mirror of
https://github.com/torvalds/linux.git
synced 2024-12-02 00:51:44 +00:00
1389 lines
36 KiB
C
1389 lines
36 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/*
|
||
|
* K3 SA2UL crypto accelerator driver
|
||
|
*
|
||
|
* Copyright (C) 2018-2020 Texas Instruments Incorporated - http://www.ti.com
|
||
|
*
|
||
|
* Authors: Keerthy
|
||
|
* Vitaly Andrianov
|
||
|
* Tero Kristo
|
||
|
*/
|
||
|
#include <linux/clk.h>
|
||
|
#include <linux/dmaengine.h>
|
||
|
#include <linux/dmapool.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/of_device.h>
|
||
|
#include <linux/platform_device.h>
|
||
|
#include <linux/pm_runtime.h>
|
||
|
|
||
|
#include <crypto/aes.h>
|
||
|
#include <crypto/des.h>
|
||
|
#include <crypto/internal/skcipher.h>
|
||
|
#include <crypto/scatterwalk.h>
|
||
|
|
||
|
#include "sa2ul.h"
|
||
|
|
||
|
/* Byte offset for key in encryption security context */
|
||
|
#define SC_ENC_KEY_OFFSET (1 + 27 + 4)
|
||
|
/* Byte offset for Aux-1 in encryption security context */
|
||
|
#define SC_ENC_AUX1_OFFSET (1 + 27 + 4 + 32)
|
||
|
|
||
|
#define SA_CMDL_UPD_ENC 0x0001
|
||
|
#define SA_CMDL_UPD_AUTH 0x0002
|
||
|
#define SA_CMDL_UPD_ENC_IV 0x0004
|
||
|
#define SA_CMDL_UPD_AUTH_IV 0x0008
|
||
|
#define SA_CMDL_UPD_AUX_KEY 0x0010
|
||
|
|
||
|
#define SA_AUTH_SUBKEY_LEN 16
|
||
|
#define SA_CMDL_PAYLOAD_LENGTH_MASK 0xFFFF
|
||
|
#define SA_CMDL_SOP_BYPASS_LEN_MASK 0xFF000000
|
||
|
|
||
|
#define MODE_CONTROL_BYTES 27
|
||
|
#define SA_HASH_PROCESSING 0
|
||
|
#define SA_CRYPTO_PROCESSING 0
|
||
|
#define SA_UPLOAD_HASH_TO_TLR BIT(6)
|
||
|
|
||
|
#define SA_SW0_FLAGS_MASK 0xF0000
|
||
|
#define SA_SW0_CMDL_INFO_MASK 0x1F00000
|
||
|
#define SA_SW0_CMDL_PRESENT BIT(4)
|
||
|
#define SA_SW0_ENG_ID_MASK 0x3E000000
|
||
|
#define SA_SW0_DEST_INFO_PRESENT BIT(30)
|
||
|
#define SA_SW2_EGRESS_LENGTH 0xFF000000
|
||
|
#define SA_BASIC_HASH 0x10
|
||
|
|
||
|
#define SHA256_DIGEST_WORDS 8
|
||
|
/* Make 32-bit word from 4 bytes */
|
||
|
#define SA_MK_U32(b0, b1, b2, b3) (((b0) << 24) | ((b1) << 16) | \
|
||
|
((b2) << 8) | (b3))
|
||
|
|
||
|
/* size of SCCTL structure in bytes */
|
||
|
#define SA_SCCTL_SZ 16
|
||
|
|
||
|
/* Max Authentication tag size */
|
||
|
#define SA_MAX_AUTH_TAG_SZ 64
|
||
|
|
||
|
#define PRIV_ID 0x1
|
||
|
#define PRIV 0x1
|
||
|
|
||
|
static struct device *sa_k3_dev;
|
||
|
|
||
|
/**
|
||
|
* struct sa_cmdl_cfg - Command label configuration descriptor
|
||
|
* @enc_eng_id: Encryption Engine ID supported by the SA hardware
|
||
|
* @iv_size: Initialization Vector size
|
||
|
*/
|
||
|
struct sa_cmdl_cfg {
|
||
|
u8 enc_eng_id;
|
||
|
u8 iv_size;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* struct algo_data - Crypto algorithm specific data
|
||
|
* @enc_eng: Encryption engine info structure
|
||
|
* @iv_idx: iv index in psdata
|
||
|
* @iv_out_size: iv out size
|
||
|
* @ealg_id: Encryption Algorithm ID
|
||
|
* @mci_enc: Mode Control Instruction for Encryption algorithm
|
||
|
* @mci_dec: Mode Control Instruction for Decryption
|
||
|
* @inv_key: Whether the encryption algorithm demands key inversion
|
||
|
* @ctx: Pointer to the algorithm context
|
||
|
*/
|
||
|
struct algo_data {
|
||
|
struct sa_eng_info enc_eng;
|
||
|
u8 iv_idx;
|
||
|
u8 iv_out_size;
|
||
|
u8 ealg_id;
|
||
|
u8 *mci_enc;
|
||
|
u8 *mci_dec;
|
||
|
bool inv_key;
|
||
|
struct sa_tfm_ctx *ctx;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* struct sa_alg_tmpl: A generic template encompassing crypto/aead algorithms
|
||
|
* @type: Type of the crypto algorithm.
|
||
|
* @alg: Union of crypto algorithm definitions.
|
||
|
* @registered: Flag indicating if the crypto algorithm is already registered
|
||
|
*/
|
||
|
struct sa_alg_tmpl {
|
||
|
u32 type; /* CRYPTO_ALG_TYPE from <linux/crypto.h> */
|
||
|
union {
|
||
|
struct skcipher_alg skcipher;
|
||
|
} alg;
|
||
|
bool registered;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* struct sa_rx_data: RX Packet miscellaneous data place holder
|
||
|
* @req: crypto request data pointer
|
||
|
* @ddev: pointer to the DMA device
|
||
|
* @tx_in: dma_async_tx_descriptor pointer for rx channel
|
||
|
* @split_src_sg: Set if the src sg is split and needs to be freed up
|
||
|
* @split_dst_sg: Set if the dst sg is split and needs to be freed up
|
||
|
* @enc: Flag indicating either encryption or decryption
|
||
|
* @enc_iv_size: Initialisation vector size
|
||
|
* @iv_idx: Initialisation vector index
|
||
|
* @rx_sg: Static scatterlist entry for overriding RX data
|
||
|
* @tx_sg: Static scatterlist entry for overriding TX data
|
||
|
* @src: Source data pointer
|
||
|
* @dst: Destination data pointer
|
||
|
*/
|
||
|
struct sa_rx_data {
|
||
|
void *req;
|
||
|
struct device *ddev;
|
||
|
struct dma_async_tx_descriptor *tx_in;
|
||
|
struct scatterlist *split_src_sg;
|
||
|
struct scatterlist *split_dst_sg;
|
||
|
u8 enc;
|
||
|
u8 enc_iv_size;
|
||
|
u8 iv_idx;
|
||
|
struct scatterlist rx_sg;
|
||
|
struct scatterlist tx_sg;
|
||
|
struct scatterlist *src;
|
||
|
struct scatterlist *dst;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* struct sa_req: SA request definition
|
||
|
* @dev: device for the request
|
||
|
* @size: total data to the xmitted via DMA
|
||
|
* @enc_offset: offset of cipher data
|
||
|
* @enc_size: data to be passed to cipher engine
|
||
|
* @enc_iv: cipher IV
|
||
|
* @type: algorithm type for the request
|
||
|
* @cmdl: command label pointer
|
||
|
* @base: pointer to the base request
|
||
|
* @ctx: pointer to the algorithm context data
|
||
|
* @enc: true if this is an encode request
|
||
|
* @src: source data
|
||
|
* @dst: destination data
|
||
|
* @callback: DMA callback for the request
|
||
|
* @mdata_size: metadata size passed to DMA
|
||
|
*/
|
||
|
struct sa_req {
|
||
|
struct device *dev;
|
||
|
u16 size;
|
||
|
u8 enc_offset;
|
||
|
u16 enc_size;
|
||
|
u8 *enc_iv;
|
||
|
u32 type;
|
||
|
u32 *cmdl;
|
||
|
struct crypto_async_request *base;
|
||
|
struct sa_tfm_ctx *ctx;
|
||
|
bool enc;
|
||
|
struct scatterlist *src;
|
||
|
struct scatterlist *dst;
|
||
|
dma_async_tx_callback callback;
|
||
|
u16 mdata_size;
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Mode Control Instructions for various Key lengths 128, 192, 256
|
||
|
* For CBC (Cipher Block Chaining) mode for encryption
|
||
|
*/
|
||
|
static u8 mci_cbc_enc_array[3][MODE_CONTROL_BYTES] = {
|
||
|
{ 0x61, 0x00, 0x00, 0x18, 0x88, 0x0a, 0xaa, 0x4b, 0x7e, 0x00,
|
||
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
|
||
|
{ 0x61, 0x00, 0x00, 0x18, 0x88, 0x4a, 0xaa, 0x4b, 0x7e, 0x00,
|
||
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
|
||
|
{ 0x61, 0x00, 0x00, 0x18, 0x88, 0x8a, 0xaa, 0x4b, 0x7e, 0x00,
|
||
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Mode Control Instructions for various Key lengths 128, 192, 256
|
||
|
* For CBC (Cipher Block Chaining) mode for decryption
|
||
|
*/
|
||
|
static u8 mci_cbc_dec_array[3][MODE_CONTROL_BYTES] = {
|
||
|
{ 0x71, 0x00, 0x00, 0x80, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0,
|
||
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
|
||
|
{ 0x71, 0x00, 0x00, 0x84, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0,
|
||
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
|
||
|
{ 0x71, 0x00, 0x00, 0x88, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0,
|
||
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Mode Control Instructions for various Key lengths 128, 192, 256
|
||
|
* For ECB (Electronic Code Book) mode for encryption
|
||
|
*/
|
||
|
static u8 mci_ecb_enc_array[3][27] = {
|
||
|
{ 0x21, 0x00, 0x00, 0x80, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
|
||
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
|
||
|
{ 0x21, 0x00, 0x00, 0x84, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
|
||
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
|
||
|
{ 0x21, 0x00, 0x00, 0x88, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
|
||
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Mode Control Instructions for various Key lengths 128, 192, 256
|
||
|
* For ECB (Electronic Code Book) mode for decryption
|
||
|
*/
|
||
|
static u8 mci_ecb_dec_array[3][27] = {
|
||
|
{ 0x31, 0x00, 0x00, 0x80, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
|
||
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
|
||
|
{ 0x31, 0x00, 0x00, 0x84, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
|
||
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
|
||
|
{ 0x31, 0x00, 0x00, 0x88, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
|
||
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Mode Control Instructions for DES algorithm
|
||
|
* For CBC (Cipher Block Chaining) mode and ECB mode
|
||
|
* encryption and for decryption respectively
|
||
|
*/
|
||
|
static u8 mci_cbc_3des_enc_array[MODE_CONTROL_BYTES] = {
|
||
|
0x60, 0x00, 0x00, 0x18, 0x88, 0x52, 0xaa, 0x4b, 0x7e, 0x00, 0x00, 0x00,
|
||
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||
|
0x00, 0x00, 0x00,
|
||
|
};
|
||
|
|
||
|
static u8 mci_cbc_3des_dec_array[MODE_CONTROL_BYTES] = {
|
||
|
0x70, 0x00, 0x00, 0x85, 0x0a, 0xca, 0x98, 0xf4, 0x40, 0xc0, 0x00, 0x00,
|
||
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||
|
0x00, 0x00, 0x00,
|
||
|
};
|
||
|
|
||
|
static u8 mci_ecb_3des_enc_array[MODE_CONTROL_BYTES] = {
|
||
|
0x20, 0x00, 0x00, 0x85, 0x0a, 0x04, 0xb7, 0x90, 0x00, 0x00, 0x00, 0x00,
|
||
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||
|
0x00, 0x00, 0x00,
|
||
|
};
|
||
|
|
||
|
static u8 mci_ecb_3des_dec_array[MODE_CONTROL_BYTES] = {
|
||
|
0x30, 0x00, 0x00, 0x85, 0x0a, 0x04, 0xb7, 0x90, 0x00, 0x00, 0x00, 0x00,
|
||
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||
|
0x00, 0x00, 0x00,
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Perform 16 byte or 128 bit swizzling
|
||
|
* The SA2UL Expects the security context to
|
||
|
* be in little Endian and the bus width is 128 bits or 16 bytes
|
||
|
* Hence swap 16 bytes at a time from higher to lower address
|
||
|
*/
|
||
|
static void sa_swiz_128(u8 *in, u16 len)
|
||
|
{
|
||
|
u8 data[16];
|
||
|
int i, j;
|
||
|
|
||
|
for (i = 0; i < len; i += 16) {
|
||
|
memcpy(data, &in[i], 16);
|
||
|
for (j = 0; j < 16; j++)
|
||
|
in[i + j] = data[15 - j];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Derive the inverse key used in AES-CBC decryption operation */
|
||
|
static inline int sa_aes_inv_key(u8 *inv_key, const u8 *key, u16 key_sz)
|
||
|
{
|
||
|
struct crypto_aes_ctx ctx;
|
||
|
int key_pos;
|
||
|
|
||
|
if (aes_expandkey(&ctx, key, key_sz)) {
|
||
|
dev_err(sa_k3_dev, "%s: bad key len(%d)\n", __func__, key_sz);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
/* work around to get the right inverse for AES_KEYSIZE_192 size keys */
|
||
|
if (key_sz == AES_KEYSIZE_192) {
|
||
|
ctx.key_enc[52] = ctx.key_enc[51] ^ ctx.key_enc[46];
|
||
|
ctx.key_enc[53] = ctx.key_enc[52] ^ ctx.key_enc[47];
|
||
|
}
|
||
|
|
||
|
/* Based crypto_aes_expand_key logic */
|
||
|
switch (key_sz) {
|
||
|
case AES_KEYSIZE_128:
|
||
|
case AES_KEYSIZE_192:
|
||
|
key_pos = key_sz + 24;
|
||
|
break;
|
||
|
|
||
|
case AES_KEYSIZE_256:
|
||
|
key_pos = key_sz + 24 - 4;
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
dev_err(sa_k3_dev, "%s: bad key len(%d)\n", __func__, key_sz);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
memcpy(inv_key, &ctx.key_enc[key_pos], key_sz);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Set Security context for the encryption engine */
|
||
|
static int sa_set_sc_enc(struct algo_data *ad, const u8 *key, u16 key_sz,
|
||
|
u8 enc, u8 *sc_buf)
|
||
|
{
|
||
|
const u8 *mci = NULL;
|
||
|
|
||
|
/* Set Encryption mode selector to crypto processing */
|
||
|
sc_buf[0] = SA_CRYPTO_PROCESSING;
|
||
|
|
||
|
if (enc)
|
||
|
mci = ad->mci_enc;
|
||
|
else
|
||
|
mci = ad->mci_dec;
|
||
|
/* Set the mode control instructions in security context */
|
||
|
if (mci)
|
||
|
memcpy(&sc_buf[1], mci, MODE_CONTROL_BYTES);
|
||
|
|
||
|
/* For AES-CBC decryption get the inverse key */
|
||
|
if (ad->inv_key && !enc) {
|
||
|
if (sa_aes_inv_key(&sc_buf[SC_ENC_KEY_OFFSET], key, key_sz))
|
||
|
return -EINVAL;
|
||
|
/* For all other cases: key is used */
|
||
|
} else {
|
||
|
memcpy(&sc_buf[SC_ENC_KEY_OFFSET], key, key_sz);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static inline void sa_copy_iv(__be32 *out, const u8 *iv, bool size16)
|
||
|
{
|
||
|
int j;
|
||
|
|
||
|
for (j = 0; j < ((size16) ? 4 : 2); j++) {
|
||
|
*out = cpu_to_be32(*((u32 *)iv));
|
||
|
iv += 4;
|
||
|
out++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Format general command label */
|
||
|
static int sa_format_cmdl_gen(struct sa_cmdl_cfg *cfg, u8 *cmdl,
|
||
|
struct sa_cmdl_upd_info *upd_info)
|
||
|
{
|
||
|
u8 enc_offset = 0, total = 0;
|
||
|
u8 enc_next_eng = SA_ENG_ID_OUTPORT2;
|
||
|
u32 *word_ptr = (u32 *)cmdl;
|
||
|
int i;
|
||
|
|
||
|
/* Clear the command label */
|
||
|
memzero_explicit(cmdl, (SA_MAX_CMDL_WORDS * sizeof(u32)));
|
||
|
|
||
|
/* Iniialize the command update structure */
|
||
|
memzero_explicit(upd_info, sizeof(*upd_info));
|
||
|
|
||
|
if (cfg->enc_eng_id != SA_ENG_ID_NONE)
|
||
|
total = SA_CMDL_HEADER_SIZE_BYTES;
|
||
|
|
||
|
if (cfg->iv_size)
|
||
|
total += cfg->iv_size;
|
||
|
|
||
|
enc_next_eng = SA_ENG_ID_OUTPORT2;
|
||
|
|
||
|
if (cfg->enc_eng_id != SA_ENG_ID_NONE) {
|
||
|
upd_info->flags |= SA_CMDL_UPD_ENC;
|
||
|
upd_info->enc_size.index = enc_offset >> 2;
|
||
|
upd_info->enc_offset.index = upd_info->enc_size.index + 1;
|
||
|
/* Encryption command label */
|
||
|
cmdl[enc_offset + SA_CMDL_OFFSET_NESC] = enc_next_eng;
|
||
|
|
||
|
/* Encryption modes requiring IV */
|
||
|
if (cfg->iv_size) {
|
||
|
upd_info->flags |= SA_CMDL_UPD_ENC_IV;
|
||
|
upd_info->enc_iv.index =
|
||
|
(enc_offset + SA_CMDL_HEADER_SIZE_BYTES) >> 2;
|
||
|
upd_info->enc_iv.size = cfg->iv_size;
|
||
|
|
||
|
cmdl[enc_offset + SA_CMDL_OFFSET_LABEL_LEN] =
|
||
|
SA_CMDL_HEADER_SIZE_BYTES + cfg->iv_size;
|
||
|
|
||
|
cmdl[enc_offset + SA_CMDL_OFFSET_OPTION_CTRL1] =
|
||
|
(SA_CTX_ENC_AUX2_OFFSET | (cfg->iv_size >> 3));
|
||
|
enc_offset += SA_CMDL_HEADER_SIZE_BYTES + cfg->iv_size;
|
||
|
} else {
|
||
|
cmdl[enc_offset + SA_CMDL_OFFSET_LABEL_LEN] =
|
||
|
SA_CMDL_HEADER_SIZE_BYTES;
|
||
|
enc_offset += SA_CMDL_HEADER_SIZE_BYTES;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
total = roundup(total, 8);
|
||
|
|
||
|
for (i = 0; i < total / 4; i++)
|
||
|
word_ptr[i] = swab32(word_ptr[i]);
|
||
|
|
||
|
return total;
|
||
|
}
|
||
|
|
||
|
/* Update Command label */
|
||
|
static inline void sa_update_cmdl(struct sa_req *req, u32 *cmdl,
|
||
|
struct sa_cmdl_upd_info *upd_info)
|
||
|
{
|
||
|
int i = 0, j;
|
||
|
|
||
|
if (likely(upd_info->flags & SA_CMDL_UPD_ENC)) {
|
||
|
cmdl[upd_info->enc_size.index] &= ~SA_CMDL_PAYLOAD_LENGTH_MASK;
|
||
|
cmdl[upd_info->enc_size.index] |= req->enc_size;
|
||
|
cmdl[upd_info->enc_offset.index] &=
|
||
|
~SA_CMDL_SOP_BYPASS_LEN_MASK;
|
||
|
cmdl[upd_info->enc_offset.index] |=
|
||
|
((u32)req->enc_offset <<
|
||
|
__ffs(SA_CMDL_SOP_BYPASS_LEN_MASK));
|
||
|
|
||
|
if (likely(upd_info->flags & SA_CMDL_UPD_ENC_IV)) {
|
||
|
__be32 *data = (__be32 *)&cmdl[upd_info->enc_iv.index];
|
||
|
u32 *enc_iv = (u32 *)req->enc_iv;
|
||
|
|
||
|
for (j = 0; i < upd_info->enc_iv.size; i += 4, j++) {
|
||
|
data[j] = cpu_to_be32(*enc_iv);
|
||
|
enc_iv++;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Format SWINFO words to be sent to SA */
|
||
|
static
|
||
|
void sa_set_swinfo(u8 eng_id, u16 sc_id, dma_addr_t sc_phys,
|
||
|
u8 cmdl_present, u8 cmdl_offset, u8 flags,
|
||
|
u8 hash_size, u32 *swinfo)
|
||
|
{
|
||
|
swinfo[0] = sc_id;
|
||
|
swinfo[0] |= (flags << __ffs(SA_SW0_FLAGS_MASK));
|
||
|
if (likely(cmdl_present))
|
||
|
swinfo[0] |= ((cmdl_offset | SA_SW0_CMDL_PRESENT) <<
|
||
|
__ffs(SA_SW0_CMDL_INFO_MASK));
|
||
|
swinfo[0] |= (eng_id << __ffs(SA_SW0_ENG_ID_MASK));
|
||
|
|
||
|
swinfo[0] |= SA_SW0_DEST_INFO_PRESENT;
|
||
|
swinfo[1] = (u32)(sc_phys & 0xFFFFFFFFULL);
|
||
|
swinfo[2] = (u32)((sc_phys & 0xFFFFFFFF00000000ULL) >> 32);
|
||
|
swinfo[2] |= (hash_size << __ffs(SA_SW2_EGRESS_LENGTH));
|
||
|
}
|
||
|
|
||
|
/* Dump the security context */
|
||
|
static void sa_dump_sc(u8 *buf, dma_addr_t dma_addr)
|
||
|
{
|
||
|
#ifdef DEBUG
|
||
|
dev_info(sa_k3_dev, "Security context dump:: 0x%pad\n", &dma_addr);
|
||
|
print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET,
|
||
|
16, 1, buf, SA_CTX_MAX_SZ, false);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static
|
||
|
int sa_init_sc(struct sa_ctx_info *ctx, const u8 *enc_key,
|
||
|
u16 enc_key_sz, struct algo_data *ad, u8 enc, u32 *swinfo)
|
||
|
{
|
||
|
int enc_sc_offset = 0;
|
||
|
u8 *sc_buf = ctx->sc;
|
||
|
u16 sc_id = ctx->sc_id;
|
||
|
u8 first_engine;
|
||
|
|
||
|
memzero_explicit(sc_buf, SA_CTX_MAX_SZ);
|
||
|
|
||
|
enc_sc_offset = SA_CTX_PHP_PE_CTX_SZ;
|
||
|
|
||
|
/* SCCTL Owner info: 0=host, 1=CP_ACE */
|
||
|
sc_buf[SA_CTX_SCCTL_OWNER_OFFSET] = 0;
|
||
|
/* SCCTL F/E control */
|
||
|
sc_buf[1] = SA_SCCTL_FE_ENC;
|
||
|
memcpy(&sc_buf[2], &sc_id, 2);
|
||
|
sc_buf[4] = 0x0;
|
||
|
sc_buf[5] = PRIV_ID;
|
||
|
sc_buf[6] = PRIV;
|
||
|
sc_buf[7] = 0x0;
|
||
|
|
||
|
/* Prepare context for encryption engine */
|
||
|
if (ad->enc_eng.sc_size) {
|
||
|
if (sa_set_sc_enc(ad, enc_key, enc_key_sz, enc,
|
||
|
&sc_buf[enc_sc_offset]))
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
/* Set the ownership of context to CP_ACE */
|
||
|
sc_buf[SA_CTX_SCCTL_OWNER_OFFSET] = 0x80;
|
||
|
|
||
|
/* swizzle the security context */
|
||
|
sa_swiz_128(sc_buf, SA_CTX_MAX_SZ);
|
||
|
/* Setup SWINFO */
|
||
|
first_engine = ad->enc_eng.eng_id;
|
||
|
|
||
|
sa_set_swinfo(first_engine, ctx->sc_id, ctx->sc_phys, 1, 0,
|
||
|
SA_SW_INFO_FLAG_EVICT, ad->iv_out_size, swinfo);
|
||
|
|
||
|
sa_dump_sc(sc_buf, ctx->sc_phys);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Free the per direction context memory */
|
||
|
static void sa_free_ctx_info(struct sa_ctx_info *ctx,
|
||
|
struct sa_crypto_data *data)
|
||
|
{
|
||
|
unsigned long bn;
|
||
|
|
||
|
bn = ctx->sc_id - data->sc_id_start;
|
||
|
spin_lock(&data->scid_lock);
|
||
|
__clear_bit(bn, data->ctx_bm);
|
||
|
data->sc_id--;
|
||
|
spin_unlock(&data->scid_lock);
|
||
|
|
||
|
if (ctx->sc) {
|
||
|
dma_pool_free(data->sc_pool, ctx->sc, ctx->sc_phys);
|
||
|
ctx->sc = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int sa_init_ctx_info(struct sa_ctx_info *ctx,
|
||
|
struct sa_crypto_data *data)
|
||
|
{
|
||
|
unsigned long bn;
|
||
|
int err;
|
||
|
|
||
|
spin_lock(&data->scid_lock);
|
||
|
bn = find_first_zero_bit(data->ctx_bm, SA_MAX_NUM_CTX);
|
||
|
__set_bit(bn, data->ctx_bm);
|
||
|
data->sc_id++;
|
||
|
spin_unlock(&data->scid_lock);
|
||
|
|
||
|
ctx->sc_id = (u16)(data->sc_id_start + bn);
|
||
|
|
||
|
ctx->sc = dma_pool_alloc(data->sc_pool, GFP_KERNEL, &ctx->sc_phys);
|
||
|
if (!ctx->sc) {
|
||
|
dev_err(&data->pdev->dev, "Failed to allocate SC memory\n");
|
||
|
err = -ENOMEM;
|
||
|
goto scid_rollback;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
scid_rollback:
|
||
|
spin_lock(&data->scid_lock);
|
||
|
__clear_bit(bn, data->ctx_bm);
|
||
|
data->sc_id--;
|
||
|
spin_unlock(&data->scid_lock);
|
||
|
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
static void sa_cipher_cra_exit(struct crypto_skcipher *tfm)
|
||
|
{
|
||
|
struct sa_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
|
||
|
struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev);
|
||
|
|
||
|
dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n",
|
||
|
__func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys,
|
||
|
ctx->dec.sc_id, &ctx->dec.sc_phys);
|
||
|
|
||
|
sa_free_ctx_info(&ctx->enc, data);
|
||
|
sa_free_ctx_info(&ctx->dec, data);
|
||
|
|
||
|
crypto_free_sync_skcipher(ctx->fallback.skcipher);
|
||
|
}
|
||
|
|
||
|
static int sa_cipher_cra_init(struct crypto_skcipher *tfm)
|
||
|
{
|
||
|
struct sa_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
|
||
|
struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev);
|
||
|
const char *name = crypto_tfm_alg_name(&tfm->base);
|
||
|
int ret;
|
||
|
|
||
|
memzero_explicit(ctx, sizeof(*ctx));
|
||
|
ctx->dev_data = data;
|
||
|
|
||
|
ret = sa_init_ctx_info(&ctx->enc, data);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
ret = sa_init_ctx_info(&ctx->dec, data);
|
||
|
if (ret) {
|
||
|
sa_free_ctx_info(&ctx->enc, data);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
ctx->fallback.skcipher =
|
||
|
crypto_alloc_sync_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
|
||
|
|
||
|
if (IS_ERR(ctx->fallback.skcipher)) {
|
||
|
dev_err(sa_k3_dev, "Error allocating fallback algo %s\n", name);
|
||
|
return PTR_ERR(ctx->fallback.skcipher);
|
||
|
}
|
||
|
|
||
|
dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n",
|
||
|
__func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys,
|
||
|
ctx->dec.sc_id, &ctx->dec.sc_phys);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int sa_cipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
|
||
|
unsigned int keylen, struct algo_data *ad)
|
||
|
{
|
||
|
struct sa_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
|
||
|
int cmdl_len;
|
||
|
struct sa_cmdl_cfg cfg;
|
||
|
int ret;
|
||
|
|
||
|
if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
|
||
|
keylen != AES_KEYSIZE_256)
|
||
|
return -EINVAL;
|
||
|
|
||
|
ad->enc_eng.eng_id = SA_ENG_ID_EM1;
|
||
|
ad->enc_eng.sc_size = SA_CTX_ENC_TYPE1_SZ;
|
||
|
|
||
|
memzero_explicit(&cfg, sizeof(cfg));
|
||
|
cfg.enc_eng_id = ad->enc_eng.eng_id;
|
||
|
cfg.iv_size = crypto_skcipher_ivsize(tfm);
|
||
|
|
||
|
crypto_sync_skcipher_clear_flags(ctx->fallback.skcipher,
|
||
|
CRYPTO_TFM_REQ_MASK);
|
||
|
crypto_sync_skcipher_set_flags(ctx->fallback.skcipher,
|
||
|
tfm->base.crt_flags &
|
||
|
CRYPTO_TFM_REQ_MASK);
|
||
|
ret = crypto_sync_skcipher_setkey(ctx->fallback.skcipher, key, keylen);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
/* Setup Encryption Security Context & Command label template */
|
||
|
if (sa_init_sc(&ctx->enc, key, keylen, ad, 1, &ctx->enc.epib[1]))
|
||
|
goto badkey;
|
||
|
|
||
|
cmdl_len = sa_format_cmdl_gen(&cfg,
|
||
|
(u8 *)ctx->enc.cmdl,
|
||
|
&ctx->enc.cmdl_upd_info);
|
||
|
if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32)))
|
||
|
goto badkey;
|
||
|
|
||
|
ctx->enc.cmdl_size = cmdl_len;
|
||
|
|
||
|
/* Setup Decryption Security Context & Command label template */
|
||
|
if (sa_init_sc(&ctx->dec, key, keylen, ad, 0, &ctx->dec.epib[1]))
|
||
|
goto badkey;
|
||
|
|
||
|
cfg.enc_eng_id = ad->enc_eng.eng_id;
|
||
|
cmdl_len = sa_format_cmdl_gen(&cfg, (u8 *)ctx->dec.cmdl,
|
||
|
&ctx->dec.cmdl_upd_info);
|
||
|
|
||
|
if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32)))
|
||
|
goto badkey;
|
||
|
|
||
|
ctx->dec.cmdl_size = cmdl_len;
|
||
|
ctx->iv_idx = ad->iv_idx;
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
badkey:
|
||
|
dev_err(sa_k3_dev, "%s: badkey\n", __func__);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
static int sa_aes_cbc_setkey(struct crypto_skcipher *tfm, const u8 *key,
|
||
|
unsigned int keylen)
|
||
|
{
|
||
|
struct algo_data ad = { 0 };
|
||
|
/* Convert the key size (16/24/32) to the key size index (0/1/2) */
|
||
|
int key_idx = (keylen >> 3) - 2;
|
||
|
|
||
|
if (key_idx >= 3)
|
||
|
return -EINVAL;
|
||
|
|
||
|
ad.mci_enc = mci_cbc_enc_array[key_idx];
|
||
|
ad.mci_dec = mci_cbc_dec_array[key_idx];
|
||
|
ad.inv_key = true;
|
||
|
ad.ealg_id = SA_EALG_ID_AES_CBC;
|
||
|
ad.iv_idx = 4;
|
||
|
ad.iv_out_size = 16;
|
||
|
|
||
|
return sa_cipher_setkey(tfm, key, keylen, &ad);
|
||
|
}
|
||
|
|
||
|
static int sa_aes_ecb_setkey(struct crypto_skcipher *tfm, const u8 *key,
|
||
|
unsigned int keylen)
|
||
|
{
|
||
|
struct algo_data ad = { 0 };
|
||
|
/* Convert the key size (16/24/32) to the key size index (0/1/2) */
|
||
|
int key_idx = (keylen >> 3) - 2;
|
||
|
|
||
|
if (key_idx >= 3)
|
||
|
return -EINVAL;
|
||
|
|
||
|
ad.mci_enc = mci_ecb_enc_array[key_idx];
|
||
|
ad.mci_dec = mci_ecb_dec_array[key_idx];
|
||
|
ad.inv_key = true;
|
||
|
ad.ealg_id = SA_EALG_ID_AES_ECB;
|
||
|
|
||
|
return sa_cipher_setkey(tfm, key, keylen, &ad);
|
||
|
}
|
||
|
|
||
|
static int sa_3des_cbc_setkey(struct crypto_skcipher *tfm, const u8 *key,
|
||
|
unsigned int keylen)
|
||
|
{
|
||
|
struct algo_data ad = { 0 };
|
||
|
|
||
|
ad.mci_enc = mci_cbc_3des_enc_array;
|
||
|
ad.mci_dec = mci_cbc_3des_dec_array;
|
||
|
ad.ealg_id = SA_EALG_ID_3DES_CBC;
|
||
|
ad.iv_idx = 6;
|
||
|
ad.iv_out_size = 8;
|
||
|
|
||
|
return sa_cipher_setkey(tfm, key, keylen, &ad);
|
||
|
}
|
||
|
|
||
|
static int sa_3des_ecb_setkey(struct crypto_skcipher *tfm, const u8 *key,
|
||
|
unsigned int keylen)
|
||
|
{
|
||
|
struct algo_data ad = { 0 };
|
||
|
|
||
|
ad.mci_enc = mci_ecb_3des_enc_array;
|
||
|
ad.mci_dec = mci_ecb_3des_dec_array;
|
||
|
|
||
|
return sa_cipher_setkey(tfm, key, keylen, &ad);
|
||
|
}
|
||
|
|
||
|
static void sa_aes_dma_in_callback(void *data)
|
||
|
{
|
||
|
struct sa_rx_data *rxd = (struct sa_rx_data *)data;
|
||
|
struct skcipher_request *req;
|
||
|
int sglen;
|
||
|
u32 *result;
|
||
|
__be32 *mdptr;
|
||
|
size_t ml, pl;
|
||
|
int i;
|
||
|
enum dma_data_direction dir_src;
|
||
|
bool diff_dst;
|
||
|
|
||
|
req = container_of(rxd->req, struct skcipher_request, base);
|
||
|
sglen = sg_nents_for_len(req->src, req->cryptlen);
|
||
|
|
||
|
diff_dst = (req->src != req->dst) ? true : false;
|
||
|
dir_src = diff_dst ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL;
|
||
|
|
||
|
if (req->iv) {
|
||
|
mdptr = (__be32 *)dmaengine_desc_get_metadata_ptr(rxd->tx_in, &pl,
|
||
|
&ml);
|
||
|
result = (u32 *)req->iv;
|
||
|
|
||
|
for (i = 0; i < (rxd->enc_iv_size / 4); i++)
|
||
|
result[i] = be32_to_cpu(mdptr[i + rxd->iv_idx]);
|
||
|
}
|
||
|
|
||
|
dma_unmap_sg(rxd->ddev, req->src, sglen, dir_src);
|
||
|
kfree(rxd->split_src_sg);
|
||
|
|
||
|
if (diff_dst) {
|
||
|
sglen = sg_nents_for_len(req->dst, req->cryptlen);
|
||
|
|
||
|
dma_unmap_sg(rxd->ddev, req->dst, sglen,
|
||
|
DMA_FROM_DEVICE);
|
||
|
kfree(rxd->split_dst_sg);
|
||
|
}
|
||
|
|
||
|
kfree(rxd);
|
||
|
|
||
|
skcipher_request_complete(req, 0);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
sa_prepare_tx_desc(u32 *mdptr, u32 pslen, u32 *psdata, u32 epiblen, u32 *epib)
|
||
|
{
|
||
|
u32 *out, *in;
|
||
|
int i;
|
||
|
|
||
|
for (out = mdptr, in = epib, i = 0; i < epiblen / sizeof(u32); i++)
|
||
|
*out++ = *in++;
|
||
|
|
||
|
mdptr[4] = (0xFFFF << 16);
|
||
|
for (out = &mdptr[5], in = psdata, i = 0;
|
||
|
i < pslen / sizeof(u32); i++)
|
||
|
*out++ = *in++;
|
||
|
}
|
||
|
|
||
|
static int sa_run(struct sa_req *req)
|
||
|
{
|
||
|
struct sa_rx_data *rxd;
|
||
|
gfp_t gfp_flags;
|
||
|
u32 cmdl[SA_MAX_CMDL_WORDS];
|
||
|
struct sa_crypto_data *pdata = dev_get_drvdata(sa_k3_dev);
|
||
|
struct device *ddev;
|
||
|
struct dma_chan *dma_rx;
|
||
|
int sg_nents, src_nents, dst_nents;
|
||
|
int mapped_src_nents, mapped_dst_nents;
|
||
|
struct scatterlist *src, *dst;
|
||
|
size_t pl, ml, split_size;
|
||
|
struct sa_ctx_info *sa_ctx = req->enc ? &req->ctx->enc : &req->ctx->dec;
|
||
|
int ret;
|
||
|
struct dma_async_tx_descriptor *tx_out;
|
||
|
u32 *mdptr;
|
||
|
bool diff_dst;
|
||
|
enum dma_data_direction dir_src;
|
||
|
|
||
|
gfp_flags = req->base->flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
|
||
|
GFP_KERNEL : GFP_ATOMIC;
|
||
|
|
||
|
rxd = kzalloc(sizeof(*rxd), gfp_flags);
|
||
|
if (!rxd)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
if (req->src != req->dst) {
|
||
|
diff_dst = true;
|
||
|
dir_src = DMA_TO_DEVICE;
|
||
|
} else {
|
||
|
diff_dst = false;
|
||
|
dir_src = DMA_BIDIRECTIONAL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* SA2UL has an interesting feature where the receive DMA channel
|
||
|
* is selected based on the data passed to the engine. Within the
|
||
|
* transition range, there is also a space where it is impossible
|
||
|
* to determine where the data will end up, and this should be
|
||
|
* avoided. This will be handled by the SW fallback mechanism by
|
||
|
* the individual algorithm implementations.
|
||
|
*/
|
||
|
if (req->size >= 256)
|
||
|
dma_rx = pdata->dma_rx2;
|
||
|
else
|
||
|
dma_rx = pdata->dma_rx1;
|
||
|
|
||
|
ddev = dma_rx->device->dev;
|
||
|
|
||
|
memcpy(cmdl, sa_ctx->cmdl, sa_ctx->cmdl_size);
|
||
|
|
||
|
sa_update_cmdl(req, cmdl, &sa_ctx->cmdl_upd_info);
|
||
|
|
||
|
if (req->type != CRYPTO_ALG_TYPE_AHASH) {
|
||
|
if (req->enc)
|
||
|
req->type |=
|
||
|
(SA_REQ_SUBTYPE_ENC << SA_REQ_SUBTYPE_SHIFT);
|
||
|
else
|
||
|
req->type |=
|
||
|
(SA_REQ_SUBTYPE_DEC << SA_REQ_SUBTYPE_SHIFT);
|
||
|
}
|
||
|
|
||
|
cmdl[sa_ctx->cmdl_size / sizeof(u32)] = req->type;
|
||
|
|
||
|
/*
|
||
|
* Map the packets, first we check if the data fits into a single
|
||
|
* sg entry and use that if possible. If it does not fit, we check
|
||
|
* if we need to do sg_split to align the scatterlist data on the
|
||
|
* actual data size being processed by the crypto engine.
|
||
|
*/
|
||
|
src = req->src;
|
||
|
sg_nents = sg_nents_for_len(src, req->size);
|
||
|
|
||
|
split_size = req->size;
|
||
|
|
||
|
if (sg_nents == 1 && split_size <= req->src->length) {
|
||
|
src = &rxd->rx_sg;
|
||
|
sg_init_table(src, 1);
|
||
|
sg_set_page(src, sg_page(req->src), split_size,
|
||
|
req->src->offset);
|
||
|
src_nents = 1;
|
||
|
dma_map_sg(ddev, src, sg_nents, dir_src);
|
||
|
} else {
|
||
|
mapped_src_nents = dma_map_sg(ddev, req->src, sg_nents,
|
||
|
dir_src);
|
||
|
ret = sg_split(req->src, mapped_src_nents, 0, 1, &split_size,
|
||
|
&src, &src_nents, gfp_flags);
|
||
|
if (ret) {
|
||
|
src_nents = sg_nents;
|
||
|
src = req->src;
|
||
|
} else {
|
||
|
rxd->split_src_sg = src;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!diff_dst) {
|
||
|
dst_nents = src_nents;
|
||
|
dst = src;
|
||
|
} else {
|
||
|
dst_nents = sg_nents_for_len(req->dst, req->size);
|
||
|
|
||
|
if (dst_nents == 1 && split_size <= req->dst->length) {
|
||
|
dst = &rxd->tx_sg;
|
||
|
sg_init_table(dst, 1);
|
||
|
sg_set_page(dst, sg_page(req->dst), split_size,
|
||
|
req->dst->offset);
|
||
|
dst_nents = 1;
|
||
|
dma_map_sg(ddev, dst, dst_nents, DMA_FROM_DEVICE);
|
||
|
} else {
|
||
|
mapped_dst_nents = dma_map_sg(ddev, req->dst, dst_nents,
|
||
|
DMA_FROM_DEVICE);
|
||
|
ret = sg_split(req->dst, mapped_dst_nents, 0, 1,
|
||
|
&split_size, &dst, &dst_nents,
|
||
|
gfp_flags);
|
||
|
if (ret) {
|
||
|
dst_nents = dst_nents;
|
||
|
dst = req->dst;
|
||
|
} else {
|
||
|
rxd->split_dst_sg = dst;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (unlikely(src_nents != sg_nents)) {
|
||
|
dev_warn_ratelimited(sa_k3_dev, "failed to map tx pkt\n");
|
||
|
ret = -EIO;
|
||
|
goto err_cleanup;
|
||
|
}
|
||
|
|
||
|
rxd->tx_in = dmaengine_prep_slave_sg(dma_rx, dst, dst_nents,
|
||
|
DMA_DEV_TO_MEM,
|
||
|
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
|
||
|
if (!rxd->tx_in) {
|
||
|
dev_err(pdata->dev, "IN prep_slave_sg() failed\n");
|
||
|
ret = -EINVAL;
|
||
|
goto err_cleanup;
|
||
|
}
|
||
|
|
||
|
rxd->req = (void *)req->base;
|
||
|
rxd->enc = req->enc;
|
||
|
rxd->ddev = ddev;
|
||
|
rxd->src = src;
|
||
|
rxd->dst = dst;
|
||
|
rxd->iv_idx = req->ctx->iv_idx;
|
||
|
rxd->enc_iv_size = sa_ctx->cmdl_upd_info.enc_iv.size;
|
||
|
rxd->tx_in->callback = req->callback;
|
||
|
rxd->tx_in->callback_param = rxd;
|
||
|
|
||
|
tx_out = dmaengine_prep_slave_sg(pdata->dma_tx, src,
|
||
|
src_nents, DMA_MEM_TO_DEV,
|
||
|
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
|
||
|
|
||
|
if (!tx_out) {
|
||
|
dev_err(pdata->dev, "OUT prep_slave_sg() failed\n");
|
||
|
ret = -EINVAL;
|
||
|
goto err_cleanup;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Prepare metadata for DMA engine. This essentially describes the
|
||
|
* crypto algorithm to be used, data sizes, different keys etc.
|
||
|
*/
|
||
|
mdptr = (u32 *)dmaengine_desc_get_metadata_ptr(tx_out, &pl, &ml);
|
||
|
|
||
|
sa_prepare_tx_desc(mdptr, (sa_ctx->cmdl_size + (SA_PSDATA_CTX_WORDS *
|
||
|
sizeof(u32))), cmdl, sizeof(sa_ctx->epib),
|
||
|
sa_ctx->epib);
|
||
|
|
||
|
ml = sa_ctx->cmdl_size + (SA_PSDATA_CTX_WORDS * sizeof(u32));
|
||
|
dmaengine_desc_set_metadata_len(tx_out, req->mdata_size);
|
||
|
|
||
|
dmaengine_submit(tx_out);
|
||
|
dmaengine_submit(rxd->tx_in);
|
||
|
|
||
|
dma_async_issue_pending(dma_rx);
|
||
|
dma_async_issue_pending(pdata->dma_tx);
|
||
|
|
||
|
return -EINPROGRESS;
|
||
|
|
||
|
err_cleanup:
|
||
|
dma_unmap_sg(ddev, req->src, sg_nents, DMA_TO_DEVICE);
|
||
|
kfree(rxd->split_src_sg);
|
||
|
|
||
|
if (req->src != req->dst) {
|
||
|
dst_nents = sg_nents_for_len(req->dst, req->size);
|
||
|
dma_unmap_sg(ddev, req->dst, dst_nents, DMA_FROM_DEVICE);
|
||
|
kfree(rxd->split_dst_sg);
|
||
|
}
|
||
|
|
||
|
kfree(rxd);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int sa_cipher_run(struct skcipher_request *req, u8 *iv, int enc)
|
||
|
{
|
||
|
struct sa_tfm_ctx *ctx =
|
||
|
crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
|
||
|
struct crypto_alg *alg = req->base.tfm->__crt_alg;
|
||
|
struct sa_req sa_req = { 0 };
|
||
|
int ret;
|
||
|
|
||
|
if (!req->cryptlen)
|
||
|
return 0;
|
||
|
|
||
|
if (req->cryptlen % alg->cra_blocksize)
|
||
|
return -EINVAL;
|
||
|
|
||
|
/* Use SW fallback if the data size is not supported */
|
||
|
if (req->cryptlen > SA_MAX_DATA_SZ ||
|
||
|
(req->cryptlen >= SA_UNSAFE_DATA_SZ_MIN &&
|
||
|
req->cryptlen <= SA_UNSAFE_DATA_SZ_MAX)) {
|
||
|
SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, ctx->fallback.skcipher);
|
||
|
|
||
|
skcipher_request_set_sync_tfm(subreq, ctx->fallback.skcipher);
|
||
|
skcipher_request_set_callback(subreq, req->base.flags,
|
||
|
NULL, NULL);
|
||
|
skcipher_request_set_crypt(subreq, req->src, req->dst,
|
||
|
req->cryptlen, req->iv);
|
||
|
if (enc)
|
||
|
ret = crypto_skcipher_encrypt(subreq);
|
||
|
else
|
||
|
ret = crypto_skcipher_decrypt(subreq);
|
||
|
|
||
|
skcipher_request_zero(subreq);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
sa_req.size = req->cryptlen;
|
||
|
sa_req.enc_size = req->cryptlen;
|
||
|
sa_req.src = req->src;
|
||
|
sa_req.dst = req->dst;
|
||
|
sa_req.enc_iv = iv;
|
||
|
sa_req.type = CRYPTO_ALG_TYPE_SKCIPHER;
|
||
|
sa_req.enc = enc;
|
||
|
sa_req.callback = sa_aes_dma_in_callback;
|
||
|
sa_req.mdata_size = 44;
|
||
|
sa_req.base = &req->base;
|
||
|
sa_req.ctx = ctx;
|
||
|
|
||
|
return sa_run(&sa_req);
|
||
|
}
|
||
|
|
||
|
static int sa_encrypt(struct skcipher_request *req)
|
||
|
{
|
||
|
return sa_cipher_run(req, req->iv, 1);
|
||
|
}
|
||
|
|
||
|
static int sa_decrypt(struct skcipher_request *req)
|
||
|
{
|
||
|
return sa_cipher_run(req, req->iv, 0);
|
||
|
}
|
||
|
|
||
|
static struct sa_alg_tmpl sa_algs[] = {
|
||
|
{
|
||
|
.type = CRYPTO_ALG_TYPE_SKCIPHER,
|
||
|
.alg.skcipher = {
|
||
|
.base.cra_name = "cbc(aes)",
|
||
|
.base.cra_driver_name = "cbc-aes-sa2ul",
|
||
|
.base.cra_priority = 30000,
|
||
|
.base.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
|
||
|
CRYPTO_ALG_KERN_DRIVER_ONLY |
|
||
|
CRYPTO_ALG_ASYNC |
|
||
|
CRYPTO_ALG_NEED_FALLBACK,
|
||
|
.base.cra_blocksize = AES_BLOCK_SIZE,
|
||
|
.base.cra_ctxsize = sizeof(struct sa_tfm_ctx),
|
||
|
.base.cra_module = THIS_MODULE,
|
||
|
.init = sa_cipher_cra_init,
|
||
|
.exit = sa_cipher_cra_exit,
|
||
|
.min_keysize = AES_MIN_KEY_SIZE,
|
||
|
.max_keysize = AES_MAX_KEY_SIZE,
|
||
|
.ivsize = AES_BLOCK_SIZE,
|
||
|
.setkey = sa_aes_cbc_setkey,
|
||
|
.encrypt = sa_encrypt,
|
||
|
.decrypt = sa_decrypt,
|
||
|
}
|
||
|
},
|
||
|
{
|
||
|
.type = CRYPTO_ALG_TYPE_SKCIPHER,
|
||
|
.alg.skcipher = {
|
||
|
.base.cra_name = "ecb(aes)",
|
||
|
.base.cra_driver_name = "ecb-aes-sa2ul",
|
||
|
.base.cra_priority = 30000,
|
||
|
.base.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
|
||
|
CRYPTO_ALG_KERN_DRIVER_ONLY |
|
||
|
CRYPTO_ALG_ASYNC |
|
||
|
CRYPTO_ALG_NEED_FALLBACK,
|
||
|
.base.cra_blocksize = AES_BLOCK_SIZE,
|
||
|
.base.cra_ctxsize = sizeof(struct sa_tfm_ctx),
|
||
|
.base.cra_module = THIS_MODULE,
|
||
|
.init = sa_cipher_cra_init,
|
||
|
.exit = sa_cipher_cra_exit,
|
||
|
.min_keysize = AES_MIN_KEY_SIZE,
|
||
|
.max_keysize = AES_MAX_KEY_SIZE,
|
||
|
.setkey = sa_aes_ecb_setkey,
|
||
|
.encrypt = sa_encrypt,
|
||
|
.decrypt = sa_decrypt,
|
||
|
}
|
||
|
},
|
||
|
{
|
||
|
.type = CRYPTO_ALG_TYPE_SKCIPHER,
|
||
|
.alg.skcipher = {
|
||
|
.base.cra_name = "cbc(des3_ede)",
|
||
|
.base.cra_driver_name = "cbc-des3-sa2ul",
|
||
|
.base.cra_priority = 30000,
|
||
|
.base.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
|
||
|
CRYPTO_ALG_KERN_DRIVER_ONLY |
|
||
|
CRYPTO_ALG_ASYNC |
|
||
|
CRYPTO_ALG_NEED_FALLBACK,
|
||
|
.base.cra_blocksize = DES_BLOCK_SIZE,
|
||
|
.base.cra_ctxsize = sizeof(struct sa_tfm_ctx),
|
||
|
.base.cra_module = THIS_MODULE,
|
||
|
.init = sa_cipher_cra_init,
|
||
|
.exit = sa_cipher_cra_exit,
|
||
|
.min_keysize = 3 * DES_KEY_SIZE,
|
||
|
.max_keysize = 3 * DES_KEY_SIZE,
|
||
|
.ivsize = DES_BLOCK_SIZE,
|
||
|
.setkey = sa_3des_cbc_setkey,
|
||
|
.encrypt = sa_encrypt,
|
||
|
.decrypt = sa_decrypt,
|
||
|
}
|
||
|
},
|
||
|
{
|
||
|
.type = CRYPTO_ALG_TYPE_SKCIPHER,
|
||
|
.alg.skcipher = {
|
||
|
.base.cra_name = "ecb(des3_ede)",
|
||
|
.base.cra_driver_name = "ecb-des3-sa2ul",
|
||
|
.base.cra_priority = 30000,
|
||
|
.base.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
|
||
|
CRYPTO_ALG_KERN_DRIVER_ONLY |
|
||
|
CRYPTO_ALG_ASYNC |
|
||
|
CRYPTO_ALG_NEED_FALLBACK,
|
||
|
.base.cra_blocksize = DES_BLOCK_SIZE,
|
||
|
.base.cra_ctxsize = sizeof(struct sa_tfm_ctx),
|
||
|
.base.cra_module = THIS_MODULE,
|
||
|
.init = sa_cipher_cra_init,
|
||
|
.exit = sa_cipher_cra_exit,
|
||
|
.min_keysize = 3 * DES_KEY_SIZE,
|
||
|
.max_keysize = 3 * DES_KEY_SIZE,
|
||
|
.setkey = sa_3des_ecb_setkey,
|
||
|
.encrypt = sa_encrypt,
|
||
|
.decrypt = sa_decrypt,
|
||
|
}
|
||
|
},
|
||
|
};
|
||
|
|
||
|
/* Register the algorithms in crypto framework */
|
||
|
static void sa_register_algos(const struct device *dev)
|
||
|
{
|
||
|
char *alg_name;
|
||
|
u32 type;
|
||
|
int i, err;
|
||
|
|
||
|
for (i = 0; i < ARRAY_SIZE(sa_algs); i++) {
|
||
|
type = sa_algs[i].type;
|
||
|
if (type == CRYPTO_ALG_TYPE_SKCIPHER) {
|
||
|
alg_name = sa_algs[i].alg.skcipher.base.cra_name;
|
||
|
err = crypto_register_skcipher(&sa_algs[i].alg.skcipher);
|
||
|
} else {
|
||
|
dev_err(dev,
|
||
|
"un-supported crypto algorithm (%d)",
|
||
|
sa_algs[i].type);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if (err)
|
||
|
dev_err(dev, "Failed to register '%s'\n", alg_name);
|
||
|
else
|
||
|
sa_algs[i].registered = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Unregister the algorithms in crypto framework */
|
||
|
static void sa_unregister_algos(const struct device *dev)
|
||
|
{
|
||
|
u32 type;
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < ARRAY_SIZE(sa_algs); i++) {
|
||
|
type = sa_algs[i].type;
|
||
|
if (!sa_algs[i].registered)
|
||
|
continue;
|
||
|
if (type == CRYPTO_ALG_TYPE_SKCIPHER)
|
||
|
crypto_unregister_skcipher(&sa_algs[i].alg.skcipher);
|
||
|
|
||
|
sa_algs[i].registered = false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int sa_init_mem(struct sa_crypto_data *dev_data)
|
||
|
{
|
||
|
struct device *dev = &dev_data->pdev->dev;
|
||
|
/* Setup dma pool for security context buffers */
|
||
|
dev_data->sc_pool = dma_pool_create("keystone-sc", dev,
|
||
|
SA_CTX_MAX_SZ, 64, 0);
|
||
|
if (!dev_data->sc_pool) {
|
||
|
dev_err(dev, "Failed to create dma pool");
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int sa_dma_init(struct sa_crypto_data *dd)
|
||
|
{
|
||
|
int ret;
|
||
|
struct dma_slave_config cfg;
|
||
|
|
||
|
dd->dma_rx1 = NULL;
|
||
|
dd->dma_tx = NULL;
|
||
|
dd->dma_rx2 = NULL;
|
||
|
|
||
|
ret = dma_coerce_mask_and_coherent(dd->dev, DMA_BIT_MASK(48));
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
dd->dma_rx1 = dma_request_chan(dd->dev, "rx1");
|
||
|
if (IS_ERR(dd->dma_rx1)) {
|
||
|
if (PTR_ERR(dd->dma_rx1) != -EPROBE_DEFER)
|
||
|
dev_err(dd->dev, "Unable to request rx1 DMA channel\n");
|
||
|
return PTR_ERR(dd->dma_rx1);
|
||
|
}
|
||
|
|
||
|
dd->dma_rx2 = dma_request_chan(dd->dev, "rx2");
|
||
|
if (IS_ERR(dd->dma_rx2)) {
|
||
|
dma_release_channel(dd->dma_rx1);
|
||
|
if (PTR_ERR(dd->dma_rx2) != -EPROBE_DEFER)
|
||
|
dev_err(dd->dev, "Unable to request rx2 DMA channel\n");
|
||
|
return PTR_ERR(dd->dma_rx2);
|
||
|
}
|
||
|
|
||
|
dd->dma_tx = dma_request_chan(dd->dev, "tx");
|
||
|
if (IS_ERR(dd->dma_tx)) {
|
||
|
if (PTR_ERR(dd->dma_rx1) != -EPROBE_DEFER)
|
||
|
dev_err(dd->dev, "Unable to request tx DMA channel\n");
|
||
|
ret = PTR_ERR(dd->dma_tx);
|
||
|
goto err_dma_tx;
|
||
|
}
|
||
|
|
||
|
memzero_explicit(&cfg, sizeof(cfg));
|
||
|
|
||
|
cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
||
|
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
||
|
cfg.src_maxburst = 4;
|
||
|
cfg.dst_maxburst = 4;
|
||
|
|
||
|
ret = dmaengine_slave_config(dd->dma_rx1, &cfg);
|
||
|
if (ret) {
|
||
|
dev_err(dd->dev, "can't configure IN dmaengine slave: %d\n",
|
||
|
ret);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
ret = dmaengine_slave_config(dd->dma_rx2, &cfg);
|
||
|
if (ret) {
|
||
|
dev_err(dd->dev, "can't configure IN dmaengine slave: %d\n",
|
||
|
ret);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
ret = dmaengine_slave_config(dd->dma_tx, &cfg);
|
||
|
if (ret) {
|
||
|
dev_err(dd->dev, "can't configure OUT dmaengine slave: %d\n",
|
||
|
ret);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
err_dma_tx:
|
||
|
dma_release_channel(dd->dma_rx1);
|
||
|
dma_release_channel(dd->dma_rx2);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int sa_ul_probe(struct platform_device *pdev)
|
||
|
{
|
||
|
struct device *dev = &pdev->dev;
|
||
|
struct device_node *node = dev->of_node;
|
||
|
struct resource *res;
|
||
|
static void __iomem *saul_base;
|
||
|
struct sa_crypto_data *dev_data;
|
||
|
u32 val;
|
||
|
int ret;
|
||
|
|
||
|
dev_data = devm_kzalloc(dev, sizeof(*dev_data), GFP_KERNEL);
|
||
|
if (!dev_data)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
sa_k3_dev = dev;
|
||
|
dev_data->dev = dev;
|
||
|
dev_data->pdev = pdev;
|
||
|
platform_set_drvdata(pdev, dev_data);
|
||
|
dev_set_drvdata(sa_k3_dev, dev_data);
|
||
|
|
||
|
pm_runtime_enable(dev);
|
||
|
ret = pm_runtime_get_sync(dev);
|
||
|
if (ret) {
|
||
|
dev_err(&pdev->dev, "%s: failed to get sync: %d\n", __func__,
|
||
|
ret);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
sa_init_mem(dev_data);
|
||
|
ret = sa_dma_init(dev_data);
|
||
|
if (ret)
|
||
|
goto disable_pm_runtime;
|
||
|
|
||
|
spin_lock_init(&dev_data->scid_lock);
|
||
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
||
|
saul_base = devm_ioremap_resource(dev, res);
|
||
|
|
||
|
dev_data->base = saul_base;
|
||
|
val = SA_EEC_ENCSS_EN | SA_EEC_AUTHSS_EN | SA_EEC_CTXCACH_EN |
|
||
|
SA_EEC_CPPI_PORT_IN_EN | SA_EEC_CPPI_PORT_OUT_EN |
|
||
|
SA_EEC_TRNG_EN;
|
||
|
|
||
|
writel_relaxed(val, saul_base + SA_ENGINE_ENABLE_CONTROL);
|
||
|
|
||
|
sa_register_algos(dev);
|
||
|
|
||
|
ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
|
||
|
if (ret)
|
||
|
goto release_dma;
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
release_dma:
|
||
|
sa_unregister_algos(&pdev->dev);
|
||
|
|
||
|
dma_release_channel(dev_data->dma_rx2);
|
||
|
dma_release_channel(dev_data->dma_rx1);
|
||
|
dma_release_channel(dev_data->dma_tx);
|
||
|
|
||
|
dma_pool_destroy(dev_data->sc_pool);
|
||
|
|
||
|
disable_pm_runtime:
|
||
|
pm_runtime_put_sync(&pdev->dev);
|
||
|
pm_runtime_disable(&pdev->dev);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int sa_ul_remove(struct platform_device *pdev)
|
||
|
{
|
||
|
struct sa_crypto_data *dev_data = platform_get_drvdata(pdev);
|
||
|
|
||
|
sa_unregister_algos(&pdev->dev);
|
||
|
|
||
|
dma_release_channel(dev_data->dma_rx2);
|
||
|
dma_release_channel(dev_data->dma_rx1);
|
||
|
dma_release_channel(dev_data->dma_tx);
|
||
|
|
||
|
dma_pool_destroy(dev_data->sc_pool);
|
||
|
|
||
|
platform_set_drvdata(pdev, NULL);
|
||
|
|
||
|
pm_runtime_put_sync(&pdev->dev);
|
||
|
pm_runtime_disable(&pdev->dev);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct of_device_id of_match[] = {
|
||
|
{.compatible = "ti,j721e-sa2ul",},
|
||
|
{.compatible = "ti,am654-sa2ul",},
|
||
|
{},
|
||
|
};
|
||
|
MODULE_DEVICE_TABLE(of, of_match);
|
||
|
|
||
|
static struct platform_driver sa_ul_driver = {
|
||
|
.probe = sa_ul_probe,
|
||
|
.remove = sa_ul_remove,
|
||
|
.driver = {
|
||
|
.name = "saul-crypto",
|
||
|
.of_match_table = of_match,
|
||
|
},
|
||
|
};
|
||
|
module_platform_driver(sa_ul_driver);
|
||
|
MODULE_LICENSE("GPL v2");
|