linux/net/vmw_vsock/hyperv_transport.c

987 lines
25 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Hyper-V transport for vsock
*
* Hyper-V Sockets supplies a byte-stream based communication mechanism
* between the host and the VM. This driver implements the necessary
* support in the VM by introducing the new vsock transport.
*
* Copyright (c) 2017, Microsoft Corporation.
*/
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/hyperv.h>
#include <net/sock.h>
#include <net/af_vsock.h>
hv_sock: perf: Allow the socket buffer size options to influence the actual socket buffers Currently, the hv_sock buffer size is static and can't scale to the bandwidth requirements of the application. This change allows the applications to influence the socket buffer sizes using the SO_SNDBUF and the SO_RCVBUF socket options. Few interesting points to note: 1. Since the VMBUS does not allow a resize operation of the ring size, the socket buffer size option should be set prior to establishing the connection for it to take effect. 2. Setting the socket option comes with the cost of that much memory being reserved/allocated by the kernel, for the lifetime of the connection. Perf data: Total Data Transfer: 1GB Single threaded reader/writer Results below are summarized over 10 iterations. Linux hvsocket writer + Windows hvsocket reader: |---------------------------------------------------------------------------------------------| |Packet size -> | 128B | 1KB | 4KB | 64KB | |---------------------------------------------------------------------------------------------| |SO_SNDBUF size | | Throughput in MB/s (min/max/avg/median): | | v | | |---------------------------------------------------------------------------------------------| | Default | 109/118/114/116 | 636/774/701/700 | 435/507/480/476 | 410/491/462/470 | | 16KB | 110/116/112/111 | 575/705/662/671 | 749/900/854/869 | 592/824/692/676 | | 32KB | 108/120/115/115 | 703/823/767/772 | 718/878/850/866 | 1593/2124/2000/2085 | | 64KB | 108/119/114/114 | 592/732/683/688 | 805/934/903/911 | 1784/1943/1862/1843 | |---------------------------------------------------------------------------------------------| Windows hvsocket writer + Linux hvsocket reader: |---------------------------------------------------------------------------------------------| |Packet size -> | 128B | 1KB | 4KB | 64KB | |---------------------------------------------------------------------------------------------| |SO_RCVBUF size | | Throughput in MB/s (min/max/avg/median): | | v | | |---------------------------------------------------------------------------------------------| | Default | 69/82/75/73 | 313/343/333/336 | 418/477/446/445 | 659/701/676/678 | | 16KB | 69/83/76/77 | 350/401/375/382 | 506/548/517/516 | 602/624/615/615 | | 32KB | 62/83/73/73 | 471/529/496/494 | 830/1046/935/939 | 944/1180/1070/1100 | | 64KB | 64/70/68/69 | 467/533/501/497 | 1260/1590/1430/1431 | 1605/1819/1670/1660 | |---------------------------------------------------------------------------------------------| Signed-off-by: Sunil Muthuswamy <sunilmut@microsoft.com> Reviewed-by: Dexuan Cui <decui@microsoft.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-22 22:56:07 +00:00
/* Older (VMBUS version 'VERSION_WIN10' or before) Windows hosts have some
* stricter requirements on the hv_sock ring buffer size of six 4K pages. Newer
* hosts don't have this limitation; but, keep the defaults the same for compat.
*/
#define PAGE_SIZE_4K 4096
#define RINGBUFFER_HVS_RCV_SIZE (PAGE_SIZE_4K * 6)
#define RINGBUFFER_HVS_SND_SIZE (PAGE_SIZE_4K * 6)
hv_sock: perf: Allow the socket buffer size options to influence the actual socket buffers Currently, the hv_sock buffer size is static and can't scale to the bandwidth requirements of the application. This change allows the applications to influence the socket buffer sizes using the SO_SNDBUF and the SO_RCVBUF socket options. Few interesting points to note: 1. Since the VMBUS does not allow a resize operation of the ring size, the socket buffer size option should be set prior to establishing the connection for it to take effect. 2. Setting the socket option comes with the cost of that much memory being reserved/allocated by the kernel, for the lifetime of the connection. Perf data: Total Data Transfer: 1GB Single threaded reader/writer Results below are summarized over 10 iterations. Linux hvsocket writer + Windows hvsocket reader: |---------------------------------------------------------------------------------------------| |Packet size -> | 128B | 1KB | 4KB | 64KB | |---------------------------------------------------------------------------------------------| |SO_SNDBUF size | | Throughput in MB/s (min/max/avg/median): | | v | | |---------------------------------------------------------------------------------------------| | Default | 109/118/114/116 | 636/774/701/700 | 435/507/480/476 | 410/491/462/470 | | 16KB | 110/116/112/111 | 575/705/662/671 | 749/900/854/869 | 592/824/692/676 | | 32KB | 108/120/115/115 | 703/823/767/772 | 718/878/850/866 | 1593/2124/2000/2085 | | 64KB | 108/119/114/114 | 592/732/683/688 | 805/934/903/911 | 1784/1943/1862/1843 | |---------------------------------------------------------------------------------------------| Windows hvsocket writer + Linux hvsocket reader: |---------------------------------------------------------------------------------------------| |Packet size -> | 128B | 1KB | 4KB | 64KB | |---------------------------------------------------------------------------------------------| |SO_RCVBUF size | | Throughput in MB/s (min/max/avg/median): | | v | | |---------------------------------------------------------------------------------------------| | Default | 69/82/75/73 | 313/343/333/336 | 418/477/446/445 | 659/701/676/678 | | 16KB | 69/83/76/77 | 350/401/375/382 | 506/548/517/516 | 602/624/615/615 | | 32KB | 62/83/73/73 | 471/529/496/494 | 830/1046/935/939 | 944/1180/1070/1100 | | 64KB | 64/70/68/69 | 467/533/501/497 | 1260/1590/1430/1431 | 1605/1819/1670/1660 | |---------------------------------------------------------------------------------------------| Signed-off-by: Sunil Muthuswamy <sunilmut@microsoft.com> Reviewed-by: Dexuan Cui <decui@microsoft.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-22 22:56:07 +00:00
#define RINGBUFFER_HVS_MAX_SIZE (PAGE_SIZE_4K * 64)
/* The MTU is 16KB per the host side's design */
#define HVS_MTU_SIZE (1024 * 16)
/* How long to wait for graceful shutdown of a connection */
#define HVS_CLOSE_TIMEOUT (8 * HZ)
struct vmpipe_proto_header {
u32 pkt_type;
u32 data_size;
};
/* For recv, we use the VMBus in-place packet iterator APIs to directly copy
* data from the ringbuffer into the userspace buffer.
*/
struct hvs_recv_buf {
/* The header before the payload data */
struct vmpipe_proto_header hdr;
/* The payload */
u8 data[HVS_MTU_SIZE];
};
/* We can send up to HVS_MTU_SIZE bytes of payload to the host, but let's use
hv_sock: perf: loop in send() to maximize bandwidth Currently, the hv_sock send() iterates once over the buffer, puts data into the VMBUS channel and returns. It doesn't maximize on the case when there is a simultaneous reader draining data from the channel. In such a case, the send() can maximize the bandwidth (and consequently minimize the cpu cycles) by iterating until the channel is found to be full. Perf data: Total Data Transfer: 10GB/iteration Single threaded reader/writer, Linux hvsocket writer with Windows hvsocket reader Packet size: 64KB CPU sys time was captured using the 'time' command for the writer to send 10GB of data. 'Send Buffer Loop' is with the patch applied. The values below are over 10 iterations. |--------------------------------------------------------| | | Current | Send Buffer Loop | |--------------------------------------------------------| | | Throughput | CPU sys | Throughput | CPU sys | | | (MB/s) | time (s) | (MB/s) | time (s) | |--------------------------------------------------------| | Min | 407 | 7.048 | 401 | 5.958 | |--------------------------------------------------------| | Max | 455 | 7.563 | 542 | 6.993 | |--------------------------------------------------------| | Avg | 440 | 7.411 | 451 | 6.639 | |--------------------------------------------------------| | Median | 446 | 7.417 | 447 | 6.761 | |--------------------------------------------------------| Observation: 1. The avg throughput doesn't really change much with this change for this scenario. This is most probably because the bottleneck on throughput is somewhere else. 2. The average system (or kernel) cpu time goes down by 10%+ with this change, for the same amount of data transfer. Signed-off-by: Sunil Muthuswamy <sunilmut@microsoft.com> Reviewed-by: Dexuan Cui <decui@microsoft.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-22 23:10:44 +00:00
* a smaller size, i.e. HVS_SEND_BUF_SIZE, to maximize concurrency between the
* guest and the host processing as one VMBUS packet is the smallest processing
* unit.
*
* Note: the buffer can be eliminated in the future when we add new VMBus
* ringbuffer APIs that allow us to directly copy data from userspace buffer
* to VMBus ringbuffer.
*/
#define HVS_SEND_BUF_SIZE (PAGE_SIZE_4K - sizeof(struct vmpipe_proto_header))
struct hvs_send_buf {
/* The header before the payload data */
struct vmpipe_proto_header hdr;
/* The payload */
u8 data[HVS_SEND_BUF_SIZE];
};
#define HVS_HEADER_LEN (sizeof(struct vmpacket_descriptor) + \
sizeof(struct vmpipe_proto_header))
/* See 'prev_indices' in hv_ringbuffer_read(), hv_ringbuffer_write(), and
* __hv_pkt_iter_next().
*/
#define VMBUS_PKT_TRAILER_SIZE (sizeof(u64))
#define HVS_PKT_LEN(payload_len) (HVS_HEADER_LEN + \
ALIGN((payload_len), 8) + \
VMBUS_PKT_TRAILER_SIZE)
union hvs_service_id {
guid_t srv_id;
struct {
unsigned int svm_port;
unsigned char b[sizeof(guid_t) - sizeof(unsigned int)];
};
};
/* Per-socket state (accessed via vsk->trans) */
struct hvsock {
struct vsock_sock *vsk;
guid_t vm_srv_id;
guid_t host_srv_id;
struct vmbus_channel *chan;
struct vmpacket_descriptor *recv_desc;
/* The length of the payload not delivered to userland yet */
u32 recv_data_len;
/* The offset of the payload */
u32 recv_data_off;
/* Have we sent the zero-length packet (FIN)? */
bool fin_sent;
};
/* In the VM, we support Hyper-V Sockets with AF_VSOCK, and the endpoint is
* <cid, port> (see struct sockaddr_vm). Note: cid is not really used here:
* when we write apps to connect to the host, we can only use VMADDR_CID_ANY
* or VMADDR_CID_HOST (both are equivalent) as the remote cid, and when we
* write apps to bind() & listen() in the VM, we can only use VMADDR_CID_ANY
* as the local cid.
*
* On the host, Hyper-V Sockets are supported by Winsock AF_HYPERV:
* https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-
* guide/make-integration-service, and the endpoint is <VmID, ServiceId> with
* the below sockaddr:
*
* struct SOCKADDR_HV
* {
* ADDRESS_FAMILY Family;
* USHORT Reserved;
* GUID VmId;
* GUID ServiceId;
* };
* Note: VmID is not used by Linux VM and actually it isn't transmitted via
* VMBus, because here it's obvious the host and the VM can easily identify
* each other. Though the VmID is useful on the host, especially in the case
* of Windows container, Linux VM doesn't need it at all.
*
* To make use of the AF_VSOCK infrastructure in Linux VM, we have to limit
* the available GUID space of SOCKADDR_HV so that we can create a mapping
* between AF_VSOCK port and SOCKADDR_HV Service GUID. The rule of writing
* Hyper-V Sockets apps on the host and in Linux VM is:
*
****************************************************************************
* The only valid Service GUIDs, from the perspectives of both the host and *
* Linux VM, that can be connected by the other end, must conform to this *
* format: <port>-facb-11e6-bd58-64006a7986d3, and the "port" must be in *
* this range [0, 0x7FFFFFFF]. *
****************************************************************************
*
* When we write apps on the host to connect(), the GUID ServiceID is used.
* When we write apps in Linux VM to connect(), we only need to specify the
* port and the driver will form the GUID and use that to request the host.
*
* From the perspective of Linux VM:
* 1. the local ephemeral port (i.e. the local auto-bound port when we call
* connect() without explicit bind()) is generated by __vsock_bind_stream(),
* and the range is [1024, 0xFFFFFFFF).
* 2. the remote ephemeral port (i.e. the auto-generated remote port for
* a connect request initiated by the host's connect()) is generated by
* hvs_remote_addr_init() and the range is [0x80000000, 0xFFFFFFFF).
*/
#define MAX_LISTEN_PORT ((u32)0x7FFFFFFF)
#define MAX_VM_LISTEN_PORT MAX_LISTEN_PORT
#define MAX_HOST_LISTEN_PORT MAX_LISTEN_PORT
#define MIN_HOST_EPHEMERAL_PORT (MAX_HOST_LISTEN_PORT + 1)
/* 00000000-facb-11e6-bd58-64006a7986d3 */
static const guid_t srv_id_template =
GUID_INIT(0x00000000, 0xfacb, 0x11e6, 0xbd, 0x58,
0x64, 0x00, 0x6a, 0x79, 0x86, 0xd3);
static bool is_valid_srv_id(const guid_t *id)
{
return !memcmp(&id->b[4], &srv_id_template.b[4], sizeof(guid_t) - 4);
}
static unsigned int get_port_by_srv_id(const guid_t *svr_id)
{
return *((unsigned int *)svr_id);
}
static void hvs_addr_init(struct sockaddr_vm *addr, const guid_t *svr_id)
{
unsigned int port = get_port_by_srv_id(svr_id);
vsock_addr_init(addr, VMADDR_CID_ANY, port);
}
static void hvs_remote_addr_init(struct sockaddr_vm *remote,
struct sockaddr_vm *local)
{
static u32 host_ephemeral_port = MIN_HOST_EPHEMERAL_PORT;
struct sock *sk;
vsock_addr_init(remote, VMADDR_CID_ANY, VMADDR_PORT_ANY);
while (1) {
/* Wrap around ? */
if (host_ephemeral_port < MIN_HOST_EPHEMERAL_PORT ||
host_ephemeral_port == VMADDR_PORT_ANY)
host_ephemeral_port = MIN_HOST_EPHEMERAL_PORT;
remote->svm_port = host_ephemeral_port++;
sk = vsock_find_connected_socket(remote, local);
if (!sk) {
/* Found an available ephemeral port */
return;
}
/* Release refcnt got in vsock_find_connected_socket */
sock_put(sk);
}
}
static void hvs_set_channel_pending_send_size(struct vmbus_channel *chan)
{
set_channel_pending_send_size(chan,
HVS_PKT_LEN(HVS_SEND_BUF_SIZE));
virt_mb();
}
static bool hvs_channel_readable(struct vmbus_channel *chan)
{
u32 readable = hv_get_bytes_to_read(&chan->inbound);
/* 0-size payload means FIN */
return readable >= HVS_PKT_LEN(0);
}
static int hvs_channel_readable_payload(struct vmbus_channel *chan)
{
u32 readable = hv_get_bytes_to_read(&chan->inbound);
if (readable > HVS_PKT_LEN(0)) {
/* At least we have 1 byte to read. We don't need to return
* the exact readable bytes: see vsock_stream_recvmsg() ->
* vsock_stream_has_data().
*/
return 1;
}
if (readable == HVS_PKT_LEN(0)) {
/* 0-size payload means FIN */
return 0;
}
/* No payload or FIN */
return -1;
}
static size_t hvs_channel_writable_bytes(struct vmbus_channel *chan)
{
u32 writeable = hv_get_bytes_to_write(&chan->outbound);
size_t ret;
/* The ringbuffer mustn't be 100% full, and we should reserve a
* zero-length-payload packet for the FIN: see hv_ringbuffer_write()
* and hvs_shutdown().
*/
if (writeable <= HVS_PKT_LEN(1) + HVS_PKT_LEN(0))
return 0;
ret = writeable - HVS_PKT_LEN(1) - HVS_PKT_LEN(0);
return round_down(ret, 8);
}
static int hvs_send_data(struct vmbus_channel *chan,
struct hvs_send_buf *send_buf, size_t to_write)
{
send_buf->hdr.pkt_type = 1;
send_buf->hdr.data_size = to_write;
return vmbus_sendpacket(chan, &send_buf->hdr,
sizeof(send_buf->hdr) + to_write,
0, VM_PKT_DATA_INBAND, 0);
}
static void hvs_channel_cb(void *ctx)
{
struct sock *sk = (struct sock *)ctx;
struct vsock_sock *vsk = vsock_sk(sk);
struct hvsock *hvs = vsk->trans;
struct vmbus_channel *chan = hvs->chan;
if (hvs_channel_readable(chan))
sk->sk_data_ready(sk);
if (hv_get_bytes_to_write(&chan->outbound) > 0)
sk->sk_write_space(sk);
}
static void hvs_do_close_lock_held(struct vsock_sock *vsk,
bool cancel_timeout)
{
struct sock *sk = sk_vsock(vsk);
sock_set_flag(sk, SOCK_DONE);
vsk->peer_shutdown = SHUTDOWN_MASK;
if (vsock_stream_has_data(vsk) <= 0)
sk->sk_state = TCP_CLOSING;
sk->sk_state_change(sk);
if (vsk->close_work_scheduled &&
(!cancel_timeout || cancel_delayed_work(&vsk->close_work))) {
vsk->close_work_scheduled = false;
vsock_remove_sock(vsk);
/* Release the reference taken while scheduling the timeout */
sock_put(sk);
}
}
static void hvs_close_connection(struct vmbus_channel *chan)
{
struct sock *sk = get_per_channel_state(chan);
lock_sock(sk);
hvs_do_close_lock_held(vsock_sk(sk), true);
release_sock(sk);
/* Release the refcnt for the channel that's opened in
* hvs_open_connection().
*/
sock_put(sk);
}
static void hvs_open_connection(struct vmbus_channel *chan)
{
guid_t *if_instance, *if_type;
unsigned char conn_from_host;
struct sockaddr_vm addr;
struct sock *sk, *new = NULL;
hv_sock: perf: Allow the socket buffer size options to influence the actual socket buffers Currently, the hv_sock buffer size is static and can't scale to the bandwidth requirements of the application. This change allows the applications to influence the socket buffer sizes using the SO_SNDBUF and the SO_RCVBUF socket options. Few interesting points to note: 1. Since the VMBUS does not allow a resize operation of the ring size, the socket buffer size option should be set prior to establishing the connection for it to take effect. 2. Setting the socket option comes with the cost of that much memory being reserved/allocated by the kernel, for the lifetime of the connection. Perf data: Total Data Transfer: 1GB Single threaded reader/writer Results below are summarized over 10 iterations. Linux hvsocket writer + Windows hvsocket reader: |---------------------------------------------------------------------------------------------| |Packet size -> | 128B | 1KB | 4KB | 64KB | |---------------------------------------------------------------------------------------------| |SO_SNDBUF size | | Throughput in MB/s (min/max/avg/median): | | v | | |---------------------------------------------------------------------------------------------| | Default | 109/118/114/116 | 636/774/701/700 | 435/507/480/476 | 410/491/462/470 | | 16KB | 110/116/112/111 | 575/705/662/671 | 749/900/854/869 | 592/824/692/676 | | 32KB | 108/120/115/115 | 703/823/767/772 | 718/878/850/866 | 1593/2124/2000/2085 | | 64KB | 108/119/114/114 | 592/732/683/688 | 805/934/903/911 | 1784/1943/1862/1843 | |---------------------------------------------------------------------------------------------| Windows hvsocket writer + Linux hvsocket reader: |---------------------------------------------------------------------------------------------| |Packet size -> | 128B | 1KB | 4KB | 64KB | |---------------------------------------------------------------------------------------------| |SO_RCVBUF size | | Throughput in MB/s (min/max/avg/median): | | v | | |---------------------------------------------------------------------------------------------| | Default | 69/82/75/73 | 313/343/333/336 | 418/477/446/445 | 659/701/676/678 | | 16KB | 69/83/76/77 | 350/401/375/382 | 506/548/517/516 | 602/624/615/615 | | 32KB | 62/83/73/73 | 471/529/496/494 | 830/1046/935/939 | 944/1180/1070/1100 | | 64KB | 64/70/68/69 | 467/533/501/497 | 1260/1590/1430/1431 | 1605/1819/1670/1660 | |---------------------------------------------------------------------------------------------| Signed-off-by: Sunil Muthuswamy <sunilmut@microsoft.com> Reviewed-by: Dexuan Cui <decui@microsoft.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-22 22:56:07 +00:00
struct vsock_sock *vnew = NULL;
struct hvsock *hvs = NULL;
struct hvsock *hvs_new = NULL;
int rcvbuf;
int ret;
hv_sock: perf: Allow the socket buffer size options to influence the actual socket buffers Currently, the hv_sock buffer size is static and can't scale to the bandwidth requirements of the application. This change allows the applications to influence the socket buffer sizes using the SO_SNDBUF and the SO_RCVBUF socket options. Few interesting points to note: 1. Since the VMBUS does not allow a resize operation of the ring size, the socket buffer size option should be set prior to establishing the connection for it to take effect. 2. Setting the socket option comes with the cost of that much memory being reserved/allocated by the kernel, for the lifetime of the connection. Perf data: Total Data Transfer: 1GB Single threaded reader/writer Results below are summarized over 10 iterations. Linux hvsocket writer + Windows hvsocket reader: |---------------------------------------------------------------------------------------------| |Packet size -> | 128B | 1KB | 4KB | 64KB | |---------------------------------------------------------------------------------------------| |SO_SNDBUF size | | Throughput in MB/s (min/max/avg/median): | | v | | |---------------------------------------------------------------------------------------------| | Default | 109/118/114/116 | 636/774/701/700 | 435/507/480/476 | 410/491/462/470 | | 16KB | 110/116/112/111 | 575/705/662/671 | 749/900/854/869 | 592/824/692/676 | | 32KB | 108/120/115/115 | 703/823/767/772 | 718/878/850/866 | 1593/2124/2000/2085 | | 64KB | 108/119/114/114 | 592/732/683/688 | 805/934/903/911 | 1784/1943/1862/1843 | |---------------------------------------------------------------------------------------------| Windows hvsocket writer + Linux hvsocket reader: |---------------------------------------------------------------------------------------------| |Packet size -> | 128B | 1KB | 4KB | 64KB | |---------------------------------------------------------------------------------------------| |SO_RCVBUF size | | Throughput in MB/s (min/max/avg/median): | | v | | |---------------------------------------------------------------------------------------------| | Default | 69/82/75/73 | 313/343/333/336 | 418/477/446/445 | 659/701/676/678 | | 16KB | 69/83/76/77 | 350/401/375/382 | 506/548/517/516 | 602/624/615/615 | | 32KB | 62/83/73/73 | 471/529/496/494 | 830/1046/935/939 | 944/1180/1070/1100 | | 64KB | 64/70/68/69 | 467/533/501/497 | 1260/1590/1430/1431 | 1605/1819/1670/1660 | |---------------------------------------------------------------------------------------------| Signed-off-by: Sunil Muthuswamy <sunilmut@microsoft.com> Reviewed-by: Dexuan Cui <decui@microsoft.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-22 22:56:07 +00:00
int sndbuf;
if_type = &chan->offermsg.offer.if_type;
if_instance = &chan->offermsg.offer.if_instance;
conn_from_host = chan->offermsg.offer.u.pipe.user_def[0];
/* The host or the VM should only listen on a port in
* [0, MAX_LISTEN_PORT]
*/
if (!is_valid_srv_id(if_type) ||
get_port_by_srv_id(if_type) > MAX_LISTEN_PORT)
return;
hvs_addr_init(&addr, conn_from_host ? if_type : if_instance);
sk = vsock_find_bound_socket(&addr);
if (!sk)
return;
lock_sock(sk);
if ((conn_from_host && sk->sk_state != TCP_LISTEN) ||
(!conn_from_host && sk->sk_state != TCP_SYN_SENT))
goto out;
if (conn_from_host) {
if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog)
goto out;
new = __vsock_create(sock_net(sk), NULL, sk, GFP_KERNEL,
sk->sk_type, 0);
if (!new)
goto out;
new->sk_state = TCP_SYN_SENT;
vnew = vsock_sk(new);
hvs_new = vnew->trans;
hvs_new->chan = chan;
} else {
hvs = vsock_sk(sk)->trans;
hvs->chan = chan;
}
set_channel_read_mode(chan, HV_CALL_DIRECT);
hv_sock: perf: Allow the socket buffer size options to influence the actual socket buffers Currently, the hv_sock buffer size is static and can't scale to the bandwidth requirements of the application. This change allows the applications to influence the socket buffer sizes using the SO_SNDBUF and the SO_RCVBUF socket options. Few interesting points to note: 1. Since the VMBUS does not allow a resize operation of the ring size, the socket buffer size option should be set prior to establishing the connection for it to take effect. 2. Setting the socket option comes with the cost of that much memory being reserved/allocated by the kernel, for the lifetime of the connection. Perf data: Total Data Transfer: 1GB Single threaded reader/writer Results below are summarized over 10 iterations. Linux hvsocket writer + Windows hvsocket reader: |---------------------------------------------------------------------------------------------| |Packet size -> | 128B | 1KB | 4KB | 64KB | |---------------------------------------------------------------------------------------------| |SO_SNDBUF size | | Throughput in MB/s (min/max/avg/median): | | v | | |---------------------------------------------------------------------------------------------| | Default | 109/118/114/116 | 636/774/701/700 | 435/507/480/476 | 410/491/462/470 | | 16KB | 110/116/112/111 | 575/705/662/671 | 749/900/854/869 | 592/824/692/676 | | 32KB | 108/120/115/115 | 703/823/767/772 | 718/878/850/866 | 1593/2124/2000/2085 | | 64KB | 108/119/114/114 | 592/732/683/688 | 805/934/903/911 | 1784/1943/1862/1843 | |---------------------------------------------------------------------------------------------| Windows hvsocket writer + Linux hvsocket reader: |---------------------------------------------------------------------------------------------| |Packet size -> | 128B | 1KB | 4KB | 64KB | |---------------------------------------------------------------------------------------------| |SO_RCVBUF size | | Throughput in MB/s (min/max/avg/median): | | v | | |---------------------------------------------------------------------------------------------| | Default | 69/82/75/73 | 313/343/333/336 | 418/477/446/445 | 659/701/676/678 | | 16KB | 69/83/76/77 | 350/401/375/382 | 506/548/517/516 | 602/624/615/615 | | 32KB | 62/83/73/73 | 471/529/496/494 | 830/1046/935/939 | 944/1180/1070/1100 | | 64KB | 64/70/68/69 | 467/533/501/497 | 1260/1590/1430/1431 | 1605/1819/1670/1660 | |---------------------------------------------------------------------------------------------| Signed-off-by: Sunil Muthuswamy <sunilmut@microsoft.com> Reviewed-by: Dexuan Cui <decui@microsoft.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-22 22:56:07 +00:00
/* Use the socket buffer sizes as hints for the VMBUS ring size. For
* server side sockets, 'sk' is the parent socket and thus, this will
* allow the child sockets to inherit the size from the parent. Keep
* the mins to the default value and align to page size as per VMBUS
* requirements.
* For the max, the socket core library will limit the socket buffer
* size that can be set by the user, but, since currently, the hv_sock
* VMBUS ring buffer is physically contiguous allocation, restrict it
* further.
* Older versions of hv_sock host side code cannot handle bigger VMBUS
* ring buffer size. Use the version number to limit the change to newer
* versions.
*/
if (vmbus_proto_version < VERSION_WIN10_V5) {
sndbuf = RINGBUFFER_HVS_SND_SIZE;
rcvbuf = RINGBUFFER_HVS_RCV_SIZE;
} else {
sndbuf = max_t(int, sk->sk_sndbuf, RINGBUFFER_HVS_SND_SIZE);
sndbuf = min_t(int, sndbuf, RINGBUFFER_HVS_MAX_SIZE);
sndbuf = ALIGN(sndbuf, PAGE_SIZE);
rcvbuf = max_t(int, sk->sk_rcvbuf, RINGBUFFER_HVS_RCV_SIZE);
rcvbuf = min_t(int, rcvbuf, RINGBUFFER_HVS_MAX_SIZE);
rcvbuf = ALIGN(rcvbuf, PAGE_SIZE);
}
ret = vmbus_open(chan, sndbuf, rcvbuf, NULL, 0, hvs_channel_cb,
conn_from_host ? new : sk);
if (ret != 0) {
if (conn_from_host) {
hvs_new->chan = NULL;
sock_put(new);
} else {
hvs->chan = NULL;
}
goto out;
}
set_per_channel_state(chan, conn_from_host ? new : sk);
/* This reference will be dropped by hvs_close_connection(). */
sock_hold(conn_from_host ? new : sk);
vmbus_set_chn_rescind_callback(chan, hvs_close_connection);
hvsock: fix epollout hang from race condition Currently, hvsock can enter into a state where epoll_wait on EPOLLOUT will not return even when the hvsock socket is writable, under some race condition. This can happen under the following sequence: - fd = socket(hvsocket) - fd_out = dup(fd) - fd_in = dup(fd) - start a writer thread that writes data to fd_out with a combination of epoll_wait(fd_out, EPOLLOUT) and - start a reader thread that reads data from fd_in with a combination of epoll_wait(fd_in, EPOLLIN) - On the host, there are two threads that are reading/writing data to the hvsocket stack: hvs_stream_has_space hvs_notify_poll_out vsock_poll sock_poll ep_poll Race condition: check for epollout from ep_poll(): assume no writable space in the socket hvs_stream_has_space() returns 0 check for epollin from ep_poll(): assume socket has some free space < HVS_PKT_LEN(HVS_SEND_BUF_SIZE) hvs_stream_has_space() will clear the channel pending send size host will not notify the guest because the pending send size has been cleared and so the hvsocket will never mark the socket writable Now, the EPOLLOUT will never return even if the socket write buffer is empty. The fix is to set the pending size to the default size and never change it. This way the host will always notify the guest whenever the writable space is bigger than the pending size. The host is already optimized to *only* notify the guest when the pending size threshold boundary is crossed and not everytime. This change also reduces the cpu usage somewhat since hv_stream_has_space() is in the hotpath of send: vsock_stream_sendmsg()->hv_stream_has_space() Earlier hv_stream_has_space was setting/clearing the pending size on every call. Signed-off-by: Sunil Muthuswamy <sunilmut@microsoft.com> Reviewed-by: Dexuan Cui <decui@microsoft.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-17 19:26:25 +00:00
/* Set the pending send size to max packet size to always get
* notifications from the host when there is enough writable space.
* The host is optimized to send notifications only when the pending
* size boundary is crossed, and not always.
*/
hvs_set_channel_pending_send_size(chan);
if (conn_from_host) {
new->sk_state = TCP_ESTABLISHED;
sk->sk_ack_backlog++;
hvs_addr_init(&vnew->local_addr, if_type);
hvs_remote_addr_init(&vnew->remote_addr, &vnew->local_addr);
hvs_new->vm_srv_id = *if_type;
hvs_new->host_srv_id = *if_instance;
vsock_insert_connected(vnew);
vsock_enqueue_accept(sk, new);
} else {
sk->sk_state = TCP_ESTABLISHED;
sk->sk_socket->state = SS_CONNECTED;
vsock_insert_connected(vsock_sk(sk));
}
sk->sk_state_change(sk);
out:
/* Release refcnt obtained when we called vsock_find_bound_socket() */
sock_put(sk);
release_sock(sk);
}
static u32 hvs_get_local_cid(void)
{
return VMADDR_CID_ANY;
}
static int hvs_sock_init(struct vsock_sock *vsk, struct vsock_sock *psk)
{
struct hvsock *hvs;
hv_sock: perf: Allow the socket buffer size options to influence the actual socket buffers Currently, the hv_sock buffer size is static and can't scale to the bandwidth requirements of the application. This change allows the applications to influence the socket buffer sizes using the SO_SNDBUF and the SO_RCVBUF socket options. Few interesting points to note: 1. Since the VMBUS does not allow a resize operation of the ring size, the socket buffer size option should be set prior to establishing the connection for it to take effect. 2. Setting the socket option comes with the cost of that much memory being reserved/allocated by the kernel, for the lifetime of the connection. Perf data: Total Data Transfer: 1GB Single threaded reader/writer Results below are summarized over 10 iterations. Linux hvsocket writer + Windows hvsocket reader: |---------------------------------------------------------------------------------------------| |Packet size -> | 128B | 1KB | 4KB | 64KB | |---------------------------------------------------------------------------------------------| |SO_SNDBUF size | | Throughput in MB/s (min/max/avg/median): | | v | | |---------------------------------------------------------------------------------------------| | Default | 109/118/114/116 | 636/774/701/700 | 435/507/480/476 | 410/491/462/470 | | 16KB | 110/116/112/111 | 575/705/662/671 | 749/900/854/869 | 592/824/692/676 | | 32KB | 108/120/115/115 | 703/823/767/772 | 718/878/850/866 | 1593/2124/2000/2085 | | 64KB | 108/119/114/114 | 592/732/683/688 | 805/934/903/911 | 1784/1943/1862/1843 | |---------------------------------------------------------------------------------------------| Windows hvsocket writer + Linux hvsocket reader: |---------------------------------------------------------------------------------------------| |Packet size -> | 128B | 1KB | 4KB | 64KB | |---------------------------------------------------------------------------------------------| |SO_RCVBUF size | | Throughput in MB/s (min/max/avg/median): | | v | | |---------------------------------------------------------------------------------------------| | Default | 69/82/75/73 | 313/343/333/336 | 418/477/446/445 | 659/701/676/678 | | 16KB | 69/83/76/77 | 350/401/375/382 | 506/548/517/516 | 602/624/615/615 | | 32KB | 62/83/73/73 | 471/529/496/494 | 830/1046/935/939 | 944/1180/1070/1100 | | 64KB | 64/70/68/69 | 467/533/501/497 | 1260/1590/1430/1431 | 1605/1819/1670/1660 | |---------------------------------------------------------------------------------------------| Signed-off-by: Sunil Muthuswamy <sunilmut@microsoft.com> Reviewed-by: Dexuan Cui <decui@microsoft.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-22 22:56:07 +00:00
struct sock *sk = sk_vsock(vsk);
hvs = kzalloc(sizeof(*hvs), GFP_KERNEL);
if (!hvs)
return -ENOMEM;
vsk->trans = hvs;
hvs->vsk = vsk;
hv_sock: perf: Allow the socket buffer size options to influence the actual socket buffers Currently, the hv_sock buffer size is static and can't scale to the bandwidth requirements of the application. This change allows the applications to influence the socket buffer sizes using the SO_SNDBUF and the SO_RCVBUF socket options. Few interesting points to note: 1. Since the VMBUS does not allow a resize operation of the ring size, the socket buffer size option should be set prior to establishing the connection for it to take effect. 2. Setting the socket option comes with the cost of that much memory being reserved/allocated by the kernel, for the lifetime of the connection. Perf data: Total Data Transfer: 1GB Single threaded reader/writer Results below are summarized over 10 iterations. Linux hvsocket writer + Windows hvsocket reader: |---------------------------------------------------------------------------------------------| |Packet size -> | 128B | 1KB | 4KB | 64KB | |---------------------------------------------------------------------------------------------| |SO_SNDBUF size | | Throughput in MB/s (min/max/avg/median): | | v | | |---------------------------------------------------------------------------------------------| | Default | 109/118/114/116 | 636/774/701/700 | 435/507/480/476 | 410/491/462/470 | | 16KB | 110/116/112/111 | 575/705/662/671 | 749/900/854/869 | 592/824/692/676 | | 32KB | 108/120/115/115 | 703/823/767/772 | 718/878/850/866 | 1593/2124/2000/2085 | | 64KB | 108/119/114/114 | 592/732/683/688 | 805/934/903/911 | 1784/1943/1862/1843 | |---------------------------------------------------------------------------------------------| Windows hvsocket writer + Linux hvsocket reader: |---------------------------------------------------------------------------------------------| |Packet size -> | 128B | 1KB | 4KB | 64KB | |---------------------------------------------------------------------------------------------| |SO_RCVBUF size | | Throughput in MB/s (min/max/avg/median): | | v | | |---------------------------------------------------------------------------------------------| | Default | 69/82/75/73 | 313/343/333/336 | 418/477/446/445 | 659/701/676/678 | | 16KB | 69/83/76/77 | 350/401/375/382 | 506/548/517/516 | 602/624/615/615 | | 32KB | 62/83/73/73 | 471/529/496/494 | 830/1046/935/939 | 944/1180/1070/1100 | | 64KB | 64/70/68/69 | 467/533/501/497 | 1260/1590/1430/1431 | 1605/1819/1670/1660 | |---------------------------------------------------------------------------------------------| Signed-off-by: Sunil Muthuswamy <sunilmut@microsoft.com> Reviewed-by: Dexuan Cui <decui@microsoft.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-22 22:56:07 +00:00
sk->sk_sndbuf = RINGBUFFER_HVS_SND_SIZE;
sk->sk_rcvbuf = RINGBUFFER_HVS_RCV_SIZE;
return 0;
}
static int hvs_connect(struct vsock_sock *vsk)
{
union hvs_service_id vm, host;
struct hvsock *h = vsk->trans;
vm.srv_id = srv_id_template;
vm.svm_port = vsk->local_addr.svm_port;
h->vm_srv_id = vm.srv_id;
host.srv_id = srv_id_template;
host.svm_port = vsk->remote_addr.svm_port;
h->host_srv_id = host.srv_id;
return vmbus_send_tl_connect_request(&h->vm_srv_id, &h->host_srv_id);
}
static void hvs_shutdown_lock_held(struct hvsock *hvs, int mode)
{
struct vmpipe_proto_header hdr;
if (hvs->fin_sent || !hvs->chan)
return;
/* It can't fail: see hvs_channel_writable_bytes(). */
(void)hvs_send_data(hvs->chan, (struct hvs_send_buf *)&hdr, 0);
hvs->fin_sent = true;
}
static int hvs_shutdown(struct vsock_sock *vsk, int mode)
{
struct sock *sk = sk_vsock(vsk);
if (!(mode & SEND_SHUTDOWN))
return 0;
lock_sock(sk);
hvs_shutdown_lock_held(vsk->trans, mode);
release_sock(sk);
return 0;
}
static void hvs_close_timeout(struct work_struct *work)
{
struct vsock_sock *vsk =
container_of(work, struct vsock_sock, close_work.work);
struct sock *sk = sk_vsock(vsk);
sock_hold(sk);
lock_sock(sk);
if (!sock_flag(sk, SOCK_DONE))
hvs_do_close_lock_held(vsk, false);
vsk->close_work_scheduled = false;
release_sock(sk);
sock_put(sk);
}
/* Returns true, if it is safe to remove socket; false otherwise */
static bool hvs_close_lock_held(struct vsock_sock *vsk)
{
struct sock *sk = sk_vsock(vsk);
if (!(sk->sk_state == TCP_ESTABLISHED ||
sk->sk_state == TCP_CLOSING))
return true;
if ((sk->sk_shutdown & SHUTDOWN_MASK) != SHUTDOWN_MASK)
hvs_shutdown_lock_held(vsk->trans, SHUTDOWN_MASK);
if (sock_flag(sk, SOCK_DONE))
return true;
/* This reference will be dropped by the delayed close routine */
sock_hold(sk);
INIT_DELAYED_WORK(&vsk->close_work, hvs_close_timeout);
vsk->close_work_scheduled = true;
schedule_delayed_work(&vsk->close_work, HVS_CLOSE_TIMEOUT);
return false;
}
static void hvs_release(struct vsock_sock *vsk)
{
struct sock *sk = sk_vsock(vsk);
bool remove_sock;
lock_sock(sk);
remove_sock = hvs_close_lock_held(vsk);
release_sock(sk);
if (remove_sock)
vsock_remove_sock(vsk);
}
static void hvs_destruct(struct vsock_sock *vsk)
{
struct hvsock *hvs = vsk->trans;
struct vmbus_channel *chan = hvs->chan;
if (chan)
vmbus_hvsock_device_unregister(chan);
kfree(hvs);
}
static int hvs_dgram_bind(struct vsock_sock *vsk, struct sockaddr_vm *addr)
{
return -EOPNOTSUPP;
}
static int hvs_dgram_dequeue(struct vsock_sock *vsk, struct msghdr *msg,
size_t len, int flags)
{
return -EOPNOTSUPP;
}
static int hvs_dgram_enqueue(struct vsock_sock *vsk,
struct sockaddr_vm *remote, struct msghdr *msg,
size_t dgram_len)
{
return -EOPNOTSUPP;
}
static bool hvs_dgram_allow(u32 cid, u32 port)
{
return false;
}
static int hvs_update_recv_data(struct hvsock *hvs)
{
struct hvs_recv_buf *recv_buf;
u32 payload_len;
recv_buf = (struct hvs_recv_buf *)(hvs->recv_desc + 1);
payload_len = recv_buf->hdr.data_size;
if (payload_len > HVS_MTU_SIZE)
return -EIO;
if (payload_len == 0)
hvs->vsk->peer_shutdown |= SEND_SHUTDOWN;
hvs->recv_data_len = payload_len;
hvs->recv_data_off = 0;
return 0;
}
static ssize_t hvs_stream_dequeue(struct vsock_sock *vsk, struct msghdr *msg,
size_t len, int flags)
{
struct hvsock *hvs = vsk->trans;
bool need_refill = !hvs->recv_desc;
struct hvs_recv_buf *recv_buf;
u32 to_read;
int ret;
if (flags & MSG_PEEK)
return -EOPNOTSUPP;
if (need_refill) {
hvs->recv_desc = hv_pkt_iter_first(hvs->chan);
ret = hvs_update_recv_data(hvs);
if (ret)
return ret;
}
recv_buf = (struct hvs_recv_buf *)(hvs->recv_desc + 1);
to_read = min_t(u32, len, hvs->recv_data_len);
ret = memcpy_to_msg(msg, recv_buf->data + hvs->recv_data_off, to_read);
if (ret != 0)
return ret;
hvs->recv_data_len -= to_read;
if (hvs->recv_data_len == 0) {
hvs->recv_desc = hv_pkt_iter_next(hvs->chan, hvs->recv_desc);
if (hvs->recv_desc) {
ret = hvs_update_recv_data(hvs);
if (ret)
return ret;
}
} else {
hvs->recv_data_off += to_read;
}
return to_read;
}
static ssize_t hvs_stream_enqueue(struct vsock_sock *vsk, struct msghdr *msg,
size_t len)
{
struct hvsock *hvs = vsk->trans;
struct vmbus_channel *chan = hvs->chan;
struct hvs_send_buf *send_buf;
hv_sock: perf: loop in send() to maximize bandwidth Currently, the hv_sock send() iterates once over the buffer, puts data into the VMBUS channel and returns. It doesn't maximize on the case when there is a simultaneous reader draining data from the channel. In such a case, the send() can maximize the bandwidth (and consequently minimize the cpu cycles) by iterating until the channel is found to be full. Perf data: Total Data Transfer: 10GB/iteration Single threaded reader/writer, Linux hvsocket writer with Windows hvsocket reader Packet size: 64KB CPU sys time was captured using the 'time' command for the writer to send 10GB of data. 'Send Buffer Loop' is with the patch applied. The values below are over 10 iterations. |--------------------------------------------------------| | | Current | Send Buffer Loop | |--------------------------------------------------------| | | Throughput | CPU sys | Throughput | CPU sys | | | (MB/s) | time (s) | (MB/s) | time (s) | |--------------------------------------------------------| | Min | 407 | 7.048 | 401 | 5.958 | |--------------------------------------------------------| | Max | 455 | 7.563 | 542 | 6.993 | |--------------------------------------------------------| | Avg | 440 | 7.411 | 451 | 6.639 | |--------------------------------------------------------| | Median | 446 | 7.417 | 447 | 6.761 | |--------------------------------------------------------| Observation: 1. The avg throughput doesn't really change much with this change for this scenario. This is most probably because the bottleneck on throughput is somewhere else. 2. The average system (or kernel) cpu time goes down by 10%+ with this change, for the same amount of data transfer. Signed-off-by: Sunil Muthuswamy <sunilmut@microsoft.com> Reviewed-by: Dexuan Cui <decui@microsoft.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-22 23:10:44 +00:00
ssize_t to_write, max_writable;
ssize_t ret = 0;
ssize_t bytes_written = 0;
BUILD_BUG_ON(sizeof(*send_buf) != PAGE_SIZE_4K);
send_buf = kmalloc(sizeof(*send_buf), GFP_KERNEL);
if (!send_buf)
return -ENOMEM;
hv_sock: perf: loop in send() to maximize bandwidth Currently, the hv_sock send() iterates once over the buffer, puts data into the VMBUS channel and returns. It doesn't maximize on the case when there is a simultaneous reader draining data from the channel. In such a case, the send() can maximize the bandwidth (and consequently minimize the cpu cycles) by iterating until the channel is found to be full. Perf data: Total Data Transfer: 10GB/iteration Single threaded reader/writer, Linux hvsocket writer with Windows hvsocket reader Packet size: 64KB CPU sys time was captured using the 'time' command for the writer to send 10GB of data. 'Send Buffer Loop' is with the patch applied. The values below are over 10 iterations. |--------------------------------------------------------| | | Current | Send Buffer Loop | |--------------------------------------------------------| | | Throughput | CPU sys | Throughput | CPU sys | | | (MB/s) | time (s) | (MB/s) | time (s) | |--------------------------------------------------------| | Min | 407 | 7.048 | 401 | 5.958 | |--------------------------------------------------------| | Max | 455 | 7.563 | 542 | 6.993 | |--------------------------------------------------------| | Avg | 440 | 7.411 | 451 | 6.639 | |--------------------------------------------------------| | Median | 446 | 7.417 | 447 | 6.761 | |--------------------------------------------------------| Observation: 1. The avg throughput doesn't really change much with this change for this scenario. This is most probably because the bottleneck on throughput is somewhere else. 2. The average system (or kernel) cpu time goes down by 10%+ with this change, for the same amount of data transfer. Signed-off-by: Sunil Muthuswamy <sunilmut@microsoft.com> Reviewed-by: Dexuan Cui <decui@microsoft.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-22 23:10:44 +00:00
/* Reader(s) could be draining data from the channel as we write.
* Maximize bandwidth, by iterating until the channel is found to be
* full.
*/
while (len) {
max_writable = hvs_channel_writable_bytes(chan);
if (!max_writable)
break;
to_write = min_t(ssize_t, len, max_writable);
to_write = min_t(ssize_t, to_write, HVS_SEND_BUF_SIZE);
/* memcpy_from_msg is safe for loop as it advances the offsets
* within the message iterator.
*/
ret = memcpy_from_msg(send_buf->data, msg, to_write);
if (ret < 0)
goto out;
hv_sock: perf: loop in send() to maximize bandwidth Currently, the hv_sock send() iterates once over the buffer, puts data into the VMBUS channel and returns. It doesn't maximize on the case when there is a simultaneous reader draining data from the channel. In such a case, the send() can maximize the bandwidth (and consequently minimize the cpu cycles) by iterating until the channel is found to be full. Perf data: Total Data Transfer: 10GB/iteration Single threaded reader/writer, Linux hvsocket writer with Windows hvsocket reader Packet size: 64KB CPU sys time was captured using the 'time' command for the writer to send 10GB of data. 'Send Buffer Loop' is with the patch applied. The values below are over 10 iterations. |--------------------------------------------------------| | | Current | Send Buffer Loop | |--------------------------------------------------------| | | Throughput | CPU sys | Throughput | CPU sys | | | (MB/s) | time (s) | (MB/s) | time (s) | |--------------------------------------------------------| | Min | 407 | 7.048 | 401 | 5.958 | |--------------------------------------------------------| | Max | 455 | 7.563 | 542 | 6.993 | |--------------------------------------------------------| | Avg | 440 | 7.411 | 451 | 6.639 | |--------------------------------------------------------| | Median | 446 | 7.417 | 447 | 6.761 | |--------------------------------------------------------| Observation: 1. The avg throughput doesn't really change much with this change for this scenario. This is most probably because the bottleneck on throughput is somewhere else. 2. The average system (or kernel) cpu time goes down by 10%+ with this change, for the same amount of data transfer. Signed-off-by: Sunil Muthuswamy <sunilmut@microsoft.com> Reviewed-by: Dexuan Cui <decui@microsoft.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-22 23:10:44 +00:00
ret = hvs_send_data(hvs->chan, send_buf, to_write);
if (ret < 0)
goto out;
hv_sock: perf: loop in send() to maximize bandwidth Currently, the hv_sock send() iterates once over the buffer, puts data into the VMBUS channel and returns. It doesn't maximize on the case when there is a simultaneous reader draining data from the channel. In such a case, the send() can maximize the bandwidth (and consequently minimize the cpu cycles) by iterating until the channel is found to be full. Perf data: Total Data Transfer: 10GB/iteration Single threaded reader/writer, Linux hvsocket writer with Windows hvsocket reader Packet size: 64KB CPU sys time was captured using the 'time' command for the writer to send 10GB of data. 'Send Buffer Loop' is with the patch applied. The values below are over 10 iterations. |--------------------------------------------------------| | | Current | Send Buffer Loop | |--------------------------------------------------------| | | Throughput | CPU sys | Throughput | CPU sys | | | (MB/s) | time (s) | (MB/s) | time (s) | |--------------------------------------------------------| | Min | 407 | 7.048 | 401 | 5.958 | |--------------------------------------------------------| | Max | 455 | 7.563 | 542 | 6.993 | |--------------------------------------------------------| | Avg | 440 | 7.411 | 451 | 6.639 | |--------------------------------------------------------| | Median | 446 | 7.417 | 447 | 6.761 | |--------------------------------------------------------| Observation: 1. The avg throughput doesn't really change much with this change for this scenario. This is most probably because the bottleneck on throughput is somewhere else. 2. The average system (or kernel) cpu time goes down by 10%+ with this change, for the same amount of data transfer. Signed-off-by: Sunil Muthuswamy <sunilmut@microsoft.com> Reviewed-by: Dexuan Cui <decui@microsoft.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-22 23:10:44 +00:00
bytes_written += to_write;
len -= to_write;
}
out:
hv_sock: perf: loop in send() to maximize bandwidth Currently, the hv_sock send() iterates once over the buffer, puts data into the VMBUS channel and returns. It doesn't maximize on the case when there is a simultaneous reader draining data from the channel. In such a case, the send() can maximize the bandwidth (and consequently minimize the cpu cycles) by iterating until the channel is found to be full. Perf data: Total Data Transfer: 10GB/iteration Single threaded reader/writer, Linux hvsocket writer with Windows hvsocket reader Packet size: 64KB CPU sys time was captured using the 'time' command for the writer to send 10GB of data. 'Send Buffer Loop' is with the patch applied. The values below are over 10 iterations. |--------------------------------------------------------| | | Current | Send Buffer Loop | |--------------------------------------------------------| | | Throughput | CPU sys | Throughput | CPU sys | | | (MB/s) | time (s) | (MB/s) | time (s) | |--------------------------------------------------------| | Min | 407 | 7.048 | 401 | 5.958 | |--------------------------------------------------------| | Max | 455 | 7.563 | 542 | 6.993 | |--------------------------------------------------------| | Avg | 440 | 7.411 | 451 | 6.639 | |--------------------------------------------------------| | Median | 446 | 7.417 | 447 | 6.761 | |--------------------------------------------------------| Observation: 1. The avg throughput doesn't really change much with this change for this scenario. This is most probably because the bottleneck on throughput is somewhere else. 2. The average system (or kernel) cpu time goes down by 10%+ with this change, for the same amount of data transfer. Signed-off-by: Sunil Muthuswamy <sunilmut@microsoft.com> Reviewed-by: Dexuan Cui <decui@microsoft.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-22 23:10:44 +00:00
/* If any data has been sent, return that */
if (bytes_written)
ret = bytes_written;
kfree(send_buf);
return ret;
}
static s64 hvs_stream_has_data(struct vsock_sock *vsk)
{
struct hvsock *hvs = vsk->trans;
s64 ret;
if (hvs->recv_data_len > 0)
return 1;
switch (hvs_channel_readable_payload(hvs->chan)) {
case 1:
ret = 1;
break;
case 0:
vsk->peer_shutdown |= SEND_SHUTDOWN;
ret = 0;
break;
default: /* -1 */
ret = 0;
break;
}
return ret;
}
static s64 hvs_stream_has_space(struct vsock_sock *vsk)
{
struct hvsock *hvs = vsk->trans;
hvsock: fix epollout hang from race condition Currently, hvsock can enter into a state where epoll_wait on EPOLLOUT will not return even when the hvsock socket is writable, under some race condition. This can happen under the following sequence: - fd = socket(hvsocket) - fd_out = dup(fd) - fd_in = dup(fd) - start a writer thread that writes data to fd_out with a combination of epoll_wait(fd_out, EPOLLOUT) and - start a reader thread that reads data from fd_in with a combination of epoll_wait(fd_in, EPOLLIN) - On the host, there are two threads that are reading/writing data to the hvsocket stack: hvs_stream_has_space hvs_notify_poll_out vsock_poll sock_poll ep_poll Race condition: check for epollout from ep_poll(): assume no writable space in the socket hvs_stream_has_space() returns 0 check for epollin from ep_poll(): assume socket has some free space < HVS_PKT_LEN(HVS_SEND_BUF_SIZE) hvs_stream_has_space() will clear the channel pending send size host will not notify the guest because the pending send size has been cleared and so the hvsocket will never mark the socket writable Now, the EPOLLOUT will never return even if the socket write buffer is empty. The fix is to set the pending size to the default size and never change it. This way the host will always notify the guest whenever the writable space is bigger than the pending size. The host is already optimized to *only* notify the guest when the pending size threshold boundary is crossed and not everytime. This change also reduces the cpu usage somewhat since hv_stream_has_space() is in the hotpath of send: vsock_stream_sendmsg()->hv_stream_has_space() Earlier hv_stream_has_space was setting/clearing the pending size on every call. Signed-off-by: Sunil Muthuswamy <sunilmut@microsoft.com> Reviewed-by: Dexuan Cui <decui@microsoft.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-17 19:26:25 +00:00
return hvs_channel_writable_bytes(hvs->chan);
}
static u64 hvs_stream_rcvhiwat(struct vsock_sock *vsk)
{
return HVS_MTU_SIZE + 1;
}
static bool hvs_stream_is_active(struct vsock_sock *vsk)
{
struct hvsock *hvs = vsk->trans;
return hvs->chan != NULL;
}
static bool hvs_stream_allow(u32 cid, u32 port)
{
/* The host's port range [MIN_HOST_EPHEMERAL_PORT, 0xFFFFFFFF) is
* reserved as ephemeral ports, which are used as the host's ports
* when the host initiates connections.
*
* Perform this check in the guest so an immediate error is produced
* instead of a timeout.
*/
if (port > MAX_HOST_LISTEN_PORT)
return false;
if (cid == VMADDR_CID_HOST)
return true;
return false;
}
static
int hvs_notify_poll_in(struct vsock_sock *vsk, size_t target, bool *readable)
{
struct hvsock *hvs = vsk->trans;
*readable = hvs_channel_readable(hvs->chan);
return 0;
}
static
int hvs_notify_poll_out(struct vsock_sock *vsk, size_t target, bool *writable)
{
*writable = hvs_stream_has_space(vsk) > 0;
return 0;
}
static
int hvs_notify_recv_init(struct vsock_sock *vsk, size_t target,
struct vsock_transport_recv_notify_data *d)
{
return 0;
}
static
int hvs_notify_recv_pre_block(struct vsock_sock *vsk, size_t target,
struct vsock_transport_recv_notify_data *d)
{
return 0;
}
static
int hvs_notify_recv_pre_dequeue(struct vsock_sock *vsk, size_t target,
struct vsock_transport_recv_notify_data *d)
{
return 0;
}
static
int hvs_notify_recv_post_dequeue(struct vsock_sock *vsk, size_t target,
ssize_t copied, bool data_read,
struct vsock_transport_recv_notify_data *d)
{
return 0;
}
static
int hvs_notify_send_init(struct vsock_sock *vsk,
struct vsock_transport_send_notify_data *d)
{
return 0;
}
static
int hvs_notify_send_pre_block(struct vsock_sock *vsk,
struct vsock_transport_send_notify_data *d)
{
return 0;
}
static
int hvs_notify_send_pre_enqueue(struct vsock_sock *vsk,
struct vsock_transport_send_notify_data *d)
{
return 0;
}
static
int hvs_notify_send_post_enqueue(struct vsock_sock *vsk, ssize_t written,
struct vsock_transport_send_notify_data *d)
{
return 0;
}
static void hvs_set_buffer_size(struct vsock_sock *vsk, u64 val)
{
/* Ignored. */
}
static void hvs_set_min_buffer_size(struct vsock_sock *vsk, u64 val)
{
/* Ignored. */
}
static void hvs_set_max_buffer_size(struct vsock_sock *vsk, u64 val)
{
/* Ignored. */
}
static u64 hvs_get_buffer_size(struct vsock_sock *vsk)
{
return -ENOPROTOOPT;
}
static u64 hvs_get_min_buffer_size(struct vsock_sock *vsk)
{
return -ENOPROTOOPT;
}
static u64 hvs_get_max_buffer_size(struct vsock_sock *vsk)
{
return -ENOPROTOOPT;
}
static struct vsock_transport hvs_transport = {
.get_local_cid = hvs_get_local_cid,
.init = hvs_sock_init,
.destruct = hvs_destruct,
.release = hvs_release,
.connect = hvs_connect,
.shutdown = hvs_shutdown,
.dgram_bind = hvs_dgram_bind,
.dgram_dequeue = hvs_dgram_dequeue,
.dgram_enqueue = hvs_dgram_enqueue,
.dgram_allow = hvs_dgram_allow,
.stream_dequeue = hvs_stream_dequeue,
.stream_enqueue = hvs_stream_enqueue,
.stream_has_data = hvs_stream_has_data,
.stream_has_space = hvs_stream_has_space,
.stream_rcvhiwat = hvs_stream_rcvhiwat,
.stream_is_active = hvs_stream_is_active,
.stream_allow = hvs_stream_allow,
.notify_poll_in = hvs_notify_poll_in,
.notify_poll_out = hvs_notify_poll_out,
.notify_recv_init = hvs_notify_recv_init,
.notify_recv_pre_block = hvs_notify_recv_pre_block,
.notify_recv_pre_dequeue = hvs_notify_recv_pre_dequeue,
.notify_recv_post_dequeue = hvs_notify_recv_post_dequeue,
.notify_send_init = hvs_notify_send_init,
.notify_send_pre_block = hvs_notify_send_pre_block,
.notify_send_pre_enqueue = hvs_notify_send_pre_enqueue,
.notify_send_post_enqueue = hvs_notify_send_post_enqueue,
.set_buffer_size = hvs_set_buffer_size,
.set_min_buffer_size = hvs_set_min_buffer_size,
.set_max_buffer_size = hvs_set_max_buffer_size,
.get_buffer_size = hvs_get_buffer_size,
.get_min_buffer_size = hvs_get_min_buffer_size,
.get_max_buffer_size = hvs_get_max_buffer_size,
};
static int hvs_probe(struct hv_device *hdev,
const struct hv_vmbus_device_id *dev_id)
{
struct vmbus_channel *chan = hdev->channel;
hvs_open_connection(chan);
/* Always return success to suppress the unnecessary error message
* in vmbus_probe(): on error the host will rescind the device in
* 30 seconds and we can do cleanup at that time in
* vmbus_onoffer_rescind().
*/
return 0;
}
static int hvs_remove(struct hv_device *hdev)
{
struct vmbus_channel *chan = hdev->channel;
vmbus_close(chan);
return 0;
}
/* This isn't really used. See vmbus_match() and vmbus_probe() */
static const struct hv_vmbus_device_id id_table[] = {
{},
};
static struct hv_driver hvs_drv = {
.name = "hv_sock",
.hvsock = true,
.id_table = id_table,
.probe = hvs_probe,
.remove = hvs_remove,
};
static int __init hvs_init(void)
{
int ret;
if (vmbus_proto_version < VERSION_WIN10)
return -ENODEV;
ret = vmbus_driver_register(&hvs_drv);
if (ret != 0)
return ret;
ret = vsock_core_init(&hvs_transport);
if (ret) {
vmbus_driver_unregister(&hvs_drv);
return ret;
}
return 0;
}
static void __exit hvs_exit(void)
{
vsock_core_exit();
vmbus_driver_unregister(&hvs_drv);
}
module_init(hvs_init);
module_exit(hvs_exit);
MODULE_DESCRIPTION("Hyper-V Sockets");
MODULE_VERSION("1.0.0");
MODULE_LICENSE("GPL");
MODULE_ALIAS_NETPROTO(PF_VSOCK);