2019-05-27 06:55:01 +00:00
|
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
2017-02-03 18:20:20 +00:00
|
|
|
/*
|
|
|
|
* Handling of a single switch chip, part of a switch fabric
|
|
|
|
*
|
2017-03-28 19:10:36 +00:00
|
|
|
* Copyright (c) 2017 Savoir-faire Linux Inc.
|
|
|
|
* Vivien Didelot <vivien.didelot@savoirfairelinux.com>
|
2017-02-03 18:20:20 +00:00
|
|
|
*/
|
|
|
|
|
net: dsa: Unset vlan_filtering when ports leave the bridge
When ports are standalone (after they left the bridge), they should have
no VLAN filtering semantics (they should pass all traffic to the CPU).
Currently this is not true for switchdev drivers, because the bridge
"forgets" to unset that.
Normally one would think that doing this at the bridge layer would be a
better idea, i.e. call br_vlan_filter_toggle() from br_del_if(), similar
to how nbp_vlan_init() is called from br_add_if().
However what complicates that approach, and makes this one preferable,
is the fact that for the bridge core, vlan_filtering is a per-bridge
setting, whereas for switchdev/DSA it is per-port. Also there are
switches where the setting is per the entire device, and unsetting
vlan_filtering one by one, for each leaving port, would not be possible
from the bridge core without a certain level of awareness. So do this in
DSA and let drivers be unaware of it.
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-28 18:45:46 +00:00
|
|
|
#include <linux/if_bridge.h>
|
2017-02-03 18:20:20 +00:00
|
|
|
#include <linux/netdevice.h>
|
|
|
|
#include <linux/notifier.h>
|
2019-02-20 22:35:39 +00:00
|
|
|
#include <linux/if_vlan.h>
|
2017-05-19 21:00:52 +00:00
|
|
|
#include <net/switchdev.h>
|
2017-05-17 19:46:03 +00:00
|
|
|
|
|
|
|
#include "dsa_priv.h"
|
2017-02-03 18:20:20 +00:00
|
|
|
|
2017-05-19 21:00:52 +00:00
|
|
|
static unsigned int dsa_switch_fastest_ageing_time(struct dsa_switch *ds,
|
|
|
|
unsigned int ageing_time)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < ds->num_ports; ++i) {
|
2019-10-21 20:51:15 +00:00
|
|
|
struct dsa_port *dp = dsa_to_port(ds, i);
|
2017-05-19 21:00:52 +00:00
|
|
|
|
|
|
|
if (dp->ageing_time && dp->ageing_time < ageing_time)
|
|
|
|
ageing_time = dp->ageing_time;
|
|
|
|
}
|
|
|
|
|
|
|
|
return ageing_time;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int dsa_switch_ageing_time(struct dsa_switch *ds,
|
|
|
|
struct dsa_notifier_ageing_time_info *info)
|
|
|
|
{
|
|
|
|
unsigned int ageing_time = info->ageing_time;
|
2021-01-09 00:01:51 +00:00
|
|
|
|
|
|
|
if (ds->ageing_time_min && ageing_time < ds->ageing_time_min)
|
|
|
|
return -ERANGE;
|
|
|
|
|
|
|
|
if (ds->ageing_time_max && ageing_time > ds->ageing_time_max)
|
|
|
|
return -ERANGE;
|
2017-05-19 21:00:52 +00:00
|
|
|
|
|
|
|
/* Program the fastest ageing time in case of multiple bridges */
|
|
|
|
ageing_time = dsa_switch_fastest_ageing_time(ds, ageing_time);
|
|
|
|
|
|
|
|
if (ds->ops->set_ageing_time)
|
|
|
|
return ds->ops->set_ageing_time(ds, ageing_time);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
net: dsa: configure the MTU for switch ports
It is useful be able to configure port policers on a switch to accept
frames of various sizes:
- Increase the MTU for better throughput from the default of 1500 if it
is known that there is no 10/100 Mbps device in the network.
- Decrease the MTU to limit the latency of high-priority frames under
congestion, or work around various network segments that add extra
headers to packets which can't be fragmented.
For DSA slave ports, this is mostly a pass-through callback, called
through the regular ndo ops and at probe time (to ensure consistency
across all supported switches).
The CPU port is called with an MTU equal to the largest configured MTU
of the slave ports. The assumption is that the user might want to
sustain a bidirectional conversation with a partner over any switch
port.
The DSA master is configured the same as the CPU port, plus the tagger
overhead. Since the MTU is by definition L2 payload (sans Ethernet
header), it is up to each individual driver to figure out if it needs to
do anything special for its frame tags on the CPU port (it shouldn't
except in special cases). So the MTU does not contain the tagger
overhead on the CPU port.
However the MTU of the DSA master, minus the tagger overhead, is used as
a proxy for the MTU of the CPU port, which does not have a net device.
This is to avoid uselessly calling the .change_mtu function on the CPU
port when nothing should change.
So it is safe to assume that the DSA master and the CPU port MTUs are
apart by exactly the tagger's overhead in bytes.
Some changes were made around dsa_master_set_mtu(), function which was
now removed, for 2 reasons:
- dev_set_mtu() already calls dev_validate_mtu(), so it's redundant to
do the same thing in DSA
- __dev_set_mtu() returns 0 if ops->ndo_change_mtu is an absent method
That is to say, there's no need for this function in DSA, we can safely
call dev_set_mtu() directly, take the rtnl lock when necessary, and just
propagate whatever errors get reported (since the user probably wants to
be informed).
Some inspiration (mainly in the MTU DSA notifier) was taken from a
vaguely similar patch from Murali and Florian, who are credited as
co-developers down below.
Co-developed-by: Murali Krishna Policharla <murali.policharla@broadcom.com>
Signed-off-by: Murali Krishna Policharla <murali.policharla@broadcom.com>
Co-developed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-27 19:55:42 +00:00
|
|
|
static bool dsa_switch_mtu_match(struct dsa_switch *ds, int port,
|
|
|
|
struct dsa_notifier_mtu_info *info)
|
|
|
|
{
|
|
|
|
if (ds->index == info->sw_index)
|
|
|
|
return (port == info->port) || dsa_is_dsa_port(ds, port);
|
|
|
|
|
|
|
|
if (!info->propagate_upstream)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (dsa_is_dsa_port(ds, port) || dsa_is_cpu_port(ds, port))
|
|
|
|
return true;
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int dsa_switch_mtu(struct dsa_switch *ds,
|
|
|
|
struct dsa_notifier_mtu_info *info)
|
|
|
|
{
|
|
|
|
int port, ret;
|
|
|
|
|
|
|
|
if (!ds->ops->port_change_mtu)
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
|
|
|
|
for (port = 0; port < ds->num_ports; port++) {
|
|
|
|
if (dsa_switch_mtu_match(ds, port, info)) {
|
|
|
|
ret = ds->ops->port_change_mtu(ds, port, info->mtu);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2017-02-03 18:20:21 +00:00
|
|
|
static int dsa_switch_bridge_join(struct dsa_switch *ds,
|
|
|
|
struct dsa_notifier_bridge_info *info)
|
|
|
|
{
|
net: dsa: permit cross-chip bridging between all trees in the system
One way of utilizing DSA is by cascading switches which do not all have
compatible taggers. Consider the following real-life topology:
+---------------------------------------------------------------+
| LS1028A |
| +------------------------------+ |
| | DSA master for Felix | |
| |(internal ENETC port 2: eno2))| |
| +------------+------------------------------+-------------+ |
| | Felix embedded L2 switch | |
| | | |
| | +--------------+ +--------------+ +--------------+ | |
| | |DSA master for| |DSA master for| |DSA master for| | |
| | | SJA1105 1 | | SJA1105 2 | | SJA1105 3 | | |
| | |(Felix port 1)| |(Felix port 2)| |(Felix port 3)| | |
+--+-+--------------+---+--------------+---+--------------+--+--+
+-----------------------+ +-----------------------+ +-----------------------+
| SJA1105 switch 1 | | SJA1105 switch 2 | | SJA1105 switch 3 |
+-----+-----+-----+-----+ +-----+-----+-----+-----+ +-----+-----+-----+-----+
|sw1p0|sw1p1|sw1p2|sw1p3| |sw2p0|sw2p1|sw2p2|sw2p3| |sw3p0|sw3p1|sw3p2|sw3p3|
+-----+-----+-----+-----+ +-----+-----+-----+-----+ +-----+-----+-----+-----+
The above can be described in the device tree as follows (obviously not
complete):
mscc_felix {
dsa,member = <0 0>;
ports {
port@4 {
ethernet = <&enetc_port2>;
};
};
};
sja1105_switch1 {
dsa,member = <1 1>;
ports {
port@4 {
ethernet = <&mscc_felix_port1>;
};
};
};
sja1105_switch2 {
dsa,member = <2 2>;
ports {
port@4 {
ethernet = <&mscc_felix_port2>;
};
};
};
sja1105_switch3 {
dsa,member = <3 3>;
ports {
port@4 {
ethernet = <&mscc_felix_port3>;
};
};
};
Basically we instantiate one DSA switch tree for every hardware switch
in the system, but we still give them globally unique switch IDs (will
come back to that later). Having 3 disjoint switch trees makes the
tagger drivers "just work", because net devices are registered for the
3 Felix DSA master ports, and they are also DSA slave ports to the ENETC
port. So packets received on the ENETC port are stripped of their
stacked DSA tags one by one.
Currently, hardware bridging between ports on the same sja1105 chip is
possible, but switching between sja1105 ports on different chips is
handled by the software bridge. This is fine, but we can do better.
In fact, the dsa_8021q tag used by sja1105 is compatible with cascading.
In other words, a sja1105 switch can correctly parse and route a packet
containing a dsa_8021q tag. So if we could enable hardware bridging on
the Felix DSA master ports, cross-chip bridging could be completely
offloaded.
Such as system would be used as follows:
ip link add dev br0 type bridge && ip link set dev br0 up
for port in sw0p0 sw0p1 sw0p2 sw0p3 \
sw1p0 sw1p1 sw1p2 sw1p3 \
sw2p0 sw2p1 sw2p2 sw2p3; do
ip link set dev $port master br0
done
The above makes switching between ports on the same row be performed in
hardware, and between ports on different rows in software. Now assume
the Felix switch ports are called swp0, swp1, swp2. By running the
following extra commands:
ip link add dev br1 type bridge && ip link set dev br1 up
for port in swp0 swp1 swp2; do
ip link set dev $port master br1
done
the CPU no longer sees packets which traverse sja1105 switch boundaries
and can be forwarded directly by Felix. The br1 bridge would not be used
for any sort of traffic termination.
For this to work, we need to give drivers an opportunity to listen for
bridging events on DSA trees other than their own, and pass that other
tree index as argument. I have made the assumption, for the moment, that
the other existing DSA notifiers don't need to be broadcast to other
trees. That assumption might turn out to be incorrect. But in the
meantime, introduce a dsa_broadcast function, similar in purpose to
dsa_port_notify, which is used only by the bridging notifiers.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-05-10 16:37:41 +00:00
|
|
|
struct dsa_switch_tree *dst = ds->dst;
|
|
|
|
|
|
|
|
if (dst->index == info->tree_index && ds->index == info->sw_index &&
|
|
|
|
ds->ops->port_bridge_join)
|
2017-02-03 18:20:21 +00:00
|
|
|
return ds->ops->port_bridge_join(ds, info->port, info->br);
|
|
|
|
|
net: dsa: permit cross-chip bridging between all trees in the system
One way of utilizing DSA is by cascading switches which do not all have
compatible taggers. Consider the following real-life topology:
+---------------------------------------------------------------+
| LS1028A |
| +------------------------------+ |
| | DSA master for Felix | |
| |(internal ENETC port 2: eno2))| |
| +------------+------------------------------+-------------+ |
| | Felix embedded L2 switch | |
| | | |
| | +--------------+ +--------------+ +--------------+ | |
| | |DSA master for| |DSA master for| |DSA master for| | |
| | | SJA1105 1 | | SJA1105 2 | | SJA1105 3 | | |
| | |(Felix port 1)| |(Felix port 2)| |(Felix port 3)| | |
+--+-+--------------+---+--------------+---+--------------+--+--+
+-----------------------+ +-----------------------+ +-----------------------+
| SJA1105 switch 1 | | SJA1105 switch 2 | | SJA1105 switch 3 |
+-----+-----+-----+-----+ +-----+-----+-----+-----+ +-----+-----+-----+-----+
|sw1p0|sw1p1|sw1p2|sw1p3| |sw2p0|sw2p1|sw2p2|sw2p3| |sw3p0|sw3p1|sw3p2|sw3p3|
+-----+-----+-----+-----+ +-----+-----+-----+-----+ +-----+-----+-----+-----+
The above can be described in the device tree as follows (obviously not
complete):
mscc_felix {
dsa,member = <0 0>;
ports {
port@4 {
ethernet = <&enetc_port2>;
};
};
};
sja1105_switch1 {
dsa,member = <1 1>;
ports {
port@4 {
ethernet = <&mscc_felix_port1>;
};
};
};
sja1105_switch2 {
dsa,member = <2 2>;
ports {
port@4 {
ethernet = <&mscc_felix_port2>;
};
};
};
sja1105_switch3 {
dsa,member = <3 3>;
ports {
port@4 {
ethernet = <&mscc_felix_port3>;
};
};
};
Basically we instantiate one DSA switch tree for every hardware switch
in the system, but we still give them globally unique switch IDs (will
come back to that later). Having 3 disjoint switch trees makes the
tagger drivers "just work", because net devices are registered for the
3 Felix DSA master ports, and they are also DSA slave ports to the ENETC
port. So packets received on the ENETC port are stripped of their
stacked DSA tags one by one.
Currently, hardware bridging between ports on the same sja1105 chip is
possible, but switching between sja1105 ports on different chips is
handled by the software bridge. This is fine, but we can do better.
In fact, the dsa_8021q tag used by sja1105 is compatible with cascading.
In other words, a sja1105 switch can correctly parse and route a packet
containing a dsa_8021q tag. So if we could enable hardware bridging on
the Felix DSA master ports, cross-chip bridging could be completely
offloaded.
Such as system would be used as follows:
ip link add dev br0 type bridge && ip link set dev br0 up
for port in sw0p0 sw0p1 sw0p2 sw0p3 \
sw1p0 sw1p1 sw1p2 sw1p3 \
sw2p0 sw2p1 sw2p2 sw2p3; do
ip link set dev $port master br0
done
The above makes switching between ports on the same row be performed in
hardware, and between ports on different rows in software. Now assume
the Felix switch ports are called swp0, swp1, swp2. By running the
following extra commands:
ip link add dev br1 type bridge && ip link set dev br1 up
for port in swp0 swp1 swp2; do
ip link set dev $port master br1
done
the CPU no longer sees packets which traverse sja1105 switch boundaries
and can be forwarded directly by Felix. The br1 bridge would not be used
for any sort of traffic termination.
For this to work, we need to give drivers an opportunity to listen for
bridging events on DSA trees other than their own, and pass that other
tree index as argument. I have made the assumption, for the moment, that
the other existing DSA notifiers don't need to be broadcast to other
trees. That assumption might turn out to be incorrect. But in the
meantime, introduce a dsa_broadcast function, similar in purpose to
dsa_port_notify, which is used only by the bridging notifiers.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-05-10 16:37:41 +00:00
|
|
|
if ((dst->index != info->tree_index || ds->index != info->sw_index) &&
|
|
|
|
ds->ops->crosschip_bridge_join)
|
|
|
|
return ds->ops->crosschip_bridge_join(ds, info->tree_index,
|
|
|
|
info->sw_index,
|
2017-03-30 21:37:14 +00:00
|
|
|
info->port, info->br);
|
2017-02-03 18:20:21 +00:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int dsa_switch_bridge_leave(struct dsa_switch *ds,
|
|
|
|
struct dsa_notifier_bridge_info *info)
|
|
|
|
{
|
net: dsa: Unset vlan_filtering when ports leave the bridge
When ports are standalone (after they left the bridge), they should have
no VLAN filtering semantics (they should pass all traffic to the CPU).
Currently this is not true for switchdev drivers, because the bridge
"forgets" to unset that.
Normally one would think that doing this at the bridge layer would be a
better idea, i.e. call br_vlan_filter_toggle() from br_del_if(), similar
to how nbp_vlan_init() is called from br_add_if().
However what complicates that approach, and makes this one preferable,
is the fact that for the bridge core, vlan_filtering is a per-bridge
setting, whereas for switchdev/DSA it is per-port. Also there are
switches where the setting is per the entire device, and unsetting
vlan_filtering one by one, for each leaving port, would not be possible
from the bridge core without a certain level of awareness. So do this in
DSA and let drivers be unaware of it.
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-28 18:45:46 +00:00
|
|
|
bool unset_vlan_filtering = br_vlan_enabled(info->br);
|
net: dsa: permit cross-chip bridging between all trees in the system
One way of utilizing DSA is by cascading switches which do not all have
compatible taggers. Consider the following real-life topology:
+---------------------------------------------------------------+
| LS1028A |
| +------------------------------+ |
| | DSA master for Felix | |
| |(internal ENETC port 2: eno2))| |
| +------------+------------------------------+-------------+ |
| | Felix embedded L2 switch | |
| | | |
| | +--------------+ +--------------+ +--------------+ | |
| | |DSA master for| |DSA master for| |DSA master for| | |
| | | SJA1105 1 | | SJA1105 2 | | SJA1105 3 | | |
| | |(Felix port 1)| |(Felix port 2)| |(Felix port 3)| | |
+--+-+--------------+---+--------------+---+--------------+--+--+
+-----------------------+ +-----------------------+ +-----------------------+
| SJA1105 switch 1 | | SJA1105 switch 2 | | SJA1105 switch 3 |
+-----+-----+-----+-----+ +-----+-----+-----+-----+ +-----+-----+-----+-----+
|sw1p0|sw1p1|sw1p2|sw1p3| |sw2p0|sw2p1|sw2p2|sw2p3| |sw3p0|sw3p1|sw3p2|sw3p3|
+-----+-----+-----+-----+ +-----+-----+-----+-----+ +-----+-----+-----+-----+
The above can be described in the device tree as follows (obviously not
complete):
mscc_felix {
dsa,member = <0 0>;
ports {
port@4 {
ethernet = <&enetc_port2>;
};
};
};
sja1105_switch1 {
dsa,member = <1 1>;
ports {
port@4 {
ethernet = <&mscc_felix_port1>;
};
};
};
sja1105_switch2 {
dsa,member = <2 2>;
ports {
port@4 {
ethernet = <&mscc_felix_port2>;
};
};
};
sja1105_switch3 {
dsa,member = <3 3>;
ports {
port@4 {
ethernet = <&mscc_felix_port3>;
};
};
};
Basically we instantiate one DSA switch tree for every hardware switch
in the system, but we still give them globally unique switch IDs (will
come back to that later). Having 3 disjoint switch trees makes the
tagger drivers "just work", because net devices are registered for the
3 Felix DSA master ports, and they are also DSA slave ports to the ENETC
port. So packets received on the ENETC port are stripped of their
stacked DSA tags one by one.
Currently, hardware bridging between ports on the same sja1105 chip is
possible, but switching between sja1105 ports on different chips is
handled by the software bridge. This is fine, but we can do better.
In fact, the dsa_8021q tag used by sja1105 is compatible with cascading.
In other words, a sja1105 switch can correctly parse and route a packet
containing a dsa_8021q tag. So if we could enable hardware bridging on
the Felix DSA master ports, cross-chip bridging could be completely
offloaded.
Such as system would be used as follows:
ip link add dev br0 type bridge && ip link set dev br0 up
for port in sw0p0 sw0p1 sw0p2 sw0p3 \
sw1p0 sw1p1 sw1p2 sw1p3 \
sw2p0 sw2p1 sw2p2 sw2p3; do
ip link set dev $port master br0
done
The above makes switching between ports on the same row be performed in
hardware, and between ports on different rows in software. Now assume
the Felix switch ports are called swp0, swp1, swp2. By running the
following extra commands:
ip link add dev br1 type bridge && ip link set dev br1 up
for port in swp0 swp1 swp2; do
ip link set dev $port master br1
done
the CPU no longer sees packets which traverse sja1105 switch boundaries
and can be forwarded directly by Felix. The br1 bridge would not be used
for any sort of traffic termination.
For this to work, we need to give drivers an opportunity to listen for
bridging events on DSA trees other than their own, and pass that other
tree index as argument. I have made the assumption, for the moment, that
the other existing DSA notifiers don't need to be broadcast to other
trees. That assumption might turn out to be incorrect. But in the
meantime, introduce a dsa_broadcast function, similar in purpose to
dsa_port_notify, which is used only by the bridging notifiers.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-05-10 16:37:41 +00:00
|
|
|
struct dsa_switch_tree *dst = ds->dst;
|
net: dsa: Unset vlan_filtering when ports leave the bridge
When ports are standalone (after they left the bridge), they should have
no VLAN filtering semantics (they should pass all traffic to the CPU).
Currently this is not true for switchdev drivers, because the bridge
"forgets" to unset that.
Normally one would think that doing this at the bridge layer would be a
better idea, i.e. call br_vlan_filter_toggle() from br_del_if(), similar
to how nbp_vlan_init() is called from br_add_if().
However what complicates that approach, and makes this one preferable,
is the fact that for the bridge core, vlan_filtering is a per-bridge
setting, whereas for switchdev/DSA it is per-port. Also there are
switches where the setting is per the entire device, and unsetting
vlan_filtering one by one, for each leaving port, would not be possible
from the bridge core without a certain level of awareness. So do this in
DSA and let drivers be unaware of it.
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-28 18:45:46 +00:00
|
|
|
int err, i;
|
|
|
|
|
net: dsa: permit cross-chip bridging between all trees in the system
One way of utilizing DSA is by cascading switches which do not all have
compatible taggers. Consider the following real-life topology:
+---------------------------------------------------------------+
| LS1028A |
| +------------------------------+ |
| | DSA master for Felix | |
| |(internal ENETC port 2: eno2))| |
| +------------+------------------------------+-------------+ |
| | Felix embedded L2 switch | |
| | | |
| | +--------------+ +--------------+ +--------------+ | |
| | |DSA master for| |DSA master for| |DSA master for| | |
| | | SJA1105 1 | | SJA1105 2 | | SJA1105 3 | | |
| | |(Felix port 1)| |(Felix port 2)| |(Felix port 3)| | |
+--+-+--------------+---+--------------+---+--------------+--+--+
+-----------------------+ +-----------------------+ +-----------------------+
| SJA1105 switch 1 | | SJA1105 switch 2 | | SJA1105 switch 3 |
+-----+-----+-----+-----+ +-----+-----+-----+-----+ +-----+-----+-----+-----+
|sw1p0|sw1p1|sw1p2|sw1p3| |sw2p0|sw2p1|sw2p2|sw2p3| |sw3p0|sw3p1|sw3p2|sw3p3|
+-----+-----+-----+-----+ +-----+-----+-----+-----+ +-----+-----+-----+-----+
The above can be described in the device tree as follows (obviously not
complete):
mscc_felix {
dsa,member = <0 0>;
ports {
port@4 {
ethernet = <&enetc_port2>;
};
};
};
sja1105_switch1 {
dsa,member = <1 1>;
ports {
port@4 {
ethernet = <&mscc_felix_port1>;
};
};
};
sja1105_switch2 {
dsa,member = <2 2>;
ports {
port@4 {
ethernet = <&mscc_felix_port2>;
};
};
};
sja1105_switch3 {
dsa,member = <3 3>;
ports {
port@4 {
ethernet = <&mscc_felix_port3>;
};
};
};
Basically we instantiate one DSA switch tree for every hardware switch
in the system, but we still give them globally unique switch IDs (will
come back to that later). Having 3 disjoint switch trees makes the
tagger drivers "just work", because net devices are registered for the
3 Felix DSA master ports, and they are also DSA slave ports to the ENETC
port. So packets received on the ENETC port are stripped of their
stacked DSA tags one by one.
Currently, hardware bridging between ports on the same sja1105 chip is
possible, but switching between sja1105 ports on different chips is
handled by the software bridge. This is fine, but we can do better.
In fact, the dsa_8021q tag used by sja1105 is compatible with cascading.
In other words, a sja1105 switch can correctly parse and route a packet
containing a dsa_8021q tag. So if we could enable hardware bridging on
the Felix DSA master ports, cross-chip bridging could be completely
offloaded.
Such as system would be used as follows:
ip link add dev br0 type bridge && ip link set dev br0 up
for port in sw0p0 sw0p1 sw0p2 sw0p3 \
sw1p0 sw1p1 sw1p2 sw1p3 \
sw2p0 sw2p1 sw2p2 sw2p3; do
ip link set dev $port master br0
done
The above makes switching between ports on the same row be performed in
hardware, and between ports on different rows in software. Now assume
the Felix switch ports are called swp0, swp1, swp2. By running the
following extra commands:
ip link add dev br1 type bridge && ip link set dev br1 up
for port in swp0 swp1 swp2; do
ip link set dev $port master br1
done
the CPU no longer sees packets which traverse sja1105 switch boundaries
and can be forwarded directly by Felix. The br1 bridge would not be used
for any sort of traffic termination.
For this to work, we need to give drivers an opportunity to listen for
bridging events on DSA trees other than their own, and pass that other
tree index as argument. I have made the assumption, for the moment, that
the other existing DSA notifiers don't need to be broadcast to other
trees. That assumption might turn out to be incorrect. But in the
meantime, introduce a dsa_broadcast function, similar in purpose to
dsa_port_notify, which is used only by the bridging notifiers.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-05-10 16:37:41 +00:00
|
|
|
if (dst->index == info->tree_index && ds->index == info->sw_index &&
|
|
|
|
ds->ops->port_bridge_join)
|
2017-02-03 18:20:21 +00:00
|
|
|
ds->ops->port_bridge_leave(ds, info->port, info->br);
|
|
|
|
|
net: dsa: permit cross-chip bridging between all trees in the system
One way of utilizing DSA is by cascading switches which do not all have
compatible taggers. Consider the following real-life topology:
+---------------------------------------------------------------+
| LS1028A |
| +------------------------------+ |
| | DSA master for Felix | |
| |(internal ENETC port 2: eno2))| |
| +------------+------------------------------+-------------+ |
| | Felix embedded L2 switch | |
| | | |
| | +--------------+ +--------------+ +--------------+ | |
| | |DSA master for| |DSA master for| |DSA master for| | |
| | | SJA1105 1 | | SJA1105 2 | | SJA1105 3 | | |
| | |(Felix port 1)| |(Felix port 2)| |(Felix port 3)| | |
+--+-+--------------+---+--------------+---+--------------+--+--+
+-----------------------+ +-----------------------+ +-----------------------+
| SJA1105 switch 1 | | SJA1105 switch 2 | | SJA1105 switch 3 |
+-----+-----+-----+-----+ +-----+-----+-----+-----+ +-----+-----+-----+-----+
|sw1p0|sw1p1|sw1p2|sw1p3| |sw2p0|sw2p1|sw2p2|sw2p3| |sw3p0|sw3p1|sw3p2|sw3p3|
+-----+-----+-----+-----+ +-----+-----+-----+-----+ +-----+-----+-----+-----+
The above can be described in the device tree as follows (obviously not
complete):
mscc_felix {
dsa,member = <0 0>;
ports {
port@4 {
ethernet = <&enetc_port2>;
};
};
};
sja1105_switch1 {
dsa,member = <1 1>;
ports {
port@4 {
ethernet = <&mscc_felix_port1>;
};
};
};
sja1105_switch2 {
dsa,member = <2 2>;
ports {
port@4 {
ethernet = <&mscc_felix_port2>;
};
};
};
sja1105_switch3 {
dsa,member = <3 3>;
ports {
port@4 {
ethernet = <&mscc_felix_port3>;
};
};
};
Basically we instantiate one DSA switch tree for every hardware switch
in the system, but we still give them globally unique switch IDs (will
come back to that later). Having 3 disjoint switch trees makes the
tagger drivers "just work", because net devices are registered for the
3 Felix DSA master ports, and they are also DSA slave ports to the ENETC
port. So packets received on the ENETC port are stripped of their
stacked DSA tags one by one.
Currently, hardware bridging between ports on the same sja1105 chip is
possible, but switching between sja1105 ports on different chips is
handled by the software bridge. This is fine, but we can do better.
In fact, the dsa_8021q tag used by sja1105 is compatible with cascading.
In other words, a sja1105 switch can correctly parse and route a packet
containing a dsa_8021q tag. So if we could enable hardware bridging on
the Felix DSA master ports, cross-chip bridging could be completely
offloaded.
Such as system would be used as follows:
ip link add dev br0 type bridge && ip link set dev br0 up
for port in sw0p0 sw0p1 sw0p2 sw0p3 \
sw1p0 sw1p1 sw1p2 sw1p3 \
sw2p0 sw2p1 sw2p2 sw2p3; do
ip link set dev $port master br0
done
The above makes switching between ports on the same row be performed in
hardware, and between ports on different rows in software. Now assume
the Felix switch ports are called swp0, swp1, swp2. By running the
following extra commands:
ip link add dev br1 type bridge && ip link set dev br1 up
for port in swp0 swp1 swp2; do
ip link set dev $port master br1
done
the CPU no longer sees packets which traverse sja1105 switch boundaries
and can be forwarded directly by Felix. The br1 bridge would not be used
for any sort of traffic termination.
For this to work, we need to give drivers an opportunity to listen for
bridging events on DSA trees other than their own, and pass that other
tree index as argument. I have made the assumption, for the moment, that
the other existing DSA notifiers don't need to be broadcast to other
trees. That assumption might turn out to be incorrect. But in the
meantime, introduce a dsa_broadcast function, similar in purpose to
dsa_port_notify, which is used only by the bridging notifiers.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-05-10 16:37:41 +00:00
|
|
|
if ((dst->index != info->tree_index || ds->index != info->sw_index) &&
|
|
|
|
ds->ops->crosschip_bridge_join)
|
|
|
|
ds->ops->crosschip_bridge_leave(ds, info->tree_index,
|
|
|
|
info->sw_index, info->port,
|
2017-03-30 21:37:14 +00:00
|
|
|
info->br);
|
2017-02-03 18:20:21 +00:00
|
|
|
|
net: dsa: Unset vlan_filtering when ports leave the bridge
When ports are standalone (after they left the bridge), they should have
no VLAN filtering semantics (they should pass all traffic to the CPU).
Currently this is not true for switchdev drivers, because the bridge
"forgets" to unset that.
Normally one would think that doing this at the bridge layer would be a
better idea, i.e. call br_vlan_filter_toggle() from br_del_if(), similar
to how nbp_vlan_init() is called from br_add_if().
However what complicates that approach, and makes this one preferable,
is the fact that for the bridge core, vlan_filtering is a per-bridge
setting, whereas for switchdev/DSA it is per-port. Also there are
switches where the setting is per the entire device, and unsetting
vlan_filtering one by one, for each leaving port, would not be possible
from the bridge core without a certain level of awareness. So do this in
DSA and let drivers be unaware of it.
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-28 18:45:46 +00:00
|
|
|
/* If the bridge was vlan_filtering, the bridge core doesn't trigger an
|
|
|
|
* event for changing vlan_filtering setting upon slave ports leaving
|
|
|
|
* it. That is a good thing, because that lets us handle it and also
|
|
|
|
* handle the case where the switch's vlan_filtering setting is global
|
|
|
|
* (not per port). When that happens, the correct moment to trigger the
|
|
|
|
* vlan_filtering callback is only when the last port left this bridge.
|
|
|
|
*/
|
|
|
|
if (unset_vlan_filtering && ds->vlan_filtering_is_global) {
|
|
|
|
for (i = 0; i < ds->num_ports; i++) {
|
|
|
|
if (i == info->port)
|
|
|
|
continue;
|
|
|
|
if (dsa_to_port(ds, i)->bridge_dev == info->br) {
|
|
|
|
unset_vlan_filtering = false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (unset_vlan_filtering) {
|
2019-10-21 20:51:15 +00:00
|
|
|
err = dsa_port_vlan_filtering(dsa_to_port(ds, info->port),
|
net: switchdev: remove the transaction structure from port attributes
Since the introduction of the switchdev API, port attributes were
transmitted to drivers for offloading using a two-step transactional
model, with a prepare phase that was supposed to catch all errors, and a
commit phase that was supposed to never fail.
Some classes of failures can never be avoided, like hardware access, or
memory allocation. In the latter case, merely attempting to move the
memory allocation to the preparation phase makes it impossible to avoid
memory leaks, since commit 91cf8eceffc1 ("switchdev: Remove unused
transaction item queue") which has removed the unused mechanism of
passing on the allocated memory between one phase and another.
It is time we admit that separating the preparation from the commit
phase is something that is best left for the driver to decide, and not
something that should be baked into the API, especially since there are
no switchdev callers that depend on this.
This patch removes the struct switchdev_trans member from switchdev port
attribute notifier structures, and converts drivers to not look at this
member.
In part, this patch contains a revert of my previous commit 2e554a7a5d8a
("net: dsa: propagate switchdev vlan_filtering prepare phase to
drivers").
For the most part, the conversion was trivial except for:
- Rocker's world implementation based on Broadcom OF-DPA had an odd
implementation of ofdpa_port_attr_bridge_flags_set. The conversion was
done mechanically, by pasting the implementation twice, then only
keeping the code that would get executed during prepare phase on top,
then only keeping the code that gets executed during the commit phase
on bottom, then simplifying the resulting code until this was obtained.
- DSA's offloading of STP state, bridge flags, VLAN filtering and
multicast router could be converted right away. But the ageing time
could not, so a shim was introduced and this was left for a further
commit.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Acked-by: Jiri Pirko <jiri@nvidia.com>
Reviewed-by: Kurt Kanzenbach <kurt@linutronix.de> # hellcreek
Reviewed-by: Linus Walleij <linus.walleij@linaro.org> # RTL8366RB
Reviewed-by: Ido Schimmel <idosch@nvidia.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-09 00:01:50 +00:00
|
|
|
false);
|
net: dsa: Unset vlan_filtering when ports leave the bridge
When ports are standalone (after they left the bridge), they should have
no VLAN filtering semantics (they should pass all traffic to the CPU).
Currently this is not true for switchdev drivers, because the bridge
"forgets" to unset that.
Normally one would think that doing this at the bridge layer would be a
better idea, i.e. call br_vlan_filter_toggle() from br_del_if(), similar
to how nbp_vlan_init() is called from br_add_if().
However what complicates that approach, and makes this one preferable,
is the fact that for the bridge core, vlan_filtering is a per-bridge
setting, whereas for switchdev/DSA it is per-port. Also there are
switches where the setting is per the entire device, and unsetting
vlan_filtering one by one, for each leaving port, would not be possible
from the bridge core without a certain level of awareness. So do this in
DSA and let drivers be unaware of it.
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-28 18:45:46 +00:00
|
|
|
if (err && err != EOPNOTSUPP)
|
|
|
|
return err;
|
|
|
|
}
|
2017-02-03 18:20:21 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2017-05-19 21:00:53 +00:00
|
|
|
static int dsa_switch_fdb_add(struct dsa_switch *ds,
|
|
|
|
struct dsa_notifier_fdb_info *info)
|
|
|
|
{
|
2017-11-30 17:56:43 +00:00
|
|
|
int port = dsa_towards_port(ds, info->sw_index, info->port);
|
2017-05-19 21:00:53 +00:00
|
|
|
|
2017-08-06 13:15:40 +00:00
|
|
|
if (!ds->ops->port_fdb_add)
|
|
|
|
return -EOPNOTSUPP;
|
2017-05-19 21:00:53 +00:00
|
|
|
|
2017-11-30 17:56:43 +00:00
|
|
|
return ds->ops->port_fdb_add(ds, port, info->addr, info->vid);
|
2017-05-19 21:00:53 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int dsa_switch_fdb_del(struct dsa_switch *ds,
|
|
|
|
struct dsa_notifier_fdb_info *info)
|
|
|
|
{
|
2017-11-30 17:56:43 +00:00
|
|
|
int port = dsa_towards_port(ds, info->sw_index, info->port);
|
2017-05-19 21:00:53 +00:00
|
|
|
|
|
|
|
if (!ds->ops->port_fdb_del)
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
|
2017-11-30 17:56:43 +00:00
|
|
|
return ds->ops->port_fdb_del(ds, port, info->addr, info->vid);
|
2017-05-19 21:00:53 +00:00
|
|
|
}
|
|
|
|
|
2021-01-13 08:42:53 +00:00
|
|
|
static int dsa_switch_lag_change(struct dsa_switch *ds,
|
|
|
|
struct dsa_notifier_lag_info *info)
|
|
|
|
{
|
|
|
|
if (ds->index == info->sw_index && ds->ops->port_lag_change)
|
|
|
|
return ds->ops->port_lag_change(ds, info->port);
|
|
|
|
|
|
|
|
if (ds->index != info->sw_index && ds->ops->crosschip_lag_change)
|
|
|
|
return ds->ops->crosschip_lag_change(ds, info->sw_index,
|
|
|
|
info->port);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int dsa_switch_lag_join(struct dsa_switch *ds,
|
|
|
|
struct dsa_notifier_lag_info *info)
|
|
|
|
{
|
|
|
|
if (ds->index == info->sw_index && ds->ops->port_lag_join)
|
|
|
|
return ds->ops->port_lag_join(ds, info->port, info->lag,
|
|
|
|
info->info);
|
|
|
|
|
|
|
|
if (ds->index != info->sw_index && ds->ops->crosschip_lag_join)
|
|
|
|
return ds->ops->crosschip_lag_join(ds, info->sw_index,
|
|
|
|
info->port, info->lag,
|
|
|
|
info->info);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int dsa_switch_lag_leave(struct dsa_switch *ds,
|
|
|
|
struct dsa_notifier_lag_info *info)
|
|
|
|
{
|
|
|
|
if (ds->index == info->sw_index && ds->ops->port_lag_leave)
|
|
|
|
return ds->ops->port_lag_leave(ds, info->port, info->lag);
|
|
|
|
|
|
|
|
if (ds->index != info->sw_index && ds->ops->crosschip_lag_leave)
|
|
|
|
return ds->ops->crosschip_lag_leave(ds, info->sw_index,
|
|
|
|
info->port, info->lag);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
net: dsa: remove bitmap operations
The bitmap operations were introduced to simplify the switch drivers
in the future, since most of them could implement the common VLAN and
MDB operations (add, del, dump) with simple functions taking all target
ports at once, and thus limiting the number of hardware accesses.
Programming an MDB or VLAN this way in a single operation would clearly
simplify the drivers a lot but would require a new get-set interface
in DSA. The usage of such bitmap from the stack also raised concerned
in the past, leading to the dynamic allocation of a new ds->_bitmap
member in the dsa_switch structure. So let's get rid of them for now.
This commit nicely wraps the ds->ops->port_{mdb,vlan}_{prepare,add}
switch operations into new dsa_switch_{mdb,vlan}_{prepare,add}
variants not using any bitmap argument anymore.
New dsa_switch_{mdb,vlan}_match helpers have been introduced to make
clear which local port of a switch must be programmed with the target
object. While the targeted user port is an obvious candidate, the
DSA links must also be programmed, as well as the CPU port for VLANs.
While at it, also remove local variables that are only used once.
Signed-off-by: Vivien Didelot <vivien.didelot@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-25 17:25:15 +00:00
|
|
|
static bool dsa_switch_mdb_match(struct dsa_switch *ds, int port,
|
|
|
|
struct dsa_notifier_mdb_info *info)
|
|
|
|
{
|
|
|
|
if (ds->index == info->sw_index && port == info->port)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
if (dsa_is_dsa_port(ds, port))
|
|
|
|
return true;
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
net: switchdev: remove the transaction structure from port object notifiers
Since the introduction of the switchdev API, port objects were
transmitted to drivers for offloading using a two-step transactional
model, with a prepare phase that was supposed to catch all errors, and a
commit phase that was supposed to never fail.
Some classes of failures can never be avoided, like hardware access, or
memory allocation. In the latter case, merely attempting to move the
memory allocation to the preparation phase makes it impossible to avoid
memory leaks, since commit 91cf8eceffc1 ("switchdev: Remove unused
transaction item queue") which has removed the unused mechanism of
passing on the allocated memory between one phase and another.
It is time we admit that separating the preparation from the commit
phase is something that is best left for the driver to decide, and not
something that should be baked into the API, especially since there are
no switchdev callers that depend on this.
This patch removes the struct switchdev_trans member from switchdev port
object notifier structures, and converts drivers to not look at this
member.
Where driver conversion is trivial (like in the case of the Marvell
Prestera driver, NXP DPAA2 switch, TI CPSW, and Rocker drivers), it is
done in this patch.
Where driver conversion needs more attention (DSA, Mellanox Spectrum),
the conversion is left for subsequent patches and here we only fake the
prepare/commit phases at a lower level, just not in the switchdev
notifier itself.
Where the code has a natural structure that is best left alone as a
preparation and a commit phase (as in the case of the Ocelot switch),
that structure is left in place, just made to not depend upon the
switchdev transactional model.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Acked-by: Jiri Pirko <jiri@nvidia.com>
Reviewed-by: Ido Schimmel <idosch@nvidia.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-09 00:01:48 +00:00
|
|
|
static int dsa_switch_mdb_add(struct dsa_switch *ds,
|
|
|
|
struct dsa_notifier_mdb_info *info)
|
2017-11-30 16:24:00 +00:00
|
|
|
{
|
2021-01-09 00:01:52 +00:00
|
|
|
int err = 0;
|
|
|
|
int port;
|
2017-11-30 16:24:00 +00:00
|
|
|
|
2021-01-09 00:01:52 +00:00
|
|
|
if (!ds->ops->port_mdb_add)
|
2017-11-30 16:24:00 +00:00
|
|
|
return -EOPNOTSUPP;
|
|
|
|
|
net: dsa: remove bitmap operations
The bitmap operations were introduced to simplify the switch drivers
in the future, since most of them could implement the common VLAN and
MDB operations (add, del, dump) with simple functions taking all target
ports at once, and thus limiting the number of hardware accesses.
Programming an MDB or VLAN this way in a single operation would clearly
simplify the drivers a lot but would require a new get-set interface
in DSA. The usage of such bitmap from the stack also raised concerned
in the past, leading to the dynamic allocation of a new ds->_bitmap
member in the dsa_switch structure. So let's get rid of them for now.
This commit nicely wraps the ds->ops->port_{mdb,vlan}_{prepare,add}
switch operations into new dsa_switch_{mdb,vlan}_{prepare,add}
variants not using any bitmap argument anymore.
New dsa_switch_{mdb,vlan}_match helpers have been introduced to make
clear which local port of a switch must be programmed with the target
object. While the targeted user port is an obvious candidate, the
DSA links must also be programmed, as well as the CPU port for VLANs.
While at it, also remove local variables that are only used once.
Signed-off-by: Vivien Didelot <vivien.didelot@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-25 17:25:15 +00:00
|
|
|
for (port = 0; port < ds->num_ports; port++) {
|
|
|
|
if (dsa_switch_mdb_match(ds, port, info)) {
|
2021-01-09 00:01:52 +00:00
|
|
|
err = ds->ops->port_mdb_add(ds, port, info->mdb);
|
net: dsa: remove bitmap operations
The bitmap operations were introduced to simplify the switch drivers
in the future, since most of them could implement the common VLAN and
MDB operations (add, del, dump) with simple functions taking all target
ports at once, and thus limiting the number of hardware accesses.
Programming an MDB or VLAN this way in a single operation would clearly
simplify the drivers a lot but would require a new get-set interface
in DSA. The usage of such bitmap from the stack also raised concerned
in the past, leading to the dynamic allocation of a new ds->_bitmap
member in the dsa_switch structure. So let's get rid of them for now.
This commit nicely wraps the ds->ops->port_{mdb,vlan}_{prepare,add}
switch operations into new dsa_switch_{mdb,vlan}_{prepare,add}
variants not using any bitmap argument anymore.
New dsa_switch_{mdb,vlan}_match helpers have been introduced to make
clear which local port of a switch must be programmed with the target
object. While the targeted user port is an obvious candidate, the
DSA links must also be programmed, as well as the CPU port for VLANs.
While at it, also remove local variables that are only used once.
Signed-off-by: Vivien Didelot <vivien.didelot@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-25 17:25:15 +00:00
|
|
|
if (err)
|
2021-01-09 00:01:52 +00:00
|
|
|
break;
|
net: dsa: remove bitmap operations
The bitmap operations were introduced to simplify the switch drivers
in the future, since most of them could implement the common VLAN and
MDB operations (add, del, dump) with simple functions taking all target
ports at once, and thus limiting the number of hardware accesses.
Programming an MDB or VLAN this way in a single operation would clearly
simplify the drivers a lot but would require a new get-set interface
in DSA. The usage of such bitmap from the stack also raised concerned
in the past, leading to the dynamic allocation of a new ds->_bitmap
member in the dsa_switch structure. So let's get rid of them for now.
This commit nicely wraps the ds->ops->port_{mdb,vlan}_{prepare,add}
switch operations into new dsa_switch_{mdb,vlan}_{prepare,add}
variants not using any bitmap argument anymore.
New dsa_switch_{mdb,vlan}_match helpers have been introduced to make
clear which local port of a switch must be programmed with the target
object. While the targeted user port is an obvious candidate, the
DSA links must also be programmed, as well as the CPU port for VLANs.
While at it, also remove local variables that are only used once.
Signed-off-by: Vivien Didelot <vivien.didelot@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-25 17:25:15 +00:00
|
|
|
}
|
2017-11-30 16:24:00 +00:00
|
|
|
}
|
|
|
|
|
2021-01-09 00:01:52 +00:00
|
|
|
return err;
|
2017-05-19 21:00:54 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int dsa_switch_mdb_del(struct dsa_switch *ds,
|
|
|
|
struct dsa_notifier_mdb_info *info)
|
|
|
|
{
|
|
|
|
if (!ds->ops->port_mdb_del)
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
|
2017-06-15 20:14:48 +00:00
|
|
|
if (ds->index == info->sw_index)
|
net: dsa: remove bitmap operations
The bitmap operations were introduced to simplify the switch drivers
in the future, since most of them could implement the common VLAN and
MDB operations (add, del, dump) with simple functions taking all target
ports at once, and thus limiting the number of hardware accesses.
Programming an MDB or VLAN this way in a single operation would clearly
simplify the drivers a lot but would require a new get-set interface
in DSA. The usage of such bitmap from the stack also raised concerned
in the past, leading to the dynamic allocation of a new ds->_bitmap
member in the dsa_switch structure. So let's get rid of them for now.
This commit nicely wraps the ds->ops->port_{mdb,vlan}_{prepare,add}
switch operations into new dsa_switch_{mdb,vlan}_{prepare,add}
variants not using any bitmap argument anymore.
New dsa_switch_{mdb,vlan}_match helpers have been introduced to make
clear which local port of a switch must be programmed with the target
object. While the targeted user port is an obvious candidate, the
DSA links must also be programmed, as well as the CPU port for VLANs.
While at it, also remove local variables that are only used once.
Signed-off-by: Vivien Didelot <vivien.didelot@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-25 17:25:15 +00:00
|
|
|
return ds->ops->port_mdb_del(ds, info->port, info->mdb);
|
2017-06-15 20:14:48 +00:00
|
|
|
|
|
|
|
return 0;
|
2017-05-19 21:00:54 +00:00
|
|
|
}
|
|
|
|
|
net: dsa: remove bitmap operations
The bitmap operations were introduced to simplify the switch drivers
in the future, since most of them could implement the common VLAN and
MDB operations (add, del, dump) with simple functions taking all target
ports at once, and thus limiting the number of hardware accesses.
Programming an MDB or VLAN this way in a single operation would clearly
simplify the drivers a lot but would require a new get-set interface
in DSA. The usage of such bitmap from the stack also raised concerned
in the past, leading to the dynamic allocation of a new ds->_bitmap
member in the dsa_switch structure. So let's get rid of them for now.
This commit nicely wraps the ds->ops->port_{mdb,vlan}_{prepare,add}
switch operations into new dsa_switch_{mdb,vlan}_{prepare,add}
variants not using any bitmap argument anymore.
New dsa_switch_{mdb,vlan}_match helpers have been introduced to make
clear which local port of a switch must be programmed with the target
object. While the targeted user port is an obvious candidate, the
DSA links must also be programmed, as well as the CPU port for VLANs.
While at it, also remove local variables that are only used once.
Signed-off-by: Vivien Didelot <vivien.didelot@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-25 17:25:15 +00:00
|
|
|
static bool dsa_switch_vlan_match(struct dsa_switch *ds, int port,
|
|
|
|
struct dsa_notifier_vlan_info *info)
|
|
|
|
{
|
|
|
|
if (ds->index == info->sw_index && port == info->port)
|
|
|
|
return true;
|
|
|
|
|
2019-08-25 17:25:19 +00:00
|
|
|
if (dsa_is_dsa_port(ds, port))
|
net: dsa: remove bitmap operations
The bitmap operations were introduced to simplify the switch drivers
in the future, since most of them could implement the common VLAN and
MDB operations (add, del, dump) with simple functions taking all target
ports at once, and thus limiting the number of hardware accesses.
Programming an MDB or VLAN this way in a single operation would clearly
simplify the drivers a lot but would require a new get-set interface
in DSA. The usage of such bitmap from the stack also raised concerned
in the past, leading to the dynamic allocation of a new ds->_bitmap
member in the dsa_switch structure. So let's get rid of them for now.
This commit nicely wraps the ds->ops->port_{mdb,vlan}_{prepare,add}
switch operations into new dsa_switch_{mdb,vlan}_{prepare,add}
variants not using any bitmap argument anymore.
New dsa_switch_{mdb,vlan}_match helpers have been introduced to make
clear which local port of a switch must be programmed with the target
object. While the targeted user port is an obvious candidate, the
DSA links must also be programmed, as well as the CPU port for VLANs.
While at it, also remove local variables that are only used once.
Signed-off-by: Vivien Didelot <vivien.didelot@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-25 17:25:15 +00:00
|
|
|
return true;
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
net: switchdev: remove the transaction structure from port object notifiers
Since the introduction of the switchdev API, port objects were
transmitted to drivers for offloading using a two-step transactional
model, with a prepare phase that was supposed to catch all errors, and a
commit phase that was supposed to never fail.
Some classes of failures can never be avoided, like hardware access, or
memory allocation. In the latter case, merely attempting to move the
memory allocation to the preparation phase makes it impossible to avoid
memory leaks, since commit 91cf8eceffc1 ("switchdev: Remove unused
transaction item queue") which has removed the unused mechanism of
passing on the allocated memory between one phase and another.
It is time we admit that separating the preparation from the commit
phase is something that is best left for the driver to decide, and not
something that should be baked into the API, especially since there are
no switchdev callers that depend on this.
This patch removes the struct switchdev_trans member from switchdev port
object notifier structures, and converts drivers to not look at this
member.
Where driver conversion is trivial (like in the case of the Marvell
Prestera driver, NXP DPAA2 switch, TI CPSW, and Rocker drivers), it is
done in this patch.
Where driver conversion needs more attention (DSA, Mellanox Spectrum),
the conversion is left for subsequent patches and here we only fake the
prepare/commit phases at a lower level, just not in the switchdev
notifier itself.
Where the code has a natural structure that is best left alone as a
preparation and a commit phase (as in the case of the Ocelot switch),
that structure is left in place, just made to not depend upon the
switchdev transactional model.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Acked-by: Jiri Pirko <jiri@nvidia.com>
Reviewed-by: Ido Schimmel <idosch@nvidia.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-09 00:01:48 +00:00
|
|
|
static int dsa_switch_vlan_add(struct dsa_switch *ds,
|
|
|
|
struct dsa_notifier_vlan_info *info)
|
2017-11-30 16:23:59 +00:00
|
|
|
{
|
|
|
|
int port, err;
|
|
|
|
|
2021-01-09 00:01:53 +00:00
|
|
|
if (!ds->ops->port_vlan_add)
|
2017-11-30 16:23:59 +00:00
|
|
|
return -EOPNOTSUPP;
|
|
|
|
|
net: dsa: remove bitmap operations
The bitmap operations were introduced to simplify the switch drivers
in the future, since most of them could implement the common VLAN and
MDB operations (add, del, dump) with simple functions taking all target
ports at once, and thus limiting the number of hardware accesses.
Programming an MDB or VLAN this way in a single operation would clearly
simplify the drivers a lot but would require a new get-set interface
in DSA. The usage of such bitmap from the stack also raised concerned
in the past, leading to the dynamic allocation of a new ds->_bitmap
member in the dsa_switch structure. So let's get rid of them for now.
This commit nicely wraps the ds->ops->port_{mdb,vlan}_{prepare,add}
switch operations into new dsa_switch_{mdb,vlan}_{prepare,add}
variants not using any bitmap argument anymore.
New dsa_switch_{mdb,vlan}_match helpers have been introduced to make
clear which local port of a switch must be programmed with the target
object. While the targeted user port is an obvious candidate, the
DSA links must also be programmed, as well as the CPU port for VLANs.
While at it, also remove local variables that are only used once.
Signed-off-by: Vivien Didelot <vivien.didelot@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-25 17:25:15 +00:00
|
|
|
for (port = 0; port < ds->num_ports; port++) {
|
|
|
|
if (dsa_switch_vlan_match(ds, port, info)) {
|
2021-01-09 00:01:53 +00:00
|
|
|
err = ds->ops->port_vlan_add(ds, port, info->vlan);
|
net: dsa: remove bitmap operations
The bitmap operations were introduced to simplify the switch drivers
in the future, since most of them could implement the common VLAN and
MDB operations (add, del, dump) with simple functions taking all target
ports at once, and thus limiting the number of hardware accesses.
Programming an MDB or VLAN this way in a single operation would clearly
simplify the drivers a lot but would require a new get-set interface
in DSA. The usage of such bitmap from the stack also raised concerned
in the past, leading to the dynamic allocation of a new ds->_bitmap
member in the dsa_switch structure. So let's get rid of them for now.
This commit nicely wraps the ds->ops->port_{mdb,vlan}_{prepare,add}
switch operations into new dsa_switch_{mdb,vlan}_{prepare,add}
variants not using any bitmap argument anymore.
New dsa_switch_{mdb,vlan}_match helpers have been introduced to make
clear which local port of a switch must be programmed with the target
object. While the targeted user port is an obvious candidate, the
DSA links must also be programmed, as well as the CPU port for VLANs.
While at it, also remove local variables that are only used once.
Signed-off-by: Vivien Didelot <vivien.didelot@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-25 17:25:15 +00:00
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
}
|
2017-11-30 16:23:59 +00:00
|
|
|
}
|
|
|
|
|
2017-05-19 21:00:55 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int dsa_switch_vlan_del(struct dsa_switch *ds,
|
|
|
|
struct dsa_notifier_vlan_info *info)
|
|
|
|
{
|
|
|
|
if (!ds->ops->port_vlan_del)
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
|
2017-06-07 22:12:14 +00:00
|
|
|
if (ds->index == info->sw_index)
|
net: dsa: remove bitmap operations
The bitmap operations were introduced to simplify the switch drivers
in the future, since most of them could implement the common VLAN and
MDB operations (add, del, dump) with simple functions taking all target
ports at once, and thus limiting the number of hardware accesses.
Programming an MDB or VLAN this way in a single operation would clearly
simplify the drivers a lot but would require a new get-set interface
in DSA. The usage of such bitmap from the stack also raised concerned
in the past, leading to the dynamic allocation of a new ds->_bitmap
member in the dsa_switch structure. So let's get rid of them for now.
This commit nicely wraps the ds->ops->port_{mdb,vlan}_{prepare,add}
switch operations into new dsa_switch_{mdb,vlan}_{prepare,add}
variants not using any bitmap argument anymore.
New dsa_switch_{mdb,vlan}_match helpers have been introduced to make
clear which local port of a switch must be programmed with the target
object. While the targeted user port is an obvious candidate, the
DSA links must also be programmed, as well as the CPU port for VLANs.
While at it, also remove local variables that are only used once.
Signed-off-by: Vivien Didelot <vivien.didelot@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-25 17:25:15 +00:00
|
|
|
return ds->ops->port_vlan_del(ds, info->port, info->vlan);
|
2017-06-07 22:12:14 +00:00
|
|
|
|
2019-08-25 17:25:19 +00:00
|
|
|
/* Do not deprogram the DSA links as they may be used as conduit
|
|
|
|
* for other VLAN members in the fabric.
|
|
|
|
*/
|
2017-06-07 22:12:14 +00:00
|
|
|
return 0;
|
2017-05-19 21:00:55 +00:00
|
|
|
}
|
|
|
|
|
2017-02-03 18:20:20 +00:00
|
|
|
static int dsa_switch_event(struct notifier_block *nb,
|
|
|
|
unsigned long event, void *info)
|
|
|
|
{
|
|
|
|
struct dsa_switch *ds = container_of(nb, struct dsa_switch, nb);
|
|
|
|
int err;
|
|
|
|
|
|
|
|
switch (event) {
|
2017-05-19 21:00:52 +00:00
|
|
|
case DSA_NOTIFIER_AGEING_TIME:
|
|
|
|
err = dsa_switch_ageing_time(ds, info);
|
|
|
|
break;
|
2017-02-03 18:20:21 +00:00
|
|
|
case DSA_NOTIFIER_BRIDGE_JOIN:
|
|
|
|
err = dsa_switch_bridge_join(ds, info);
|
|
|
|
break;
|
|
|
|
case DSA_NOTIFIER_BRIDGE_LEAVE:
|
|
|
|
err = dsa_switch_bridge_leave(ds, info);
|
|
|
|
break;
|
2017-05-19 21:00:53 +00:00
|
|
|
case DSA_NOTIFIER_FDB_ADD:
|
|
|
|
err = dsa_switch_fdb_add(ds, info);
|
|
|
|
break;
|
|
|
|
case DSA_NOTIFIER_FDB_DEL:
|
|
|
|
err = dsa_switch_fdb_del(ds, info);
|
|
|
|
break;
|
2021-01-13 08:42:53 +00:00
|
|
|
case DSA_NOTIFIER_LAG_CHANGE:
|
|
|
|
err = dsa_switch_lag_change(ds, info);
|
|
|
|
break;
|
|
|
|
case DSA_NOTIFIER_LAG_JOIN:
|
|
|
|
err = dsa_switch_lag_join(ds, info);
|
|
|
|
break;
|
|
|
|
case DSA_NOTIFIER_LAG_LEAVE:
|
|
|
|
err = dsa_switch_lag_leave(ds, info);
|
|
|
|
break;
|
2017-05-19 21:00:54 +00:00
|
|
|
case DSA_NOTIFIER_MDB_ADD:
|
|
|
|
err = dsa_switch_mdb_add(ds, info);
|
|
|
|
break;
|
|
|
|
case DSA_NOTIFIER_MDB_DEL:
|
|
|
|
err = dsa_switch_mdb_del(ds, info);
|
|
|
|
break;
|
2017-05-19 21:00:55 +00:00
|
|
|
case DSA_NOTIFIER_VLAN_ADD:
|
|
|
|
err = dsa_switch_vlan_add(ds, info);
|
|
|
|
break;
|
|
|
|
case DSA_NOTIFIER_VLAN_DEL:
|
|
|
|
err = dsa_switch_vlan_del(ds, info);
|
|
|
|
break;
|
net: dsa: configure the MTU for switch ports
It is useful be able to configure port policers on a switch to accept
frames of various sizes:
- Increase the MTU for better throughput from the default of 1500 if it
is known that there is no 10/100 Mbps device in the network.
- Decrease the MTU to limit the latency of high-priority frames under
congestion, or work around various network segments that add extra
headers to packets which can't be fragmented.
For DSA slave ports, this is mostly a pass-through callback, called
through the regular ndo ops and at probe time (to ensure consistency
across all supported switches).
The CPU port is called with an MTU equal to the largest configured MTU
of the slave ports. The assumption is that the user might want to
sustain a bidirectional conversation with a partner over any switch
port.
The DSA master is configured the same as the CPU port, plus the tagger
overhead. Since the MTU is by definition L2 payload (sans Ethernet
header), it is up to each individual driver to figure out if it needs to
do anything special for its frame tags on the CPU port (it shouldn't
except in special cases). So the MTU does not contain the tagger
overhead on the CPU port.
However the MTU of the DSA master, minus the tagger overhead, is used as
a proxy for the MTU of the CPU port, which does not have a net device.
This is to avoid uselessly calling the .change_mtu function on the CPU
port when nothing should change.
So it is safe to assume that the DSA master and the CPU port MTUs are
apart by exactly the tagger's overhead in bytes.
Some changes were made around dsa_master_set_mtu(), function which was
now removed, for 2 reasons:
- dev_set_mtu() already calls dev_validate_mtu(), so it's redundant to
do the same thing in DSA
- __dev_set_mtu() returns 0 if ops->ndo_change_mtu is an absent method
That is to say, there's no need for this function in DSA, we can safely
call dev_set_mtu() directly, take the rtnl lock when necessary, and just
propagate whatever errors get reported (since the user probably wants to
be informed).
Some inspiration (mainly in the MTU DSA notifier) was taken from a
vaguely similar patch from Murali and Florian, who are credited as
co-developers down below.
Co-developed-by: Murali Krishna Policharla <murali.policharla@broadcom.com>
Signed-off-by: Murali Krishna Policharla <murali.policharla@broadcom.com>
Co-developed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-27 19:55:42 +00:00
|
|
|
case DSA_NOTIFIER_MTU:
|
|
|
|
err = dsa_switch_mtu(ds, info);
|
|
|
|
break;
|
2017-02-03 18:20:20 +00:00
|
|
|
default:
|
|
|
|
err = -EOPNOTSUPP;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (err)
|
|
|
|
dev_dbg(ds->dev, "breaking chain for DSA event %lu (%d)\n",
|
|
|
|
event, err);
|
|
|
|
|
|
|
|
return notifier_from_errno(err);
|
|
|
|
}
|
|
|
|
|
|
|
|
int dsa_switch_register_notifier(struct dsa_switch *ds)
|
|
|
|
{
|
|
|
|
ds->nb.notifier_call = dsa_switch_event;
|
|
|
|
|
|
|
|
return raw_notifier_chain_register(&ds->dst->nh, &ds->nb);
|
|
|
|
}
|
|
|
|
|
|
|
|
void dsa_switch_unregister_notifier(struct dsa_switch *ds)
|
|
|
|
{
|
|
|
|
int err;
|
|
|
|
|
|
|
|
err = raw_notifier_chain_unregister(&ds->dst->nh, &ds->nb);
|
|
|
|
if (err)
|
|
|
|
dev_err(ds->dev, "failed to unregister notifier (%d)\n", err);
|
|
|
|
}
|