linux/arch/arm/plat-omap/include/plat/omap_hwmod.h

589 lines
21 KiB
C
Raw Normal View History

OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
/*
* omap_hwmod macros, structures
*
* Copyright (C) 2009-2010 Nokia Corporation
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
* Paul Walmsley
*
* Created in collaboration with (alphabetical order): Benoît Cousson,
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
* Kevin Hilman, Tony Lindgren, Rajendra Nayak, Vikram Pandita, Sakari
* Poussa, Anand Sawant, Santosh Shilimkar, Richard Woodruff
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* These headers and macros are used to define OMAP on-chip module
* data and their integration with other OMAP modules and Linux.
* Copious documentation and references can also be found in the
* omap_hwmod code, in arch/arm/mach-omap2/omap_hwmod.c (as of this
* writing).
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
*
* To do:
* - add interconnect error log structures
* - add pinmuxing
* - init_conn_id_bit (CONNID_BIT_VECTOR)
* - implement default hwmod SMS/SDRC flags?
* - move Linux-specific data ("non-ROM data") out
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
*
*/
#ifndef __ARCH_ARM_PLAT_OMAP_INCLUDE_MACH_OMAP_HWMOD_H
#define __ARCH_ARM_PLAT_OMAP_INCLUDE_MACH_OMAP_HWMOD_H
#include <linux/kernel.h>
OMAP3: hwmod: support to specify the offset position of various SYSCONFIG register bits. In OMAP3 Some modules like Smartreflex do not have the regular sysconfig register.Instead clockactivity bits are part of another register at a different bit position than the usual bit positions 8 and 9. In OMAP4, a new scheme is available due to the new protocol between the PRCM and the IPs. Depending of the scheme, the SYSCONFIG bitfields position will be different. The IP_REVISION register should be at offset 0x00. It should contain a SCHEME field. From this we can determine whether the IP follows legacy scheme or the new scheme. 31:30 SCHEME Used to distinguish between old scheme and current. Read 0x0: Legacy protocol. Read 0x1: New PRCM protocol defined for new OMAP4 IPs For legacy IP 13:12 MIDLEMODE 11:8 CLOCKACTIVITY 6 EMUSOFT 5 EMUFREE 4:3 SIDLEMODE 2 ENAWAKEUP 1 SOFTRESET 0 AUTOIDLE For new OMAP4 IP's, the bit position in SYSCONFIG is (for simple target): 5:4 STANDBYMODE (Ex MIDLEMODE) 3:2 IDLEMODE (Ex SIDLEMODE) 1 FREEEMU (Ex EMUFREE) 0 SOFTRESET Unfortunately In OMAP4 also some IPs will not follow any of these two schemes. This is the case at least for McASP, SmartReflex and some security IPs. This patch introduces a new field sysc_fields in omap_hwmod_sysconfig which can be used by the hwmod structures to specify the offsets for the sysconfig register of the IP.Also two static structures omap_hwmod_sysc_type1 and omap_hwmod_sysc_type2 are defined which can be used directly to populate the sysc_fields if the IP follows legacy or new OMAP4 scheme. If the IP follows none of these two schemes a new omap_hwmod_sysc_fields structure has to be defined and passed as part of omap_hwmod_sysconfig. Signed-off-by: Thara Gopinath <thara@ti.com> Signed-off-by: Benoit Cousson <b-cousson@ti.com> Signed-off-by: Paul Walmsley <paul@pwsan.com>
2010-02-24 19:05:58 +00:00
#include <linux/list.h>
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
#include <linux/ioport.h>
#include <linux/spinlock.h>
#include <plat/cpu.h>
#include <plat/voltage.h>
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
struct omap_device;
OMAP3: hwmod: support to specify the offset position of various SYSCONFIG register bits. In OMAP3 Some modules like Smartreflex do not have the regular sysconfig register.Instead clockactivity bits are part of another register at a different bit position than the usual bit positions 8 and 9. In OMAP4, a new scheme is available due to the new protocol between the PRCM and the IPs. Depending of the scheme, the SYSCONFIG bitfields position will be different. The IP_REVISION register should be at offset 0x00. It should contain a SCHEME field. From this we can determine whether the IP follows legacy scheme or the new scheme. 31:30 SCHEME Used to distinguish between old scheme and current. Read 0x0: Legacy protocol. Read 0x1: New PRCM protocol defined for new OMAP4 IPs For legacy IP 13:12 MIDLEMODE 11:8 CLOCKACTIVITY 6 EMUSOFT 5 EMUFREE 4:3 SIDLEMODE 2 ENAWAKEUP 1 SOFTRESET 0 AUTOIDLE For new OMAP4 IP's, the bit position in SYSCONFIG is (for simple target): 5:4 STANDBYMODE (Ex MIDLEMODE) 3:2 IDLEMODE (Ex SIDLEMODE) 1 FREEEMU (Ex EMUFREE) 0 SOFTRESET Unfortunately In OMAP4 also some IPs will not follow any of these two schemes. This is the case at least for McASP, SmartReflex and some security IPs. This patch introduces a new field sysc_fields in omap_hwmod_sysconfig which can be used by the hwmod structures to specify the offsets for the sysconfig register of the IP.Also two static structures omap_hwmod_sysc_type1 and omap_hwmod_sysc_type2 are defined which can be used directly to populate the sysc_fields if the IP follows legacy or new OMAP4 scheme. If the IP follows none of these two schemes a new omap_hwmod_sysc_fields structure has to be defined and passed as part of omap_hwmod_sysconfig. Signed-off-by: Thara Gopinath <thara@ti.com> Signed-off-by: Benoit Cousson <b-cousson@ti.com> Signed-off-by: Paul Walmsley <paul@pwsan.com>
2010-02-24 19:05:58 +00:00
extern struct omap_hwmod_sysc_fields omap_hwmod_sysc_type1;
extern struct omap_hwmod_sysc_fields omap_hwmod_sysc_type2;
/*
* OCP SYSCONFIG bit shifts/masks TYPE1. These are for IPs compliant
* with the original PRCM protocol defined for OMAP2420
*/
#define SYSC_TYPE1_MIDLEMODE_SHIFT 12
#define SYSC_TYPE1_MIDLEMODE_MASK (0x3 << SYSC_MIDLEMODE_SHIFT)
#define SYSC_TYPE1_CLOCKACTIVITY_SHIFT 8
#define SYSC_TYPE1_CLOCKACTIVITY_MASK (0x3 << SYSC_CLOCKACTIVITY_SHIFT)
#define SYSC_TYPE1_SIDLEMODE_SHIFT 3
#define SYSC_TYPE1_SIDLEMODE_MASK (0x3 << SYSC_SIDLEMODE_SHIFT)
#define SYSC_TYPE1_ENAWAKEUP_SHIFT 2
#define SYSC_TYPE1_ENAWAKEUP_MASK (1 << SYSC_ENAWAKEUP_SHIFT)
#define SYSC_TYPE1_SOFTRESET_SHIFT 1
#define SYSC_TYPE1_SOFTRESET_MASK (1 << SYSC_SOFTRESET_SHIFT)
#define SYSC_TYPE1_AUTOIDLE_SHIFT 0
#define SYSC_TYPE1_AUTOIDLE_MASK (1 << SYSC_AUTOIDLE_SHIFT)
/*
* OCP SYSCONFIG bit shifts/masks TYPE2. These are for IPs compliant
* with the new PRCM protocol defined for new OMAP4 IPs.
*/
#define SYSC_TYPE2_SOFTRESET_SHIFT 0
#define SYSC_TYPE2_SOFTRESET_MASK (1 << SYSC_TYPE2_SOFTRESET_SHIFT)
#define SYSC_TYPE2_SIDLEMODE_SHIFT 2
#define SYSC_TYPE2_SIDLEMODE_MASK (0x3 << SYSC_TYPE2_SIDLEMODE_SHIFT)
#define SYSC_TYPE2_MIDLEMODE_SHIFT 4
#define SYSC_TYPE2_MIDLEMODE_MASK (0x3 << SYSC_TYPE2_MIDLEMODE_SHIFT)
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
/* OCP SYSSTATUS bit shifts/masks */
#define SYSS_RESETDONE_SHIFT 0
#define SYSS_RESETDONE_MASK (1 << SYSS_RESETDONE_SHIFT)
/* Master standby/slave idle mode flags */
#define HWMOD_IDLEMODE_FORCE (1 << 0)
#define HWMOD_IDLEMODE_NO (1 << 1)
#define HWMOD_IDLEMODE_SMART (1 << 2)
/* Slave idle mode flag only */
#define HWMOD_IDLEMODE_SMART_WKUP (1 << 3)
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
/**
* struct omap_hwmod_irq_info - MPU IRQs used by the hwmod
* @name: name of the IRQ channel (module local name)
* @irq_ch: IRQ channel ID
*
* @name should be something short, e.g., "tx" or "rx". It is for use
* by platform_get_resource_byname(). It is defined locally to the
* hwmod.
*/
struct omap_hwmod_irq_info {
const char *name;
u16 irq;
};
/**
* struct omap_hwmod_dma_info - DMA channels used by the hwmod
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
* @name: name of the DMA channel (module local name)
* @dma_req: DMA request ID
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
*
* @name should be something short, e.g., "tx" or "rx". It is for use
* by platform_get_resource_byname(). It is defined locally to the
* hwmod.
*/
struct omap_hwmod_dma_info {
const char *name;
u16 dma_req;
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
};
OMAP: hwmod: Add hardreset management support Most processor IPs does have a hardreset signal controlled by the PRM. This is different of the softreset used for local IP reset from the SYSCONFIG register. The granularity can be much finer than orginal HWMOD, for ex, the IVA hwmod contains 3 reset lines, the IPU 3 as well, the DSP 2... Since this granularity is needed by the driver, we have to ensure than one hwmod exist for each hardreset line. - Store reset lines as hwmod resources that a driver can query by name like an irq or sdma line. - Add two functions for asserting / deasserting reset lines in hwmods processor that require manual reset control. - Add one functions to get the current reset state. - If an hwmod contains only one line, an automatic assertion / de-assertion is done. -> de-assert the hardreset line only during enable from disable transition -> assert the hardreset line only during shutdown Note: The hwmods with hardreset line and HWMOD_INIT_NO_RESET flag must be kept in INITIALIZED state. They can be properly enabled only if the hardreset line is de-asserted before. For information here is the list of IPs with HW reset control on an OMAP4430 device: RM_DSP_RSTCTRL 1,1,'RST2','RW','1','DSP - MMU, cache and slave interface reset control' 0,0,'RST1','RW','1','DSP - DSP reset control' RM_IVA_RSTCTRL 2,2,'RST3','RW','1','IVA logic and SL2 reset control' 1,1,'RST2','RW','1','IVA Sequencer2 reset control' 0,0,'RST1','RW','1','IVA sequencer1 reset control' RM_IPU_RSTCTRL 2,2,'RST3','RW','1','IPU MMU and CACHE interface reset control.' 1,1,'RST2','RW','1','IPU Cortex M3 CPU2 reset control.' 0,0,'RST1','RW','1','IPU Cortex M3 CPU1 reset control.' PRM_RSTCTRL 1,1,'RST_GLOBAL_COLD_SW','RW','0','Global COLD software reset control.' 0,0,'RST_GLOBAL_WARM_SW','RW','0','Global WARM software reset control.' RM_CPU0_CPU0_RSTCTRL RM_CPU1_CPU1_RSTCTRL 0,0,'RST','RW','0','Cortex A9 CPU0&1 warm local reset control' Signed-off-by: Benoit Cousson <b-cousson@ti.com> [paul@pwsan.com: made the hardreset functions static; moved the register twiddling into prm*.c functions in previous patches; changed the function names to conform with hwmod practice] Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Rajendra Nayak <rnayak@ti.com>
2010-09-21 16:34:11 +00:00
/**
* struct omap_hwmod_rst_info - IPs reset lines use by hwmod
* @name: name of the reset line (module local name)
* @rst_shift: Offset of the reset bit
*
* @name should be something short, e.g., "cpu0" or "rst". It is defined
* locally to the hwmod.
*/
struct omap_hwmod_rst_info {
const char *name;
u8 rst_shift;
};
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
/**
* struct omap_hwmod_opt_clk - optional clocks used by this hwmod
* @role: "sys", "32k", "tv", etc -- for use in clk_get()
* @clk: opt clock: OMAP clock name
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
* @_clk: pointer to the struct clk (filled in at runtime)
*
* The module's interface clock and main functional clock should not
* be added as optional clocks.
*/
struct omap_hwmod_opt_clk {
const char *role;
const char *clk;
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
struct clk *_clk;
};
/* omap_hwmod_omap2_firewall.flags bits */
#define OMAP_FIREWALL_L3 (1 << 0)
#define OMAP_FIREWALL_L4 (1 << 1)
/**
* struct omap_hwmod_omap2_firewall - OMAP2/3 device firewall data
* @l3_perm_bit: bit shift for L3_PM_*_PERMISSION_*
* @l4_fw_region: L4 firewall region ID
* @l4_prot_group: L4 protection group ID
* @flags: (see omap_hwmod_omap2_firewall.flags macros above)
*/
struct omap_hwmod_omap2_firewall {
u8 l3_perm_bit;
u8 l4_fw_region;
u8 l4_prot_group;
u8 flags;
};
/*
* omap_hwmod_addr_space.flags bits
*
* ADDR_MAP_ON_INIT: Map this address space during omap_hwmod init.
* ADDR_TYPE_RT: Address space contains module register target data.
*/
#define ADDR_MAP_ON_INIT (1 << 0) /* XXX does not belong */
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
#define ADDR_TYPE_RT (1 << 1)
/**
* struct omap_hwmod_addr_space - MPU address space handled by the hwmod
* @pa_start: starting physical address
* @pa_end: ending physical address
* @flags: (see omap_hwmod_addr_space.flags macros above)
*
* Address space doesn't necessarily follow physical interconnect
* structure. GPMC is one example.
*/
struct omap_hwmod_addr_space {
u32 pa_start;
u32 pa_end;
u8 flags;
};
/*
* omap_hwmod_ocp_if.user bits: these indicate the initiators that use this
* interface to interact with the hwmod. Used to add sleep dependencies
* when the module is enabled or disabled.
*/
#define OCP_USER_MPU (1 << 0)
#define OCP_USER_SDMA (1 << 1)
/* omap_hwmod_ocp_if.flags bits */
#define OCPIF_SWSUP_IDLE (1 << 0)
#define OCPIF_CAN_BURST (1 << 1)
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
/**
* struct omap_hwmod_ocp_if - OCP interface data
* @master: struct omap_hwmod that initiates OCP transactions on this link
* @slave: struct omap_hwmod that responds to OCP transactions on this link
* @addr: address space associated with this link
* @clk: interface clock: OMAP clock name
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
* @_clk: pointer to the interface struct clk (filled in at runtime)
* @fw: interface firewall data
* @addr_cnt: ARRAY_SIZE(@addr)
* @width: OCP data width
* @user: initiators using this interface (see OCP_USER_* macros above)
* @flags: OCP interface flags (see OCPIF_* macros above)
*
* It may also be useful to add a tag_cnt field for OCP2.x devices.
*
* Parameter names beginning with an underscore are managed internally by
* the omap_hwmod code and should not be set during initialization.
*/
struct omap_hwmod_ocp_if {
struct omap_hwmod *master;
struct omap_hwmod *slave;
struct omap_hwmod_addr_space *addr;
const char *clk;
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
struct clk *_clk;
union {
struct omap_hwmod_omap2_firewall omap2;
} fw;
u8 addr_cnt;
u8 width;
u8 user;
u8 flags;
};
/* Macros for use in struct omap_hwmod_sysconfig */
/* Flags for use in omap_hwmod_sysconfig.idlemodes */
#define MASTER_STANDBY_SHIFT 4
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
#define SLAVE_IDLE_SHIFT 0
#define SIDLE_FORCE (HWMOD_IDLEMODE_FORCE << SLAVE_IDLE_SHIFT)
#define SIDLE_NO (HWMOD_IDLEMODE_NO << SLAVE_IDLE_SHIFT)
#define SIDLE_SMART (HWMOD_IDLEMODE_SMART << SLAVE_IDLE_SHIFT)
#define SIDLE_SMART_WKUP (HWMOD_IDLEMODE_SMART_WKUP << SLAVE_IDLE_SHIFT)
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
#define MSTANDBY_FORCE (HWMOD_IDLEMODE_FORCE << MASTER_STANDBY_SHIFT)
#define MSTANDBY_NO (HWMOD_IDLEMODE_NO << MASTER_STANDBY_SHIFT)
#define MSTANDBY_SMART (HWMOD_IDLEMODE_SMART << MASTER_STANDBY_SHIFT)
/* omap_hwmod_sysconfig.sysc_flags capability flags */
#define SYSC_HAS_AUTOIDLE (1 << 0)
#define SYSC_HAS_SOFTRESET (1 << 1)
#define SYSC_HAS_ENAWAKEUP (1 << 2)
#define SYSC_HAS_EMUFREE (1 << 3)
#define SYSC_HAS_CLOCKACTIVITY (1 << 4)
#define SYSC_HAS_SIDLEMODE (1 << 5)
#define SYSC_HAS_MIDLEMODE (1 << 6)
#define SYSS_HAS_RESET_STATUS (1 << 7)
OMAP3: hwmod: Adding flag to prevent caching of sysconfig register. In the current implementation the sysconfig value is read into _sysc_cache once and an actual update to the sysconfig register happens only if the new value paased is differnt from the one in _sysc_cache. _sysc_cache is updated only if _HWMOD_SYSCONFIG_LOADED is not set. This can lead to the follwing issue if off mode is enabled in modules which employs "always-retore" mechanism of context save and restore. a. The module sets the sysconfig register through omap_device_enable. Here _sysc_cache is updated with the value written to the sysconfig register and left. b. The power domain containig the module enters off mode and the module context is lost. c. The module in use becomes active and calls omap_device_enable to enable itself. Here a read of sysconfig register does not happen as _HWMOD_SYSCONFIG_LOADED flag is set. The value to be written to the sysconfig register will be same as the one written in step a. Since _sysc_cache reflects the previous written value an update of the sysconfig register does not happen. This means in modules which employs "always-restore" mechanism after off , the sysconfig regsiters will never get updated. This patch introduces a flag SYSC_NO_CACHE which if set ensures that the sysconfig register is always read into _sysc_cache before an update is attempted. This flags need to be set only by modules which does not do a context save but re-initializes the registers every time the module is accessed. This includes modules like i2c, smartreflex etc. Signed-off-by: Thara Gopinath <thara@ti.com> [paul@pwsan.com: tweaked to apply on a different head, added flag comment] Signed-off-by: Paul Walmsley <paul@pwsan.com>
2010-01-20 00:30:51 +00:00
#define SYSC_NO_CACHE (1 << 8) /* XXX SW flag, belongs elsewhere */
#define SYSC_HAS_RESET_STATUS (1 << 9)
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
/* omap_hwmod_sysconfig.clockact flags */
#define CLOCKACT_TEST_BOTH 0x0
#define CLOCKACT_TEST_MAIN 0x1
#define CLOCKACT_TEST_ICLK 0x2
#define CLOCKACT_TEST_NONE 0x3
OMAP3: hwmod: support to specify the offset position of various SYSCONFIG register bits. In OMAP3 Some modules like Smartreflex do not have the regular sysconfig register.Instead clockactivity bits are part of another register at a different bit position than the usual bit positions 8 and 9. In OMAP4, a new scheme is available due to the new protocol between the PRCM and the IPs. Depending of the scheme, the SYSCONFIG bitfields position will be different. The IP_REVISION register should be at offset 0x00. It should contain a SCHEME field. From this we can determine whether the IP follows legacy scheme or the new scheme. 31:30 SCHEME Used to distinguish between old scheme and current. Read 0x0: Legacy protocol. Read 0x1: New PRCM protocol defined for new OMAP4 IPs For legacy IP 13:12 MIDLEMODE 11:8 CLOCKACTIVITY 6 EMUSOFT 5 EMUFREE 4:3 SIDLEMODE 2 ENAWAKEUP 1 SOFTRESET 0 AUTOIDLE For new OMAP4 IP's, the bit position in SYSCONFIG is (for simple target): 5:4 STANDBYMODE (Ex MIDLEMODE) 3:2 IDLEMODE (Ex SIDLEMODE) 1 FREEEMU (Ex EMUFREE) 0 SOFTRESET Unfortunately In OMAP4 also some IPs will not follow any of these two schemes. This is the case at least for McASP, SmartReflex and some security IPs. This patch introduces a new field sysc_fields in omap_hwmod_sysconfig which can be used by the hwmod structures to specify the offsets for the sysconfig register of the IP.Also two static structures omap_hwmod_sysc_type1 and omap_hwmod_sysc_type2 are defined which can be used directly to populate the sysc_fields if the IP follows legacy or new OMAP4 scheme. If the IP follows none of these two schemes a new omap_hwmod_sysc_fields structure has to be defined and passed as part of omap_hwmod_sysconfig. Signed-off-by: Thara Gopinath <thara@ti.com> Signed-off-by: Benoit Cousson <b-cousson@ti.com> Signed-off-by: Paul Walmsley <paul@pwsan.com>
2010-02-24 19:05:58 +00:00
/**
* struct omap_hwmod_sysc_fields - hwmod OCP_SYSCONFIG register field offsets.
* @midle_shift: Offset of the midle bit
* @clkact_shift: Offset of the clockactivity bit
* @sidle_shift: Offset of the sidle bit
* @enwkup_shift: Offset of the enawakeup bit
* @srst_shift: Offset of the softreset bit
* @autoidle_shift: Offset of the autoidle bit
OMAP3: hwmod: support to specify the offset position of various SYSCONFIG register bits. In OMAP3 Some modules like Smartreflex do not have the regular sysconfig register.Instead clockactivity bits are part of another register at a different bit position than the usual bit positions 8 and 9. In OMAP4, a new scheme is available due to the new protocol between the PRCM and the IPs. Depending of the scheme, the SYSCONFIG bitfields position will be different. The IP_REVISION register should be at offset 0x00. It should contain a SCHEME field. From this we can determine whether the IP follows legacy scheme or the new scheme. 31:30 SCHEME Used to distinguish between old scheme and current. Read 0x0: Legacy protocol. Read 0x1: New PRCM protocol defined for new OMAP4 IPs For legacy IP 13:12 MIDLEMODE 11:8 CLOCKACTIVITY 6 EMUSOFT 5 EMUFREE 4:3 SIDLEMODE 2 ENAWAKEUP 1 SOFTRESET 0 AUTOIDLE For new OMAP4 IP's, the bit position in SYSCONFIG is (for simple target): 5:4 STANDBYMODE (Ex MIDLEMODE) 3:2 IDLEMODE (Ex SIDLEMODE) 1 FREEEMU (Ex EMUFREE) 0 SOFTRESET Unfortunately In OMAP4 also some IPs will not follow any of these two schemes. This is the case at least for McASP, SmartReflex and some security IPs. This patch introduces a new field sysc_fields in omap_hwmod_sysconfig which can be used by the hwmod structures to specify the offsets for the sysconfig register of the IP.Also two static structures omap_hwmod_sysc_type1 and omap_hwmod_sysc_type2 are defined which can be used directly to populate the sysc_fields if the IP follows legacy or new OMAP4 scheme. If the IP follows none of these two schemes a new omap_hwmod_sysc_fields structure has to be defined and passed as part of omap_hwmod_sysconfig. Signed-off-by: Thara Gopinath <thara@ti.com> Signed-off-by: Benoit Cousson <b-cousson@ti.com> Signed-off-by: Paul Walmsley <paul@pwsan.com>
2010-02-24 19:05:58 +00:00
*/
struct omap_hwmod_sysc_fields {
u8 midle_shift;
u8 clkact_shift;
u8 sidle_shift;
u8 enwkup_shift;
u8 srst_shift;
u8 autoidle_shift;
};
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
/**
* struct omap_hwmod_class_sysconfig - hwmod class OCP_SYS* data
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
* @rev_offs: IP block revision register offset (from module base addr)
* @sysc_offs: OCP_SYSCONFIG register offset (from module base addr)
* @syss_offs: OCP_SYSSTATUS register offset (from module base addr)
* @idlemodes: One or more of {SIDLE,MSTANDBY}_{OFF,FORCE,SMART}
* @sysc_flags: SYS{C,S}_HAS* flags indicating SYSCONFIG bits supported
* @clockact: the default value of the module CLOCKACTIVITY bits
*
* @clockact describes to the module which clocks are likely to be
* disabled when the PRCM issues its idle request to the module. Some
* modules have separate clockdomains for the interface clock and main
* functional clock, and can check whether they should acknowledge the
* idle request based on the internal module functionality that has
* been associated with the clocks marked in @clockact. This field is
* only used if HWMOD_SET_DEFAULT_CLOCKACT is set (see below)
*
OMAP3: hwmod: support to specify the offset position of various SYSCONFIG register bits. In OMAP3 Some modules like Smartreflex do not have the regular sysconfig register.Instead clockactivity bits are part of another register at a different bit position than the usual bit positions 8 and 9. In OMAP4, a new scheme is available due to the new protocol between the PRCM and the IPs. Depending of the scheme, the SYSCONFIG bitfields position will be different. The IP_REVISION register should be at offset 0x00. It should contain a SCHEME field. From this we can determine whether the IP follows legacy scheme or the new scheme. 31:30 SCHEME Used to distinguish between old scheme and current. Read 0x0: Legacy protocol. Read 0x1: New PRCM protocol defined for new OMAP4 IPs For legacy IP 13:12 MIDLEMODE 11:8 CLOCKACTIVITY 6 EMUSOFT 5 EMUFREE 4:3 SIDLEMODE 2 ENAWAKEUP 1 SOFTRESET 0 AUTOIDLE For new OMAP4 IP's, the bit position in SYSCONFIG is (for simple target): 5:4 STANDBYMODE (Ex MIDLEMODE) 3:2 IDLEMODE (Ex SIDLEMODE) 1 FREEEMU (Ex EMUFREE) 0 SOFTRESET Unfortunately In OMAP4 also some IPs will not follow any of these two schemes. This is the case at least for McASP, SmartReflex and some security IPs. This patch introduces a new field sysc_fields in omap_hwmod_sysconfig which can be used by the hwmod structures to specify the offsets for the sysconfig register of the IP.Also two static structures omap_hwmod_sysc_type1 and omap_hwmod_sysc_type2 are defined which can be used directly to populate the sysc_fields if the IP follows legacy or new OMAP4 scheme. If the IP follows none of these two schemes a new omap_hwmod_sysc_fields structure has to be defined and passed as part of omap_hwmod_sysconfig. Signed-off-by: Thara Gopinath <thara@ti.com> Signed-off-by: Benoit Cousson <b-cousson@ti.com> Signed-off-by: Paul Walmsley <paul@pwsan.com>
2010-02-24 19:05:58 +00:00
* @sysc_fields: structure containing the offset positions of various bits in
* SYSCONFIG register. This can be populated using omap_hwmod_sysc_type1 or
* omap_hwmod_sysc_type2 defined in omap_hwmod_common_data.c depending on
* whether the device ip is compliant with the original PRCM protocol
* defined for OMAP2420 or the new PRCM protocol for new OMAP4 IPs.
* If the device follows a different scheme for the sysconfig register ,
OMAP3: hwmod: support to specify the offset position of various SYSCONFIG register bits. In OMAP3 Some modules like Smartreflex do not have the regular sysconfig register.Instead clockactivity bits are part of another register at a different bit position than the usual bit positions 8 and 9. In OMAP4, a new scheme is available due to the new protocol between the PRCM and the IPs. Depending of the scheme, the SYSCONFIG bitfields position will be different. The IP_REVISION register should be at offset 0x00. It should contain a SCHEME field. From this we can determine whether the IP follows legacy scheme or the new scheme. 31:30 SCHEME Used to distinguish between old scheme and current. Read 0x0: Legacy protocol. Read 0x1: New PRCM protocol defined for new OMAP4 IPs For legacy IP 13:12 MIDLEMODE 11:8 CLOCKACTIVITY 6 EMUSOFT 5 EMUFREE 4:3 SIDLEMODE 2 ENAWAKEUP 1 SOFTRESET 0 AUTOIDLE For new OMAP4 IP's, the bit position in SYSCONFIG is (for simple target): 5:4 STANDBYMODE (Ex MIDLEMODE) 3:2 IDLEMODE (Ex SIDLEMODE) 1 FREEEMU (Ex EMUFREE) 0 SOFTRESET Unfortunately In OMAP4 also some IPs will not follow any of these two schemes. This is the case at least for McASP, SmartReflex and some security IPs. This patch introduces a new field sysc_fields in omap_hwmod_sysconfig which can be used by the hwmod structures to specify the offsets for the sysconfig register of the IP.Also two static structures omap_hwmod_sysc_type1 and omap_hwmod_sysc_type2 are defined which can be used directly to populate the sysc_fields if the IP follows legacy or new OMAP4 scheme. If the IP follows none of these two schemes a new omap_hwmod_sysc_fields structure has to be defined and passed as part of omap_hwmod_sysconfig. Signed-off-by: Thara Gopinath <thara@ti.com> Signed-off-by: Benoit Cousson <b-cousson@ti.com> Signed-off-by: Paul Walmsley <paul@pwsan.com>
2010-02-24 19:05:58 +00:00
* then this field has to be populated with the correct offset structure.
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
*/
struct omap_hwmod_class_sysconfig {
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
u16 rev_offs;
u16 sysc_offs;
u16 syss_offs;
u16 sysc_flags;
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
u8 idlemodes;
u8 clockact;
OMAP3: hwmod: support to specify the offset position of various SYSCONFIG register bits. In OMAP3 Some modules like Smartreflex do not have the regular sysconfig register.Instead clockactivity bits are part of another register at a different bit position than the usual bit positions 8 and 9. In OMAP4, a new scheme is available due to the new protocol between the PRCM and the IPs. Depending of the scheme, the SYSCONFIG bitfields position will be different. The IP_REVISION register should be at offset 0x00. It should contain a SCHEME field. From this we can determine whether the IP follows legacy scheme or the new scheme. 31:30 SCHEME Used to distinguish between old scheme and current. Read 0x0: Legacy protocol. Read 0x1: New PRCM protocol defined for new OMAP4 IPs For legacy IP 13:12 MIDLEMODE 11:8 CLOCKACTIVITY 6 EMUSOFT 5 EMUFREE 4:3 SIDLEMODE 2 ENAWAKEUP 1 SOFTRESET 0 AUTOIDLE For new OMAP4 IP's, the bit position in SYSCONFIG is (for simple target): 5:4 STANDBYMODE (Ex MIDLEMODE) 3:2 IDLEMODE (Ex SIDLEMODE) 1 FREEEMU (Ex EMUFREE) 0 SOFTRESET Unfortunately In OMAP4 also some IPs will not follow any of these two schemes. This is the case at least for McASP, SmartReflex and some security IPs. This patch introduces a new field sysc_fields in omap_hwmod_sysconfig which can be used by the hwmod structures to specify the offsets for the sysconfig register of the IP.Also two static structures omap_hwmod_sysc_type1 and omap_hwmod_sysc_type2 are defined which can be used directly to populate the sysc_fields if the IP follows legacy or new OMAP4 scheme. If the IP follows none of these two schemes a new omap_hwmod_sysc_fields structure has to be defined and passed as part of omap_hwmod_sysconfig. Signed-off-by: Thara Gopinath <thara@ti.com> Signed-off-by: Benoit Cousson <b-cousson@ti.com> Signed-off-by: Paul Walmsley <paul@pwsan.com>
2010-02-24 19:05:58 +00:00
struct omap_hwmod_sysc_fields *sysc_fields;
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
};
/**
* struct omap_hwmod_omap2_prcm - OMAP2/3-specific PRCM data
* @module_offs: PRCM submodule offset from the start of the PRM/CM
* @prcm_reg_id: PRCM register ID (e.g., 3 for CM_AUTOIDLE3)
* @module_bit: register bit shift for AUTOIDLE, WKST, WKEN, GRPSEL regs
* @idlest_reg_id: IDLEST register ID (e.g., 3 for CM_IDLEST3)
* @idlest_idle_bit: register bit shift for CM_IDLEST slave idle bit
* @idlest_stdby_bit: register bit shift for CM_IDLEST master standby bit
*
* @prcm_reg_id and @module_bit are specific to the AUTOIDLE, WKST,
* WKEN, GRPSEL registers. In an ideal world, no extra information
* would be needed for IDLEST information, but alas, there are some
* exceptions, so @idlest_reg_id, @idlest_idle_bit, @idlest_stdby_bit
* are needed for the IDLEST registers (c.f. 2430 I2CHS, 3430 USBHOST)
*/
struct omap_hwmod_omap2_prcm {
s16 module_offs;
u8 prcm_reg_id;
u8 module_bit;
u8 idlest_reg_id;
u8 idlest_idle_bit;
u8 idlest_stdby_bit;
};
/**
* struct omap_hwmod_omap4_prcm - OMAP4-specific PRCM data
* @clkctrl_reg: PRCM address of the clock control register
OMAP: hwmod: Add hardreset management support Most processor IPs does have a hardreset signal controlled by the PRM. This is different of the softreset used for local IP reset from the SYSCONFIG register. The granularity can be much finer than orginal HWMOD, for ex, the IVA hwmod contains 3 reset lines, the IPU 3 as well, the DSP 2... Since this granularity is needed by the driver, we have to ensure than one hwmod exist for each hardreset line. - Store reset lines as hwmod resources that a driver can query by name like an irq or sdma line. - Add two functions for asserting / deasserting reset lines in hwmods processor that require manual reset control. - Add one functions to get the current reset state. - If an hwmod contains only one line, an automatic assertion / de-assertion is done. -> de-assert the hardreset line only during enable from disable transition -> assert the hardreset line only during shutdown Note: The hwmods with hardreset line and HWMOD_INIT_NO_RESET flag must be kept in INITIALIZED state. They can be properly enabled only if the hardreset line is de-asserted before. For information here is the list of IPs with HW reset control on an OMAP4430 device: RM_DSP_RSTCTRL 1,1,'RST2','RW','1','DSP - MMU, cache and slave interface reset control' 0,0,'RST1','RW','1','DSP - DSP reset control' RM_IVA_RSTCTRL 2,2,'RST3','RW','1','IVA logic and SL2 reset control' 1,1,'RST2','RW','1','IVA Sequencer2 reset control' 0,0,'RST1','RW','1','IVA sequencer1 reset control' RM_IPU_RSTCTRL 2,2,'RST3','RW','1','IPU MMU and CACHE interface reset control.' 1,1,'RST2','RW','1','IPU Cortex M3 CPU2 reset control.' 0,0,'RST1','RW','1','IPU Cortex M3 CPU1 reset control.' PRM_RSTCTRL 1,1,'RST_GLOBAL_COLD_SW','RW','0','Global COLD software reset control.' 0,0,'RST_GLOBAL_WARM_SW','RW','0','Global WARM software reset control.' RM_CPU0_CPU0_RSTCTRL RM_CPU1_CPU1_RSTCTRL 0,0,'RST','RW','0','Cortex A9 CPU0&1 warm local reset control' Signed-off-by: Benoit Cousson <b-cousson@ti.com> [paul@pwsan.com: made the hardreset functions static; moved the register twiddling into prm*.c functions in previous patches; changed the function names to conform with hwmod practice] Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Rajendra Nayak <rnayak@ti.com>
2010-09-21 16:34:11 +00:00
* @rstctrl_reg: adress of the XXX_RSTCTRL register located in the PRM
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
* @submodule_wkdep_bit: bit shift of the WKDEP range
*/
struct omap_hwmod_omap4_prcm {
void __iomem *clkctrl_reg;
OMAP: hwmod: Add hardreset management support Most processor IPs does have a hardreset signal controlled by the PRM. This is different of the softreset used for local IP reset from the SYSCONFIG register. The granularity can be much finer than orginal HWMOD, for ex, the IVA hwmod contains 3 reset lines, the IPU 3 as well, the DSP 2... Since this granularity is needed by the driver, we have to ensure than one hwmod exist for each hardreset line. - Store reset lines as hwmod resources that a driver can query by name like an irq or sdma line. - Add two functions for asserting / deasserting reset lines in hwmods processor that require manual reset control. - Add one functions to get the current reset state. - If an hwmod contains only one line, an automatic assertion / de-assertion is done. -> de-assert the hardreset line only during enable from disable transition -> assert the hardreset line only during shutdown Note: The hwmods with hardreset line and HWMOD_INIT_NO_RESET flag must be kept in INITIALIZED state. They can be properly enabled only if the hardreset line is de-asserted before. For information here is the list of IPs with HW reset control on an OMAP4430 device: RM_DSP_RSTCTRL 1,1,'RST2','RW','1','DSP - MMU, cache and slave interface reset control' 0,0,'RST1','RW','1','DSP - DSP reset control' RM_IVA_RSTCTRL 2,2,'RST3','RW','1','IVA logic and SL2 reset control' 1,1,'RST2','RW','1','IVA Sequencer2 reset control' 0,0,'RST1','RW','1','IVA sequencer1 reset control' RM_IPU_RSTCTRL 2,2,'RST3','RW','1','IPU MMU and CACHE interface reset control.' 1,1,'RST2','RW','1','IPU Cortex M3 CPU2 reset control.' 0,0,'RST1','RW','1','IPU Cortex M3 CPU1 reset control.' PRM_RSTCTRL 1,1,'RST_GLOBAL_COLD_SW','RW','0','Global COLD software reset control.' 0,0,'RST_GLOBAL_WARM_SW','RW','0','Global WARM software reset control.' RM_CPU0_CPU0_RSTCTRL RM_CPU1_CPU1_RSTCTRL 0,0,'RST','RW','0','Cortex A9 CPU0&1 warm local reset control' Signed-off-by: Benoit Cousson <b-cousson@ti.com> [paul@pwsan.com: made the hardreset functions static; moved the register twiddling into prm*.c functions in previous patches; changed the function names to conform with hwmod practice] Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Rajendra Nayak <rnayak@ti.com>
2010-09-21 16:34:11 +00:00
void __iomem *rstctrl_reg;
u8 submodule_wkdep_bit;
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
};
/*
* omap_hwmod.flags definitions
*
* HWMOD_SWSUP_SIDLE: omap_hwmod code should manually bring module in and out
* of idle, rather than relying on module smart-idle
* HWMOD_SWSUP_MSTDBY: omap_hwmod code should manually bring module in and out
* of standby, rather than relying on module smart-standby
* HWMOD_INIT_NO_RESET: don't reset this module at boot - important for
* SDRAM controller, etc. XXX probably belongs outside the main hwmod file
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
* HWMOD_INIT_NO_IDLE: don't idle this module at boot - important for SDRAM
* controller, etc. XXX probably belongs outside the main hwmod file
* HWMOD_NO_AUTOIDLE: disable module autoidle (OCP_SYSCONFIG.AUTOIDLE)
* when module is enabled, rather than the default, which is to
* enable autoidle
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
* HWMOD_SET_DEFAULT_CLOCKACT: program CLOCKACTIVITY bits at startup
* HWMOD_NO_IDLEST: this module does not have idle status - this is the case
* only for few initiator modules on OMAP2 & 3.
* HWMOD_CONTROL_OPT_CLKS_IN_RESET: Enable all optional clocks during reset.
* This is needed for devices like DSS that require optional clocks enabled
* in order to complete the reset. Optional clocks will be disabled
* again after the reset.
* HWMOD_16BIT_REG: Module has 16bit registers
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
*/
#define HWMOD_SWSUP_SIDLE (1 << 0)
#define HWMOD_SWSUP_MSTANDBY (1 << 1)
#define HWMOD_INIT_NO_RESET (1 << 2)
#define HWMOD_INIT_NO_IDLE (1 << 3)
#define HWMOD_NO_OCP_AUTOIDLE (1 << 4)
#define HWMOD_SET_DEFAULT_CLOCKACT (1 << 5)
#define HWMOD_NO_IDLEST (1 << 6)
#define HWMOD_CONTROL_OPT_CLKS_IN_RESET (1 << 7)
#define HWMOD_16BIT_REG (1 << 8)
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
/*
* omap_hwmod._int_flags definitions
* These are for internal use only and are managed by the omap_hwmod code.
*
* _HWMOD_NO_MPU_PORT: no path exists for the MPU to write to this module
* _HWMOD_WAKEUP_ENABLED: set when the omap_hwmod code has enabled ENAWAKEUP
* _HWMOD_SYSCONFIG_LOADED: set when the OCP_SYSCONFIG value has been cached
*/
#define _HWMOD_NO_MPU_PORT (1 << 0)
#define _HWMOD_WAKEUP_ENABLED (1 << 1)
#define _HWMOD_SYSCONFIG_LOADED (1 << 2)
/*
* omap_hwmod._state definitions
*
* INITIALIZED: reset (optionally), initialized, enabled, disabled
* (optionally)
*
*
*/
#define _HWMOD_STATE_UNKNOWN 0
#define _HWMOD_STATE_REGISTERED 1
#define _HWMOD_STATE_CLKS_INITED 2
#define _HWMOD_STATE_INITIALIZED 3
#define _HWMOD_STATE_ENABLED 4
#define _HWMOD_STATE_IDLE 5
#define _HWMOD_STATE_DISABLED 6
/**
* struct omap_hwmod_class - the type of an IP block
* @name: name of the hwmod_class
* @sysc: device SYSCONFIG/SYSSTATUS register data
* @rev: revision of the IP class
* @pre_shutdown: ptr to fn to be executed immediately prior to device shutdown
* @reset: ptr to fn to be executed in place of the standard hwmod reset fn
*
* Represent the class of a OMAP hardware "modules" (e.g. timer,
* smartreflex, gpio, uart...)
*
* @pre_shutdown is a function that will be run immediately before
* hwmod clocks are disabled, etc. It is intended for use for hwmods
* like the MPU watchdog, which cannot be disabled with the standard
* omap_hwmod_shutdown(). The function should return 0 upon success,
* or some negative error upon failure. Returning an error will cause
* omap_hwmod_shutdown() to abort the device shutdown and return an
* error.
*
* If @reset is defined, then the function it points to will be
* executed in place of the standard hwmod _reset() code in
* mach-omap2/omap_hwmod.c. This is needed for IP blocks which have
* unusual reset sequences - usually processor IP blocks like the IVA.
*/
struct omap_hwmod_class {
const char *name;
struct omap_hwmod_class_sysconfig *sysc;
u32 rev;
int (*pre_shutdown)(struct omap_hwmod *oh);
int (*reset)(struct omap_hwmod *oh);
};
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
/**
* struct omap_hwmod - integration data for OMAP hardware "modules" (IP blocks)
* @name: name of the hwmod
* @class: struct omap_hwmod_class * to the class of this hwmod
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
* @od: struct omap_device currently associated with this hwmod (internal use)
* @mpu_irqs: ptr to an array of MPU IRQs (see also mpu_irqs_cnt)
* @sdma_reqs: ptr to an array of System DMA request IDs (see sdma_reqs_cnt)
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
* @prcm: PRCM data pertaining to this hwmod
* @main_clk: main clock: OMAP clock name
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
* @_clk: pointer to the main struct clk (filled in at runtime)
* @opt_clks: other device clocks that drivers can request (0..*)
* @vdd_name: voltage domain name
* @voltdm: pointer to voltage domain (filled in at runtime)
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
* @masters: ptr to array of OCP ifs that this hwmod can initiate on
* @slaves: ptr to array of OCP ifs that this hwmod can respond on
* @dev_attr: arbitrary device attributes that can be passed to the driver
* @_sysc_cache: internal-use hwmod flags
* @_mpu_rt_va: cached register target start address (internal use)
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
* @_mpu_port_index: cached MPU register target slave ID (internal use)
* @mpu_irqs_cnt: number of @mpu_irqs
* @sdma_reqs_cnt: number of @sdma_reqs
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
* @opt_clks_cnt: number of @opt_clks
* @master_cnt: number of @master entries
* @slaves_cnt: number of @slave entries
* @response_lat: device OCP response latency (in interface clock cycles)
* @_int_flags: internal-use hwmod flags
* @_state: internal-use hwmod state
* @_postsetup_state: internal-use state to leave the hwmod in after _setup()
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
* @flags: hwmod flags (documented below)
* @omap_chip: OMAP chips this hwmod is present on
* @_lock: spinlock serializing operations on this hwmod
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
* @node: list node for hwmod list (internal use)
*
* @main_clk refers to this module's "main clock," which for our
* purposes is defined as "the functional clock needed for register
* accesses to complete." Modules may not have a main clock if the
* interface clock also serves as a main clock.
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
*
* Parameter names beginning with an underscore are managed internally by
* the omap_hwmod code and should not be set during initialization.
*/
struct omap_hwmod {
const char *name;
struct omap_hwmod_class *class;
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
struct omap_device *od;
struct omap_hwmod_irq_info *mpu_irqs;
struct omap_hwmod_dma_info *sdma_reqs;
OMAP: hwmod: Add hardreset management support Most processor IPs does have a hardreset signal controlled by the PRM. This is different of the softreset used for local IP reset from the SYSCONFIG register. The granularity can be much finer than orginal HWMOD, for ex, the IVA hwmod contains 3 reset lines, the IPU 3 as well, the DSP 2... Since this granularity is needed by the driver, we have to ensure than one hwmod exist for each hardreset line. - Store reset lines as hwmod resources that a driver can query by name like an irq or sdma line. - Add two functions for asserting / deasserting reset lines in hwmods processor that require manual reset control. - Add one functions to get the current reset state. - If an hwmod contains only one line, an automatic assertion / de-assertion is done. -> de-assert the hardreset line only during enable from disable transition -> assert the hardreset line only during shutdown Note: The hwmods with hardreset line and HWMOD_INIT_NO_RESET flag must be kept in INITIALIZED state. They can be properly enabled only if the hardreset line is de-asserted before. For information here is the list of IPs with HW reset control on an OMAP4430 device: RM_DSP_RSTCTRL 1,1,'RST2','RW','1','DSP - MMU, cache and slave interface reset control' 0,0,'RST1','RW','1','DSP - DSP reset control' RM_IVA_RSTCTRL 2,2,'RST3','RW','1','IVA logic and SL2 reset control' 1,1,'RST2','RW','1','IVA Sequencer2 reset control' 0,0,'RST1','RW','1','IVA sequencer1 reset control' RM_IPU_RSTCTRL 2,2,'RST3','RW','1','IPU MMU and CACHE interface reset control.' 1,1,'RST2','RW','1','IPU Cortex M3 CPU2 reset control.' 0,0,'RST1','RW','1','IPU Cortex M3 CPU1 reset control.' PRM_RSTCTRL 1,1,'RST_GLOBAL_COLD_SW','RW','0','Global COLD software reset control.' 0,0,'RST_GLOBAL_WARM_SW','RW','0','Global WARM software reset control.' RM_CPU0_CPU0_RSTCTRL RM_CPU1_CPU1_RSTCTRL 0,0,'RST','RW','0','Cortex A9 CPU0&1 warm local reset control' Signed-off-by: Benoit Cousson <b-cousson@ti.com> [paul@pwsan.com: made the hardreset functions static; moved the register twiddling into prm*.c functions in previous patches; changed the function names to conform with hwmod practice] Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Rajendra Nayak <rnayak@ti.com>
2010-09-21 16:34:11 +00:00
struct omap_hwmod_rst_info *rst_lines;
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
union {
struct omap_hwmod_omap2_prcm omap2;
struct omap_hwmod_omap4_prcm omap4;
} prcm;
const char *main_clk;
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
struct clk *_clk;
struct omap_hwmod_opt_clk *opt_clks;
char *vdd_name;
struct voltagedomain *voltdm;
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
struct omap_hwmod_ocp_if **masters; /* connect to *_IA */
struct omap_hwmod_ocp_if **slaves; /* connect to *_TA */
void *dev_attr;
u32 _sysc_cache;
void __iomem *_mpu_rt_va;
spinlock_t _lock;
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
struct list_head node;
u16 flags;
u8 _mpu_port_index;
u8 response_lat;
u8 mpu_irqs_cnt;
u8 sdma_reqs_cnt;
OMAP: hwmod: Add hardreset management support Most processor IPs does have a hardreset signal controlled by the PRM. This is different of the softreset used for local IP reset from the SYSCONFIG register. The granularity can be much finer than orginal HWMOD, for ex, the IVA hwmod contains 3 reset lines, the IPU 3 as well, the DSP 2... Since this granularity is needed by the driver, we have to ensure than one hwmod exist for each hardreset line. - Store reset lines as hwmod resources that a driver can query by name like an irq or sdma line. - Add two functions for asserting / deasserting reset lines in hwmods processor that require manual reset control. - Add one functions to get the current reset state. - If an hwmod contains only one line, an automatic assertion / de-assertion is done. -> de-assert the hardreset line only during enable from disable transition -> assert the hardreset line only during shutdown Note: The hwmods with hardreset line and HWMOD_INIT_NO_RESET flag must be kept in INITIALIZED state. They can be properly enabled only if the hardreset line is de-asserted before. For information here is the list of IPs with HW reset control on an OMAP4430 device: RM_DSP_RSTCTRL 1,1,'RST2','RW','1','DSP - MMU, cache and slave interface reset control' 0,0,'RST1','RW','1','DSP - DSP reset control' RM_IVA_RSTCTRL 2,2,'RST3','RW','1','IVA logic and SL2 reset control' 1,1,'RST2','RW','1','IVA Sequencer2 reset control' 0,0,'RST1','RW','1','IVA sequencer1 reset control' RM_IPU_RSTCTRL 2,2,'RST3','RW','1','IPU MMU and CACHE interface reset control.' 1,1,'RST2','RW','1','IPU Cortex M3 CPU2 reset control.' 0,0,'RST1','RW','1','IPU Cortex M3 CPU1 reset control.' PRM_RSTCTRL 1,1,'RST_GLOBAL_COLD_SW','RW','0','Global COLD software reset control.' 0,0,'RST_GLOBAL_WARM_SW','RW','0','Global WARM software reset control.' RM_CPU0_CPU0_RSTCTRL RM_CPU1_CPU1_RSTCTRL 0,0,'RST','RW','0','Cortex A9 CPU0&1 warm local reset control' Signed-off-by: Benoit Cousson <b-cousson@ti.com> [paul@pwsan.com: made the hardreset functions static; moved the register twiddling into prm*.c functions in previous patches; changed the function names to conform with hwmod practice] Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Rajendra Nayak <rnayak@ti.com>
2010-09-21 16:34:11 +00:00
u8 rst_lines_cnt;
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
u8 opt_clks_cnt;
u8 masters_cnt;
u8 slaves_cnt;
u8 hwmods_cnt;
u8 _int_flags;
u8 _state;
u8 _postsetup_state;
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
const struct omap_chip_id omap_chip;
};
int omap_hwmod_init(struct omap_hwmod **ohs);
struct omap_hwmod *omap_hwmod_lookup(const char *name);
int omap_hwmod_for_each(int (*fn)(struct omap_hwmod *oh, void *data),
void *data);
int omap_hwmod_late_init(void);
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
int omap_hwmod_enable(struct omap_hwmod *oh);
int _omap_hwmod_enable(struct omap_hwmod *oh);
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
int omap_hwmod_idle(struct omap_hwmod *oh);
int _omap_hwmod_idle(struct omap_hwmod *oh);
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
int omap_hwmod_shutdown(struct omap_hwmod *oh);
int omap_hwmod_assert_hardreset(struct omap_hwmod *oh, const char *name);
int omap_hwmod_deassert_hardreset(struct omap_hwmod *oh, const char *name);
int omap_hwmod_read_hardreset(struct omap_hwmod *oh, const char *name);
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
int omap_hwmod_enable_clocks(struct omap_hwmod *oh);
int omap_hwmod_disable_clocks(struct omap_hwmod *oh);
int omap_hwmod_set_slave_idlemode(struct omap_hwmod *oh, u8 idlemode);
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
int omap_hwmod_reset(struct omap_hwmod *oh);
void omap_hwmod_ocp_barrier(struct omap_hwmod *oh);
void omap_hwmod_write(u32 v, struct omap_hwmod *oh, u16 reg_offs);
u32 omap_hwmod_read(struct omap_hwmod *oh, u16 reg_offs);
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
int omap_hwmod_count_resources(struct omap_hwmod *oh);
int omap_hwmod_fill_resources(struct omap_hwmod *oh, struct resource *res);
struct powerdomain *omap_hwmod_get_pwrdm(struct omap_hwmod *oh);
void __iomem *omap_hwmod_get_mpu_rt_va(struct omap_hwmod *oh);
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
int omap_hwmod_add_initiator_dep(struct omap_hwmod *oh,
struct omap_hwmod *init_oh);
int omap_hwmod_del_initiator_dep(struct omap_hwmod *oh,
struct omap_hwmod *init_oh);
int omap_hwmod_set_clockact_both(struct omap_hwmod *oh);
int omap_hwmod_set_clockact_main(struct omap_hwmod *oh);
int omap_hwmod_set_clockact_iclk(struct omap_hwmod *oh);
int omap_hwmod_set_clockact_none(struct omap_hwmod *oh);
int omap_hwmod_enable_wakeup(struct omap_hwmod *oh);
int omap_hwmod_disable_wakeup(struct omap_hwmod *oh);
int omap_hwmod_for_each_by_class(const char *classname,
int (*fn)(struct omap_hwmod *oh,
void *user),
void *user);
int omap_hwmod_set_postsetup_state(struct omap_hwmod *oh, u8 state);
u32 omap_hwmod_get_context_loss_count(struct omap_hwmod *oh);
/*
* Chip variant-specific hwmod init routines - XXX should be converted
* to use initcalls once the initial boot ordering is straightened out
*/
extern int omap2420_hwmod_init(void);
extern int omap2430_hwmod_init(void);
extern int omap3xxx_hwmod_init(void);
extern int omap44xx_hwmod_init(void);
OMAP2/3/4: create omap_hwmod layer OMAP SoCs can be considered a collection of hardware IP blocks connected by various interconnects. The bus topology and device integration data is somewhat more complex than platform_device can encode. This patch creates code and structures to manage information about OMAP on-chip devices ("hardware modules") and their integration to the rest of the chip. Hardware module data is intended to be generated dynamically from the TI hardware database for the OMAP4 chips and beyond, easing Linux support for new chip variants. This code currently: - resets and configures all hardware modules upon startup, reducing bootloader dependencies; - provides hooks for Linux driver model code to enable, idle, and shutdown hardware modules (forthcoming patch); - waits for hardware modules to leave idle once their clocks are enabled and OCP_SYSCONFIG bits are set appropriately. - provides a means to pass arbitrary IP block configuration data (e.g., FIFO size) to the device driver (via the dev_attr void pointer) In the future this code is intended to: - estimate interconnect bandwidth and latency characteristics to ensure constraints are satisfied during DVFS - provide *GRPSEL bit data to the powerdomain code - handle pin/ball muxing for devices - generate IO mapping information dynamically - supply device firewall configuration data - provide hardware module data to other on-chip coprocessor software - allow the removal of the "disable unused clocks" code in the OMAP2/3 clock code This patch represents a collaborative effort involving many people from TI, Nokia, and the Linux-OMAP community. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoit Cousson <b-cousson@ti.com> Cc: Kevin Hilman <khilman@deeprootsystems.com> Cc: Tony Lindgren <tony@atomide.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Vikram Pandita <vikram.pandita@ti.com> Cc: Sakari Poussa <sakari.poussa@nokia.com> Cc: Anand Sawant <sawant@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: Eric Thomas <ethomas@ti.com> Cc: Richard Woodruff <r-woodruff2@ti.com>
2009-09-03 17:14:03 +00:00
#endif