdep_trace_alloc(flags);
if (c->size < PAGE_SIZE) {
slob: initial NUMA support This adds preliminary NUMA support to SLOB, primarily aimed at systems with small nodes (tested all the way down to a 128kB SRAM block), whether asymmetric or otherwise. We follow the same conventions as SLAB/SLUB, preferring current node placement for new pages, or with explicit placement, if a node has been specified. Presently on UP NUMA this has the side-effect of preferring node#0 allocations (since numa_node_id() == 0, though this could be reworked if we could hand off a pfn to determine node placement), so single-CPU NUMA systems will want to place smaller nodes further out in terms of node id. Once a page has been bound to a node (via explicit node id typing), we only do block allocations from partial free pages that have a matching node id in the page flags. The current implementation does have some scalability problems, in that all partial free pages are tracked in the global freelist (with contention due to the single spinlock). However, these are things that are being reworked for SMP scalability first, while things like per-node freelists can easily be built on top of this sort of functionality once it's been added. More background can be found in: http://marc.info/?l=linux-mm&m=118117916022379&w=2 http://marc.info/?l=linux-mm&m=118170446306199&w=2 http://marc.info/?l=linux-mm&m=118187859420048&w=2 and subsequent threads. Acked-by: Christoph Lameter <clameter@sgi.com> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Paul Mundt <lethal@linux-sh.org> Acked-by: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:22 +00:00
b = slob_alloc(c->size, flags, c->align, node);
trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
SLOB_UNITS(c->size) * SLOB_UNIT,
flags, node);
} else {
b = slob_new_pages(flags, get_order(c->size), node);
trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
PAGE_SIZE << get_order(c->size),
flags, node);
}
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
if (b && c->ctor)
c->ctor(b);
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
return b;
}
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
return slob_alloc_node(cachep, flags, NUMA_NO_NODE);
}
EXPORT_SYMBOL(kmem_cache_alloc);
#ifdef CONFIG_NUMA
void *__kmalloc_node(size_t size, gfp_t gfp, int node)
{
return __do_kmalloc_node(size, gfp, node, _RET_IP_);
}
EXPORT_SYMBOL(__kmalloc_node);
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t gfp, int node)
{
return slob_alloc_node(cachep, gfp, node);
}
slob: initial NUMA support This adds preliminary NUMA support to SLOB, primarily aimed at systems with small nodes (tested all the way down to a 128kB SRAM block), whether asymmetric or otherwise. We follow the same conventions as SLAB/SLUB, preferring current node placement for new pages, or with explicit placement, if a node has been specified. Presently on UP NUMA this has the side-effect of preferring node#0 allocations (since numa_node_id() == 0, though this could be reworked if we could hand off a pfn to determine node placement), so single-CPU NUMA systems will want to place smaller nodes further out in terms of node id. Once a page has been bound to a node (via explicit node id typing), we only do block allocations from partial free pages that have a matching node id in the page flags. The current implementation does have some scalability problems, in that all partial free pages are tracked in the global freelist (with contention due to the single spinlock). However, these are things that are being reworked for SMP scalability first, while things like per-node freelists can easily be built on top of this sort of functionality once it's been added. More background can be found in: http://marc.info/?l=linux-mm&m=118117916022379&w=2 http://marc.info/?l=linux-mm&m=118170446306199&w=2 http://marc.info/?l=linux-mm&m=118187859420048&w=2 and subsequent threads. Acked-by: Christoph Lameter <clameter@sgi.com> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Paul Mundt <lethal@linux-sh.org> Acked-by: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 06:38:22 +00:00
EXPORT_SYMBOL(kmem_cache_alloc_node);
#endif
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
static void __kmem_cache_free(void *b, int size)
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
{
if (size < PAGE_SIZE)
slob_free(b, size);
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
else
slob_free_pages(b, get_order(size));
}
static void kmem_rcu_free(struct rcu_head *head)
{
struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
__kmem_cache_free(b, slob_rcu->size);
}
void kmem_cache_free(struct kmem_cache *c, void *b)
{
kmemleak_free_recursive(b, c->flags);
if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) {
struct slob_rcu *slob_rcu;
slob_rcu = b + (c->size - sizeof(struct slob_rcu));
slob_rcu->size = c->size;
call_rcu(&slob_rcu->head, kmem_rcu_free);
} else {
__kmem_cache_free(b, c->size);
}
trace_kmem_cache_free(_RET_IP_, b);
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
}
EXPORT_SYMBOL(kmem_cache_free);
void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
{
__kmem_cache_free_bulk(s, size, p);
}
EXPORT_SYMBOL(kmem_cache_free_bulk);
bool kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
void **p)
{
return __kmem_cache_alloc_bulk(s, flags, size, p);
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);
int __kmem_cache_shutdown(struct kmem_cache *c)
{
/* No way to check for remaining objects */
return 0;
}
slub: make dead caches discard free slabs immediately To speed up further allocations SLUB may store empty slabs in per cpu/node partial lists instead of freeing them immediately. This prevents per memcg caches destruction, because kmem caches created for a memory cgroup are only destroyed after the last page charged to the cgroup is freed. To fix this issue, this patch resurrects approach first proposed in [1]. It forbids SLUB to cache empty slabs after the memory cgroup that the cache belongs to was destroyed. It is achieved by setting kmem_cache's cpu_partial and min_partial constants to 0 and tuning put_cpu_partial() so that it would drop frozen empty slabs immediately if cpu_partial = 0. The runtime overhead is minimal. From all the hot functions, we only touch relatively cold put_cpu_partial(): we make it call unfreeze_partials() after freezing a slab that belongs to an offline memory cgroup. Since slab freezing exists to avoid moving slabs from/to a partial list on free/alloc, and there can't be allocations from dead caches, it shouldn't cause any overhead. We do have to disable preemption for put_cpu_partial() to achieve that though. The original patch was accepted well and even merged to the mm tree. However, I decided to withdraw it due to changes happening to the memcg core at that time. I had an idea of introducing per-memcg shrinkers for kmem caches, but now, as memcg has finally settled down, I do not see it as an option, because SLUB shrinker would be too costly to call since SLUB does not keep free slabs on a separate list. Besides, we currently do not even call per-memcg shrinkers for offline memcgs. Overall, it would introduce much more complexity to both SLUB and memcg than this small patch. Regarding to SLAB, there's no problem with it, because it shrinks per-cpu/node caches periodically. Thanks to list_lru reparenting, we no longer keep entries for offline cgroups in per-memcg arrays (such as memcg_cache_params->memcg_caches), so we do not have to bother if a per-memcg cache will be shrunk a bit later than it could be. [1] http://thread.gmane.org/gmane.linux.kernel.mm/118649/focus=118650 Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 22:59:47 +00:00
int __kmem_cache_shrink(struct kmem_cache *d, bool deactivate)
{
return 0;
}
struct kmem_cache kmem_cache_boot = {
.name = "kmem_cache",
.size = sizeof(struct kmem_cache),
.flags = SLAB_PANIC,
.align = ARCH_KMALLOC_MINALIGN,
};
void __init kmem_cache_init(void)
{
kmem_cache = &kmem_cache_boot;
slab_state = UP;
[PATCH] slob: introduce the SLOB allocator configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 09:01:45 +00:00
}
void __init kmem_cache_init_late(void)
{
slab_state = FULL;
}