linux/drivers/acpi/bus.c

1344 lines
35 KiB
C
Raw Normal View History

treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 157 Based on 3 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version [author] [kishon] [vijay] [abraham] [i] [kishon]@[ti] [com] this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version [author] [graeme] [gregory] [gg]@[slimlogic] [co] [uk] [author] [kishon] [vijay] [abraham] [i] [kishon]@[ti] [com] [based] [on] [twl6030]_[usb] [c] [author] [hema] [hk] [hemahk]@[ti] [com] this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details extracted by the scancode license scanner the SPDX license identifier GPL-2.0-or-later has been chosen to replace the boilerplate/reference in 1105 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Allison Randal <allison@lohutok.net> Reviewed-by: Richard Fontana <rfontana@redhat.com> Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190527070033.202006027@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-27 06:55:06 +00:00
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* acpi_bus.c - ACPI Bus Driver ($Revision: 80 $)
*
* Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
*/
#define pr_fmt(fmt) "ACPI: " fmt
#include <linux/module.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/sched.h>
#include <linux/pm.h>
#include <linux/device.h>
#include <linux/proc_fs.h>
#include <linux/acpi.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
ACPI / init: Flag use of ACPI and ACPI idioms for power supplies to regulator API There is currently no facility in ACPI to express the hookup of voltage regulators, the expectation is that the regulators that exist in the system will be handled transparently by firmware if they need software control at all. This means that if for some reason the regulator API is enabled on such a system it should assume that any supplies that devices need are provided by the system at all relevant times without any software intervention. Tell the regulator core to make this assumption by calling regulator_has_full_constraints(). Do this as soon as we know we are using ACPI so that the information is available to the regulator core as early as possible. This will cause the regulator core to pretend that there is an always on regulator supplying any supply that is requested but that has not otherwise been mapped which is the behaviour expected on a system with ACPI. Should the ability to specify regulators be added in future revisions of ACPI then once we have support for ACPI mappings in the kernel the same assumptions will apply. It is also likely that systems will default to a mode of operation which does not require any interpretation of these mappings in order to be compatible with existing operating system releases so it should remain safe to make these assumptions even if the mappings exist but are not supported by the kernel. Signed-off-by: Mark Brown <broonie@linaro.org> Cc: All applicable <stable@vger.kernel.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2014-01-27 00:32:14 +00:00
#include <linux/regulator/machine.h>
#include <linux/workqueue.h>
#include <linux/reboot.h>
#include <linux/delay.h>
#ifdef CONFIG_X86
#include <asm/mpspec.h>
#include <linux/dmi.h>
#endif
ACPI: I/O Remapping Table (IORT) initial support IORT shows representation of IO topology for ARM based systems. It describes how various components are connected together on parent-child basis e.g. PCI RC -> SMMU -> ITS. Also see IORT spec. http://infocenter.arm.com/help/topic/com.arm.doc.den0049b/DEN0049B_IO_Remapping_Table.pdf Initial support allows to detect IORT table presence and save its root pointer obtained through acpi_get_table(). The pointer validity depends on acpi_gbl_permanent_mmap because if acpi_gbl_permanent_mmap is not set while using IORT nodes we would dereference unmapped pointers. For the aforementioned reason call acpi_iort_init() from acpi_init() which guarantees acpi_gbl_permanent_mmap to be set at that point. Add generic helpers which are helpful for scanning and retrieving information from IORT table content. List of the most important helpers: - iort_find_dev_node() finds IORT node for a given device - iort_node_map_rid() maps device RID and returns IORT node which provides final translation IORT support is placed under drivers/acpi/arm64/ new directory due to its ARM64 specific nature. The code there is considered only for ARM64. The long term plan is to keep all ARM64 specific tables support in this place e.g. GTDT table. Signed-off-by: Tomasz Nowicki <tn@semihalf.com> Acked-by: Rafael J. Wysocki <rjw@rjwysocki.net> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-09-12 18:54:20 +00:00
#include <linux/acpi_iort.h>
#include <linux/acpi_viot.h>
x86: validate against acpi motherboard resources This path adds validation of the MMCONFIG table against the ACPI reserved motherboard resources. If the MMCONFIG table is found to be reserved in ACPI, we don't bother checking the E820 table. The PCI Express firmware spec apparently tells BIOS developers that reservation in ACPI is required and E820 reservation is optional, so checking against ACPI first makes sense. Many BIOSes don't reserve the MMCONFIG region in E820 even though it is perfectly functional, the existing check needlessly disables MMCONFIG in these cases. In order to do this, MMCONFIG setup has been split into two phases. If PCI configuration type 1 is not available then MMCONFIG is enabled early as before. Otherwise, it is enabled later after the ACPI interpreter is enabled, since we need to be able to execute control methods in order to check the ACPI reserved resources. Presently this is just triggered off the end of ACPI interpreter initialization. There are a few other behavioral changes here: - Validate all MMCONFIG configurations provided, not just the first one. - Validate the entire required length of each configuration according to the provided ending bus number is reserved, not just the minimum required allocation. - Validate that the area is reserved even if we read it from the chipset directly and not from the MCFG table. This catches the case where the BIOS didn't set the location properly in the chipset and has mapped it over other things it shouldn't have. This also cleans up the MMCONFIG initialization functions so that they simply do nothing if MMCONFIG is not compiled in. Based on an original patch by Rajesh Shah from Intel. [akpm@linux-foundation.org: many fixes and cleanups] Signed-off-by: Robert Hancock <hancockr@shaw.ca> Signed-off-by: Andi Kleen <ak@suse.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Greg KH <greg@kroah.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Andi Kleen <ak@suse.de> Cc: Rajesh Shah <rajesh.shah@intel.com> Cc: Jesse Barnes <jbarnes@virtuousgeek.org> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andi Kleen <ak@suse.de> Cc: Greg KH <greg@kroah.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-02-15 09:27:20 +00:00
#include <linux/pci.h>
#include <acpi/apei.h>
#include <linux/suspend.h>
ACPI: PRM: implement OperationRegion handler for the PlatformRtMechanism subtype Platform Runtime Mechanism (PRM) is a firmware interface that exposes a set of binary executables that can either be called from the AML interpreter or device drivers by bypassing the AML interpreter. This change implements the AML interpreter path. According to the specification [1], PRM services are listed in an ACPI table called the PRMT. This patch parses module and handler information listed in the PRMT and registers the PlatformRtMechanism OpRegion handler before ACPI tables are loaded. Each service is defined by a 16-byte GUID and called from writing a 26-byte ASL buffer containing the identifier to a FieldUnit object defined inside a PlatformRtMechanism OperationRegion. OperationRegion (PRMR, PlatformRtMechanism, 0, 26) Field (PRMR, BufferAcc, NoLock, Preserve) { PRMF, 208 // Write to this field to invoke the OperationRegion Handler } The 26-byte ASL buffer is defined as the following: Byte Offset Byte Length Description ============================================================= 0 1 PRM OperationRegion handler status 1 8 PRM service status 9 1 PRM command 10 16 PRM handler GUID The ASL caller fills out a 26-byte buffer containing the PRM command and the PRM handler GUID like so: /* Local0 is the PRM data buffer */ Local0 = buffer (26){} /* Create byte fields over the buffer */ CreateByteField (Local0, 0x9, CMD) CreateField (Local0, 0x50, 0x80, GUID) /* Fill in the command and data fields of the data buffer */ CMD = 0 // run command GUID = ToUUID("xxxx-xx-xxx-xxxx") /* * Invoke PRM service with an ID that matches GUID and save the * result. */ Local0 = (\_SB.PRMT.PRMF = Local0) Byte offset 0 - 8 are written by the handler as a status passed back to AML and used by ASL like so: /* Create byte fields over the buffer */ CreateByteField (Local0, 0x0, PSTA) CreateQWordField (Local0, 0x1, USTA) In this ASL code, PSTA contains a status from the OperationRegion and USTA contains a status from the PRM service. The 26-byte buffer is recieved by acpi_platformrt_space_handler. This handler will look at the command value and the handler guid and take the approperiate actions. Command value Action ===================================================================== 0 Run the PRM service indicated by the PRM handler GUID (bytes 10-26) 1 Prevent PRM runtime updates from happening to the service's parent module 2 Allow PRM updates from happening to the service's parent module This patch enables command value 0. Link: https://uefi.org/sites/default/files/resources/Platform%20Runtime%20Mechanism%20-%20with%20legal%20notice.pdf # [1] Signed-off-by: Erik Kaneda <erik.kaneda@intel.com> [ rjw: Subject and changelog edits ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2021-06-10 03:41:52 +00:00
#include <linux/prmt.h>
#include "internal.h"
struct acpi_device *acpi_root;
struct proc_dir_entry *acpi_root_dir;
EXPORT_SYMBOL(acpi_root_dir);
#ifdef CONFIG_X86
#ifdef CONFIG_ACPI_CUSTOM_DSDT
static inline int set_copy_dsdt(const struct dmi_system_id *id)
{
return 0;
}
#else
static int set_copy_dsdt(const struct dmi_system_id *id)
{
pr_notice("%s detected - force copy of DSDT to local memory\n", id->ident);
acpi_gbl_copy_dsdt_locally = 1;
return 0;
}
#endif
static const struct dmi_system_id dsdt_dmi_table[] __initconst = {
/*
* Invoke DSDT corruption work-around on all Toshiba Satellite.
* https://bugzilla.kernel.org/show_bug.cgi?id=14679
*/
{
.callback = set_copy_dsdt,
.ident = "TOSHIBA Satellite",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
DMI_MATCH(DMI_PRODUCT_NAME, "Satellite"),
},
},
{}
};
#endif
/* --------------------------------------------------------------------------
Device Management
-------------------------------------------------------------------------- */
acpi_status acpi_bus_get_status_handle(acpi_handle handle,
unsigned long long *sta)
{
acpi_status status;
status = acpi_evaluate_integer(handle, "_STA", NULL, sta);
if (ACPI_SUCCESS(status))
return AE_OK;
if (status == AE_NOT_FOUND) {
*sta = ACPI_STA_DEVICE_PRESENT | ACPI_STA_DEVICE_ENABLED |
ACPI_STA_DEVICE_UI | ACPI_STA_DEVICE_FUNCTIONING;
return AE_OK;
}
return status;
}
EXPORT_SYMBOL_GPL(acpi_bus_get_status_handle);
int acpi_bus_get_status(struct acpi_device *device)
{
acpi_status status;
unsigned long long sta;
if (acpi_device_always_present(device)) {
acpi_set_device_status(device, ACPI_STA_DEFAULT);
return 0;
}
/* Battery devices must have their deps met before calling _STA */
if (acpi_device_is_battery(device) && device->dep_unmet) {
acpi_set_device_status(device, 0);
return 0;
}
status = acpi_bus_get_status_handle(device->handle, &sta);
if (ACPI_FAILURE(status))
return -ENODEV;
acpi_set_device_status(device, sta);
if (device->status.functional && !device->status.present) {
pr_debug("Device [%s] status [%08x]: functional but not present\n",
device->pnp.bus_id, (u32)sta);
}
pr_debug("Device [%s] status [%08x]\n", device->pnp.bus_id, (u32)sta);
return 0;
}
EXPORT_SYMBOL(acpi_bus_get_status);
void acpi_bus_private_data_handler(acpi_handle handle,
void *context)
{
return;
}
EXPORT_SYMBOL(acpi_bus_private_data_handler);
int acpi_bus_attach_private_data(acpi_handle handle, void *data)
{
acpi_status status;
status = acpi_attach_data(handle,
acpi_bus_private_data_handler, data);
if (ACPI_FAILURE(status)) {
acpi_handle_debug(handle, "Error attaching device data\n");
return -ENODEV;
}
return 0;
}
EXPORT_SYMBOL_GPL(acpi_bus_attach_private_data);
int acpi_bus_get_private_data(acpi_handle handle, void **data)
{
acpi_status status;
if (!data)
return -EINVAL;
status = acpi_get_data(handle, acpi_bus_private_data_handler, data);
if (ACPI_FAILURE(status)) {
acpi_handle_debug(handle, "No context for object\n");
return -ENODEV;
}
return 0;
}
EXPORT_SYMBOL_GPL(acpi_bus_get_private_data);
void acpi_bus_detach_private_data(acpi_handle handle)
{
acpi_detach_data(handle, acpi_bus_private_data_handler);
}
EXPORT_SYMBOL_GPL(acpi_bus_detach_private_data);
static void acpi_print_osc_error(acpi_handle handle,
struct acpi_osc_context *context, char *error)
{
int i;
acpi_handle_debug(handle, "(%s): %s\n", context->uuid_str, error);
pr_debug("_OSC request data:");
for (i = 0; i < context->cap.length; i += sizeof(u32))
pr_debug(" %x", *((u32 *)(context->cap.pointer + i)));
pr_debug("\n");
}
acpi_status acpi_run_osc(acpi_handle handle, struct acpi_osc_context *context)
{
acpi_status status;
struct acpi_object_list input;
union acpi_object in_params[4];
union acpi_object *out_obj;
guid_t guid;
u32 errors;
struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
if (!context)
return AE_ERROR;
if (guid_parse(context->uuid_str, &guid))
return AE_ERROR;
context->ret.length = ACPI_ALLOCATE_BUFFER;
context->ret.pointer = NULL;
/* Setting up input parameters */
input.count = 4;
input.pointer = in_params;
in_params[0].type = ACPI_TYPE_BUFFER;
in_params[0].buffer.length = 16;
in_params[0].buffer.pointer = (u8 *)&guid;
in_params[1].type = ACPI_TYPE_INTEGER;
in_params[1].integer.value = context->rev;
in_params[2].type = ACPI_TYPE_INTEGER;
in_params[2].integer.value = context->cap.length/sizeof(u32);
in_params[3].type = ACPI_TYPE_BUFFER;
in_params[3].buffer.length = context->cap.length;
in_params[3].buffer.pointer = context->cap.pointer;
status = acpi_evaluate_object(handle, "_OSC", &input, &output);
if (ACPI_FAILURE(status))
return status;
if (!output.length)
return AE_NULL_OBJECT;
out_obj = output.pointer;
if (out_obj->type != ACPI_TYPE_BUFFER
|| out_obj->buffer.length != context->cap.length) {
acpi_print_osc_error(handle, context,
"_OSC evaluation returned wrong type");
status = AE_TYPE;
goto out_kfree;
}
/* Need to ignore the bit0 in result code */
errors = *((u32 *)out_obj->buffer.pointer) & ~(1 << 0);
if (errors) {
if (errors & OSC_REQUEST_ERROR)
acpi_print_osc_error(handle, context,
"_OSC request failed");
if (errors & OSC_INVALID_UUID_ERROR)
acpi_print_osc_error(handle, context,
"_OSC invalid UUID");
if (errors & OSC_INVALID_REVISION_ERROR)
acpi_print_osc_error(handle, context,
"_OSC invalid revision");
if (errors & OSC_CAPABILITIES_MASK_ERROR) {
if (((u32 *)context->cap.pointer)[OSC_QUERY_DWORD]
& OSC_QUERY_ENABLE)
goto out_success;
status = AE_SUPPORT;
goto out_kfree;
}
status = AE_ERROR;
goto out_kfree;
}
out_success:
context->ret.length = out_obj->buffer.length;
context->ret.pointer = kmemdup(out_obj->buffer.pointer,
context->ret.length, GFP_KERNEL);
if (!context->ret.pointer) {
status = AE_NO_MEMORY;
goto out_kfree;
}
status = AE_OK;
out_kfree:
kfree(output.pointer);
return status;
}
EXPORT_SYMBOL(acpi_run_osc);
bool osc_sb_apei_support_acked;
/*
* ACPI 6.0 Section 8.4.4.2 Idle State Coordination
* OSPM supports platform coordinated low power idle(LPI) states
*/
bool osc_pc_lpi_support_confirmed;
EXPORT_SYMBOL_GPL(osc_pc_lpi_support_confirmed);
/*
* ACPI 6.4 Operating System Capabilities for USB.
*/
bool osc_sb_native_usb4_support_confirmed;
EXPORT_SYMBOL_GPL(osc_sb_native_usb4_support_confirmed);
static u8 sb_uuid_str[] = "0811B06E-4A27-44F9-8D60-3CBBC22E7B48";
static void acpi_bus_osc_negotiate_platform_control(void)
{
u32 capbuf[2], *capbuf_ret;
struct acpi_osc_context context = {
.uuid_str = sb_uuid_str,
.rev = 1,
.cap.length = 8,
.cap.pointer = capbuf,
};
acpi_handle handle;
capbuf[OSC_QUERY_DWORD] = OSC_QUERY_ENABLE;
capbuf[OSC_SUPPORT_DWORD] = OSC_SB_PR3_SUPPORT; /* _PR3 is in use */
if (IS_ENABLED(CONFIG_ACPI_PROCESSOR_AGGREGATOR))
capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PAD_SUPPORT;
if (IS_ENABLED(CONFIG_ACPI_PROCESSOR))
capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PPC_OST_SUPPORT;
capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_HOTPLUG_OST_SUPPORT;
capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PCLPI_SUPPORT;
if (IS_ENABLED(CONFIG_ACPI_PRMT))
capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PRM_SUPPORT;
#ifdef CONFIG_ARM64
capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_GENERIC_INITIATOR_SUPPORT;
#endif
#ifdef CONFIG_X86
capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_GENERIC_INITIATOR_SUPPORT;
if (boot_cpu_has(X86_FEATURE_HWP)) {
capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPC_SUPPORT;
capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPCV2_SUPPORT;
}
#endif
if (IS_ENABLED(CONFIG_SCHED_MC_PRIO))
capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPC_DIVERSE_HIGH_SUPPORT;
if (IS_ENABLED(CONFIG_USB4))
capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_NATIVE_USB4_SUPPORT;
if (!ghes_disable)
capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_APEI_SUPPORT;
if (ACPI_FAILURE(acpi_get_handle(NULL, "\\_SB", &handle)))
return;
if (ACPI_FAILURE(acpi_run_osc(handle, &context)))
return;
ACPI: Pass the same capabilities to the _OSC regardless of the query flag Commit 719e1f561afb ("ACPI: Execute platform _OSC also with query bit clear") makes acpi_bus_osc_negotiate_platform_control() not only query the platforms capabilities but it also commits the result back to the firmware to report which capabilities are supported by the OS back to the firmware On certain systems the BIOS loads SSDT tables dynamically based on the capabilities the OS claims to support. However, on these systems the _OSC actually clears some of the bits (under certain conditions) so what happens is that now when we call the _OSC twice the second time we pass the cleared values and that results errors like below to appear on the system log: ACPI BIOS Error (bug): Could not resolve symbol [\_PR.PR00._CPC], AE_NOT_FOUND (20210105/psargs-330) ACPI Error: Aborting method \_PR.PR01._CPC due to previous error (AE_NOT_FOUND) (20210105/psparse-529) In addition the ACPI 6.4 spec says following [1]: If the OS declares support of a feature in the Support Field in one call to _OSC, then it must preserve the set state of that bit (declaring support for that feature) in all subsequent calls. Based on the above we can fix the issue by passing the same set of capabilities to the platform wide _OSC in both calls regardless of the query flag. While there drop the context.ret.length checks which were wrong to begin with (as the length is number of bytes not elements). This is already checked in acpi_run_osc() that also returns an error in that case. Includes fixes by Hans de Goede. [1] https://uefi.org/specs/ACPI/6.4/06_Device_Configuration/Device_Configuration.html#sequence-of-osc-calls BugLink: https://bugzilla.kernel.org/show_bug.cgi?id=213023 BugLink: https://bugzilla.redhat.com/show_bug.cgi?id=1963717 Fixes: 719e1f561afb ("ACPI: Execute platform _OSC also with query bit clear") Cc: 5.12+ <stable@vger.kernel.org> # 5.12+ Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2021-06-09 10:25:33 +00:00
kfree(context.ret.pointer);
ACPI: Pass the same capabilities to the _OSC regardless of the query flag Commit 719e1f561afb ("ACPI: Execute platform _OSC also with query bit clear") makes acpi_bus_osc_negotiate_platform_control() not only query the platforms capabilities but it also commits the result back to the firmware to report which capabilities are supported by the OS back to the firmware On certain systems the BIOS loads SSDT tables dynamically based on the capabilities the OS claims to support. However, on these systems the _OSC actually clears some of the bits (under certain conditions) so what happens is that now when we call the _OSC twice the second time we pass the cleared values and that results errors like below to appear on the system log: ACPI BIOS Error (bug): Could not resolve symbol [\_PR.PR00._CPC], AE_NOT_FOUND (20210105/psargs-330) ACPI Error: Aborting method \_PR.PR01._CPC due to previous error (AE_NOT_FOUND) (20210105/psparse-529) In addition the ACPI 6.4 spec says following [1]: If the OS declares support of a feature in the Support Field in one call to _OSC, then it must preserve the set state of that bit (declaring support for that feature) in all subsequent calls. Based on the above we can fix the issue by passing the same set of capabilities to the platform wide _OSC in both calls regardless of the query flag. While there drop the context.ret.length checks which were wrong to begin with (as the length is number of bytes not elements). This is already checked in acpi_run_osc() that also returns an error in that case. Includes fixes by Hans de Goede. [1] https://uefi.org/specs/ACPI/6.4/06_Device_Configuration/Device_Configuration.html#sequence-of-osc-calls BugLink: https://bugzilla.kernel.org/show_bug.cgi?id=213023 BugLink: https://bugzilla.redhat.com/show_bug.cgi?id=1963717 Fixes: 719e1f561afb ("ACPI: Execute platform _OSC also with query bit clear") Cc: 5.12+ <stable@vger.kernel.org> # 5.12+ Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2021-06-09 10:25:33 +00:00
/* Now run _OSC again with query flag clear */
capbuf[OSC_QUERY_DWORD] = 0;
if (ACPI_FAILURE(acpi_run_osc(handle, &context)))
return;
capbuf_ret = context.ret.pointer;
ACPI: Pass the same capabilities to the _OSC regardless of the query flag Commit 719e1f561afb ("ACPI: Execute platform _OSC also with query bit clear") makes acpi_bus_osc_negotiate_platform_control() not only query the platforms capabilities but it also commits the result back to the firmware to report which capabilities are supported by the OS back to the firmware On certain systems the BIOS loads SSDT tables dynamically based on the capabilities the OS claims to support. However, on these systems the _OSC actually clears some of the bits (under certain conditions) so what happens is that now when we call the _OSC twice the second time we pass the cleared values and that results errors like below to appear on the system log: ACPI BIOS Error (bug): Could not resolve symbol [\_PR.PR00._CPC], AE_NOT_FOUND (20210105/psargs-330) ACPI Error: Aborting method \_PR.PR01._CPC due to previous error (AE_NOT_FOUND) (20210105/psparse-529) In addition the ACPI 6.4 spec says following [1]: If the OS declares support of a feature in the Support Field in one call to _OSC, then it must preserve the set state of that bit (declaring support for that feature) in all subsequent calls. Based on the above we can fix the issue by passing the same set of capabilities to the platform wide _OSC in both calls regardless of the query flag. While there drop the context.ret.length checks which were wrong to begin with (as the length is number of bytes not elements). This is already checked in acpi_run_osc() that also returns an error in that case. Includes fixes by Hans de Goede. [1] https://uefi.org/specs/ACPI/6.4/06_Device_Configuration/Device_Configuration.html#sequence-of-osc-calls BugLink: https://bugzilla.kernel.org/show_bug.cgi?id=213023 BugLink: https://bugzilla.redhat.com/show_bug.cgi?id=1963717 Fixes: 719e1f561afb ("ACPI: Execute platform _OSC also with query bit clear") Cc: 5.12+ <stable@vger.kernel.org> # 5.12+ Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2021-06-09 10:25:33 +00:00
osc_sb_apei_support_acked =
capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_APEI_SUPPORT;
osc_pc_lpi_support_confirmed =
capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_PCLPI_SUPPORT;
osc_sb_native_usb4_support_confirmed =
capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_NATIVE_USB4_SUPPORT;
kfree(context.ret.pointer);
}
/*
* Native control of USB4 capabilities. If any of the tunneling bits is
* set it means OS is in control and we use software based connection
* manager.
*/
u32 osc_sb_native_usb4_control;
EXPORT_SYMBOL_GPL(osc_sb_native_usb4_control);
static void acpi_bus_decode_usb_osc(const char *msg, u32 bits)
{
pr_info("%s USB3%c DisplayPort%c PCIe%c XDomain%c\n", msg,
(bits & OSC_USB_USB3_TUNNELING) ? '+' : '-',
(bits & OSC_USB_DP_TUNNELING) ? '+' : '-',
(bits & OSC_USB_PCIE_TUNNELING) ? '+' : '-',
(bits & OSC_USB_XDOMAIN) ? '+' : '-');
}
static u8 sb_usb_uuid_str[] = "23A0D13A-26AB-486C-9C5F-0FFA525A575A";
static void acpi_bus_osc_negotiate_usb_control(void)
{
u32 capbuf[3];
struct acpi_osc_context context = {
.uuid_str = sb_usb_uuid_str,
.rev = 1,
.cap.length = sizeof(capbuf),
.cap.pointer = capbuf,
};
acpi_handle handle;
acpi_status status;
u32 control;
if (!osc_sb_native_usb4_support_confirmed)
return;
if (ACPI_FAILURE(acpi_get_handle(NULL, "\\_SB", &handle)))
return;
control = OSC_USB_USB3_TUNNELING | OSC_USB_DP_TUNNELING |
OSC_USB_PCIE_TUNNELING | OSC_USB_XDOMAIN;
capbuf[OSC_QUERY_DWORD] = 0;
capbuf[OSC_SUPPORT_DWORD] = 0;
capbuf[OSC_CONTROL_DWORD] = control;
status = acpi_run_osc(handle, &context);
if (ACPI_FAILURE(status))
return;
if (context.ret.length != sizeof(capbuf)) {
pr_info("USB4 _OSC: returned invalid length buffer\n");
goto out_free;
}
osc_sb_native_usb4_control =
control & ((u32 *)context.ret.pointer)[OSC_CONTROL_DWORD];
acpi_bus_decode_usb_osc("USB4 _OSC: OS supports", control);
acpi_bus_decode_usb_osc("USB4 _OSC: OS controls",
osc_sb_native_usb4_control);
out_free:
kfree(context.ret.pointer);
}
/* --------------------------------------------------------------------------
Notification Handling
-------------------------------------------------------------------------- */
/**
* acpi_bus_notify
* ---------------
* Callback for all 'system-level' device notifications (values 0x00-0x7F).
*/
static void acpi_bus_notify(acpi_handle handle, u32 type, void *data)
{
struct acpi_device *adev;
struct acpi_driver *driver;
u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
bool hotplug_event = false;
switch (type) {
case ACPI_NOTIFY_BUS_CHECK:
acpi_handle_debug(handle, "ACPI_NOTIFY_BUS_CHECK event\n");
hotplug_event = true;
break;
case ACPI_NOTIFY_DEVICE_CHECK:
acpi_handle_debug(handle, "ACPI_NOTIFY_DEVICE_CHECK event\n");
hotplug_event = true;
break;
case ACPI_NOTIFY_DEVICE_WAKE:
acpi_handle_debug(handle, "ACPI_NOTIFY_DEVICE_WAKE event\n");
break;
case ACPI_NOTIFY_EJECT_REQUEST:
acpi_handle_debug(handle, "ACPI_NOTIFY_EJECT_REQUEST event\n");
hotplug_event = true;
break;
case ACPI_NOTIFY_DEVICE_CHECK_LIGHT:
acpi_handle_debug(handle, "ACPI_NOTIFY_DEVICE_CHECK_LIGHT event\n");
/* TBD: Exactly what does 'light' mean? */
break;
case ACPI_NOTIFY_FREQUENCY_MISMATCH:
acpi_handle_err(handle, "Device cannot be configured due "
"to a frequency mismatch\n");
break;
case ACPI_NOTIFY_BUS_MODE_MISMATCH:
acpi_handle_err(handle, "Device cannot be configured due "
"to a bus mode mismatch\n");
break;
case ACPI_NOTIFY_POWER_FAULT:
acpi_handle_err(handle, "Device has suffered a power fault\n");
break;
default:
acpi_handle_debug(handle, "Unknown event type 0x%x\n", type);
break;
}
adev = acpi_bus_get_acpi_device(handle);
if (!adev)
goto err;
ACPI / hotplug: Fix potential race in acpi_bus_notify() There is a slight possibility for the ACPI device object pointed to by adev in acpi_hotplug_notify_cb() to become invalid between the acpi_bus_get_device() that it comes from and the subsequent dereference of that pointer under get_device(). Namely, if acpi_scan_drop_device() runs in parallel with acpi_hotplug_notify_cb(), acpi_device_del_work_fn() queued up by it may delete the device object in question right after a successful execution of acpi_bus_get_device() in acpi_bus_notify(). An analogous problem is present in acpi_bus_notify() where the device pointer coming from acpi_bus_get_device() may become invalid before it subsequent dereference in the "if" block. To prevent that from happening, introduce a new function, acpi_bus_get_acpi_device(), working analogously to acpi_bus_get_device() except that it will grab a reference to the ACPI device object returned by it and it will do that under the ACPICA's namespace mutex. Then, make both acpi_hotplug_notify_cb() and acpi_bus_notify() use acpi_bus_get_acpi_device() instead of acpi_bus_get_device() so as to ensure that the pointers used by them will not become stale at one point. In addition to that, introduce acpi_bus_put_acpi_device() as a wrapper around put_device() to be used along with acpi_bus_get_acpi_device() and make the (new) users of the latter use acpi_bus_put_acpi_device() too. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
2014-02-03 23:43:05 +00:00
driver = adev->driver;
if (driver && driver->ops.notify &&
(driver->flags & ACPI_DRIVER_ALL_NOTIFY_EVENTS))
driver->ops.notify(adev, type);
if (!hotplug_event) {
acpi_bus_put_acpi_device(adev);
return;
}
if (ACPI_SUCCESS(acpi_hotplug_schedule(adev, type)))
return;
acpi_bus_put_acpi_device(adev);
err:
acpi_evaluate_ost(handle, type, ost_code, NULL);
}
static void acpi_notify_device(acpi_handle handle, u32 event, void *data)
{
struct acpi_device *device = data;
device->driver->ops.notify(device, event);
}
static void acpi_notify_device_fixed(void *data)
{
struct acpi_device *device = data;
/* Fixed hardware devices have no handles */
acpi_notify_device(NULL, ACPI_FIXED_HARDWARE_EVENT, device);
}
static u32 acpi_device_fixed_event(void *data)
{
acpi_os_execute(OSL_NOTIFY_HANDLER, acpi_notify_device_fixed, data);
return ACPI_INTERRUPT_HANDLED;
}
static int acpi_device_install_notify_handler(struct acpi_device *device)
{
acpi_status status;
if (device->device_type == ACPI_BUS_TYPE_POWER_BUTTON)
status =
acpi_install_fixed_event_handler(ACPI_EVENT_POWER_BUTTON,
acpi_device_fixed_event,
device);
else if (device->device_type == ACPI_BUS_TYPE_SLEEP_BUTTON)
status =
acpi_install_fixed_event_handler(ACPI_EVENT_SLEEP_BUTTON,
acpi_device_fixed_event,
device);
else
status = acpi_install_notify_handler(device->handle,
ACPI_DEVICE_NOTIFY,
acpi_notify_device,
device);
if (ACPI_FAILURE(status))
return -EINVAL;
return 0;
}
static void acpi_device_remove_notify_handler(struct acpi_device *device)
{
if (device->device_type == ACPI_BUS_TYPE_POWER_BUTTON)
acpi_remove_fixed_event_handler(ACPI_EVENT_POWER_BUTTON,
acpi_device_fixed_event);
else if (device->device_type == ACPI_BUS_TYPE_SLEEP_BUTTON)
acpi_remove_fixed_event_handler(ACPI_EVENT_SLEEP_BUTTON,
acpi_device_fixed_event);
else
acpi_remove_notify_handler(device->handle, ACPI_DEVICE_NOTIFY,
acpi_notify_device);
}
/* Handle events targeting \_SB device (at present only graceful shutdown) */
#define ACPI_SB_NOTIFY_SHUTDOWN_REQUEST 0x81
#define ACPI_SB_INDICATE_INTERVAL 10000
static void sb_notify_work(struct work_struct *dummy)
{
acpi_handle sb_handle;
orderly_poweroff(true);
/*
* After initiating graceful shutdown, the ACPI spec requires OSPM
* to evaluate _OST method once every 10seconds to indicate that
* the shutdown is in progress
*/
acpi_get_handle(NULL, "\\_SB", &sb_handle);
while (1) {
pr_info("Graceful shutdown in progress.\n");
acpi_evaluate_ost(sb_handle, ACPI_OST_EC_OSPM_SHUTDOWN,
ACPI_OST_SC_OS_SHUTDOWN_IN_PROGRESS, NULL);
msleep(ACPI_SB_INDICATE_INTERVAL);
}
}
static void acpi_sb_notify(acpi_handle handle, u32 event, void *data)
{
static DECLARE_WORK(acpi_sb_work, sb_notify_work);
if (event == ACPI_SB_NOTIFY_SHUTDOWN_REQUEST) {
if (!work_busy(&acpi_sb_work))
schedule_work(&acpi_sb_work);
} else
pr_warn("event %x is not supported by \\_SB device\n", event);
}
static int __init acpi_setup_sb_notify_handler(void)
{
acpi_handle sb_handle;
if (ACPI_FAILURE(acpi_get_handle(NULL, "\\_SB", &sb_handle)))
return -ENXIO;
if (ACPI_FAILURE(acpi_install_notify_handler(sb_handle, ACPI_DEVICE_NOTIFY,
acpi_sb_notify, NULL)))
return -EINVAL;
return 0;
}
/* --------------------------------------------------------------------------
Device Matching
-------------------------------------------------------------------------- */
/**
* acpi_get_first_physical_node - Get first physical node of an ACPI device
* @adev: ACPI device in question
*
* Return: First physical node of ACPI device @adev
*/
struct device *acpi_get_first_physical_node(struct acpi_device *adev)
{
struct mutex *physical_node_lock = &adev->physical_node_lock;
struct device *phys_dev;
mutex_lock(physical_node_lock);
if (list_empty(&adev->physical_node_list)) {
phys_dev = NULL;
} else {
const struct acpi_device_physical_node *node;
node = list_first_entry(&adev->physical_node_list,
struct acpi_device_physical_node, node);
phys_dev = node->dev;
}
mutex_unlock(physical_node_lock);
return phys_dev;
}
EXPORT_SYMBOL_GPL(acpi_get_first_physical_node);
static struct acpi_device *acpi_primary_dev_companion(struct acpi_device *adev,
const struct device *dev)
{
const struct device *phys_dev = acpi_get_first_physical_node(adev);
return phys_dev && phys_dev == dev ? adev : NULL;
}
/**
* acpi_device_is_first_physical_node - Is given dev first physical node
* @adev: ACPI companion device
* @dev: Physical device to check
*
* Function checks if given @dev is the first physical devices attached to
* the ACPI companion device. This distinction is needed in some cases
* where the same companion device is shared between many physical devices.
*
* Note that the caller have to provide valid @adev pointer.
*/
bool acpi_device_is_first_physical_node(struct acpi_device *adev,
const struct device *dev)
{
return !!acpi_primary_dev_companion(adev, dev);
}
/*
* acpi_companion_match() - Can we match via ACPI companion device
* @dev: Device in question
*
* Check if the given device has an ACPI companion and if that companion has
* a valid list of PNP IDs, and if the device is the first (primary) physical
* device associated with it. Return the companion pointer if that's the case
* or NULL otherwise.
*
* If multiple physical devices are attached to a single ACPI companion, we need
* to be careful. The usage scenario for this kind of relationship is that all
* of the physical devices in question use resources provided by the ACPI
* companion. A typical case is an MFD device where all the sub-devices share
* the parent's ACPI companion. In such cases we can only allow the primary
* (first) physical device to be matched with the help of the companion's PNP
* IDs.
*
* Additional physical devices sharing the ACPI companion can still use
* resources available from it but they will be matched normally using functions
* provided by their bus types (and analogously for their modalias).
*/
struct acpi_device *acpi_companion_match(const struct device *dev)
{
struct acpi_device *adev;
adev = ACPI_COMPANION(dev);
if (!adev)
return NULL;
if (list_empty(&adev->pnp.ids))
return NULL;
return acpi_primary_dev_companion(adev, dev);
}
/**
* acpi_of_match_device - Match device object using the "compatible" property.
* @adev: ACPI device object to match.
* @of_match_table: List of device IDs to match against.
* @of_id: OF ID if matched
*
* If @dev has an ACPI companion which has ACPI_DT_NAMESPACE_HID in its list of
* identifiers and a _DSD object with the "compatible" property, use that
* property to match against the given list of identifiers.
*/
static bool acpi_of_match_device(struct acpi_device *adev,
const struct of_device_id *of_match_table,
const struct of_device_id **of_id)
{
const union acpi_object *of_compatible, *obj;
int i, nval;
if (!adev)
return false;
of_compatible = adev->data.of_compatible;
if (!of_match_table || !of_compatible)
return false;
if (of_compatible->type == ACPI_TYPE_PACKAGE) {
nval = of_compatible->package.count;
obj = of_compatible->package.elements;
} else { /* Must be ACPI_TYPE_STRING. */
nval = 1;
obj = of_compatible;
}
/* Now we can look for the driver DT compatible strings */
for (i = 0; i < nval; i++, obj++) {
const struct of_device_id *id;
for (id = of_match_table; id->compatible[0]; id++)
if (!strcasecmp(obj->string.pointer, id->compatible)) {
if (of_id)
*of_id = id;
return true;
}
}
return false;
}
static bool acpi_of_modalias(struct acpi_device *adev,
char *modalias, size_t len)
{
const union acpi_object *of_compatible;
const union acpi_object *obj;
const char *str, *chr;
of_compatible = adev->data.of_compatible;
if (!of_compatible)
return false;
if (of_compatible->type == ACPI_TYPE_PACKAGE)
obj = of_compatible->package.elements;
else /* Must be ACPI_TYPE_STRING. */
obj = of_compatible;
str = obj->string.pointer;
chr = strchr(str, ',');
strlcpy(modalias, chr ? chr + 1 : str, len);
return true;
}
/**
* acpi_set_modalias - Set modalias using "compatible" property or supplied ID
* @adev: ACPI device object to match
* @default_id: ID string to use as default if no compatible string found
* @modalias: Pointer to buffer that modalias value will be copied into
* @len: Length of modalias buffer
*
* This is a counterpart of of_modalias_node() for struct acpi_device objects.
* If there is a compatible string for @adev, it will be copied to @modalias
* with the vendor prefix stripped; otherwise, @default_id will be used.
*/
void acpi_set_modalias(struct acpi_device *adev, const char *default_id,
char *modalias, size_t len)
{
if (!acpi_of_modalias(adev, modalias, len))
strlcpy(modalias, default_id, len);
}
EXPORT_SYMBOL_GPL(acpi_set_modalias);
static bool __acpi_match_device_cls(const struct acpi_device_id *id,
struct acpi_hardware_id *hwid)
{
int i, msk, byte_shift;
char buf[3];
if (!id->cls)
return false;
/* Apply class-code bitmask, before checking each class-code byte */
for (i = 1; i <= 3; i++) {
byte_shift = 8 * (3 - i);
msk = (id->cls_msk >> byte_shift) & 0xFF;
if (!msk)
continue;
sprintf(buf, "%02x", (id->cls >> byte_shift) & msk);
if (strncmp(buf, &hwid->id[(i - 1) * 2], 2))
return false;
}
return true;
}
static bool __acpi_match_device(struct acpi_device *device,
const struct acpi_device_id *acpi_ids,
const struct of_device_id *of_ids,
const struct acpi_device_id **acpi_id,
const struct of_device_id **of_id)
{
const struct acpi_device_id *id;
struct acpi_hardware_id *hwid;
/*
* If the device is not present, it is unnecessary to load device
* driver for it.
*/
if (!device || !device->status.present)
return false;
list_for_each_entry(hwid, &device->pnp.ids, list) {
/* First, check the ACPI/PNP IDs provided by the caller. */
if (acpi_ids) {
for (id = acpi_ids; id->id[0] || id->cls; id++) {
if (id->id[0] && !strcmp((char *)id->id, hwid->id))
goto out_acpi_match;
if (id->cls && __acpi_match_device_cls(id, hwid))
goto out_acpi_match;
}
}
/*
* Next, check ACPI_DT_NAMESPACE_HID and try to match the
* "compatible" property if found.
*/
if (!strcmp(ACPI_DT_NAMESPACE_HID, hwid->id))
return acpi_of_match_device(device, of_ids, of_id);
}
return false;
out_acpi_match:
if (acpi_id)
*acpi_id = id;
return true;
}
/**
* acpi_match_device - Match a struct device against a given list of ACPI IDs
* @ids: Array of struct acpi_device_id object to match against.
* @dev: The device structure to match.
*
* Check if @dev has a valid ACPI handle and if there is a struct acpi_device
* object for that handle and use that object to match against a given list of
* device IDs.
*
* Return a pointer to the first matching ID on success or %NULL on failure.
*/
const struct acpi_device_id *acpi_match_device(const struct acpi_device_id *ids,
const struct device *dev)
{
const struct acpi_device_id *id = NULL;
__acpi_match_device(acpi_companion_match(dev), ids, NULL, &id, NULL);
return id;
}
EXPORT_SYMBOL_GPL(acpi_match_device);
static const void *acpi_of_device_get_match_data(const struct device *dev)
{
struct acpi_device *adev = ACPI_COMPANION(dev);
const struct of_device_id *match = NULL;
if (!acpi_of_match_device(adev, dev->driver->of_match_table, &match))
return NULL;
return match->data;
}
const void *acpi_device_get_match_data(const struct device *dev)
{
const struct acpi_device_id *match;
if (!dev->driver->acpi_match_table)
return acpi_of_device_get_match_data(dev);
match = acpi_match_device(dev->driver->acpi_match_table, dev);
if (!match)
return NULL;
return (const void *)match->driver_data;
}
EXPORT_SYMBOL_GPL(acpi_device_get_match_data);
int acpi_match_device_ids(struct acpi_device *device,
const struct acpi_device_id *ids)
{
return __acpi_match_device(device, ids, NULL, NULL, NULL) ? 0 : -ENOENT;
}
EXPORT_SYMBOL(acpi_match_device_ids);
bool acpi_driver_match_device(struct device *dev,
const struct device_driver *drv)
{
if (!drv->acpi_match_table)
return acpi_of_match_device(ACPI_COMPANION(dev),
drv->of_match_table,
NULL);
return __acpi_match_device(acpi_companion_match(dev),
drv->acpi_match_table, drv->of_match_table,
NULL, NULL);
}
EXPORT_SYMBOL_GPL(acpi_driver_match_device);
/* --------------------------------------------------------------------------
ACPI Driver Management
-------------------------------------------------------------------------- */
/**
* acpi_bus_register_driver - register a driver with the ACPI bus
* @driver: driver being registered
*
* Registers a driver with the ACPI bus. Searches the namespace for all
* devices that match the driver's criteria and binds. Returns zero for
* success or a negative error status for failure.
*/
int acpi_bus_register_driver(struct acpi_driver *driver)
{
int ret;
if (acpi_disabled)
return -ENODEV;
driver->drv.name = driver->name;
driver->drv.bus = &acpi_bus_type;
driver->drv.owner = driver->owner;
ret = driver_register(&driver->drv);
return ret;
}
EXPORT_SYMBOL(acpi_bus_register_driver);
/**
* acpi_bus_unregister_driver - unregisters a driver with the ACPI bus
* @driver: driver to unregister
*
* Unregisters a driver with the ACPI bus. Searches the namespace for all
* devices that match the driver's criteria and unbinds.
*/
void acpi_bus_unregister_driver(struct acpi_driver *driver)
{
driver_unregister(&driver->drv);
}
EXPORT_SYMBOL(acpi_bus_unregister_driver);
/* --------------------------------------------------------------------------
ACPI Bus operations
-------------------------------------------------------------------------- */
static int acpi_bus_match(struct device *dev, struct device_driver *drv)
{
struct acpi_device *acpi_dev = to_acpi_device(dev);
struct acpi_driver *acpi_drv = to_acpi_driver(drv);
return acpi_dev->flags.match_driver
&& !acpi_match_device_ids(acpi_dev, acpi_drv->ids);
}
static int acpi_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
return __acpi_device_uevent_modalias(to_acpi_device(dev), env);
}
static int acpi_device_probe(struct device *dev)
{
struct acpi_device *acpi_dev = to_acpi_device(dev);
struct acpi_driver *acpi_drv = to_acpi_driver(dev->driver);
int ret;
if (acpi_dev->handler && !acpi_is_pnp_device(acpi_dev))
return -EINVAL;
if (!acpi_drv->ops.add)
return -ENOSYS;
ret = acpi_drv->ops.add(acpi_dev);
if (ret)
return ret;
acpi_dev->driver = acpi_drv;
pr_debug("Driver [%s] successfully bound to device [%s]\n",
acpi_drv->name, acpi_dev->pnp.bus_id);
if (acpi_drv->ops.notify) {
ret = acpi_device_install_notify_handler(acpi_dev);
if (ret) {
if (acpi_drv->ops.remove)
acpi_drv->ops.remove(acpi_dev);
acpi_dev->driver = NULL;
acpi_dev->driver_data = NULL;
return ret;
}
}
pr_debug("Found driver [%s] for device [%s]\n", acpi_drv->name,
acpi_dev->pnp.bus_id);
get_device(dev);
return 0;
}
bus: Make remove callback return void The driver core ignores the return value of this callback because there is only little it can do when a device disappears. This is the final bit of a long lasting cleanup quest where several buses were converted to also return void from their remove callback. Additionally some resource leaks were fixed that were caused by drivers returning an error code in the expectation that the driver won't go away. With struct bus_type::remove returning void it's prevented that newly implemented buses return an ignored error code and so don't anticipate wrong expectations for driver authors. Reviewed-by: Tom Rix <trix@redhat.com> (For fpga) Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Reviewed-by: Cornelia Huck <cohuck@redhat.com> (For drivers/s390 and drivers/vfio) Acked-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> (For ARM, Amba and related parts) Acked-by: Mark Brown <broonie@kernel.org> Acked-by: Chen-Yu Tsai <wens@csie.org> (for sunxi-rsb) Acked-by: Pali Rohár <pali@kernel.org> Acked-by: Mauro Carvalho Chehab <mchehab@kernel.org> (for media) Acked-by: Hans de Goede <hdegoede@redhat.com> (For drivers/platform) Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com> Acked-By: Vinod Koul <vkoul@kernel.org> Acked-by: Juergen Gross <jgross@suse.com> (For xen) Acked-by: Lee Jones <lee.jones@linaro.org> (For mfd) Acked-by: Johannes Thumshirn <jth@kernel.org> (For mcb) Acked-by: Johan Hovold <johan@kernel.org> Acked-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org> (For slimbus) Acked-by: Kirti Wankhede <kwankhede@nvidia.com> (For vfio) Acked-by: Maximilian Luz <luzmaximilian@gmail.com> Acked-by: Heikki Krogerus <heikki.krogerus@linux.intel.com> (For ulpi and typec) Acked-by: Samuel Iglesias Gonsálvez <siglesias@igalia.com> (For ipack) Acked-by: Geoff Levand <geoff@infradead.org> (For ps3) Acked-by: Yehezkel Bernat <YehezkelShB@gmail.com> (For thunderbolt) Acked-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> (For intel_th) Acked-by: Dominik Brodowski <linux@dominikbrodowski.net> (For pcmcia) Acked-by: Rafael J. Wysocki <rafael@kernel.org> (For ACPI) Acked-by: Bjorn Andersson <bjorn.andersson@linaro.org> (rpmsg and apr) Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> (For intel-ish-hid) Acked-by: Dan Williams <dan.j.williams@intel.com> (For CXL, DAX, and NVDIMM) Acked-by: William Breathitt Gray <vilhelm.gray@gmail.com> (For isa) Acked-by: Stefan Richter <stefanr@s5r6.in-berlin.de> (For firewire) Acked-by: Benjamin Tissoires <benjamin.tissoires@redhat.com> (For hid) Acked-by: Thorsten Scherer <t.scherer@eckelmann.de> (For siox) Acked-by: Sven Van Asbroeck <TheSven73@gmail.com> (For anybuss) Acked-by: Ulf Hansson <ulf.hansson@linaro.org> (For MMC) Acked-by: Wolfram Sang <wsa@kernel.org> # for I2C Acked-by: Sudeep Holla <sudeep.holla@arm.com> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Finn Thain <fthain@linux-m68k.org> Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de> Link: https://lore.kernel.org/r/20210713193522.1770306-6-u.kleine-koenig@pengutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-07-13 19:35:22 +00:00
static void acpi_device_remove(struct device *dev)
{
struct acpi_device *acpi_dev = to_acpi_device(dev);
struct acpi_driver *acpi_drv = acpi_dev->driver;
if (acpi_drv) {
if (acpi_drv->ops.notify)
acpi_device_remove_notify_handler(acpi_dev);
if (acpi_drv->ops.remove)
acpi_drv->ops.remove(acpi_dev);
}
acpi_dev->driver = NULL;
acpi_dev->driver_data = NULL;
put_device(dev);
}
struct bus_type acpi_bus_type = {
.name = "acpi",
.match = acpi_bus_match,
.probe = acpi_device_probe,
.remove = acpi_device_remove,
.uevent = acpi_device_uevent,
};
/* --------------------------------------------------------------------------
Initialization/Cleanup
-------------------------------------------------------------------------- */
static int __init acpi_bus_init_irq(void)
{
acpi_status status;
char *message = NULL;
/*
* Let the system know what interrupt model we are using by
* evaluating the \_PIC object, if exists.
*/
switch (acpi_irq_model) {
case ACPI_IRQ_MODEL_PIC:
message = "PIC";
break;
case ACPI_IRQ_MODEL_IOAPIC:
message = "IOAPIC";
break;
case ACPI_IRQ_MODEL_IOSAPIC:
message = "IOSAPIC";
break;
case ACPI_IRQ_MODEL_GIC:
message = "GIC";
break;
case ACPI_IRQ_MODEL_PLATFORM:
message = "platform specific model";
break;
default:
pr_info("Unknown interrupt routing model\n");
return -ENODEV;
}
pr_info("Using %s for interrupt routing\n", message);
status = acpi_execute_simple_method(NULL, "\\_PIC", acpi_irq_model);
if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
pr_info("_PIC evaluation failed: %s\n", acpi_format_exception(status));
return -ENODEV;
}
return 0;
}
ACPI / init: Switch over platform to the ACPI mode later Commit 73f7d1ca3263 "ACPI / init: Run acpi_early_init() before timekeeping_init()" moved the ACPI subsystem initialization, including the ACPI mode enabling, to an earlier point in the initialization sequence, to allow the timekeeping subsystem use ACPI early. Unfortunately, that resulted in boot regressions on some systems and the early ACPI initialization was moved toward its original position in the kernel initialization code by commit c4e1acbb35e4 "ACPI / init: Invoke early ACPI initialization later". However, that turns out to be insufficient, as boot is still broken on the Tyan S8812 mainboard. To fix that issue, split the ACPI early initialization code into two pieces so the majority of it still located in acpi_early_init() and the part switching over the platform into the ACPI mode goes into a new function, acpi_subsystem_init(), executed at the original early ACPI initialization spot. That fixes the Tyan S8812 boot problem, but still allows ACPI tables to be loaded earlier which is useful to the EFI code in efi_enter_virtual_mode(). Link: https://bugzilla.kernel.org/show_bug.cgi?id=97141 Fixes: 73f7d1ca3263 "ACPI / init: Run acpi_early_init() before timekeeping_init()" Reported-and-tested-by: Marius Tolzmann <tolzmann@molgen.mpg.de> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Toshi Kani <toshi.kani@hp.com> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Reviewed-by: Lee, Chun-Yi <jlee@suse.com>
2015-06-09 23:33:36 +00:00
/**
* acpi_early_init - Initialize ACPICA and populate the ACPI namespace.
*
* The ACPI tables are accessible after this, but the handling of events has not
* been initialized and the global lock is not available yet, so AML should not
* be executed at this point.
*
* Doing this before switching the EFI runtime services to virtual mode allows
* the EfiBootServices memory to be freed slightly earlier on boot.
*/
void __init acpi_early_init(void)
{
acpi_status status;
if (acpi_disabled)
return;
pr_info("Core revision %08x\n", ACPI_CA_VERSION);
/* enable workarounds, unless strict ACPI spec. compliance */
if (!acpi_strict)
acpi_gbl_enable_interpreter_slack = TRUE;
acpi_permanent_mmap = true;
#ifdef CONFIG_X86
/*
* If the machine falls into the DMI check table,
* DSDT will be copied to memory.
* Note that calling dmi_check_system() here on other architectures
* would not be OK because only x86 initializes dmi early enough.
* Thankfully only x86 systems need such quirks for now.
*/
dmi_check_system(dsdt_dmi_table);
#endif
status = acpi_reallocate_root_table();
if (ACPI_FAILURE(status)) {
pr_err("Unable to reallocate ACPI tables\n");
goto error0;
}
status = acpi_initialize_subsystem();
if (ACPI_FAILURE(status)) {
pr_err("Unable to initialize the ACPI Interpreter\n");
goto error0;
}
#ifdef CONFIG_X86
if (!acpi_ioapic) {
/* compatible (0) means level (3) */
if (!(acpi_sci_flags & ACPI_MADT_TRIGGER_MASK)) {
acpi_sci_flags &= ~ACPI_MADT_TRIGGER_MASK;
acpi_sci_flags |= ACPI_MADT_TRIGGER_LEVEL;
}
/* Set PIC-mode SCI trigger type */
acpi_pic_sci_set_trigger(acpi_gbl_FADT.sci_interrupt,
(acpi_sci_flags & ACPI_MADT_TRIGGER_MASK) >> 2);
} else {
/*
* now that acpi_gbl_FADT is initialized,
* update it with result from INT_SRC_OVR parsing
*/
acpi_gbl_FADT.sci_interrupt = acpi_sci_override_gsi;
}
#endif
ACPI / init: Switch over platform to the ACPI mode later Commit 73f7d1ca3263 "ACPI / init: Run acpi_early_init() before timekeeping_init()" moved the ACPI subsystem initialization, including the ACPI mode enabling, to an earlier point in the initialization sequence, to allow the timekeeping subsystem use ACPI early. Unfortunately, that resulted in boot regressions on some systems and the early ACPI initialization was moved toward its original position in the kernel initialization code by commit c4e1acbb35e4 "ACPI / init: Invoke early ACPI initialization later". However, that turns out to be insufficient, as boot is still broken on the Tyan S8812 mainboard. To fix that issue, split the ACPI early initialization code into two pieces so the majority of it still located in acpi_early_init() and the part switching over the platform into the ACPI mode goes into a new function, acpi_subsystem_init(), executed at the original early ACPI initialization spot. That fixes the Tyan S8812 boot problem, but still allows ACPI tables to be loaded earlier which is useful to the EFI code in efi_enter_virtual_mode(). Link: https://bugzilla.kernel.org/show_bug.cgi?id=97141 Fixes: 73f7d1ca3263 "ACPI / init: Run acpi_early_init() before timekeeping_init()" Reported-and-tested-by: Marius Tolzmann <tolzmann@molgen.mpg.de> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Toshi Kani <toshi.kani@hp.com> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Reviewed-by: Lee, Chun-Yi <jlee@suse.com>
2015-06-09 23:33:36 +00:00
return;
error0:
disable_acpi();
}
/**
* acpi_subsystem_init - Finalize the early initialization of ACPI.
*
* Switch over the platform to the ACPI mode (if possible).
ACPI / init: Switch over platform to the ACPI mode later Commit 73f7d1ca3263 "ACPI / init: Run acpi_early_init() before timekeeping_init()" moved the ACPI subsystem initialization, including the ACPI mode enabling, to an earlier point in the initialization sequence, to allow the timekeeping subsystem use ACPI early. Unfortunately, that resulted in boot regressions on some systems and the early ACPI initialization was moved toward its original position in the kernel initialization code by commit c4e1acbb35e4 "ACPI / init: Invoke early ACPI initialization later". However, that turns out to be insufficient, as boot is still broken on the Tyan S8812 mainboard. To fix that issue, split the ACPI early initialization code into two pieces so the majority of it still located in acpi_early_init() and the part switching over the platform into the ACPI mode goes into a new function, acpi_subsystem_init(), executed at the original early ACPI initialization spot. That fixes the Tyan S8812 boot problem, but still allows ACPI tables to be loaded earlier which is useful to the EFI code in efi_enter_virtual_mode(). Link: https://bugzilla.kernel.org/show_bug.cgi?id=97141 Fixes: 73f7d1ca3263 "ACPI / init: Run acpi_early_init() before timekeeping_init()" Reported-and-tested-by: Marius Tolzmann <tolzmann@molgen.mpg.de> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Toshi Kani <toshi.kani@hp.com> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Reviewed-by: Lee, Chun-Yi <jlee@suse.com>
2015-06-09 23:33:36 +00:00
*
* Doing this too early is generally unsafe, but at the same time it needs to be
* done before all things that really depend on ACPI. The right spot appears to
* be before finalizing the EFI initialization.
*/
void __init acpi_subsystem_init(void)
{
acpi_status status;
if (acpi_disabled)
return;
status = acpi_enable_subsystem(~ACPI_NO_ACPI_ENABLE);
if (ACPI_FAILURE(status)) {
pr_err("Unable to enable ACPI\n");
ACPI / init: Switch over platform to the ACPI mode later Commit 73f7d1ca3263 "ACPI / init: Run acpi_early_init() before timekeeping_init()" moved the ACPI subsystem initialization, including the ACPI mode enabling, to an earlier point in the initialization sequence, to allow the timekeeping subsystem use ACPI early. Unfortunately, that resulted in boot regressions on some systems and the early ACPI initialization was moved toward its original position in the kernel initialization code by commit c4e1acbb35e4 "ACPI / init: Invoke early ACPI initialization later". However, that turns out to be insufficient, as boot is still broken on the Tyan S8812 mainboard. To fix that issue, split the ACPI early initialization code into two pieces so the majority of it still located in acpi_early_init() and the part switching over the platform into the ACPI mode goes into a new function, acpi_subsystem_init(), executed at the original early ACPI initialization spot. That fixes the Tyan S8812 boot problem, but still allows ACPI tables to be loaded earlier which is useful to the EFI code in efi_enter_virtual_mode(). Link: https://bugzilla.kernel.org/show_bug.cgi?id=97141 Fixes: 73f7d1ca3263 "ACPI / init: Run acpi_early_init() before timekeeping_init()" Reported-and-tested-by: Marius Tolzmann <tolzmann@molgen.mpg.de> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Toshi Kani <toshi.kani@hp.com> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Reviewed-by: Lee, Chun-Yi <jlee@suse.com>
2015-06-09 23:33:36 +00:00
disable_acpi();
} else {
/*
* If the system is using ACPI then we can be reasonably
* confident that any regulators are managed by the firmware
* so tell the regulator core it has everything it needs to
* know.
*/
regulator_has_full_constraints();
}
}
static acpi_status acpi_bus_table_handler(u32 event, void *table, void *context)
{
if (event == ACPI_TABLE_EVENT_LOAD)
acpi_scan_table_notify();
return acpi_sysfs_table_handler(event, table, context);
}
static int __init acpi_bus_init(void)
{
int result;
acpi_status status;
acpi_os_initialize1();
status = acpi_load_tables();
if (ACPI_FAILURE(status)) {
pr_err("Unable to load the System Description Tables\n");
goto error1;
}
ACPI: EC: Look for ECDT EC after calling acpi_load_tables() Some systems have had functional issues since commit 5a8361f7ecce (ACPICA: Integrate package handling with module-level code) that, among other things, changed the initial values of the acpi_gbl_group_module_level_code and acpi_gbl_parse_table_as_term_list global flags in ACPICA which implicitly caused acpi_ec_ecdt_probe() to be called before acpi_load_tables() on the vast majority of platforms. Namely, before commit 5a8361f7ecce, acpi_load_tables() was called from acpi_early_init() if acpi_gbl_parse_table_as_term_list was FALSE and acpi_gbl_group_module_level_code was TRUE, which almost always was the case as FALSE and TRUE were their initial values, respectively. The acpi_gbl_parse_table_as_term_list value would be changed to TRUE for a couple of platforms in acpi_quirks_dmi_table[], but it remained FALSE in the vast majority of cases. After commit 5a8361f7ecce, the initial values of the two flags have been reversed, so in effect acpi_load_tables() has not been called from acpi_early_init() any more. That, in turn, affects acpi_ec_ecdt_probe() which is invoked before acpi_load_tables() now and it is not possible to evaluate the _REG method for the EC address space handler installed by it. That effectively causes the EC address space to be inaccessible to AML on platforms with an ECDT matching the EC device definition in the DSDT and functional problems ensue in there. Because the default behavior before commit 5a8361f7ecce was to call acpi_ec_ecdt_probe() after acpi_load_tables(), it should be safe to do that again. Moreover, the EC address space handler installed by acpi_ec_ecdt_probe() is only needed for AML to be able to access the EC address space and the only AML that can run during acpi_load_tables() is module-level code which only is allowed to access address spaces with default handlers (memory, I/O and PCI config space). For this reason, move the acpi_ec_ecdt_probe() invocation back to acpi_bus_init(), from where it was taken away by commit d737f333b211 (ACPI: probe ECDT before loading AML tables regardless of module-level code flag), and put it after the invocation of acpi_load_tables() to restore the original code ordering from before commit 5a8361f7ecce. Fixes: 5a8361f7ecce ("ACPICA: Integrate package handling with module-level code") Link: https://bugzilla.kernel.org/show_bug.cgi?id=199981 Reported-by: step-ali <sunmooon15@gmail.com> Reported-by: Charles Stanhope <charles.stanhope@gmail.com> Tested-by: Charles Stanhope <charles.stanhope@gmail.com> Reported-by: Paulo Nascimento <paulo.ulusu@googlemail.com> Reported-by: David Purton <dcpurton@marshwiggle.net> Reported-by: Adam Harvey <adam@adamharvey.name> Reported-by: Zhang Rui <rui.zhang@intel.com> Tested-by: Zhang Rui <rui.zhang@intel.com> Tested-by: Jean-Marc Lenoir <archlinux@jihemel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2019-01-08 23:34:37 +00:00
/*
* ACPI 2.0 requires the EC driver to be loaded and work before the EC
* device is found in the namespace.
*
* This is accomplished by looking for the ECDT table and getting the EC
* parameters out of that.
*
* Do that before calling acpi_initialize_objects() which may trigger EC
* address space accesses.
*/
acpi_ec_ecdt_probe();
status = acpi_enable_subsystem(ACPI_NO_ACPI_ENABLE);
if (ACPI_FAILURE(status)) {
pr_err("Unable to start the ACPI Interpreter\n");
goto error1;
}
status = acpi_initialize_objects(ACPI_FULL_INITIALIZATION);
if (ACPI_FAILURE(status)) {
pr_err("Unable to initialize ACPI objects\n");
goto error1;
}
ACPI / processor: Request native thermal interrupt handling via _OSC There are several reports of freeze on enabling HWP (Hardware PStates) feature on Skylake-based systems by the Intel P-states driver. The root cause is identified as the HWP interrupts causing BIOS code to freeze. HWP interrupts use the thermal LVT which can be handled by Linux natively, but on the affected Skylake-based systems SMM will respond to it by default. This is a problem for several reasons: - On the affected systems the SMM thermal LVT handler is broken (it will crash when invoked) and a BIOS update is necessary to fix it. - With thermal interrupt handled in SMM we lose all of the reporting features of the arch/x86/kernel/cpu/mcheck/therm_throt driver. - Some thermal drivers like x86-package-temp depend on the thermal threshold interrupts signaled via the thermal LVT. - The HWP interrupts are useful for debugging and tuning performance (if the kernel can handle them). The native handling of thermal interrupts needs to be enabled because of that. This requires some way to tell SMM that the OS can handle thermal interrupts. That can be done by using _OSC/_PDC in processor scope very early during ACPI initialization. The meaning of _OSC/_PDC bit 12 in processor scope is whether or not the OS supports native handling of interrupts for Collaborative Processor Performance Control (CPPC) notifications. Since on HWP-capable systems CPPC is a firmware interface to HWP, setting this bit effectively tells the firmware that the OS will handle thermal interrupts natively going forward. For details on _OSC/_PDC refer to: http://www.intel.com/content/www/us/en/standards/processor-vendor-specific-acpi-specification.html To implement the _OSC/_PDC handshake as described, introduce a new function, acpi_early_processor_osc(), that walks the ACPI namespace looking for ACPI processor objects and invokes _OSC for them with bit 12 in the capabilities buffer set and terminates the namespace walk on the first success. Also modify intel_thermal_interrupt() to clear HWP status bits in the HWP_STATUS MSR to acknowledge HWP interrupts (which prevents them from firing continuously). Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> [ rjw: Subject & changelog, function rename ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-03-24 04:07:39 +00:00
/* Set capability bits for _OSC under processor scope */
acpi_early_processor_osc();
/*
* _OSC method may exist in module level code,
* so it must be run after ACPI_FULL_INITIALIZATION
*/
acpi_bus_osc_negotiate_platform_control();
acpi_bus_osc_negotiate_usb_control();
/*
* _PDC control method may load dynamic SSDT tables,
* and we need to install the table handler before that.
*/
status = acpi_install_table_handler(acpi_bus_table_handler, NULL);
acpi_sysfs_init();
acpi_early_processor_set_pdc();
ACPI: Enable EC device immediately after ACPI full initialization when there is no ECDT table and no _INI object for EC device, it will be enabled before scanning ACPI device. But it is too late after the following the commit is merged. >commit 7752d5cfe3d11ca0bb9c673ec38bd78ba6578f8e > Author: Robert Hancock <hancockr@shaw.ca> > Date: Fri Feb 15 01:27:20 2008 -0800 >x86: validate against acpi motherboard resources After the above commit is merged, OS will check whether MCFG area is reserved in ACPI motherboard resources by calling the function of acpi_get_devices when there exists MCFG table. In the acpi_get_devices the _STA object will be evaluated to check the status of the ACPI device. On some broken BIOS the MYEC object of EC device is initialized as one, which indicates that EC operation region is already accessible before enabling EC device.So on these broken BIOS the EC operation region will be accessed in course of evaluating the _STA object before enabling EC device, which causes that OS will print the following warning messages: >ACPI Error (evregion-0315): No handler for Region [EC__] (ffff88007f8145e8) [EmbeddedControl] [20080609] >ACPI Error (exfldio-0290): Region EmbeddedControl(3) has no handler [20080321] >ACPI Error (psparse-0530): Method parse/execution failed [\_SB_.PCI0.SBRG. EC__.BAT1._STA] (Node ffff81013fc17a00), AE_NOT_EXIST >ACPI Error (uteval-0233): Method execution failed [\_SB_.PCI0.SBRG.EC__.BAT1. _STA] (Node ffff81013fc17a00), AE_NOT_EXIST Although the above warning message is harmless, it looks confusing. So it is necessary to enable EC device as early as possible.Maybe it is appropriate to enable it immediately after ACPI full initialization. http://bugzilla.kernel.org/show_bug.cgi?id=11255 http://bugzilla.kernel.org/show_bug.cgi?id=11374 http://bugzilla.kernel.org/show_bug.cgi?id=11660 Signed-off-by: Zhao Yakui <yakui.zhao@intel.com> Acked-by: Alexey Starikovskiy <astarikovskiy@suse.de> Signed-off-by: Len Brown <len.brown@intel.com>
2008-10-06 02:31:36 +00:00
/*
* Maybe EC region is required at bus_scan/acpi_get_devices. So it
* is necessary to enable it as early as possible.
*/
acpi_ec_dsdt_probe();
ACPI: Enable EC device immediately after ACPI full initialization when there is no ECDT table and no _INI object for EC device, it will be enabled before scanning ACPI device. But it is too late after the following the commit is merged. >commit 7752d5cfe3d11ca0bb9c673ec38bd78ba6578f8e > Author: Robert Hancock <hancockr@shaw.ca> > Date: Fri Feb 15 01:27:20 2008 -0800 >x86: validate against acpi motherboard resources After the above commit is merged, OS will check whether MCFG area is reserved in ACPI motherboard resources by calling the function of acpi_get_devices when there exists MCFG table. In the acpi_get_devices the _STA object will be evaluated to check the status of the ACPI device. On some broken BIOS the MYEC object of EC device is initialized as one, which indicates that EC operation region is already accessible before enabling EC device.So on these broken BIOS the EC operation region will be accessed in course of evaluating the _STA object before enabling EC device, which causes that OS will print the following warning messages: >ACPI Error (evregion-0315): No handler for Region [EC__] (ffff88007f8145e8) [EmbeddedControl] [20080609] >ACPI Error (exfldio-0290): Region EmbeddedControl(3) has no handler [20080321] >ACPI Error (psparse-0530): Method parse/execution failed [\_SB_.PCI0.SBRG. EC__.BAT1._STA] (Node ffff81013fc17a00), AE_NOT_EXIST >ACPI Error (uteval-0233): Method execution failed [\_SB_.PCI0.SBRG.EC__.BAT1. _STA] (Node ffff81013fc17a00), AE_NOT_EXIST Although the above warning message is harmless, it looks confusing. So it is necessary to enable EC device as early as possible.Maybe it is appropriate to enable it immediately after ACPI full initialization. http://bugzilla.kernel.org/show_bug.cgi?id=11255 http://bugzilla.kernel.org/show_bug.cgi?id=11374 http://bugzilla.kernel.org/show_bug.cgi?id=11660 Signed-off-by: Zhao Yakui <yakui.zhao@intel.com> Acked-by: Alexey Starikovskiy <astarikovskiy@suse.de> Signed-off-by: Len Brown <len.brown@intel.com>
2008-10-06 02:31:36 +00:00
pr_info("Interpreter enabled\n");
/* Initialize sleep structures */
acpi_sleep_init();
/*
* Get the system interrupt model and evaluate \_PIC.
*/
result = acpi_bus_init_irq();
if (result)
goto error1;
/*
* Register the for all standard device notifications.
*/
status =
acpi_install_notify_handler(ACPI_ROOT_OBJECT, ACPI_SYSTEM_NOTIFY,
&acpi_bus_notify, NULL);
if (ACPI_FAILURE(status)) {
pr_err("Unable to register for system notifications\n");
goto error1;
}
/*
* Create the top ACPI proc directory
*/
acpi_root_dir = proc_mkdir(ACPI_BUS_FILE_ROOT, NULL);
result = bus_register(&acpi_bus_type);
if (!result)
return 0;
/* Mimic structured exception handling */
error1:
acpi_terminate();
return -ENODEV;
}
struct kobject *acpi_kobj;
EXPORT_SYMBOL_GPL(acpi_kobj);
static int __init acpi_init(void)
{
int result;
if (acpi_disabled) {
pr_info("Interpreter disabled.\n");
return -ENODEV;
}
acpi_kobj = kobject_create_and_add("acpi", firmware_kobj);
if (!acpi_kobj)
pr_debug("%s: kset create error\n", __func__);
ACPI: PRM: implement OperationRegion handler for the PlatformRtMechanism subtype Platform Runtime Mechanism (PRM) is a firmware interface that exposes a set of binary executables that can either be called from the AML interpreter or device drivers by bypassing the AML interpreter. This change implements the AML interpreter path. According to the specification [1], PRM services are listed in an ACPI table called the PRMT. This patch parses module and handler information listed in the PRMT and registers the PlatformRtMechanism OpRegion handler before ACPI tables are loaded. Each service is defined by a 16-byte GUID and called from writing a 26-byte ASL buffer containing the identifier to a FieldUnit object defined inside a PlatformRtMechanism OperationRegion. OperationRegion (PRMR, PlatformRtMechanism, 0, 26) Field (PRMR, BufferAcc, NoLock, Preserve) { PRMF, 208 // Write to this field to invoke the OperationRegion Handler } The 26-byte ASL buffer is defined as the following: Byte Offset Byte Length Description ============================================================= 0 1 PRM OperationRegion handler status 1 8 PRM service status 9 1 PRM command 10 16 PRM handler GUID The ASL caller fills out a 26-byte buffer containing the PRM command and the PRM handler GUID like so: /* Local0 is the PRM data buffer */ Local0 = buffer (26){} /* Create byte fields over the buffer */ CreateByteField (Local0, 0x9, CMD) CreateField (Local0, 0x50, 0x80, GUID) /* Fill in the command and data fields of the data buffer */ CMD = 0 // run command GUID = ToUUID("xxxx-xx-xxx-xxxx") /* * Invoke PRM service with an ID that matches GUID and save the * result. */ Local0 = (\_SB.PRMT.PRMF = Local0) Byte offset 0 - 8 are written by the handler as a status passed back to AML and used by ASL like so: /* Create byte fields over the buffer */ CreateByteField (Local0, 0x0, PSTA) CreateQWordField (Local0, 0x1, USTA) In this ASL code, PSTA contains a status from the OperationRegion and USTA contains a status from the PRM service. The 26-byte buffer is recieved by acpi_platformrt_space_handler. This handler will look at the command value and the handler guid and take the approperiate actions. Command value Action ===================================================================== 0 Run the PRM service indicated by the PRM handler GUID (bytes 10-26) 1 Prevent PRM runtime updates from happening to the service's parent module 2 Allow PRM updates from happening to the service's parent module This patch enables command value 0. Link: https://uefi.org/sites/default/files/resources/Platform%20Runtime%20Mechanism%20-%20with%20legal%20notice.pdf # [1] Signed-off-by: Erik Kaneda <erik.kaneda@intel.com> [ rjw: Subject and changelog edits ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2021-06-10 03:41:52 +00:00
init_prmt();
result = acpi_bus_init();
if (result) {
kobject_put(acpi_kobj);
disable_acpi();
return result;
}
pci_mmcfg_late_init();
ACPI: I/O Remapping Table (IORT) initial support IORT shows representation of IO topology for ARM based systems. It describes how various components are connected together on parent-child basis e.g. PCI RC -> SMMU -> ITS. Also see IORT spec. http://infocenter.arm.com/help/topic/com.arm.doc.den0049b/DEN0049B_IO_Remapping_Table.pdf Initial support allows to detect IORT table presence and save its root pointer obtained through acpi_get_table(). The pointer validity depends on acpi_gbl_permanent_mmap because if acpi_gbl_permanent_mmap is not set while using IORT nodes we would dereference unmapped pointers. For the aforementioned reason call acpi_iort_init() from acpi_init() which guarantees acpi_gbl_permanent_mmap to be set at that point. Add generic helpers which are helpful for scanning and retrieving information from IORT table content. List of the most important helpers: - iort_find_dev_node() finds IORT node for a given device - iort_node_map_rid() maps device RID and returns IORT node which provides final translation IORT support is placed under drivers/acpi/arm64/ new directory due to its ARM64 specific nature. The code there is considered only for ARM64. The long term plan is to keep all ARM64 specific tables support in this place e.g. GTDT table. Signed-off-by: Tomasz Nowicki <tn@semihalf.com> Acked-by: Rafael J. Wysocki <rjw@rjwysocki.net> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-09-12 18:54:20 +00:00
acpi_iort_init();
acpi_scan_init();
acpi_ec_init();
acpi_debugfs_init();
acpi_sleep_proc_init();
acpi_wakeup_device_init();
acpi_debugger_init();
acpi_setup_sb_notify_handler();
acpi_viot_init();
return 0;
}
subsys_initcall(acpi_init);