linux/block/ll_rw_blk.c

3946 lines
99 KiB
C
Raw Normal View History

/*
* Copyright (C) 1991, 1992 Linus Torvalds
* Copyright (C) 1994, Karl Keyte: Added support for disk statistics
* Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
* Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
* kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
* bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
*/
/*
* This handles all read/write requests to block devices
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/highmem.h>
#include <linux/mm.h>
#include <linux/kernel_stat.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
#include <linux/completion.h>
#include <linux/slab.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/interrupt.h>
#include <linux/cpu.h>
#include <linux/blktrace_api.h>
/*
* for max sense size
*/
#include <scsi/scsi_cmnd.h>
static void blk_unplug_work(void *data);
static void blk_unplug_timeout(unsigned long data);
static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
static void init_request_from_bio(struct request *req, struct bio *bio);
static int __make_request(request_queue_t *q, struct bio *bio);
/*
* For the allocated request tables
*/
static kmem_cache_t *request_cachep;
/*
* For queue allocation
*/
static kmem_cache_t *requestq_cachep;
/*
* For io context allocations
*/
static kmem_cache_t *iocontext_cachep;
static wait_queue_head_t congestion_wqh[2] = {
__WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
__WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
};
/*
* Controlling structure to kblockd
*/
static struct workqueue_struct *kblockd_workqueue;
unsigned long blk_max_low_pfn, blk_max_pfn;
EXPORT_SYMBOL(blk_max_low_pfn);
EXPORT_SYMBOL(blk_max_pfn);
static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
/* Amount of time in which a process may batch requests */
#define BLK_BATCH_TIME (HZ/50UL)
/* Number of requests a "batching" process may submit */
#define BLK_BATCH_REQ 32
/*
* Return the threshold (number of used requests) at which the queue is
* considered to be congested. It include a little hysteresis to keep the
* context switch rate down.
*/
static inline int queue_congestion_on_threshold(struct request_queue *q)
{
return q->nr_congestion_on;
}
/*
* The threshold at which a queue is considered to be uncongested
*/
static inline int queue_congestion_off_threshold(struct request_queue *q)
{
return q->nr_congestion_off;
}
static void blk_queue_congestion_threshold(struct request_queue *q)
{
int nr;
nr = q->nr_requests - (q->nr_requests / 8) + 1;
if (nr > q->nr_requests)
nr = q->nr_requests;
q->nr_congestion_on = nr;
nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
if (nr < 1)
nr = 1;
q->nr_congestion_off = nr;
}
/*
* A queue has just exitted congestion. Note this in the global counter of
* congested queues, and wake up anyone who was waiting for requests to be
* put back.
*/
static void clear_queue_congested(request_queue_t *q, int rw)
{
enum bdi_state bit;
wait_queue_head_t *wqh = &congestion_wqh[rw];
bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
clear_bit(bit, &q->backing_dev_info.state);
smp_mb__after_clear_bit();
if (waitqueue_active(wqh))
wake_up(wqh);
}
/*
* A queue has just entered congestion. Flag that in the queue's VM-visible
* state flags and increment the global gounter of congested queues.
*/
static void set_queue_congested(request_queue_t *q, int rw)
{
enum bdi_state bit;
bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
set_bit(bit, &q->backing_dev_info.state);
}
/**
* blk_get_backing_dev_info - get the address of a queue's backing_dev_info
* @bdev: device
*
* Locates the passed device's request queue and returns the address of its
* backing_dev_info
*
* Will return NULL if the request queue cannot be located.
*/
struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
{
struct backing_dev_info *ret = NULL;
request_queue_t *q = bdev_get_queue(bdev);
if (q)
ret = &q->backing_dev_info;
return ret;
}
EXPORT_SYMBOL(blk_get_backing_dev_info);
void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
{
q->activity_fn = fn;
q->activity_data = data;
}
EXPORT_SYMBOL(blk_queue_activity_fn);
/**
* blk_queue_prep_rq - set a prepare_request function for queue
* @q: queue
* @pfn: prepare_request function
*
* It's possible for a queue to register a prepare_request callback which
* is invoked before the request is handed to the request_fn. The goal of
* the function is to prepare a request for I/O, it can be used to build a
* cdb from the request data for instance.
*
*/
void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
{
q->prep_rq_fn = pfn;
}
EXPORT_SYMBOL(blk_queue_prep_rq);
/**
* blk_queue_merge_bvec - set a merge_bvec function for queue
* @q: queue
* @mbfn: merge_bvec_fn
*
* Usually queues have static limitations on the max sectors or segments that
* we can put in a request. Stacking drivers may have some settings that
* are dynamic, and thus we have to query the queue whether it is ok to
* add a new bio_vec to a bio at a given offset or not. If the block device
* has such limitations, it needs to register a merge_bvec_fn to control
* the size of bio's sent to it. Note that a block device *must* allow a
* single page to be added to an empty bio. The block device driver may want
* to use the bio_split() function to deal with these bio's. By default
* no merge_bvec_fn is defined for a queue, and only the fixed limits are
* honored.
*/
void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
{
q->merge_bvec_fn = mbfn;
}
EXPORT_SYMBOL(blk_queue_merge_bvec);
void blk_queue_softirq_done(request_queue_t *q, softirq_done_fn *fn)
{
q->softirq_done_fn = fn;
}
EXPORT_SYMBOL(blk_queue_softirq_done);
/**
* blk_queue_make_request - define an alternate make_request function for a device
* @q: the request queue for the device to be affected
* @mfn: the alternate make_request function
*
* Description:
* The normal way for &struct bios to be passed to a device
* driver is for them to be collected into requests on a request
* queue, and then to allow the device driver to select requests
* off that queue when it is ready. This works well for many block
* devices. However some block devices (typically virtual devices
* such as md or lvm) do not benefit from the processing on the
* request queue, and are served best by having the requests passed
* directly to them. This can be achieved by providing a function
* to blk_queue_make_request().
*
* Caveat:
* The driver that does this *must* be able to deal appropriately
* with buffers in "highmemory". This can be accomplished by either calling
* __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
* blk_queue_bounce() to create a buffer in normal memory.
**/
void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
{
/*
* set defaults
*/
q->nr_requests = BLKDEV_MAX_RQ;
blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
q->make_request_fn = mfn;
q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
q->backing_dev_info.state = 0;
q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
blk_queue_hardsect_size(q, 512);
blk_queue_dma_alignment(q, 511);
blk_queue_congestion_threshold(q);
q->nr_batching = BLK_BATCH_REQ;
q->unplug_thresh = 4; /* hmm */
q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
if (q->unplug_delay == 0)
q->unplug_delay = 1;
INIT_WORK(&q->unplug_work, blk_unplug_work, q);
q->unplug_timer.function = blk_unplug_timeout;
q->unplug_timer.data = (unsigned long)q;
/*
* by default assume old behaviour and bounce for any highmem page
*/
blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
blk_queue_activity_fn(q, NULL, NULL);
}
EXPORT_SYMBOL(blk_queue_make_request);
static inline void rq_init(request_queue_t *q, struct request *rq)
{
INIT_LIST_HEAD(&rq->queuelist);
INIT_LIST_HEAD(&rq->donelist);
rq->errors = 0;
rq->rq_status = RQ_ACTIVE;
rq->bio = rq->biotail = NULL;
rq->ioprio = 0;
rq->buffer = NULL;
rq->ref_count = 1;
rq->q = q;
rq->waiting = NULL;
rq->special = NULL;
rq->data_len = 0;
rq->data = NULL;
rq->nr_phys_segments = 0;
rq->sense = NULL;
rq->end_io = NULL;
rq->end_io_data = NULL;
rq->completion_data = NULL;
}
/**
* blk_queue_ordered - does this queue support ordered writes
* @q: the request queue
* @ordered: one of QUEUE_ORDERED_*
* @prepare_flush_fn: rq setup helper for cache flush ordered writes
*
* Description:
* For journalled file systems, doing ordered writes on a commit
* block instead of explicitly doing wait_on_buffer (which is bad
* for performance) can be a big win. Block drivers supporting this
* feature should call this function and indicate so.
*
**/
int blk_queue_ordered(request_queue_t *q, unsigned ordered,
prepare_flush_fn *prepare_flush_fn)
{
if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
prepare_flush_fn == NULL) {
printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
return -EINVAL;
}
if (ordered != QUEUE_ORDERED_NONE &&
ordered != QUEUE_ORDERED_DRAIN &&
ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
ordered != QUEUE_ORDERED_DRAIN_FUA &&
ordered != QUEUE_ORDERED_TAG &&
ordered != QUEUE_ORDERED_TAG_FLUSH &&
ordered != QUEUE_ORDERED_TAG_FUA) {
printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
return -EINVAL;
}
q->ordered = ordered;
q->next_ordered = ordered;
q->prepare_flush_fn = prepare_flush_fn;
return 0;
}
EXPORT_SYMBOL(blk_queue_ordered);
/**
* blk_queue_issue_flush_fn - set function for issuing a flush
* @q: the request queue
* @iff: the function to be called issuing the flush
*
* Description:
* If a driver supports issuing a flush command, the support is notified
* to the block layer by defining it through this call.
*
**/
void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
{
q->issue_flush_fn = iff;
}
EXPORT_SYMBOL(blk_queue_issue_flush_fn);
/*
* Cache flushing for ordered writes handling
*/
inline unsigned blk_ordered_cur_seq(request_queue_t *q)
{
if (!q->ordseq)
return 0;
return 1 << ffz(q->ordseq);
}
unsigned blk_ordered_req_seq(struct request *rq)
{
request_queue_t *q = rq->q;
BUG_ON(q->ordseq == 0);
if (rq == &q->pre_flush_rq)
return QUEUE_ORDSEQ_PREFLUSH;
if (rq == &q->bar_rq)
return QUEUE_ORDSEQ_BAR;
if (rq == &q->post_flush_rq)
return QUEUE_ORDSEQ_POSTFLUSH;
if ((rq->flags & REQ_ORDERED_COLOR) ==
(q->orig_bar_rq->flags & REQ_ORDERED_COLOR))
return QUEUE_ORDSEQ_DRAIN;
else
return QUEUE_ORDSEQ_DONE;
}
void blk_ordered_complete_seq(request_queue_t *q, unsigned seq, int error)
{
struct request *rq;
int uptodate;
if (error && !q->orderr)
q->orderr = error;
BUG_ON(q->ordseq & seq);
q->ordseq |= seq;
if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
return;
/*
* Okay, sequence complete.
*/
rq = q->orig_bar_rq;
uptodate = q->orderr ? q->orderr : 1;
q->ordseq = 0;
end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
end_that_request_last(rq, uptodate);
}
static void pre_flush_end_io(struct request *rq, int error)
{
elv_completed_request(rq->q, rq);
blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
}
static void bar_end_io(struct request *rq, int error)
{
elv_completed_request(rq->q, rq);
blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
}
static void post_flush_end_io(struct request *rq, int error)
{
elv_completed_request(rq->q, rq);
blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
}
static void queue_flush(request_queue_t *q, unsigned which)
{
struct request *rq;
rq_end_io_fn *end_io;
if (which == QUEUE_ORDERED_PREFLUSH) {
rq = &q->pre_flush_rq;
end_io = pre_flush_end_io;
} else {
rq = &q->post_flush_rq;
end_io = post_flush_end_io;
}
rq_init(q, rq);
rq->flags = REQ_HARDBARRIER;
rq->elevator_private = NULL;
rq->rq_disk = q->bar_rq.rq_disk;
rq->rl = NULL;
rq->end_io = end_io;
q->prepare_flush_fn(q, rq);
elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
}
static inline struct request *start_ordered(request_queue_t *q,
struct request *rq)
{
q->bi_size = 0;
q->orderr = 0;
q->ordered = q->next_ordered;
q->ordseq |= QUEUE_ORDSEQ_STARTED;
/*
* Prep proxy barrier request.
*/
blkdev_dequeue_request(rq);
q->orig_bar_rq = rq;
rq = &q->bar_rq;
rq_init(q, rq);
rq->flags = bio_data_dir(q->orig_bar_rq->bio);
rq->flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
rq->elevator_private = NULL;
rq->rl = NULL;
init_request_from_bio(rq, q->orig_bar_rq->bio);
rq->end_io = bar_end_io;
/*
* Queue ordered sequence. As we stack them at the head, we
* need to queue in reverse order. Note that we rely on that
* no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
* request gets inbetween ordered sequence.
*/
if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
else
q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
queue_flush(q, QUEUE_ORDERED_PREFLUSH);
rq = &q->pre_flush_rq;
} else
q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
q->ordseq |= QUEUE_ORDSEQ_DRAIN;
else
rq = NULL;
return rq;
}
int blk_do_ordered(request_queue_t *q, struct request **rqp)
{
struct request *rq = *rqp;
int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
if (!q->ordseq) {
if (!is_barrier)
return 1;
if (q->next_ordered != QUEUE_ORDERED_NONE) {
*rqp = start_ordered(q, rq);
return 1;
} else {
/*
* This can happen when the queue switches to
* ORDERED_NONE while this request is on it.
*/
blkdev_dequeue_request(rq);
end_that_request_first(rq, -EOPNOTSUPP,
rq->hard_nr_sectors);
end_that_request_last(rq, -EOPNOTSUPP);
*rqp = NULL;
return 0;
}
}
/*
* Ordered sequence in progress
*/
/* Special requests are not subject to ordering rules. */
if (!blk_fs_request(rq) &&
rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
return 1;
if (q->ordered & QUEUE_ORDERED_TAG) {
/* Ordered by tag. Blocking the next barrier is enough. */
if (is_barrier && rq != &q->bar_rq)
*rqp = NULL;
} else {
/* Ordered by draining. Wait for turn. */
WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
*rqp = NULL;
}
return 1;
}
static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
{
request_queue_t *q = bio->bi_private;
struct bio_vec *bvec;
int i;
/*
* This is dry run, restore bio_sector and size. We'll finish
* this request again with the original bi_end_io after an
* error occurs or post flush is complete.
*/
q->bi_size += bytes;
if (bio->bi_size)
return 1;
/* Rewind bvec's */
bio->bi_idx = 0;
bio_for_each_segment(bvec, bio, i) {
bvec->bv_len += bvec->bv_offset;
bvec->bv_offset = 0;
}
/* Reset bio */
set_bit(BIO_UPTODATE, &bio->bi_flags);
bio->bi_size = q->bi_size;
bio->bi_sector -= (q->bi_size >> 9);
q->bi_size = 0;
return 0;
}
static inline int ordered_bio_endio(struct request *rq, struct bio *bio,
unsigned int nbytes, int error)
{
request_queue_t *q = rq->q;
bio_end_io_t *endio;
void *private;
if (&q->bar_rq != rq)
return 0;
/*
* Okay, this is the barrier request in progress, dry finish it.
*/
if (error && !q->orderr)
q->orderr = error;
endio = bio->bi_end_io;
private = bio->bi_private;
bio->bi_end_io = flush_dry_bio_endio;
bio->bi_private = q;
bio_endio(bio, nbytes, error);
bio->bi_end_io = endio;
bio->bi_private = private;
return 1;
}
/**
* blk_queue_bounce_limit - set bounce buffer limit for queue
* @q: the request queue for the device
* @dma_addr: bus address limit
*
* Description:
* Different hardware can have different requirements as to what pages
* it can do I/O directly to. A low level driver can call
* blk_queue_bounce_limit to have lower memory pages allocated as bounce
* buffers for doing I/O to pages residing above @page.
**/
void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
{
unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
int dma = 0;
q->bounce_gfp = GFP_NOIO;
#if BITS_PER_LONG == 64
/* Assume anything <= 4GB can be handled by IOMMU.
Actually some IOMMUs can handle everything, but I don't
know of a way to test this here. */
if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
dma = 1;
q->bounce_pfn = max_low_pfn;
#else
if (bounce_pfn < blk_max_low_pfn)
dma = 1;
q->bounce_pfn = bounce_pfn;
#endif
if (dma) {
init_emergency_isa_pool();
q->bounce_gfp = GFP_NOIO | GFP_DMA;
q->bounce_pfn = bounce_pfn;
}
}
EXPORT_SYMBOL(blk_queue_bounce_limit);
/**
* blk_queue_max_sectors - set max sectors for a request for this queue
* @q: the request queue for the device
* @max_sectors: max sectors in the usual 512b unit
*
* Description:
* Enables a low level driver to set an upper limit on the size of
* received requests.
**/
void blk_queue_max_sectors(request_queue_t *q, unsigned int max_sectors)
{
if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
}
if (BLK_DEF_MAX_SECTORS > max_sectors)
q->max_hw_sectors = q->max_sectors = max_sectors;
else {
q->max_sectors = BLK_DEF_MAX_SECTORS;
q->max_hw_sectors = max_sectors;
}
}
EXPORT_SYMBOL(blk_queue_max_sectors);
/**
* blk_queue_max_phys_segments - set max phys segments for a request for this queue
* @q: the request queue for the device
* @max_segments: max number of segments
*
* Description:
* Enables a low level driver to set an upper limit on the number of
* physical data segments in a request. This would be the largest sized
* scatter list the driver could handle.
**/
void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
{
if (!max_segments) {
max_segments = 1;
printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
}
q->max_phys_segments = max_segments;
}
EXPORT_SYMBOL(blk_queue_max_phys_segments);
/**
* blk_queue_max_hw_segments - set max hw segments for a request for this queue
* @q: the request queue for the device
* @max_segments: max number of segments
*
* Description:
* Enables a low level driver to set an upper limit on the number of
* hw data segments in a request. This would be the largest number of
* address/length pairs the host adapter can actually give as once
* to the device.
**/
void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
{
if (!max_segments) {
max_segments = 1;
printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
}
q->max_hw_segments = max_segments;
}
EXPORT_SYMBOL(blk_queue_max_hw_segments);
/**
* blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
* @q: the request queue for the device
* @max_size: max size of segment in bytes
*
* Description:
* Enables a low level driver to set an upper limit on the size of a
* coalesced segment
**/
void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
{
if (max_size < PAGE_CACHE_SIZE) {
max_size = PAGE_CACHE_SIZE;
printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
}
q->max_segment_size = max_size;
}
EXPORT_SYMBOL(blk_queue_max_segment_size);
/**
* blk_queue_hardsect_size - set hardware sector size for the queue
* @q: the request queue for the device
* @size: the hardware sector size, in bytes
*
* Description:
* This should typically be set to the lowest possible sector size
* that the hardware can operate on (possible without reverting to
* even internal read-modify-write operations). Usually the default
* of 512 covers most hardware.
**/
void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
{
q->hardsect_size = size;
}
EXPORT_SYMBOL(blk_queue_hardsect_size);
/*
* Returns the minimum that is _not_ zero, unless both are zero.
*/
#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
/**
* blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
* @t: the stacking driver (top)
* @b: the underlying device (bottom)
**/
void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
{
/* zero is "infinity" */
t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
}
EXPORT_SYMBOL(blk_queue_stack_limits);
/**
* blk_queue_segment_boundary - set boundary rules for segment merging
* @q: the request queue for the device
* @mask: the memory boundary mask
**/
void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
{
if (mask < PAGE_CACHE_SIZE - 1) {
mask = PAGE_CACHE_SIZE - 1;
printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
}
q->seg_boundary_mask = mask;
}
EXPORT_SYMBOL(blk_queue_segment_boundary);
/**
* blk_queue_dma_alignment - set dma length and memory alignment
* @q: the request queue for the device
* @mask: alignment mask
*
* description:
* set required memory and length aligment for direct dma transactions.
* this is used when buiding direct io requests for the queue.
*
**/
void blk_queue_dma_alignment(request_queue_t *q, int mask)
{
q->dma_alignment = mask;
}
EXPORT_SYMBOL(blk_queue_dma_alignment);
/**
* blk_queue_find_tag - find a request by its tag and queue
* @q: The request queue for the device
* @tag: The tag of the request
*
* Notes:
* Should be used when a device returns a tag and you want to match
* it with a request.
*
* no locks need be held.
**/
struct request *blk_queue_find_tag(request_queue_t *q, int tag)
{
struct blk_queue_tag *bqt = q->queue_tags;
[PATCH] blk: fix tag shrinking (revive real_max_size) My patch in commit fa72b903f75e4f0f0b2c2feed093005167da4023 incorrectly removed blk_queue_tag->real_max_depth. The original resize implementation was incorrect in the following points. * actual allocation size of tag_index was shorter than real_max_size, but assumed to be of the same size, possibly causing memory access beyond the allocated area. * bits in tag_map between max_deptn and real_max_depth were initialized to 1's, making the tags permanently reserved. In an attempt to fix above two bugs, I had removed allocation optimization in init_tag_map and real_max_size. Tag map/index were allocated and freed immediately during resize. Unfortunately, I wasn't considering that tag map/index can be resized dynamically with tags beyond new_depth active. This led to accessing freed area after shrinking tags and led to the following bug reporting thread on linux-scsi. http://marc.theaimsgroup.com/?l=linux-scsi&m=112319898111885&w=2 To fix the problem, I've revived real_max_depth without allocation optimization in init_tag_map, and Andrew Vasquez confirmed that the problem was fixed. As Jens is not going to be available for a week, he asked me to make sure that this patch reaches you. http://marc.theaimsgroup.com/?l=linux-scsi&m=112325778530886&w=2 Also, a comment was added to make sure that real_max_size is needed for dynamic shrinking. Signed-off-by: Tejun Heo <htejun@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-08-05 20:28:11 +00:00
if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
return NULL;
return bqt->tag_index[tag];
}
EXPORT_SYMBOL(blk_queue_find_tag);
/**
* __blk_queue_free_tags - release tag maintenance info
* @q: the request queue for the device
*
* Notes:
* blk_cleanup_queue() will take care of calling this function, if tagging
* has been used. So there's no need to call this directly.
**/
static void __blk_queue_free_tags(request_queue_t *q)
{
struct blk_queue_tag *bqt = q->queue_tags;
if (!bqt)
return;
if (atomic_dec_and_test(&bqt->refcnt)) {
BUG_ON(bqt->busy);
BUG_ON(!list_empty(&bqt->busy_list));
kfree(bqt->tag_index);
bqt->tag_index = NULL;
kfree(bqt->tag_map);
bqt->tag_map = NULL;
kfree(bqt);
}
q->queue_tags = NULL;
q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
}
/**
* blk_queue_free_tags - release tag maintenance info
* @q: the request queue for the device
*
* Notes:
* This is used to disabled tagged queuing to a device, yet leave
* queue in function.
**/
void blk_queue_free_tags(request_queue_t *q)
{
clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
}
EXPORT_SYMBOL(blk_queue_free_tags);
static int
init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
{
struct request **tag_index;
unsigned long *tag_map;
int nr_ulongs;
if (depth > q->nr_requests * 2) {
depth = q->nr_requests * 2;
printk(KERN_ERR "%s: adjusted depth to %d\n",
__FUNCTION__, depth);
}
tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
if (!tag_index)
goto fail;
nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
if (!tag_map)
goto fail;
[PATCH] blk: fix tag shrinking (revive real_max_size) My patch in commit fa72b903f75e4f0f0b2c2feed093005167da4023 incorrectly removed blk_queue_tag->real_max_depth. The original resize implementation was incorrect in the following points. * actual allocation size of tag_index was shorter than real_max_size, but assumed to be of the same size, possibly causing memory access beyond the allocated area. * bits in tag_map between max_deptn and real_max_depth were initialized to 1's, making the tags permanently reserved. In an attempt to fix above two bugs, I had removed allocation optimization in init_tag_map and real_max_size. Tag map/index were allocated and freed immediately during resize. Unfortunately, I wasn't considering that tag map/index can be resized dynamically with tags beyond new_depth active. This led to accessing freed area after shrinking tags and led to the following bug reporting thread on linux-scsi. http://marc.theaimsgroup.com/?l=linux-scsi&m=112319898111885&w=2 To fix the problem, I've revived real_max_depth without allocation optimization in init_tag_map, and Andrew Vasquez confirmed that the problem was fixed. As Jens is not going to be available for a week, he asked me to make sure that this patch reaches you. http://marc.theaimsgroup.com/?l=linux-scsi&m=112325778530886&w=2 Also, a comment was added to make sure that real_max_size is needed for dynamic shrinking. Signed-off-by: Tejun Heo <htejun@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-08-05 20:28:11 +00:00
tags->real_max_depth = depth;
tags->max_depth = depth;
tags->tag_index = tag_index;
tags->tag_map = tag_map;
return 0;
fail:
kfree(tag_index);
return -ENOMEM;
}
/**
* blk_queue_init_tags - initialize the queue tag info
* @q: the request queue for the device
* @depth: the maximum queue depth supported
* @tags: the tag to use
**/
int blk_queue_init_tags(request_queue_t *q, int depth,
struct blk_queue_tag *tags)
{
int rc;
BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
if (!tags && !q->queue_tags) {
tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
if (!tags)
goto fail;
if (init_tag_map(q, tags, depth))
goto fail;
INIT_LIST_HEAD(&tags->busy_list);
tags->busy = 0;
atomic_set(&tags->refcnt, 1);
} else if (q->queue_tags) {
if ((rc = blk_queue_resize_tags(q, depth)))
return rc;
set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
return 0;
} else
atomic_inc(&tags->refcnt);
/*
* assign it, all done
*/
q->queue_tags = tags;
q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
return 0;
fail:
kfree(tags);
return -ENOMEM;
}
EXPORT_SYMBOL(blk_queue_init_tags);
/**
* blk_queue_resize_tags - change the queueing depth
* @q: the request queue for the device
* @new_depth: the new max command queueing depth
*
* Notes:
* Must be called with the queue lock held.
**/
int blk_queue_resize_tags(request_queue_t *q, int new_depth)
{
struct blk_queue_tag *bqt = q->queue_tags;
struct request **tag_index;
unsigned long *tag_map;
int max_depth, nr_ulongs;
if (!bqt)
return -ENXIO;
[PATCH] blk: fix tag shrinking (revive real_max_size) My patch in commit fa72b903f75e4f0f0b2c2feed093005167da4023 incorrectly removed blk_queue_tag->real_max_depth. The original resize implementation was incorrect in the following points. * actual allocation size of tag_index was shorter than real_max_size, but assumed to be of the same size, possibly causing memory access beyond the allocated area. * bits in tag_map between max_deptn and real_max_depth were initialized to 1's, making the tags permanently reserved. In an attempt to fix above two bugs, I had removed allocation optimization in init_tag_map and real_max_size. Tag map/index were allocated and freed immediately during resize. Unfortunately, I wasn't considering that tag map/index can be resized dynamically with tags beyond new_depth active. This led to accessing freed area after shrinking tags and led to the following bug reporting thread on linux-scsi. http://marc.theaimsgroup.com/?l=linux-scsi&m=112319898111885&w=2 To fix the problem, I've revived real_max_depth without allocation optimization in init_tag_map, and Andrew Vasquez confirmed that the problem was fixed. As Jens is not going to be available for a week, he asked me to make sure that this patch reaches you. http://marc.theaimsgroup.com/?l=linux-scsi&m=112325778530886&w=2 Also, a comment was added to make sure that real_max_size is needed for dynamic shrinking. Signed-off-by: Tejun Heo <htejun@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-08-05 20:28:11 +00:00
/*
* if we already have large enough real_max_depth. just
* adjust max_depth. *NOTE* as requests with tag value
* between new_depth and real_max_depth can be in-flight, tag
* map can not be shrunk blindly here.
*/
if (new_depth <= bqt->real_max_depth) {
bqt->max_depth = new_depth;
return 0;
}
/*
* save the old state info, so we can copy it back
*/
tag_index = bqt->tag_index;
tag_map = bqt->tag_map;
[PATCH] blk: fix tag shrinking (revive real_max_size) My patch in commit fa72b903f75e4f0f0b2c2feed093005167da4023 incorrectly removed blk_queue_tag->real_max_depth. The original resize implementation was incorrect in the following points. * actual allocation size of tag_index was shorter than real_max_size, but assumed to be of the same size, possibly causing memory access beyond the allocated area. * bits in tag_map between max_deptn and real_max_depth were initialized to 1's, making the tags permanently reserved. In an attempt to fix above two bugs, I had removed allocation optimization in init_tag_map and real_max_size. Tag map/index were allocated and freed immediately during resize. Unfortunately, I wasn't considering that tag map/index can be resized dynamically with tags beyond new_depth active. This led to accessing freed area after shrinking tags and led to the following bug reporting thread on linux-scsi. http://marc.theaimsgroup.com/?l=linux-scsi&m=112319898111885&w=2 To fix the problem, I've revived real_max_depth without allocation optimization in init_tag_map, and Andrew Vasquez confirmed that the problem was fixed. As Jens is not going to be available for a week, he asked me to make sure that this patch reaches you. http://marc.theaimsgroup.com/?l=linux-scsi&m=112325778530886&w=2 Also, a comment was added to make sure that real_max_size is needed for dynamic shrinking. Signed-off-by: Tejun Heo <htejun@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-08-05 20:28:11 +00:00
max_depth = bqt->real_max_depth;
if (init_tag_map(q, bqt, new_depth))
return -ENOMEM;
memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
kfree(tag_index);
kfree(tag_map);
return 0;
}
EXPORT_SYMBOL(blk_queue_resize_tags);
/**
* blk_queue_end_tag - end tag operations for a request
* @q: the request queue for the device
* @rq: the request that has completed
*
* Description:
* Typically called when end_that_request_first() returns 0, meaning
* all transfers have been done for a request. It's important to call
* this function before end_that_request_last(), as that will put the
* request back on the free list thus corrupting the internal tag list.
*
* Notes:
* queue lock must be held.
**/
void blk_queue_end_tag(request_queue_t *q, struct request *rq)
{
struct blk_queue_tag *bqt = q->queue_tags;
int tag = rq->tag;
BUG_ON(tag == -1);
[PATCH] blk: fix tag shrinking (revive real_max_size) My patch in commit fa72b903f75e4f0f0b2c2feed093005167da4023 incorrectly removed blk_queue_tag->real_max_depth. The original resize implementation was incorrect in the following points. * actual allocation size of tag_index was shorter than real_max_size, but assumed to be of the same size, possibly causing memory access beyond the allocated area. * bits in tag_map between max_deptn and real_max_depth were initialized to 1's, making the tags permanently reserved. In an attempt to fix above two bugs, I had removed allocation optimization in init_tag_map and real_max_size. Tag map/index were allocated and freed immediately during resize. Unfortunately, I wasn't considering that tag map/index can be resized dynamically with tags beyond new_depth active. This led to accessing freed area after shrinking tags and led to the following bug reporting thread on linux-scsi. http://marc.theaimsgroup.com/?l=linux-scsi&m=112319898111885&w=2 To fix the problem, I've revived real_max_depth without allocation optimization in init_tag_map, and Andrew Vasquez confirmed that the problem was fixed. As Jens is not going to be available for a week, he asked me to make sure that this patch reaches you. http://marc.theaimsgroup.com/?l=linux-scsi&m=112325778530886&w=2 Also, a comment was added to make sure that real_max_size is needed for dynamic shrinking. Signed-off-by: Tejun Heo <htejun@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-08-05 20:28:11 +00:00
if (unlikely(tag >= bqt->real_max_depth))
/*
* This can happen after tag depth has been reduced.
* FIXME: how about a warning or info message here?
*/
return;
if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
__FUNCTION__, tag);
return;
}
list_del_init(&rq->queuelist);
rq->flags &= ~REQ_QUEUED;
rq->tag = -1;
if (unlikely(bqt->tag_index[tag] == NULL))
printk(KERN_ERR "%s: tag %d is missing\n",
__FUNCTION__, tag);
bqt->tag_index[tag] = NULL;
bqt->busy--;
}
EXPORT_SYMBOL(blk_queue_end_tag);
/**
* blk_queue_start_tag - find a free tag and assign it
* @q: the request queue for the device
* @rq: the block request that needs tagging
*
* Description:
* This can either be used as a stand-alone helper, or possibly be
* assigned as the queue &prep_rq_fn (in which case &struct request
* automagically gets a tag assigned). Note that this function
* assumes that any type of request can be queued! if this is not
* true for your device, you must check the request type before
* calling this function. The request will also be removed from
* the request queue, so it's the drivers responsibility to readd
* it if it should need to be restarted for some reason.
*
* Notes:
* queue lock must be held.
**/
int blk_queue_start_tag(request_queue_t *q, struct request *rq)
{
struct blk_queue_tag *bqt = q->queue_tags;
int tag;
if (unlikely((rq->flags & REQ_QUEUED))) {
printk(KERN_ERR
"%s: request %p for device [%s] already tagged %d",
__FUNCTION__, rq,
rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
BUG();
}
tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
if (tag >= bqt->max_depth)
return 1;
__set_bit(tag, bqt->tag_map);
rq->flags |= REQ_QUEUED;
rq->tag = tag;
bqt->tag_index[tag] = rq;
blkdev_dequeue_request(rq);
list_add(&rq->queuelist, &bqt->busy_list);
bqt->busy++;
return 0;
}
EXPORT_SYMBOL(blk_queue_start_tag);
/**
* blk_queue_invalidate_tags - invalidate all pending tags
* @q: the request queue for the device
*
* Description:
* Hardware conditions may dictate a need to stop all pending requests.
* In this case, we will safely clear the block side of the tag queue and
* readd all requests to the request queue in the right order.
*
* Notes:
* queue lock must be held.
**/
void blk_queue_invalidate_tags(request_queue_t *q)
{
struct blk_queue_tag *bqt = q->queue_tags;
struct list_head *tmp, *n;
struct request *rq;
list_for_each_safe(tmp, n, &bqt->busy_list) {
rq = list_entry_rq(tmp);
if (rq->tag == -1) {
printk(KERN_ERR
"%s: bad tag found on list\n", __FUNCTION__);
list_del_init(&rq->queuelist);
rq->flags &= ~REQ_QUEUED;
} else
blk_queue_end_tag(q, rq);
rq->flags &= ~REQ_STARTED;
__elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
}
}
EXPORT_SYMBOL(blk_queue_invalidate_tags);
static const char * const rq_flags[] = {
"REQ_RW",
"REQ_FAILFAST",
"REQ_SORTED",
"REQ_SOFTBARRIER",
"REQ_HARDBARRIER",
"REQ_FUA",
"REQ_CMD",
"REQ_NOMERGE",
"REQ_STARTED",
"REQ_DONTPREP",
"REQ_QUEUED",
"REQ_ELVPRIV",
"REQ_PC",
"REQ_BLOCK_PC",
"REQ_SENSE",
"REQ_FAILED",
"REQ_QUIET",
"REQ_SPECIAL",
"REQ_DRIVE_CMD",
"REQ_DRIVE_TASK",
"REQ_DRIVE_TASKFILE",
"REQ_PREEMPT",
"REQ_PM_SUSPEND",
"REQ_PM_RESUME",
"REQ_PM_SHUTDOWN",
"REQ_ORDERED_COLOR",
};
void blk_dump_rq_flags(struct request *rq, char *msg)
{
int bit;
printk("%s: dev %s: flags = ", msg,
rq->rq_disk ? rq->rq_disk->disk_name : "?");
bit = 0;
do {
if (rq->flags & (1 << bit))
printk("%s ", rq_flags[bit]);
bit++;
} while (bit < __REQ_NR_BITS);
printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
rq->nr_sectors,
rq->current_nr_sectors);
printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
printk("cdb: ");
for (bit = 0; bit < sizeof(rq->cmd); bit++)
printk("%02x ", rq->cmd[bit]);
printk("\n");
}
}
EXPORT_SYMBOL(blk_dump_rq_flags);
void blk_recount_segments(request_queue_t *q, struct bio *bio)
{
struct bio_vec *bv, *bvprv = NULL;
int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
int high, highprv = 1;
if (unlikely(!bio->bi_io_vec))
return;
cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
bio_for_each_segment(bv, bio, i) {
/*
* the trick here is making sure that a high page is never
* considered part of another segment, since that might
* change with the bounce page.
*/
high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
if (high || highprv)
goto new_hw_segment;
if (cluster) {
if (seg_size + bv->bv_len > q->max_segment_size)
goto new_segment;
if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
goto new_segment;
if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
goto new_segment;
if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
goto new_hw_segment;
seg_size += bv->bv_len;
hw_seg_size += bv->bv_len;
bvprv = bv;
continue;
}
new_segment:
if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
!BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
hw_seg_size += bv->bv_len;
} else {
new_hw_segment:
if (hw_seg_size > bio->bi_hw_front_size)
bio->bi_hw_front_size = hw_seg_size;
hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
nr_hw_segs++;
}
nr_phys_segs++;
bvprv = bv;
seg_size = bv->bv_len;
highprv = high;
}
if (hw_seg_size > bio->bi_hw_back_size)
bio->bi_hw_back_size = hw_seg_size;
if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
bio->bi_hw_front_size = hw_seg_size;
bio->bi_phys_segments = nr_phys_segs;
bio->bi_hw_segments = nr_hw_segs;
bio->bi_flags |= (1 << BIO_SEG_VALID);
}
static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
struct bio *nxt)
{
if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
return 0;
if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
return 0;
if (bio->bi_size + nxt->bi_size > q->max_segment_size)
return 0;
/*
* bio and nxt are contigous in memory, check if the queue allows
* these two to be merged into one
*/
if (BIO_SEG_BOUNDARY(q, bio, nxt))
return 1;
return 0;
}
static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
struct bio *nxt)
{
if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
blk_recount_segments(q, bio);
if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
blk_recount_segments(q, nxt);
if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
return 0;
if (bio->bi_size + nxt->bi_size > q->max_segment_size)
return 0;
return 1;
}
/*
* map a request to scatterlist, return number of sg entries setup. Caller
* must make sure sg can hold rq->nr_phys_segments entries
*/
int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
{
struct bio_vec *bvec, *bvprv;
struct bio *bio;
int nsegs, i, cluster;
nsegs = 0;
cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
/*
* for each bio in rq
*/
bvprv = NULL;
rq_for_each_bio(bio, rq) {
/*
* for each segment in bio
*/
bio_for_each_segment(bvec, bio, i) {
int nbytes = bvec->bv_len;
if (bvprv && cluster) {
if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
goto new_segment;
if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
goto new_segment;
if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
goto new_segment;
sg[nsegs - 1].length += nbytes;
} else {
new_segment:
memset(&sg[nsegs],0,sizeof(struct scatterlist));
sg[nsegs].page = bvec->bv_page;
sg[nsegs].length = nbytes;
sg[nsegs].offset = bvec->bv_offset;
nsegs++;
}
bvprv = bvec;
} /* segments in bio */
} /* bios in rq */
return nsegs;
}
EXPORT_SYMBOL(blk_rq_map_sg);
/*
* the standard queue merge functions, can be overridden with device
* specific ones if so desired
*/
static inline int ll_new_mergeable(request_queue_t *q,
struct request *req,
struct bio *bio)
{
int nr_phys_segs = bio_phys_segments(q, bio);
if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
req->flags |= REQ_NOMERGE;
if (req == q->last_merge)
q->last_merge = NULL;
return 0;
}
/*
* A hw segment is just getting larger, bump just the phys
* counter.
*/
req->nr_phys_segments += nr_phys_segs;
return 1;
}
static inline int ll_new_hw_segment(request_queue_t *q,
struct request *req,
struct bio *bio)
{
int nr_hw_segs = bio_hw_segments(q, bio);
int nr_phys_segs = bio_phys_segments(q, bio);
if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
|| req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
req->flags |= REQ_NOMERGE;
if (req == q->last_merge)
q->last_merge = NULL;
return 0;
}
/*
* This will form the start of a new hw segment. Bump both
* counters.
*/
req->nr_hw_segments += nr_hw_segs;
req->nr_phys_segments += nr_phys_segs;
return 1;
}
static int ll_back_merge_fn(request_queue_t *q, struct request *req,
struct bio *bio)
{
unsigned short max_sectors;
int len;
if (unlikely(blk_pc_request(req)))
max_sectors = q->max_hw_sectors;
else
max_sectors = q->max_sectors;
if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
req->flags |= REQ_NOMERGE;
if (req == q->last_merge)
q->last_merge = NULL;
return 0;
}
if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
blk_recount_segments(q, req->biotail);
if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
blk_recount_segments(q, bio);
len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
!BIOVEC_VIRT_OVERSIZE(len)) {
int mergeable = ll_new_mergeable(q, req, bio);
if (mergeable) {
if (req->nr_hw_segments == 1)
req->bio->bi_hw_front_size = len;
if (bio->bi_hw_segments == 1)
bio->bi_hw_back_size = len;
}
return mergeable;
}
return ll_new_hw_segment(q, req, bio);
}
static int ll_front_merge_fn(request_queue_t *q, struct request *req,
struct bio *bio)
{
unsigned short max_sectors;
int len;
if (unlikely(blk_pc_request(req)))
max_sectors = q->max_hw_sectors;
else
max_sectors = q->max_sectors;
if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
req->flags |= REQ_NOMERGE;
if (req == q->last_merge)
q->last_merge = NULL;
return 0;
}
len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
blk_recount_segments(q, bio);
if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
blk_recount_segments(q, req->bio);
if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
!BIOVEC_VIRT_OVERSIZE(len)) {
int mergeable = ll_new_mergeable(q, req, bio);
if (mergeable) {
if (bio->bi_hw_segments == 1)
bio->bi_hw_front_size = len;
if (req->nr_hw_segments == 1)
req->biotail->bi_hw_back_size = len;
}
return mergeable;
}
return ll_new_hw_segment(q, req, bio);
}
static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
struct request *next)
{
int total_phys_segments;
int total_hw_segments;
/*
* First check if the either of the requests are re-queued
* requests. Can't merge them if they are.
*/
if (req->special || next->special)
return 0;
/*
* Will it become too large?
*/
if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
return 0;
total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
if (blk_phys_contig_segment(q, req->biotail, next->bio))
total_phys_segments--;
if (total_phys_segments > q->max_phys_segments)
return 0;
total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
/*
* propagate the combined length to the end of the requests
*/
if (req->nr_hw_segments == 1)
req->bio->bi_hw_front_size = len;
if (next->nr_hw_segments == 1)
next->biotail->bi_hw_back_size = len;
total_hw_segments--;
}
if (total_hw_segments > q->max_hw_segments)
return 0;
/* Merge is OK... */
req->nr_phys_segments = total_phys_segments;
req->nr_hw_segments = total_hw_segments;
return 1;
}
/*
* "plug" the device if there are no outstanding requests: this will
* force the transfer to start only after we have put all the requests
* on the list.
*
* This is called with interrupts off and no requests on the queue and
* with the queue lock held.
*/
void blk_plug_device(request_queue_t *q)
{
WARN_ON(!irqs_disabled());
/*
* don't plug a stopped queue, it must be paired with blk_start_queue()
* which will restart the queueing
*/
if (blk_queue_stopped(q))
return;
if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
}
}
EXPORT_SYMBOL(blk_plug_device);
/*
* remove the queue from the plugged list, if present. called with
* queue lock held and interrupts disabled.
*/
int blk_remove_plug(request_queue_t *q)
{
WARN_ON(!irqs_disabled());
if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
return 0;
del_timer(&q->unplug_timer);
return 1;
}
EXPORT_SYMBOL(blk_remove_plug);
/*
* remove the plug and let it rip..
*/
void __generic_unplug_device(request_queue_t *q)
{
if (unlikely(blk_queue_stopped(q)))
return;
if (!blk_remove_plug(q))
return;
q->request_fn(q);
}
EXPORT_SYMBOL(__generic_unplug_device);
/**
* generic_unplug_device - fire a request queue
* @q: The &request_queue_t in question
*
* Description:
* Linux uses plugging to build bigger requests queues before letting
* the device have at them. If a queue is plugged, the I/O scheduler
* is still adding and merging requests on the queue. Once the queue
* gets unplugged, the request_fn defined for the queue is invoked and
* transfers started.
**/
void generic_unplug_device(request_queue_t *q)
{
spin_lock_irq(q->queue_lock);
__generic_unplug_device(q);
spin_unlock_irq(q->queue_lock);
}
EXPORT_SYMBOL(generic_unplug_device);
static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
struct page *page)
{
request_queue_t *q = bdi->unplug_io_data;
/*
* devices don't necessarily have an ->unplug_fn defined
*/
if (q->unplug_fn) {
blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
q->rq.count[READ] + q->rq.count[WRITE]);
q->unplug_fn(q);
}
}
static void blk_unplug_work(void *data)
{
request_queue_t *q = data;
blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
q->rq.count[READ] + q->rq.count[WRITE]);
q->unplug_fn(q);
}
static void blk_unplug_timeout(unsigned long data)
{
request_queue_t *q = (request_queue_t *)data;
blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
q->rq.count[READ] + q->rq.count[WRITE]);
kblockd_schedule_work(&q->unplug_work);
}
/**
* blk_start_queue - restart a previously stopped queue
* @q: The &request_queue_t in question
*
* Description:
* blk_start_queue() will clear the stop flag on the queue, and call
* the request_fn for the queue if it was in a stopped state when
* entered. Also see blk_stop_queue(). Queue lock must be held.
**/
void blk_start_queue(request_queue_t *q)
{
WARN_ON(!irqs_disabled());
clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
/*
* one level of recursion is ok and is much faster than kicking
* the unplug handling
*/
if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
q->request_fn(q);
clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
} else {
blk_plug_device(q);
kblockd_schedule_work(&q->unplug_work);
}
}
EXPORT_SYMBOL(blk_start_queue);
/**
* blk_stop_queue - stop a queue
* @q: The &request_queue_t in question
*
* Description:
* The Linux block layer assumes that a block driver will consume all
* entries on the request queue when the request_fn strategy is called.
* Often this will not happen, because of hardware limitations (queue
* depth settings). If a device driver gets a 'queue full' response,
* or if it simply chooses not to queue more I/O at one point, it can
* call this function to prevent the request_fn from being called until
* the driver has signalled it's ready to go again. This happens by calling
* blk_start_queue() to restart queue operations. Queue lock must be held.
**/
void blk_stop_queue(request_queue_t *q)
{
blk_remove_plug(q);
set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
}
EXPORT_SYMBOL(blk_stop_queue);
/**
* blk_sync_queue - cancel any pending callbacks on a queue
* @q: the queue
*
* Description:
* The block layer may perform asynchronous callback activity
* on a queue, such as calling the unplug function after a timeout.
* A block device may call blk_sync_queue to ensure that any
* such activity is cancelled, thus allowing it to release resources
* the the callbacks might use. The caller must already have made sure
* that its ->make_request_fn will not re-add plugging prior to calling
* this function.
*
*/
void blk_sync_queue(struct request_queue *q)
{
del_timer_sync(&q->unplug_timer);
kblockd_flush();
}
EXPORT_SYMBOL(blk_sync_queue);
/**
* blk_run_queue - run a single device queue
* @q: The queue to run
*/
void blk_run_queue(struct request_queue *q)
{
unsigned long flags;
spin_lock_irqsave(q->queue_lock, flags);
blk_remove_plug(q);
/*
* Only recurse once to avoid overrunning the stack, let the unplug
* handling reinvoke the handler shortly if we already got there.
*/
if (!elv_queue_empty(q)) {
if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
q->request_fn(q);
clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
} else {
blk_plug_device(q);
kblockd_schedule_work(&q->unplug_work);
}
}
spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL(blk_run_queue);
/**
* blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
* @kobj: the kobj belonging of the request queue to be released
*
* Description:
* blk_cleanup_queue is the pair to blk_init_queue() or
* blk_queue_make_request(). It should be called when a request queue is
* being released; typically when a block device is being de-registered.
* Currently, its primary task it to free all the &struct request
* structures that were allocated to the queue and the queue itself.
*
* Caveat:
* Hopefully the low level driver will have finished any
* outstanding requests first...
**/
static void blk_release_queue(struct kobject *kobj)
{
request_queue_t *q = container_of(kobj, struct request_queue, kobj);
struct request_list *rl = &q->rq;
blk_sync_queue(q);
if (rl->rq_pool)
mempool_destroy(rl->rq_pool);
if (q->queue_tags)
__blk_queue_free_tags(q);
if (q->blk_trace)
blk_trace_shutdown(q);
kmem_cache_free(requestq_cachep, q);
}
void blk_put_queue(request_queue_t *q)
{
kobject_put(&q->kobj);
}
EXPORT_SYMBOL(blk_put_queue);
void blk_cleanup_queue(request_queue_t * q)
{
mutex_lock(&q->sysfs_lock);
set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
mutex_unlock(&q->sysfs_lock);
if (q->elevator)
elevator_exit(q->elevator);
blk_put_queue(q);
}
EXPORT_SYMBOL(blk_cleanup_queue);
static int blk_init_free_list(request_queue_t *q)
{
struct request_list *rl = &q->rq;
rl->count[READ] = rl->count[WRITE] = 0;
rl->starved[READ] = rl->starved[WRITE] = 0;
rl->elvpriv = 0;
init_waitqueue_head(&rl->wait[READ]);
init_waitqueue_head(&rl->wait[WRITE]);
rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
mempool_free_slab, request_cachep, q->node);
if (!rl->rq_pool)
return -ENOMEM;
return 0;
}
request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
{
return blk_alloc_queue_node(gfp_mask, -1);
}
EXPORT_SYMBOL(blk_alloc_queue);
static struct kobj_type queue_ktype;
request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
{
request_queue_t *q;
q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
if (!q)
return NULL;
memset(q, 0, sizeof(*q));
init_timer(&q->unplug_timer);
snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
q->kobj.ktype = &queue_ktype;
kobject_init(&q->kobj);
q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
q->backing_dev_info.unplug_io_data = q;
mutex_init(&q->sysfs_lock);
return q;
}
EXPORT_SYMBOL(blk_alloc_queue_node);
/**
* blk_init_queue - prepare a request queue for use with a block device
* @rfn: The function to be called to process requests that have been
* placed on the queue.
* @lock: Request queue spin lock
*
* Description:
* If a block device wishes to use the standard request handling procedures,
* which sorts requests and coalesces adjacent requests, then it must
* call blk_init_queue(). The function @rfn will be called when there
* are requests on the queue that need to be processed. If the device
* supports plugging, then @rfn may not be called immediately when requests
* are available on the queue, but may be called at some time later instead.
* Plugged queues are generally unplugged when a buffer belonging to one
* of the requests on the queue is needed, or due to memory pressure.
*
* @rfn is not required, or even expected, to remove all requests off the
* queue, but only as many as it can handle at a time. If it does leave
* requests on the queue, it is responsible for arranging that the requests
* get dealt with eventually.
*
* The queue spin lock must be held while manipulating the requests on the
* request queue; this lock will be taken also from interrupt context, so irq
* disabling is needed for it.
*
* Function returns a pointer to the initialized request queue, or NULL if
* it didn't succeed.
*
* Note:
* blk_init_queue() must be paired with a blk_cleanup_queue() call
* when the block device is deactivated (such as at module unload).
**/
request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
{
return blk_init_queue_node(rfn, lock, -1);
}
EXPORT_SYMBOL(blk_init_queue);
request_queue_t *
blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
{
request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
if (!q)
return NULL;
q->node = node_id;
if (blk_init_free_list(q)) {
kmem_cache_free(requestq_cachep, q);
return NULL;
}
/*
* if caller didn't supply a lock, they get per-queue locking with
* our embedded lock
*/
if (!lock) {
spin_lock_init(&q->__queue_lock);
lock = &q->__queue_lock;
}
q->request_fn = rfn;
q->back_merge_fn = ll_back_merge_fn;
q->front_merge_fn = ll_front_merge_fn;
q->merge_requests_fn = ll_merge_requests_fn;
q->prep_rq_fn = NULL;
q->unplug_fn = generic_unplug_device;
q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
q->queue_lock = lock;
blk_queue_segment_boundary(q, 0xffffffff);
blk_queue_make_request(q, __make_request);
blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
/*
* all done
*/
if (!elevator_init(q, NULL)) {
blk_queue_congestion_threshold(q);
return q;
}
blk_put_queue(q);
return NULL;
}
EXPORT_SYMBOL(blk_init_queue_node);
int blk_get_queue(request_queue_t *q)
{
if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
kobject_get(&q->kobj);
return 0;
}
return 1;
}
EXPORT_SYMBOL(blk_get_queue);
static inline void blk_free_request(request_queue_t *q, struct request *rq)
{
if (rq->flags & REQ_ELVPRIV)
elv_put_request(q, rq);
mempool_free(rq, q->rq.rq_pool);
}
static inline struct request *
blk_alloc_request(request_queue_t *q, int rw, struct bio *bio,
int priv, gfp_t gfp_mask)
{
struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
if (!rq)
return NULL;
/*
* first three bits are identical in rq->flags and bio->bi_rw,
* see bio.h and blkdev.h
*/
rq->flags = rw;
if (priv) {
if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) {
mempool_free(rq, q->rq.rq_pool);
return NULL;
}
rq->flags |= REQ_ELVPRIV;
}
return rq;
}
/*
* ioc_batching returns true if the ioc is a valid batching request and
* should be given priority access to a request.
*/
static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
{
if (!ioc)
return 0;
/*
* Make sure the process is able to allocate at least 1 request
* even if the batch times out, otherwise we could theoretically
* lose wakeups.
*/
return ioc->nr_batch_requests == q->nr_batching ||
(ioc->nr_batch_requests > 0
&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
}
/*
* ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
* will cause the process to be a "batcher" on all queues in the system. This
* is the behaviour we want though - once it gets a wakeup it should be given
* a nice run.
*/
static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
{
if (!ioc || ioc_batching(q, ioc))
return;
ioc->nr_batch_requests = q->nr_batching;
ioc->last_waited = jiffies;
}
static void __freed_request(request_queue_t *q, int rw)
{
struct request_list *rl = &q->rq;
if (rl->count[rw] < queue_congestion_off_threshold(q))
clear_queue_congested(q, rw);
if (rl->count[rw] + 1 <= q->nr_requests) {
if (waitqueue_active(&rl->wait[rw]))
wake_up(&rl->wait[rw]);
blk_clear_queue_full(q, rw);
}
}
/*
* A request has just been released. Account for it, update the full and
* congestion status, wake up any waiters. Called under q->queue_lock.
*/
static void freed_request(request_queue_t *q, int rw, int priv)
{
struct request_list *rl = &q->rq;
rl->count[rw]--;
if (priv)
rl->elvpriv--;
__freed_request(q, rw);
if (unlikely(rl->starved[rw ^ 1]))
__freed_request(q, rw ^ 1);
}
#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
/*
* Get a free request, queue_lock must be held.
* Returns NULL on failure, with queue_lock held.
* Returns !NULL on success, with queue_lock *not held*.
*/
static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
gfp_t gfp_mask)
{
struct request *rq = NULL;
struct request_list *rl = &q->rq;
struct io_context *ioc = NULL;
int may_queue, priv;
may_queue = elv_may_queue(q, rw, bio);
if (may_queue == ELV_MQUEUE_NO)
goto rq_starved;
if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
if (rl->count[rw]+1 >= q->nr_requests) {
ioc = current_io_context(GFP_ATOMIC);
/*
* The queue will fill after this allocation, so set
* it as full, and mark this process as "batching".
* This process will be allowed to complete a batch of
* requests, others will be blocked.
*/
if (!blk_queue_full(q, rw)) {
ioc_set_batching(q, ioc);
blk_set_queue_full(q, rw);
} else {
if (may_queue != ELV_MQUEUE_MUST
&& !ioc_batching(q, ioc)) {
/*
* The queue is full and the allocating
* process is not a "batcher", and not
* exempted by the IO scheduler
*/
goto out;
}
}
}
set_queue_congested(q, rw);
}
/*
* Only allow batching queuers to allocate up to 50% over the defined
* limit of requests, otherwise we could have thousands of requests
* allocated with any setting of ->nr_requests
*/
if (rl->count[rw] >= (3 * q->nr_requests / 2))
goto out;
rl->count[rw]++;
rl->starved[rw] = 0;
priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
if (priv)
rl->elvpriv++;
spin_unlock_irq(q->queue_lock);
rq = blk_alloc_request(q, rw, bio, priv, gfp_mask);
if (unlikely(!rq)) {
/*
* Allocation failed presumably due to memory. Undo anything
* we might have messed up.
*
* Allocating task should really be put onto the front of the
* wait queue, but this is pretty rare.
*/
spin_lock_irq(q->queue_lock);
freed_request(q, rw, priv);
/*
* in the very unlikely event that allocation failed and no
* requests for this direction was pending, mark us starved
* so that freeing of a request in the other direction will
* notice us. another possible fix would be to split the
* rq mempool into READ and WRITE
*/
rq_starved:
if (unlikely(rl->count[rw] == 0))
rl->starved[rw] = 1;
goto out;
}
/*
* ioc may be NULL here, and ioc_batching will be false. That's
* OK, if the queue is under the request limit then requests need
* not count toward the nr_batch_requests limit. There will always
* be some limit enforced by BLK_BATCH_TIME.
*/
if (ioc_batching(q, ioc))
ioc->nr_batch_requests--;
rq_init(q, rq);
rq->rl = rl;
blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
out:
return rq;
}
/*
* No available requests for this queue, unplug the device and wait for some
* requests to become available.
*
* Called with q->queue_lock held, and returns with it unlocked.
*/
static struct request *get_request_wait(request_queue_t *q, int rw,
struct bio *bio)
{
struct request *rq;
rq = get_request(q, rw, bio, GFP_NOIO);
while (!rq) {
DEFINE_WAIT(wait);
struct request_list *rl = &q->rq;
prepare_to_wait_exclusive(&rl->wait[rw], &wait,
TASK_UNINTERRUPTIBLE);
rq = get_request(q, rw, bio, GFP_NOIO);
if (!rq) {
struct io_context *ioc;
blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
__generic_unplug_device(q);
spin_unlock_irq(q->queue_lock);
io_schedule();
/*
* After sleeping, we become a "batching" process and
* will be able to allocate at least one request, and
* up to a big batch of them for a small period time.
* See ioc_batching, ioc_set_batching
*/
ioc = current_io_context(GFP_NOIO);
ioc_set_batching(q, ioc);
spin_lock_irq(q->queue_lock);
}
finish_wait(&rl->wait[rw], &wait);
}
return rq;
}
struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
{
struct request *rq;
BUG_ON(rw != READ && rw != WRITE);
spin_lock_irq(q->queue_lock);
if (gfp_mask & __GFP_WAIT) {
rq = get_request_wait(q, rw, NULL);
} else {
rq = get_request(q, rw, NULL, gfp_mask);
if (!rq)
spin_unlock_irq(q->queue_lock);
}
/* q->queue_lock is unlocked at this point */
return rq;
}
EXPORT_SYMBOL(blk_get_request);
/**
* blk_requeue_request - put a request back on queue
* @q: request queue where request should be inserted
* @rq: request to be inserted
*
* Description:
* Drivers often keep queueing requests until the hardware cannot accept
* more, when that condition happens we need to put the request back
* on the queue. Must be called with queue lock held.
*/
void blk_requeue_request(request_queue_t *q, struct request *rq)
{
blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
if (blk_rq_tagged(rq))
blk_queue_end_tag(q, rq);
elv_requeue_request(q, rq);
}
EXPORT_SYMBOL(blk_requeue_request);
/**
* blk_insert_request - insert a special request in to a request queue
* @q: request queue where request should be inserted
* @rq: request to be inserted
* @at_head: insert request at head or tail of queue
* @data: private data
*
* Description:
* Many block devices need to execute commands asynchronously, so they don't
* block the whole kernel from preemption during request execution. This is
* accomplished normally by inserting aritficial requests tagged as
* REQ_SPECIAL in to the corresponding request queue, and letting them be
* scheduled for actual execution by the request queue.
*
* We have the option of inserting the head or the tail of the queue.
* Typically we use the tail for new ioctls and so forth. We use the head
* of the queue for things like a QUEUE_FULL message from a device, or a
* host that is unable to accept a particular command.
*/
void blk_insert_request(request_queue_t *q, struct request *rq,
int at_head, void *data)
{
int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
unsigned long flags;
/*
* tell I/O scheduler that this isn't a regular read/write (ie it
* must not attempt merges on this) and that it acts as a soft
* barrier
*/
rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
rq->special = data;
spin_lock_irqsave(q->queue_lock, flags);
/*
* If command is tagged, release the tag
*/
if (blk_rq_tagged(rq))
blk_queue_end_tag(q, rq);
drive_stat_acct(rq, rq->nr_sectors, 1);
__elv_add_request(q, rq, where, 0);
if (blk_queue_plugged(q))
__generic_unplug_device(q);
else
q->request_fn(q);
spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL(blk_insert_request);
/**
* blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
* @q: request queue where request should be inserted
* @rq: request structure to fill
* @ubuf: the user buffer
* @len: length of user data
*
* Description:
* Data will be mapped directly for zero copy io, if possible. Otherwise
* a kernel bounce buffer is used.
*
* A matching blk_rq_unmap_user() must be issued at the end of io, while
* still in process context.
*
* Note: The mapped bio may need to be bounced through blk_queue_bounce()
* before being submitted to the device, as pages mapped may be out of
* reach. It's the callers responsibility to make sure this happens. The
* original bio must be passed back in to blk_rq_unmap_user() for proper
* unmapping.
*/
int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
unsigned int len)
{
unsigned long uaddr;
struct bio *bio;
int reading;
if (len > (q->max_hw_sectors << 9))
return -EINVAL;
if (!len || !ubuf)
return -EINVAL;
reading = rq_data_dir(rq) == READ;
/*
* if alignment requirement is satisfied, map in user pages for
* direct dma. else, set up kernel bounce buffers
*/
uaddr = (unsigned long) ubuf;
if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
bio = bio_map_user(q, NULL, uaddr, len, reading);
else
bio = bio_copy_user(q, uaddr, len, reading);
if (!IS_ERR(bio)) {
rq->bio = rq->biotail = bio;
blk_rq_bio_prep(q, rq, bio);
rq->buffer = rq->data = NULL;
rq->data_len = len;
return 0;
}
/*
* bio is the err-ptr
*/
return PTR_ERR(bio);
}
EXPORT_SYMBOL(blk_rq_map_user);
/**
* blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
* @q: request queue where request should be inserted
* @rq: request to map data to
* @iov: pointer to the iovec
* @iov_count: number of elements in the iovec
*
* Description:
* Data will be mapped directly for zero copy io, if possible. Otherwise
* a kernel bounce buffer is used.
*
* A matching blk_rq_unmap_user() must be issued at the end of io, while
* still in process context.
*
* Note: The mapped bio may need to be bounced through blk_queue_bounce()
* before being submitted to the device, as pages mapped may be out of
* reach. It's the callers responsibility to make sure this happens. The
* original bio must be passed back in to blk_rq_unmap_user() for proper
* unmapping.
*/
int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
struct sg_iovec *iov, int iov_count)
{
struct bio *bio;
if (!iov || iov_count <= 0)
return -EINVAL;
/* we don't allow misaligned data like bio_map_user() does. If the
* user is using sg, they're expected to know the alignment constraints
* and respect them accordingly */
bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
if (IS_ERR(bio))
return PTR_ERR(bio);
rq->bio = rq->biotail = bio;
blk_rq_bio_prep(q, rq, bio);
rq->buffer = rq->data = NULL;
rq->data_len = bio->bi_size;
return 0;
}
EXPORT_SYMBOL(blk_rq_map_user_iov);
/**
* blk_rq_unmap_user - unmap a request with user data
* @bio: bio to be unmapped
* @ulen: length of user buffer
*
* Description:
* Unmap a bio previously mapped by blk_rq_map_user().
*/
int blk_rq_unmap_user(struct bio *bio, unsigned int ulen)
{
int ret = 0;
if (bio) {
if (bio_flagged(bio, BIO_USER_MAPPED))
bio_unmap_user(bio);
else
ret = bio_uncopy_user(bio);
}
return 0;
}
EXPORT_SYMBOL(blk_rq_unmap_user);
/**
* blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
* @q: request queue where request should be inserted
* @rq: request to fill
* @kbuf: the kernel buffer
* @len: length of user data
* @gfp_mask: memory allocation flags
*/
int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
unsigned int len, gfp_t gfp_mask)
{
struct bio *bio;
if (len > (q->max_hw_sectors << 9))
return -EINVAL;
if (!len || !kbuf)
return -EINVAL;
bio = bio_map_kern(q, kbuf, len, gfp_mask);
if (IS_ERR(bio))
return PTR_ERR(bio);
if (rq_data_dir(rq) == WRITE)
bio->bi_rw |= (1 << BIO_RW);
rq->bio = rq->biotail = bio;
blk_rq_bio_prep(q, rq, bio);
rq->buffer = rq->data = NULL;
rq->data_len = len;
return 0;
}
EXPORT_SYMBOL(blk_rq_map_kern);
/**
* blk_execute_rq_nowait - insert a request into queue for execution
* @q: queue to insert the request in
* @bd_disk: matching gendisk
* @rq: request to insert
* @at_head: insert request at head or tail of queue
* @done: I/O completion handler
*
* Description:
* Insert a fully prepared request at the back of the io scheduler queue
* for execution. Don't wait for completion.
*/
void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
struct request *rq, int at_head,
rq_end_io_fn *done)
{
int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
rq->rq_disk = bd_disk;
rq->flags |= REQ_NOMERGE;
rq->end_io = done;
WARN_ON(irqs_disabled());
spin_lock_irq(q->queue_lock);
__elv_add_request(q, rq, where, 1);
__generic_unplug_device(q);
spin_unlock_irq(q->queue_lock);
}
EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
/**
* blk_execute_rq - insert a request into queue for execution
* @q: queue to insert the request in
* @bd_disk: matching gendisk
* @rq: request to insert
* @at_head: insert request at head or tail of queue
*
* Description:
* Insert a fully prepared request at the back of the io scheduler queue
* for execution and wait for completion.
*/
int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
struct request *rq, int at_head)
{
DECLARE_COMPLETION_ONSTACK(wait);
char sense[SCSI_SENSE_BUFFERSIZE];
int err = 0;
/*
* we need an extra reference to the request, so we can look at
* it after io completion
*/
rq->ref_count++;
if (!rq->sense) {
memset(sense, 0, sizeof(sense));
rq->sense = sense;
rq->sense_len = 0;
}
rq->waiting = &wait;
blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
wait_for_completion(&wait);
rq->waiting = NULL;
if (rq->errors)
err = -EIO;
return err;
}
EXPORT_SYMBOL(blk_execute_rq);
/**
* blkdev_issue_flush - queue a flush
* @bdev: blockdev to issue flush for
* @error_sector: error sector
*
* Description:
* Issue a flush for the block device in question. Caller can supply
* room for storing the error offset in case of a flush error, if they
* wish to. Caller must run wait_for_completion() on its own.
*/
int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
{
request_queue_t *q;
if (bdev->bd_disk == NULL)
return -ENXIO;
q = bdev_get_queue(bdev);
if (!q)
return -ENXIO;
if (!q->issue_flush_fn)
return -EOPNOTSUPP;
return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
}
EXPORT_SYMBOL(blkdev_issue_flush);
static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
{
int rw = rq_data_dir(rq);
if (!blk_fs_request(rq) || !rq->rq_disk)
return;
if (!new_io) {
__disk_stat_inc(rq->rq_disk, merges[rw]);
} else {
disk_round_stats(rq->rq_disk);
rq->rq_disk->in_flight++;
}
}
/*
* add-request adds a request to the linked list.
* queue lock is held and interrupts disabled, as we muck with the
* request queue list.
*/
static inline void add_request(request_queue_t * q, struct request * req)
{
drive_stat_acct(req, req->nr_sectors, 1);
if (q->activity_fn)
q->activity_fn(q->activity_data, rq_data_dir(req));
/*
* elevator indicated where it wants this request to be
* inserted at elevator_merge time
*/
__elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
}
/*
* disk_round_stats() - Round off the performance stats on a struct
* disk_stats.
*
* The average IO queue length and utilisation statistics are maintained
* by observing the current state of the queue length and the amount of
* time it has been in this state for.
*
* Normally, that accounting is done on IO completion, but that can result
* in more than a second's worth of IO being accounted for within any one
* second, leading to >100% utilisation. To deal with that, we call this
* function to do a round-off before returning the results when reading
* /proc/diskstats. This accounts immediately for all queue usage up to
* the current jiffies and restarts the counters again.
*/
void disk_round_stats(struct gendisk *disk)
{
unsigned long now = jiffies;
if (now == disk->stamp)
return;
if (disk->in_flight) {
__disk_stat_add(disk, time_in_queue,
disk->in_flight * (now - disk->stamp));
__disk_stat_add(disk, io_ticks, (now - disk->stamp));
}
disk->stamp = now;
}
EXPORT_SYMBOL_GPL(disk_round_stats);
/*
* queue lock must be held
*/
void __blk_put_request(request_queue_t *q, struct request *req)
{
struct request_list *rl = req->rl;
if (unlikely(!q))
return;
if (unlikely(--req->ref_count))
return;
elv_completed_request(q, req);
req->rq_status = RQ_INACTIVE;
req->rl = NULL;
/*
* Request may not have originated from ll_rw_blk. if not,
* it didn't come out of our reserved rq pools
*/
if (rl) {
int rw = rq_data_dir(req);
int priv = req->flags & REQ_ELVPRIV;
BUG_ON(!list_empty(&req->queuelist));
blk_free_request(q, req);
freed_request(q, rw, priv);
}
}
EXPORT_SYMBOL_GPL(__blk_put_request);
void blk_put_request(struct request *req)
{
unsigned long flags;
request_queue_t *q = req->q;
/*
* Gee, IDE calls in w/ NULL q. Fix IDE and remove the
* following if (q) test.
*/
if (q) {
spin_lock_irqsave(q->queue_lock, flags);
__blk_put_request(q, req);
spin_unlock_irqrestore(q->queue_lock, flags);
}
}
EXPORT_SYMBOL(blk_put_request);
/**
* blk_end_sync_rq - executes a completion event on a request
* @rq: request to complete
* @error: end io status of the request
*/
void blk_end_sync_rq(struct request *rq, int error)
{
struct completion *waiting = rq->waiting;
rq->waiting = NULL;
__blk_put_request(rq->q, rq);
/*
* complete last, if this is a stack request the process (and thus
* the rq pointer) could be invalid right after this complete()
*/
complete(waiting);
}
EXPORT_SYMBOL(blk_end_sync_rq);
/**
* blk_congestion_wait - wait for a queue to become uncongested
* @rw: READ or WRITE
* @timeout: timeout in jiffies
*
* Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
* If no queues are congested then just wait for the next request to be
* returned.
*/
long blk_congestion_wait(int rw, long timeout)
{
long ret;
DEFINE_WAIT(wait);
wait_queue_head_t *wqh = &congestion_wqh[rw];
prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
ret = io_schedule_timeout(timeout);
finish_wait(wqh, &wait);
return ret;
}
EXPORT_SYMBOL(blk_congestion_wait);
/*
* Has to be called with the request spinlock acquired
*/
static int attempt_merge(request_queue_t *q, struct request *req,
struct request *next)
{
if (!rq_mergeable(req) || !rq_mergeable(next))
return 0;
/*
* not contiguous
*/
if (req->sector + req->nr_sectors != next->sector)
return 0;
if (rq_data_dir(req) != rq_data_dir(next)
|| req->rq_disk != next->rq_disk
|| next->waiting || next->special)
return 0;
/*
* If we are allowed to merge, then append bio list
* from next to rq and release next. merge_requests_fn
* will have updated segment counts, update sector
* counts here.
*/
if (!q->merge_requests_fn(q, req, next))
return 0;
/*
* At this point we have either done a back merge
* or front merge. We need the smaller start_time of
* the merged requests to be the current request
* for accounting purposes.
*/
if (time_after(req->start_time, next->start_time))
req->start_time = next->start_time;
req->biotail->bi_next = next->bio;
req->biotail = next->biotail;
req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
elv_merge_requests(q, req, next);
if (req->rq_disk) {
disk_round_stats(req->rq_disk);
req->rq_disk->in_flight--;
}
req->ioprio = ioprio_best(req->ioprio, next->ioprio);
__blk_put_request(q, next);
return 1;
}
static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
{
struct request *next = elv_latter_request(q, rq);
if (next)
return attempt_merge(q, rq, next);
return 0;
}
static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
{
struct request *prev = elv_former_request(q, rq);
if (prev)
return attempt_merge(q, prev, rq);
return 0;
}
static void init_request_from_bio(struct request *req, struct bio *bio)
{
req->flags |= REQ_CMD;
/*
* inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
*/
if (bio_rw_ahead(bio) || bio_failfast(bio))
req->flags |= REQ_FAILFAST;
/*
* REQ_BARRIER implies no merging, but lets make it explicit
*/
if (unlikely(bio_barrier(bio)))
req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
if (bio_sync(bio))
req->flags |= REQ_RW_SYNC;
req->errors = 0;
req->hard_sector = req->sector = bio->bi_sector;
req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
req->nr_phys_segments = bio_phys_segments(req->q, bio);
req->nr_hw_segments = bio_hw_segments(req->q, bio);
req->buffer = bio_data(bio); /* see ->buffer comment above */
req->waiting = NULL;
req->bio = req->biotail = bio;
req->ioprio = bio_prio(bio);
req->rq_disk = bio->bi_bdev->bd_disk;
req->start_time = jiffies;
}
static int __make_request(request_queue_t *q, struct bio *bio)
{
struct request *req;
int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
unsigned short prio;
sector_t sector;
sector = bio->bi_sector;
nr_sectors = bio_sectors(bio);
cur_nr_sectors = bio_cur_sectors(bio);
prio = bio_prio(bio);
rw = bio_data_dir(bio);
sync = bio_sync(bio);
/*
* low level driver can indicate that it wants pages above a
* certain limit bounced to low memory (ie for highmem, or even
* ISA dma in theory)
*/
blk_queue_bounce(q, &bio);
spin_lock_prefetch(q->queue_lock);
barrier = bio_barrier(bio);
if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
err = -EOPNOTSUPP;
goto end_io;
}
spin_lock_irq(q->queue_lock);
if (unlikely(barrier) || elv_queue_empty(q))
goto get_rq;
el_ret = elv_merge(q, &req, bio);
switch (el_ret) {
case ELEVATOR_BACK_MERGE:
BUG_ON(!rq_mergeable(req));
if (!q->back_merge_fn(q, req, bio))
break;
blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
req->biotail->bi_next = bio;
req->biotail = bio;
req->nr_sectors = req->hard_nr_sectors += nr_sectors;
req->ioprio = ioprio_best(req->ioprio, prio);
drive_stat_acct(req, nr_sectors, 0);
if (!attempt_back_merge(q, req))
elv_merged_request(q, req);
goto out;
case ELEVATOR_FRONT_MERGE:
BUG_ON(!rq_mergeable(req));
if (!q->front_merge_fn(q, req, bio))
break;
blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
bio->bi_next = req->bio;
req->bio = bio;
/*
* may not be valid. if the low level driver said
* it didn't need a bounce buffer then it better
* not touch req->buffer either...
*/
req->buffer = bio_data(bio);
req->current_nr_sectors = cur_nr_sectors;
req->hard_cur_sectors = cur_nr_sectors;
req->sector = req->hard_sector = sector;
req->nr_sectors = req->hard_nr_sectors += nr_sectors;
req->ioprio = ioprio_best(req->ioprio, prio);
drive_stat_acct(req, nr_sectors, 0);
if (!attempt_front_merge(q, req))
elv_merged_request(q, req);
goto out;
/* ELV_NO_MERGE: elevator says don't/can't merge. */
default:
;
}
get_rq:
/*
* Grab a free request. This is might sleep but can not fail.
* Returns with the queue unlocked.
*/
req = get_request_wait(q, rw, bio);
/*
* After dropping the lock and possibly sleeping here, our request
* may now be mergeable after it had proven unmergeable (above).
* We don't worry about that case for efficiency. It won't happen
* often, and the elevators are able to handle it.
*/
init_request_from_bio(req, bio);
spin_lock_irq(q->queue_lock);
if (elv_queue_empty(q))
blk_plug_device(q);
add_request(q, req);
out:
if (sync)
__generic_unplug_device(q);
spin_unlock_irq(q->queue_lock);
return 0;
end_io:
bio_endio(bio, nr_sectors << 9, err);
return 0;
}
/*
* If bio->bi_dev is a partition, remap the location
*/
static inline void blk_partition_remap(struct bio *bio)
{
struct block_device *bdev = bio->bi_bdev;
if (bdev != bdev->bd_contains) {
struct hd_struct *p = bdev->bd_part;
const int rw = bio_data_dir(bio);
p->sectors[rw] += bio_sectors(bio);
p->ios[rw]++;
bio->bi_sector += p->start_sect;
bio->bi_bdev = bdev->bd_contains;
}
}
static void handle_bad_sector(struct bio *bio)
{
char b[BDEVNAME_SIZE];
printk(KERN_INFO "attempt to access beyond end of device\n");
printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
bdevname(bio->bi_bdev, b),
bio->bi_rw,
(unsigned long long)bio->bi_sector + bio_sectors(bio),
(long long)(bio->bi_bdev->bd_inode->i_size >> 9));
set_bit(BIO_EOF, &bio->bi_flags);
}
/**
* generic_make_request: hand a buffer to its device driver for I/O
* @bio: The bio describing the location in memory and on the device.
*
* generic_make_request() is used to make I/O requests of block
* devices. It is passed a &struct bio, which describes the I/O that needs
* to be done.
*
* generic_make_request() does not return any status. The
* success/failure status of the request, along with notification of
* completion, is delivered asynchronously through the bio->bi_end_io
* function described (one day) else where.
*
* The caller of generic_make_request must make sure that bi_io_vec
* are set to describe the memory buffer, and that bi_dev and bi_sector are
* set to describe the device address, and the
* bi_end_io and optionally bi_private are set to describe how
* completion notification should be signaled.
*
* generic_make_request and the drivers it calls may use bi_next if this
* bio happens to be merged with someone else, and may change bi_dev and
* bi_sector for remaps as it sees fit. So the values of these fields
* should NOT be depended on after the call to generic_make_request.
*/
void generic_make_request(struct bio *bio)
{
request_queue_t *q;
sector_t maxsector;
int ret, nr_sectors = bio_sectors(bio);
dev_t old_dev;
might_sleep();
/* Test device or partition size, when known. */
maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
if (maxsector) {
sector_t sector = bio->bi_sector;
if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
/*
* This may well happen - the kernel calls bread()
* without checking the size of the device, e.g., when
* mounting a device.
*/
handle_bad_sector(bio);
goto end_io;
}
}
/*
* Resolve the mapping until finished. (drivers are
* still free to implement/resolve their own stacking
* by explicitly returning 0)
*
* NOTE: we don't repeat the blk_size check for each new device.
* Stacking drivers are expected to know what they are doing.
*/
maxsector = -1;
old_dev = 0;
do {
char b[BDEVNAME_SIZE];
q = bdev_get_queue(bio->bi_bdev);
if (!q) {
printk(KERN_ERR
"generic_make_request: Trying to access "
"nonexistent block-device %s (%Lu)\n",
bdevname(bio->bi_bdev, b),
(long long) bio->bi_sector);
end_io:
bio_endio(bio, bio->bi_size, -EIO);
break;
}
if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
printk("bio too big device %s (%u > %u)\n",
bdevname(bio->bi_bdev, b),
bio_sectors(bio),
q->max_hw_sectors);
goto end_io;
}
if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
goto end_io;
/*
* If this device has partitions, remap block n
* of partition p to block n+start(p) of the disk.
*/
blk_partition_remap(bio);
if (maxsector != -1)
blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
maxsector);
blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
maxsector = bio->bi_sector;
old_dev = bio->bi_bdev->bd_dev;
ret = q->make_request_fn(q, bio);
} while (ret);
}
EXPORT_SYMBOL(generic_make_request);
/**
* submit_bio: submit a bio to the block device layer for I/O
* @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
* @bio: The &struct bio which describes the I/O
*
* submit_bio() is very similar in purpose to generic_make_request(), and
* uses that function to do most of the work. Both are fairly rough
* interfaces, @bio must be presetup and ready for I/O.
*
*/
void submit_bio(int rw, struct bio *bio)
{
int count = bio_sectors(bio);
BIO_BUG_ON(!bio->bi_size);
BIO_BUG_ON(!bio->bi_io_vec);
bio->bi_rw |= rw;
if (rw & WRITE)
[PATCH] Light weight event counters The remaining counters in page_state after the zoned VM counter patches have been applied are all just for show in /proc/vmstat. They have no essential function for the VM. We use a simple increment of per cpu variables. In order to avoid the most severe races we disable preempt. Preempt does not prevent the race between an increment and an interrupt handler incrementing the same statistics counter. However, that race is exceedingly rare, we may only loose one increment or so and there is no requirement (at least not in kernel) that the vm event counters have to be accurate. In the non preempt case this results in a simple increment for each counter. For many architectures this will be reduced by the compiler to a single instruction. This single instruction is atomic for i386 and x86_64. And therefore even the rare race condition in an interrupt is avoided for both architectures in most cases. The patchset also adds an off switch for embedded systems that allows a building of linux kernels without these counters. The implementation of these counters is through inline code that hopefully results in only a single instruction increment instruction being emitted (i386, x86_64) or in the increment being hidden though instruction concurrency (EPIC architectures such as ia64 can get that done). Benefits: - VM event counter operations usually reduce to a single inline instruction on i386 and x86_64. - No interrupt disable, only preempt disable for the preempt case. Preempt disable can also be avoided by moving the counter into a spinlock. - Handling is similar to zoned VM counters. - Simple and easily extendable. - Can be omitted to reduce memory use for embedded use. References: RFC http://marc.theaimsgroup.com/?l=linux-kernel&m=113512330605497&w=2 RFC http://marc.theaimsgroup.com/?l=linux-kernel&m=114988082814934&w=2 local_t http://marc.theaimsgroup.com/?l=linux-kernel&m=114991748606690&w=2 V2 http://marc.theaimsgroup.com/?t=115014808400007&r=1&w=2 V3 http://marc.theaimsgroup.com/?l=linux-kernel&m=115024767022346&w=2 V4 http://marc.theaimsgroup.com/?l=linux-kernel&m=115047968808926&w=2 Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-30 08:55:45 +00:00
count_vm_events(PGPGOUT, count);
else
[PATCH] Light weight event counters The remaining counters in page_state after the zoned VM counter patches have been applied are all just for show in /proc/vmstat. They have no essential function for the VM. We use a simple increment of per cpu variables. In order to avoid the most severe races we disable preempt. Preempt does not prevent the race between an increment and an interrupt handler incrementing the same statistics counter. However, that race is exceedingly rare, we may only loose one increment or so and there is no requirement (at least not in kernel) that the vm event counters have to be accurate. In the non preempt case this results in a simple increment for each counter. For many architectures this will be reduced by the compiler to a single instruction. This single instruction is atomic for i386 and x86_64. And therefore even the rare race condition in an interrupt is avoided for both architectures in most cases. The patchset also adds an off switch for embedded systems that allows a building of linux kernels without these counters. The implementation of these counters is through inline code that hopefully results in only a single instruction increment instruction being emitted (i386, x86_64) or in the increment being hidden though instruction concurrency (EPIC architectures such as ia64 can get that done). Benefits: - VM event counter operations usually reduce to a single inline instruction on i386 and x86_64. - No interrupt disable, only preempt disable for the preempt case. Preempt disable can also be avoided by moving the counter into a spinlock. - Handling is similar to zoned VM counters. - Simple and easily extendable. - Can be omitted to reduce memory use for embedded use. References: RFC http://marc.theaimsgroup.com/?l=linux-kernel&m=113512330605497&w=2 RFC http://marc.theaimsgroup.com/?l=linux-kernel&m=114988082814934&w=2 local_t http://marc.theaimsgroup.com/?l=linux-kernel&m=114991748606690&w=2 V2 http://marc.theaimsgroup.com/?t=115014808400007&r=1&w=2 V3 http://marc.theaimsgroup.com/?l=linux-kernel&m=115024767022346&w=2 V4 http://marc.theaimsgroup.com/?l=linux-kernel&m=115047968808926&w=2 Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-30 08:55:45 +00:00
count_vm_events(PGPGIN, count);
if (unlikely(block_dump)) {
char b[BDEVNAME_SIZE];
printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
current->comm, current->pid,
(rw & WRITE) ? "WRITE" : "READ",
(unsigned long long)bio->bi_sector,
bdevname(bio->bi_bdev,b));
}
generic_make_request(bio);
}
EXPORT_SYMBOL(submit_bio);
static void blk_recalc_rq_segments(struct request *rq)
{
struct bio *bio, *prevbio = NULL;
int nr_phys_segs, nr_hw_segs;
unsigned int phys_size, hw_size;
request_queue_t *q = rq->q;
if (!rq->bio)
return;
phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
rq_for_each_bio(bio, rq) {
/* Force bio hw/phys segs to be recalculated. */
bio->bi_flags &= ~(1 << BIO_SEG_VALID);
nr_phys_segs += bio_phys_segments(q, bio);
nr_hw_segs += bio_hw_segments(q, bio);
if (prevbio) {
int pseg = phys_size + prevbio->bi_size + bio->bi_size;
int hseg = hw_size + prevbio->bi_size + bio->bi_size;
if (blk_phys_contig_segment(q, prevbio, bio) &&
pseg <= q->max_segment_size) {
nr_phys_segs--;
phys_size += prevbio->bi_size + bio->bi_size;
} else
phys_size = 0;
if (blk_hw_contig_segment(q, prevbio, bio) &&
hseg <= q->max_segment_size) {
nr_hw_segs--;
hw_size += prevbio->bi_size + bio->bi_size;
} else
hw_size = 0;
}
prevbio = bio;
}
rq->nr_phys_segments = nr_phys_segs;
rq->nr_hw_segments = nr_hw_segs;
}
static void blk_recalc_rq_sectors(struct request *rq, int nsect)
{
if (blk_fs_request(rq)) {
rq->hard_sector += nsect;
rq->hard_nr_sectors -= nsect;
/*
* Move the I/O submission pointers ahead if required.
*/
if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
(rq->sector <= rq->hard_sector)) {
rq->sector = rq->hard_sector;
rq->nr_sectors = rq->hard_nr_sectors;
rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
rq->current_nr_sectors = rq->hard_cur_sectors;
rq->buffer = bio_data(rq->bio);
}
/*
* if total number of sectors is less than the first segment
* size, something has gone terribly wrong
*/
if (rq->nr_sectors < rq->current_nr_sectors) {
printk("blk: request botched\n");
rq->nr_sectors = rq->current_nr_sectors;
}
}
}
static int __end_that_request_first(struct request *req, int uptodate,
int nr_bytes)
{
int total_bytes, bio_nbytes, error, next_idx = 0;
struct bio *bio;
blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
/*
* extend uptodate bool to allow < 0 value to be direct io error
*/
error = 0;
if (end_io_error(uptodate))
error = !uptodate ? -EIO : uptodate;
/*
* for a REQ_BLOCK_PC request, we want to carry any eventual
* sense key with us all the way through
*/
if (!blk_pc_request(req))
req->errors = 0;
if (!uptodate) {
if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
printk("end_request: I/O error, dev %s, sector %llu\n",
req->rq_disk ? req->rq_disk->disk_name : "?",
(unsigned long long)req->sector);
}
if (blk_fs_request(req) && req->rq_disk) {
const int rw = rq_data_dir(req);
disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
}
total_bytes = bio_nbytes = 0;
while ((bio = req->bio) != NULL) {
int nbytes;
if (nr_bytes >= bio->bi_size) {
req->bio = bio->bi_next;
nbytes = bio->bi_size;
if (!ordered_bio_endio(req, bio, nbytes, error))
bio_endio(bio, nbytes, error);
next_idx = 0;
bio_nbytes = 0;
} else {
int idx = bio->bi_idx + next_idx;
if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
blk_dump_rq_flags(req, "__end_that");
printk("%s: bio idx %d >= vcnt %d\n",
__FUNCTION__,
bio->bi_idx, bio->bi_vcnt);
break;
}
nbytes = bio_iovec_idx(bio, idx)->bv_len;
BIO_BUG_ON(nbytes > bio->bi_size);
/*
* not a complete bvec done
*/
if (unlikely(nbytes > nr_bytes)) {
bio_nbytes += nr_bytes;
total_bytes += nr_bytes;
break;
}
/*
* advance to the next vector
*/
next_idx++;
bio_nbytes += nbytes;
}
total_bytes += nbytes;
nr_bytes -= nbytes;
if ((bio = req->bio)) {
/*
* end more in this run, or just return 'not-done'
*/
if (unlikely(nr_bytes <= 0))
break;
}
}
/*
* completely done
*/
if (!req->bio)
return 0;
/*
* if the request wasn't completed, update state
*/
if (bio_nbytes) {
if (!ordered_bio_endio(req, bio, bio_nbytes, error))
bio_endio(bio, bio_nbytes, error);
bio->bi_idx += next_idx;
bio_iovec(bio)->bv_offset += nr_bytes;
bio_iovec(bio)->bv_len -= nr_bytes;
}
blk_recalc_rq_sectors(req, total_bytes >> 9);
blk_recalc_rq_segments(req);
return 1;
}
/**
* end_that_request_first - end I/O on a request
* @req: the request being processed
* @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
* @nr_sectors: number of sectors to end I/O on
*
* Description:
* Ends I/O on a number of sectors attached to @req, and sets it up
* for the next range of segments (if any) in the cluster.
*
* Return:
* 0 - we are done with this request, call end_that_request_last()
* 1 - still buffers pending for this request
**/
int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
{
return __end_that_request_first(req, uptodate, nr_sectors << 9);
}
EXPORT_SYMBOL(end_that_request_first);
/**
* end_that_request_chunk - end I/O on a request
* @req: the request being processed
* @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
* @nr_bytes: number of bytes to complete
*
* Description:
* Ends I/O on a number of bytes attached to @req, and sets it up
* for the next range of segments (if any). Like end_that_request_first(),
* but deals with bytes instead of sectors.
*
* Return:
* 0 - we are done with this request, call end_that_request_last()
* 1 - still buffers pending for this request
**/
int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
{
return __end_that_request_first(req, uptodate, nr_bytes);
}
EXPORT_SYMBOL(end_that_request_chunk);
/*
* splice the completion data to a local structure and hand off to
* process_completion_queue() to complete the requests
*/
static void blk_done_softirq(struct softirq_action *h)
{
struct list_head *cpu_list, local_list;
local_irq_disable();
cpu_list = &__get_cpu_var(blk_cpu_done);
list_replace_init(cpu_list, &local_list);
local_irq_enable();
while (!list_empty(&local_list)) {
struct request *rq = list_entry(local_list.next, struct request, donelist);
list_del_init(&rq->donelist);
rq->q->softirq_done_fn(rq);
}
}
#ifdef CONFIG_HOTPLUG_CPU
static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
void *hcpu)
{
/*
* If a CPU goes away, splice its entries to the current CPU
* and trigger a run of the softirq
*/
if (action == CPU_DEAD) {
int cpu = (unsigned long) hcpu;
local_irq_disable();
list_splice_init(&per_cpu(blk_cpu_done, cpu),
&__get_cpu_var(blk_cpu_done));
raise_softirq_irqoff(BLOCK_SOFTIRQ);
local_irq_enable();
}
return NOTIFY_OK;
}
static struct notifier_block __devinitdata blk_cpu_notifier = {
.notifier_call = blk_cpu_notify,
};
#endif /* CONFIG_HOTPLUG_CPU */
/**
* blk_complete_request - end I/O on a request
* @req: the request being processed
*
* Description:
* Ends all I/O on a request. It does not handle partial completions,
* unless the driver actually implements this in its completion callback
* through requeueing. Theh actual completion happens out-of-order,
* through a softirq handler. The user must have registered a completion
* callback through blk_queue_softirq_done().
**/
void blk_complete_request(struct request *req)
{
struct list_head *cpu_list;
unsigned long flags;
BUG_ON(!req->q->softirq_done_fn);
local_irq_save(flags);
cpu_list = &__get_cpu_var(blk_cpu_done);
list_add_tail(&req->donelist, cpu_list);
raise_softirq_irqoff(BLOCK_SOFTIRQ);
local_irq_restore(flags);
}
EXPORT_SYMBOL(blk_complete_request);
/*
* queue lock must be held
*/
void end_that_request_last(struct request *req, int uptodate)
{
struct gendisk *disk = req->rq_disk;
int error;
/*
* extend uptodate bool to allow < 0 value to be direct io error
*/
error = 0;
if (end_io_error(uptodate))
error = !uptodate ? -EIO : uptodate;
if (unlikely(laptop_mode) && blk_fs_request(req))
laptop_io_completion();
/*
* Account IO completion. bar_rq isn't accounted as a normal
* IO on queueing nor completion. Accounting the containing
* request is enough.
*/
if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
unsigned long duration = jiffies - req->start_time;
const int rw = rq_data_dir(req);
__disk_stat_inc(disk, ios[rw]);
__disk_stat_add(disk, ticks[rw], duration);
disk_round_stats(disk);
disk->in_flight--;
}
if (req->end_io)
req->end_io(req, error);
else
__blk_put_request(req->q, req);
}
EXPORT_SYMBOL(end_that_request_last);
void end_request(struct request *req, int uptodate)
{
if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
add_disk_randomness(req->rq_disk);
blkdev_dequeue_request(req);
end_that_request_last(req, uptodate);
}
}
EXPORT_SYMBOL(end_request);
void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
{
/* first two bits are identical in rq->flags and bio->bi_rw */
rq->flags |= (bio->bi_rw & 3);
rq->nr_phys_segments = bio_phys_segments(q, bio);
rq->nr_hw_segments = bio_hw_segments(q, bio);
rq->current_nr_sectors = bio_cur_sectors(bio);
rq->hard_cur_sectors = rq->current_nr_sectors;
rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
rq->buffer = bio_data(bio);
rq->bio = rq->biotail = bio;
}
EXPORT_SYMBOL(blk_rq_bio_prep);
int kblockd_schedule_work(struct work_struct *work)
{
return queue_work(kblockd_workqueue, work);
}
EXPORT_SYMBOL(kblockd_schedule_work);
void kblockd_flush(void)
{
flush_workqueue(kblockd_workqueue);
}
EXPORT_SYMBOL(kblockd_flush);
int __init blk_dev_init(void)
{
int i;
kblockd_workqueue = create_workqueue("kblockd");
if (!kblockd_workqueue)
panic("Failed to create kblockd\n");
request_cachep = kmem_cache_create("blkdev_requests",
sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
requestq_cachep = kmem_cache_create("blkdev_queue",
sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
iocontext_cachep = kmem_cache_create("blkdev_ioc",
sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
for_each_possible_cpu(i)
INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
register_hotcpu_notifier(&blk_cpu_notifier);
blk_max_low_pfn = max_low_pfn;
blk_max_pfn = max_pfn;
return 0;
}
/*
* IO Context helper functions
*/
void put_io_context(struct io_context *ioc)
{
if (ioc == NULL)
return;
BUG_ON(atomic_read(&ioc->refcount) == 0);
if (atomic_dec_and_test(&ioc->refcount)) {
struct cfq_io_context *cic;
rcu_read_lock();
if (ioc->aic && ioc->aic->dtor)
ioc->aic->dtor(ioc->aic);
if (ioc->cic_root.rb_node != NULL) {
struct rb_node *n = rb_first(&ioc->cic_root);
cic = rb_entry(n, struct cfq_io_context, rb_node);
cic->dtor(ioc);
}
rcu_read_unlock();
kmem_cache_free(iocontext_cachep, ioc);
}
}
EXPORT_SYMBOL(put_io_context);
/* Called by the exitting task */
void exit_io_context(void)
{
unsigned long flags;
struct io_context *ioc;
struct cfq_io_context *cic;
local_irq_save(flags);
task_lock(current);
ioc = current->io_context;
current->io_context = NULL;
ioc->task = NULL;
task_unlock(current);
local_irq_restore(flags);
if (ioc->aic && ioc->aic->exit)
ioc->aic->exit(ioc->aic);
if (ioc->cic_root.rb_node != NULL) {
cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
cic->exit(ioc);
}
put_io_context(ioc);
}
/*
* If the current task has no IO context then create one and initialise it.
* Otherwise, return its existing IO context.
*
* This returned IO context doesn't have a specifically elevated refcount,
* but since the current task itself holds a reference, the context can be
* used in general code, so long as it stays within `current` context.
*/
struct io_context *current_io_context(gfp_t gfp_flags)
{
struct task_struct *tsk = current;
struct io_context *ret;
ret = tsk->io_context;
if (likely(ret))
return ret;
ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
if (ret) {
atomic_set(&ret->refcount, 1);
ret->task = current;
ret->set_ioprio = NULL;
ret->last_waited = jiffies; /* doesn't matter... */
ret->nr_batch_requests = 0; /* because this is 0 */
ret->aic = NULL;
ret->cic_root.rb_node = NULL;
/* make sure set_task_ioprio() sees the settings above */
smp_wmb();
tsk->io_context = ret;
}
return ret;
}
EXPORT_SYMBOL(current_io_context);
/*
* If the current task has no IO context then create one and initialise it.
* If it does have a context, take a ref on it.
*
* This is always called in the context of the task which submitted the I/O.
*/
struct io_context *get_io_context(gfp_t gfp_flags)
{
struct io_context *ret;
ret = current_io_context(gfp_flags);
if (likely(ret))
atomic_inc(&ret->refcount);
return ret;
}
EXPORT_SYMBOL(get_io_context);
void copy_io_context(struct io_context **pdst, struct io_context **psrc)
{
struct io_context *src = *psrc;
struct io_context *dst = *pdst;
if (src) {
BUG_ON(atomic_read(&src->refcount) == 0);
atomic_inc(&src->refcount);
put_io_context(dst);
*pdst = src;
}
}
EXPORT_SYMBOL(copy_io_context);
void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
{
struct io_context *temp;
temp = *ioc1;
*ioc1 = *ioc2;
*ioc2 = temp;
}
EXPORT_SYMBOL(swap_io_context);
/*
* sysfs parts below
*/
struct queue_sysfs_entry {
struct attribute attr;
ssize_t (*show)(struct request_queue *, char *);
ssize_t (*store)(struct request_queue *, const char *, size_t);
};
static ssize_t
queue_var_show(unsigned int var, char *page)
{
return sprintf(page, "%d\n", var);
}
static ssize_t
queue_var_store(unsigned long *var, const char *page, size_t count)
{
char *p = (char *) page;
*var = simple_strtoul(p, &p, 10);
return count;
}
static ssize_t queue_requests_show(struct request_queue *q, char *page)
{
return queue_var_show(q->nr_requests, (page));
}
static ssize_t
queue_requests_store(struct request_queue *q, const char *page, size_t count)
{
struct request_list *rl = &q->rq;
unsigned long nr;
int ret = queue_var_store(&nr, page, count);
if (nr < BLKDEV_MIN_RQ)
nr = BLKDEV_MIN_RQ;
spin_lock_irq(q->queue_lock);
q->nr_requests = nr;
blk_queue_congestion_threshold(q);
if (rl->count[READ] >= queue_congestion_on_threshold(q))
set_queue_congested(q, READ);
else if (rl->count[READ] < queue_congestion_off_threshold(q))
clear_queue_congested(q, READ);
if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
set_queue_congested(q, WRITE);
else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
clear_queue_congested(q, WRITE);
if (rl->count[READ] >= q->nr_requests) {
blk_set_queue_full(q, READ);
} else if (rl->count[READ]+1 <= q->nr_requests) {
blk_clear_queue_full(q, READ);
wake_up(&rl->wait[READ]);
}
if (rl->count[WRITE] >= q->nr_requests) {
blk_set_queue_full(q, WRITE);
} else if (rl->count[WRITE]+1 <= q->nr_requests) {
blk_clear_queue_full(q, WRITE);
wake_up(&rl->wait[WRITE]);
}
spin_unlock_irq(q->queue_lock);
return ret;
}
static ssize_t queue_ra_show(struct request_queue *q, char *page)
{
int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
return queue_var_show(ra_kb, (page));
}
static ssize_t
queue_ra_store(struct request_queue *q, const char *page, size_t count)
{
unsigned long ra_kb;
ssize_t ret = queue_var_store(&ra_kb, page, count);
spin_lock_irq(q->queue_lock);
if (ra_kb > (q->max_sectors >> 1))
ra_kb = (q->max_sectors >> 1);
q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
spin_unlock_irq(q->queue_lock);
return ret;
}
static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
{
int max_sectors_kb = q->max_sectors >> 1;
return queue_var_show(max_sectors_kb, (page));
}
static ssize_t
queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
{
unsigned long max_sectors_kb,
max_hw_sectors_kb = q->max_hw_sectors >> 1,
page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
int ra_kb;
if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
return -EINVAL;
/*
* Take the queue lock to update the readahead and max_sectors
* values synchronously:
*/
spin_lock_irq(q->queue_lock);
/*
* Trim readahead window as well, if necessary:
*/
ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
if (ra_kb > max_sectors_kb)
q->backing_dev_info.ra_pages =
max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
q->max_sectors = max_sectors_kb << 1;
spin_unlock_irq(q->queue_lock);
return ret;
}
static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
{
int max_hw_sectors_kb = q->max_hw_sectors >> 1;
return queue_var_show(max_hw_sectors_kb, (page));
}
static struct queue_sysfs_entry queue_requests_entry = {
.attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
.show = queue_requests_show,
.store = queue_requests_store,
};
static struct queue_sysfs_entry queue_ra_entry = {
.attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
.show = queue_ra_show,
.store = queue_ra_store,
};
static struct queue_sysfs_entry queue_max_sectors_entry = {
.attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
.show = queue_max_sectors_show,
.store = queue_max_sectors_store,
};
static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
.attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
.show = queue_max_hw_sectors_show,
};
static struct queue_sysfs_entry queue_iosched_entry = {
.attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
.show = elv_iosched_show,
.store = elv_iosched_store,
};
static struct attribute *default_attrs[] = {
&queue_requests_entry.attr,
&queue_ra_entry.attr,
&queue_max_hw_sectors_entry.attr,
&queue_max_sectors_entry.attr,
&queue_iosched_entry.attr,
NULL,
};
#define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
static ssize_t
queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
{
struct queue_sysfs_entry *entry = to_queue(attr);
request_queue_t *q = container_of(kobj, struct request_queue, kobj);
ssize_t res;
if (!entry->show)
return -EIO;
mutex_lock(&q->sysfs_lock);
if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
mutex_unlock(&q->sysfs_lock);
return -ENOENT;
}
res = entry->show(q, page);
mutex_unlock(&q->sysfs_lock);
return res;
}
static ssize_t
queue_attr_store(struct kobject *kobj, struct attribute *attr,
const char *page, size_t length)
{
struct queue_sysfs_entry *entry = to_queue(attr);
request_queue_t *q = container_of(kobj, struct request_queue, kobj);
ssize_t res;
if (!entry->store)
return -EIO;
mutex_lock(&q->sysfs_lock);
if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
mutex_unlock(&q->sysfs_lock);
return -ENOENT;
}
res = entry->store(q, page, length);
mutex_unlock(&q->sysfs_lock);
return res;
}
static struct sysfs_ops queue_sysfs_ops = {
.show = queue_attr_show,
.store = queue_attr_store,
};
static struct kobj_type queue_ktype = {
.sysfs_ops = &queue_sysfs_ops,
.default_attrs = default_attrs,
.release = blk_release_queue,
};
int blk_register_queue(struct gendisk *disk)
{
int ret;
request_queue_t *q = disk->queue;
if (!q || !q->request_fn)
return -ENXIO;
q->kobj.parent = kobject_get(&disk->kobj);
ret = kobject_add(&q->kobj);
if (ret < 0)
return ret;
kobject_uevent(&q->kobj, KOBJ_ADD);
ret = elv_register_queue(q);
if (ret) {
kobject_uevent(&q->kobj, KOBJ_REMOVE);
kobject_del(&q->kobj);
return ret;
}
return 0;
}
void blk_unregister_queue(struct gendisk *disk)
{
request_queue_t *q = disk->queue;
if (q && q->request_fn) {
elv_unregister_queue(q);
kobject_uevent(&q->kobj, KOBJ_REMOVE);
kobject_del(&q->kobj);
kobject_put(&disk->kobj);
}
}