linux/arch/s390/include/asm/compat.h

239 lines
5.2 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_S390X_COMPAT_H
#define _ASM_S390X_COMPAT_H
/*
* Architecture specific compatibility types
*/
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/sched/task_stack.h>
#include <linux/thread_info.h>
#define compat_mode_t compat_mode_t
typedef u16 compat_mode_t;
#include <asm-generic/compat.h>
#define __TYPE_IS_PTR(t) (!__builtin_types_compatible_p( \
typeof(0?(__force t)0:0ULL), u64))
#define __SC_DELOUSE(t,v) ({ \
BUILD_BUG_ON(sizeof(t) > 4 && !__TYPE_IS_PTR(t)); \
(__force t)(__TYPE_IS_PTR(t) ? ((v) & 0x7fffffff) : (v)); \
})
[S390] noexec protection This provides a noexec protection on s390 hardware. Our hardware does not have any bits left in the pte for a hw noexec bit, so this is a different approach using shadow page tables and a special addressing mode that allows separate address spaces for code and data. As a special feature of our "secondary-space" addressing mode, separate page tables can be specified for the translation of data addresses (storage operands) and instruction addresses. The shadow page table is used for the instruction addresses and the standard page table for the data addresses. The shadow page table is linked to the standard page table by a pointer in page->lru.next of the struct page corresponding to the page that contains the standard page table (since page->private is not really private with the pte_lock and the page table pages are not in the LRU list). Depending on the software bits of a pte, it is either inserted into both page tables or just into the standard (data) page table. Pages of a vma that does not have the VM_EXEC bit set get mapped only in the data address space. Any try to execute code on such a page will cause a page translation exception. The standard reaction to this is a SIGSEGV with two exceptions: the two system call opcodes 0x0a77 (sys_sigreturn) and 0x0aad (sys_rt_sigreturn) are allowed. They are stored by the kernel to the signal stack frame. Unfortunately, the signal return mechanism cannot be modified to use an SA_RESTORER because the exception unwinding code depends on the system call opcode stored behind the signal stack frame. This feature requires that user space is executed in secondary-space mode and the kernel in home-space mode, which means that the addressing modes need to be switched and that the noexec protection only works for user space. After switching the addressing modes, we cannot use the mvcp/mvcs instructions anymore to copy between kernel and user space. A new mvcos instruction has been added to the z9 EC/BC hardware which allows to copy between arbitrary address spaces, but on older hardware the page tables need to be walked manually. Signed-off-by: Gerald Schaefer <geraldsc@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2007-02-05 20:18:17 +00:00
#define PSW32_MASK_PER 0x40000000UL
#define PSW32_MASK_DAT 0x04000000UL
#define PSW32_MASK_IO 0x02000000UL
#define PSW32_MASK_EXT 0x01000000UL
#define PSW32_MASK_KEY 0x00F00000UL
#define PSW32_MASK_BASE 0x00080000UL /* Always one */
[S390] noexec protection This provides a noexec protection on s390 hardware. Our hardware does not have any bits left in the pte for a hw noexec bit, so this is a different approach using shadow page tables and a special addressing mode that allows separate address spaces for code and data. As a special feature of our "secondary-space" addressing mode, separate page tables can be specified for the translation of data addresses (storage operands) and instruction addresses. The shadow page table is used for the instruction addresses and the standard page table for the data addresses. The shadow page table is linked to the standard page table by a pointer in page->lru.next of the struct page corresponding to the page that contains the standard page table (since page->private is not really private with the pte_lock and the page table pages are not in the LRU list). Depending on the software bits of a pte, it is either inserted into both page tables or just into the standard (data) page table. Pages of a vma that does not have the VM_EXEC bit set get mapped only in the data address space. Any try to execute code on such a page will cause a page translation exception. The standard reaction to this is a SIGSEGV with two exceptions: the two system call opcodes 0x0a77 (sys_sigreturn) and 0x0aad (sys_rt_sigreturn) are allowed. They are stored by the kernel to the signal stack frame. Unfortunately, the signal return mechanism cannot be modified to use an SA_RESTORER because the exception unwinding code depends on the system call opcode stored behind the signal stack frame. This feature requires that user space is executed in secondary-space mode and the kernel in home-space mode, which means that the addressing modes need to be switched and that the noexec protection only works for user space. After switching the addressing modes, we cannot use the mvcp/mvcs instructions anymore to copy between kernel and user space. A new mvcos instruction has been added to the z9 EC/BC hardware which allows to copy between arbitrary address spaces, but on older hardware the page tables need to be walked manually. Signed-off-by: Gerald Schaefer <geraldsc@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2007-02-05 20:18:17 +00:00
#define PSW32_MASK_MCHECK 0x00040000UL
#define PSW32_MASK_WAIT 0x00020000UL
#define PSW32_MASK_PSTATE 0x00010000UL
#define PSW32_MASK_ASC 0x0000C000UL
#define PSW32_MASK_CC 0x00003000UL
#define PSW32_MASK_PM 0x00000f00UL
#define PSW32_MASK_RI 0x00000080UL
[S390] noexec protection This provides a noexec protection on s390 hardware. Our hardware does not have any bits left in the pte for a hw noexec bit, so this is a different approach using shadow page tables and a special addressing mode that allows separate address spaces for code and data. As a special feature of our "secondary-space" addressing mode, separate page tables can be specified for the translation of data addresses (storage operands) and instruction addresses. The shadow page table is used for the instruction addresses and the standard page table for the data addresses. The shadow page table is linked to the standard page table by a pointer in page->lru.next of the struct page corresponding to the page that contains the standard page table (since page->private is not really private with the pte_lock and the page table pages are not in the LRU list). Depending on the software bits of a pte, it is either inserted into both page tables or just into the standard (data) page table. Pages of a vma that does not have the VM_EXEC bit set get mapped only in the data address space. Any try to execute code on such a page will cause a page translation exception. The standard reaction to this is a SIGSEGV with two exceptions: the two system call opcodes 0x0a77 (sys_sigreturn) and 0x0aad (sys_rt_sigreturn) are allowed. They are stored by the kernel to the signal stack frame. Unfortunately, the signal return mechanism cannot be modified to use an SA_RESTORER because the exception unwinding code depends on the system call opcode stored behind the signal stack frame. This feature requires that user space is executed in secondary-space mode and the kernel in home-space mode, which means that the addressing modes need to be switched and that the noexec protection only works for user space. After switching the addressing modes, we cannot use the mvcp/mvcs instructions anymore to copy between kernel and user space. A new mvcos instruction has been added to the z9 EC/BC hardware which allows to copy between arbitrary address spaces, but on older hardware the page tables need to be walked manually. Signed-off-by: Gerald Schaefer <geraldsc@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2007-02-05 20:18:17 +00:00
#define PSW32_MASK_USER 0x0000FF00UL
#define PSW32_ADDR_AMODE 0x80000000UL
[S390] noexec protection This provides a noexec protection on s390 hardware. Our hardware does not have any bits left in the pte for a hw noexec bit, so this is a different approach using shadow page tables and a special addressing mode that allows separate address spaces for code and data. As a special feature of our "secondary-space" addressing mode, separate page tables can be specified for the translation of data addresses (storage operands) and instruction addresses. The shadow page table is used for the instruction addresses and the standard page table for the data addresses. The shadow page table is linked to the standard page table by a pointer in page->lru.next of the struct page corresponding to the page that contains the standard page table (since page->private is not really private with the pte_lock and the page table pages are not in the LRU list). Depending on the software bits of a pte, it is either inserted into both page tables or just into the standard (data) page table. Pages of a vma that does not have the VM_EXEC bit set get mapped only in the data address space. Any try to execute code on such a page will cause a page translation exception. The standard reaction to this is a SIGSEGV with two exceptions: the two system call opcodes 0x0a77 (sys_sigreturn) and 0x0aad (sys_rt_sigreturn) are allowed. They are stored by the kernel to the signal stack frame. Unfortunately, the signal return mechanism cannot be modified to use an SA_RESTORER because the exception unwinding code depends on the system call opcode stored behind the signal stack frame. This feature requires that user space is executed in secondary-space mode and the kernel in home-space mode, which means that the addressing modes need to be switched and that the noexec protection only works for user space. After switching the addressing modes, we cannot use the mvcp/mvcs instructions anymore to copy between kernel and user space. A new mvcos instruction has been added to the z9 EC/BC hardware which allows to copy between arbitrary address spaces, but on older hardware the page tables need to be walked manually. Signed-off-by: Gerald Schaefer <geraldsc@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2007-02-05 20:18:17 +00:00
#define PSW32_ADDR_INSN 0x7FFFFFFFUL
#define PSW32_DEFAULT_KEY (((u32) PAGE_DEFAULT_ACC) << 20)
[S390] noexec protection This provides a noexec protection on s390 hardware. Our hardware does not have any bits left in the pte for a hw noexec bit, so this is a different approach using shadow page tables and a special addressing mode that allows separate address spaces for code and data. As a special feature of our "secondary-space" addressing mode, separate page tables can be specified for the translation of data addresses (storage operands) and instruction addresses. The shadow page table is used for the instruction addresses and the standard page table for the data addresses. The shadow page table is linked to the standard page table by a pointer in page->lru.next of the struct page corresponding to the page that contains the standard page table (since page->private is not really private with the pte_lock and the page table pages are not in the LRU list). Depending on the software bits of a pte, it is either inserted into both page tables or just into the standard (data) page table. Pages of a vma that does not have the VM_EXEC bit set get mapped only in the data address space. Any try to execute code on such a page will cause a page translation exception. The standard reaction to this is a SIGSEGV with two exceptions: the two system call opcodes 0x0a77 (sys_sigreturn) and 0x0aad (sys_rt_sigreturn) are allowed. They are stored by the kernel to the signal stack frame. Unfortunately, the signal return mechanism cannot be modified to use an SA_RESTORER because the exception unwinding code depends on the system call opcode stored behind the signal stack frame. This feature requires that user space is executed in secondary-space mode and the kernel in home-space mode, which means that the addressing modes need to be switched and that the noexec protection only works for user space. After switching the addressing modes, we cannot use the mvcp/mvcs instructions anymore to copy between kernel and user space. A new mvcos instruction has been added to the z9 EC/BC hardware which allows to copy between arbitrary address spaces, but on older hardware the page tables need to be walked manually. Signed-off-by: Gerald Schaefer <geraldsc@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2007-02-05 20:18:17 +00:00
#define PSW32_ASC_PRIMARY 0x00000000UL
#define PSW32_ASC_ACCREG 0x00004000UL
#define PSW32_ASC_SECONDARY 0x00008000UL
#define PSW32_ASC_HOME 0x0000C000UL
#define PSW32_USER_BITS (PSW32_MASK_DAT | PSW32_MASK_IO | PSW32_MASK_EXT | \
PSW32_DEFAULT_KEY | PSW32_MASK_BASE | \
PSW32_MASK_MCHECK | PSW32_MASK_PSTATE | \
PSW32_ASC_PRIMARY)
[S390] noexec protection This provides a noexec protection on s390 hardware. Our hardware does not have any bits left in the pte for a hw noexec bit, so this is a different approach using shadow page tables and a special addressing mode that allows separate address spaces for code and data. As a special feature of our "secondary-space" addressing mode, separate page tables can be specified for the translation of data addresses (storage operands) and instruction addresses. The shadow page table is used for the instruction addresses and the standard page table for the data addresses. The shadow page table is linked to the standard page table by a pointer in page->lru.next of the struct page corresponding to the page that contains the standard page table (since page->private is not really private with the pte_lock and the page table pages are not in the LRU list). Depending on the software bits of a pte, it is either inserted into both page tables or just into the standard (data) page table. Pages of a vma that does not have the VM_EXEC bit set get mapped only in the data address space. Any try to execute code on such a page will cause a page translation exception. The standard reaction to this is a SIGSEGV with two exceptions: the two system call opcodes 0x0a77 (sys_sigreturn) and 0x0aad (sys_rt_sigreturn) are allowed. They are stored by the kernel to the signal stack frame. Unfortunately, the signal return mechanism cannot be modified to use an SA_RESTORER because the exception unwinding code depends on the system call opcode stored behind the signal stack frame. This feature requires that user space is executed in secondary-space mode and the kernel in home-space mode, which means that the addressing modes need to be switched and that the noexec protection only works for user space. After switching the addressing modes, we cannot use the mvcp/mvcs instructions anymore to copy between kernel and user space. A new mvcos instruction has been added to the z9 EC/BC hardware which allows to copy between arbitrary address spaces, but on older hardware the page tables need to be walked manually. Signed-off-by: Gerald Schaefer <geraldsc@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2007-02-05 20:18:17 +00:00
#define COMPAT_USER_HZ 100
#define COMPAT_UTS_MACHINE "s390\0\0\0\0"
typedef u16 __compat_uid_t;
typedef u16 __compat_gid_t;
typedef u16 compat_dev_t;
typedef u16 compat_nlink_t;
typedef u16 compat_ipc_pid_t;
typedef __kernel_fsid_t compat_fsid_t;
typedef struct {
u32 mask;
u32 addr;
} __aligned(8) psw_compat_t;
typedef struct {
psw_compat_t psw;
u32 gprs[NUM_GPRS];
u32 acrs[NUM_ACRS];
u32 orig_gpr2;
} s390_compat_regs;
typedef struct {
u32 gprs_high[NUM_GPRS];
} s390_compat_regs_high;
struct compat_stat {
compat_dev_t st_dev;
u16 __pad1;
compat_ino_t st_ino;
compat_mode_t st_mode;
compat_nlink_t st_nlink;
__compat_uid_t st_uid;
__compat_gid_t st_gid;
compat_dev_t st_rdev;
u16 __pad2;
u32 st_size;
u32 st_blksize;
u32 st_blocks;
u32 st_atime;
u32 st_atime_nsec;
u32 st_mtime;
u32 st_mtime_nsec;
u32 st_ctime;
u32 st_ctime_nsec;
u32 __unused4;
u32 __unused5;
};
struct compat_flock {
short l_type;
short l_whence;
compat_off_t l_start;
compat_off_t l_len;
compat_pid_t l_pid;
};
#define F_GETLK64 12
#define F_SETLK64 13
#define F_SETLKW64 14
struct compat_flock64 {
short l_type;
short l_whence;
compat_loff_t l_start;
compat_loff_t l_len;
compat_pid_t l_pid;
};
struct compat_statfs {
s390/uapi: change struct statfs[64] member types to unsigned values Kay Sievers reported that coreutils' stat tool has a problem with s390's statfs[64] definition: > The definition of struct statfs::f_type needs a fix. s390 is the only > architecture in the kernel that uses an int and expects magic > constants lager than INT_MAX to fit into. > > A fix is needed to make Fedora boot on s390, it currently fails to do > so. Userspace does not want to add code to paper-over this issue. [...] > Even coreutils cannot handle it: > #define RAMFS_MAGIC 0x858458f6 > # stat -f -c%t / > ffffffff858458f6 > > #define BTRFS_SUPER_MAGIC 0x9123683E > # stat -f -c%t /mnt > ffffffff9123683e The bug is caused by an implicit sign extension within the stat tool: out_uint_x (pformat, prefix_len, statfsbuf->f_type); where the format finally will be "%lx". A similar problem can be found in the 'tail' tool. s390 is the only architecture which has an int type f_type member in struct statfs[64]. Other architectures have either unsigned ints or long values, so that the problem doesn't occur there. Therefore change the type of the f_type member to unsigned int, so that we get zero extension instead of sign extension when assignment to a long value happens. This patch changes the s390 uapi struct stafs[64] definition in the kernel to contain only unsigned values. This was true for 32 bit builds anyway, since we use the generic uapi header file in that case. So lets not include conditionally the generic uapi header file but have the s390 implementation completely independent. Also fix the types of struct compat_stafs to match reality and move the definition of struct compat_statfs64 to asm/compat.h since it is not part of the api. Reported-by: Kay Sievers <kay@vrfy.org> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2013-04-22 08:41:27 +00:00
u32 f_type;
u32 f_bsize;
u32 f_blocks;
u32 f_bfree;
u32 f_bavail;
u32 f_files;
u32 f_ffree;
compat_fsid_t f_fsid;
s390/uapi: change struct statfs[64] member types to unsigned values Kay Sievers reported that coreutils' stat tool has a problem with s390's statfs[64] definition: > The definition of struct statfs::f_type needs a fix. s390 is the only > architecture in the kernel that uses an int and expects magic > constants lager than INT_MAX to fit into. > > A fix is needed to make Fedora boot on s390, it currently fails to do > so. Userspace does not want to add code to paper-over this issue. [...] > Even coreutils cannot handle it: > #define RAMFS_MAGIC 0x858458f6 > # stat -f -c%t / > ffffffff858458f6 > > #define BTRFS_SUPER_MAGIC 0x9123683E > # stat -f -c%t /mnt > ffffffff9123683e The bug is caused by an implicit sign extension within the stat tool: out_uint_x (pformat, prefix_len, statfsbuf->f_type); where the format finally will be "%lx". A similar problem can be found in the 'tail' tool. s390 is the only architecture which has an int type f_type member in struct statfs[64]. Other architectures have either unsigned ints or long values, so that the problem doesn't occur there. Therefore change the type of the f_type member to unsigned int, so that we get zero extension instead of sign extension when assignment to a long value happens. This patch changes the s390 uapi struct stafs[64] definition in the kernel to contain only unsigned values. This was true for 32 bit builds anyway, since we use the generic uapi header file in that case. So lets not include conditionally the generic uapi header file but have the s390 implementation completely independent. Also fix the types of struct compat_stafs to match reality and move the definition of struct compat_statfs64 to asm/compat.h since it is not part of the api. Reported-by: Kay Sievers <kay@vrfy.org> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2013-04-22 08:41:27 +00:00
u32 f_namelen;
u32 f_frsize;
u32 f_flags;
u32 f_spare[4];
};
struct compat_statfs64 {
u32 f_type;
u32 f_bsize;
u64 f_blocks;
u64 f_bfree;
u64 f_bavail;
u64 f_files;
u64 f_ffree;
compat_fsid_t f_fsid;
u32 f_namelen;
u32 f_frsize;
u32 f_flags;
u32 f_spare[4];
};
#define COMPAT_RLIM_INFINITY 0xffffffff
#define COMPAT_OFF_T_MAX 0x7fffffff
/*
* A pointer passed in from user mode. This should not
* be used for syscall parameters, just declare them
* as pointers because the syscall entry code will have
* appropriately converted them already.
*/
static inline void __user *compat_ptr(compat_uptr_t uptr)
{
return (void __user *)(unsigned long)(uptr & 0x7fffffffUL);
}
#define compat_ptr(uptr) compat_ptr(uptr)
#ifdef CONFIG_COMPAT
static inline int is_compat_task(void)
{
return test_thread_flag(TIF_31BIT);
}
#endif
struct compat_ipc64_perm {
compat_key_t key;
__compat_uid32_t uid;
__compat_gid32_t gid;
__compat_uid32_t cuid;
__compat_gid32_t cgid;
compat_mode_t mode;
unsigned short __pad1;
unsigned short seq;
unsigned short __pad2;
unsigned int __unused1;
unsigned int __unused2;
};
struct compat_semid64_ds {
struct compat_ipc64_perm sem_perm;
compat_ulong_t sem_otime;
compat_ulong_t sem_otime_high;
compat_ulong_t sem_ctime;
compat_ulong_t sem_ctime_high;
compat_ulong_t sem_nsems;
compat_ulong_t __unused1;
compat_ulong_t __unused2;
};
struct compat_msqid64_ds {
struct compat_ipc64_perm msg_perm;
compat_ulong_t msg_stime;
compat_ulong_t msg_stime_high;
compat_ulong_t msg_rtime;
compat_ulong_t msg_rtime_high;
compat_ulong_t msg_ctime;
compat_ulong_t msg_ctime_high;
compat_ulong_t msg_cbytes;
compat_ulong_t msg_qnum;
compat_ulong_t msg_qbytes;
compat_pid_t msg_lspid;
compat_pid_t msg_lrpid;
compat_ulong_t __unused1;
compat_ulong_t __unused2;
};
struct compat_shmid64_ds {
struct compat_ipc64_perm shm_perm;
compat_size_t shm_segsz;
compat_ulong_t shm_atime;
compat_ulong_t shm_atime_high;
compat_ulong_t shm_dtime;
compat_ulong_t shm_dtime_high;
compat_ulong_t shm_ctime;
compat_ulong_t shm_ctime_high;
compat_pid_t shm_cpid;
compat_pid_t shm_lpid;
compat_ulong_t shm_nattch;
compat_ulong_t __unused1;
compat_ulong_t __unused2;
};
#endif /* _ASM_S390X_COMPAT_H */