linux/net/sched/sch_sfq.c

826 lines
20 KiB
C
Raw Normal View History

/*
* net/sched/sch_sfq.c Stochastic Fairness Queueing discipline.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/jiffies.h>
#include <linux/string.h>
#include <linux/in.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/jhash.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <net/netlink.h>
#include <net/pkt_sched.h>
#include <net/flow_keys.h>
/* Stochastic Fairness Queuing algorithm.
=======================================
Source:
Paul E. McKenney "Stochastic Fairness Queuing",
IEEE INFOCOMM'90 Proceedings, San Francisco, 1990.
Paul E. McKenney "Stochastic Fairness Queuing",
"Interworking: Research and Experience", v.2, 1991, p.113-131.
See also:
M. Shreedhar and George Varghese "Efficient Fair
Queuing using Deficit Round Robin", Proc. SIGCOMM 95.
This is not the thing that is usually called (W)FQ nowadays.
It does not use any timestamp mechanism, but instead
processes queues in round-robin order.
ADVANTAGE:
- It is very cheap. Both CPU and memory requirements are minimal.
DRAWBACKS:
- "Stochastic" -> It is not 100% fair.
When hash collisions occur, several flows are considered as one.
- "Round-robin" -> It introduces larger delays than virtual clock
based schemes, and should not be used for isolating interactive
traffic from non-interactive. It means, that this scheduler
should be used as leaf of CBQ or P3, which put interactive traffic
to higher priority band.
We still need true WFQ for top level CSZ, but using WFQ
for the best effort traffic is absolutely pointless:
SFQ is superior for this purpose.
IMPLEMENTATION:
This implementation limits :
- maximal queue length per flow to 127 packets.
- max mtu to 2^18-1;
- max 65408 flows,
- number of hash buckets to 65536.
It is easy to increase these values, but not in flight. */
#define SFQ_MAX_DEPTH 127 /* max number of packets per flow */
#define SFQ_DEFAULT_FLOWS 128
#define SFQ_MAX_FLOWS (0x10000 - SFQ_MAX_DEPTH - 1) /* max number of flows */
#define SFQ_EMPTY_SLOT 0xffff
#define SFQ_DEFAULT_HASH_DIVISOR 1024
/* We use 16 bits to store allot, and want to handle packets up to 64K
* Scale allot by 8 (1<<3) so that no overflow occurs.
*/
#define SFQ_ALLOT_SHIFT 3
#define SFQ_ALLOT_SIZE(X) DIV_ROUND_UP(X, 1 << SFQ_ALLOT_SHIFT)
/* This type should contain at least SFQ_MAX_DEPTH + 1 + SFQ_MAX_FLOWS values */
typedef u16 sfq_index;
/*
* We dont use pointers to save space.
* Small indexes [0 ... SFQ_MAX_FLOWS - 1] are 'pointers' to slots[] array
* while following values [SFQ_MAX_FLOWS ... SFQ_MAX_FLOWS + SFQ_MAX_DEPTH]
* are 'pointers' to dep[] array
*/
struct sfq_head {
sfq_index next;
sfq_index prev;
};
struct sfq_slot {
struct sk_buff *skblist_next;
struct sk_buff *skblist_prev;
sfq_index qlen; /* number of skbs in skblist */
sfq_index next; /* next slot in sfq RR chain */
struct sfq_head dep; /* anchor in dep[] chains */
unsigned short hash; /* hash value (index in ht[]) */
short allot; /* credit for this slot */
};
struct sfq_sched_data {
/* frequently used fields */
int limit; /* limit of total number of packets in this qdisc */
unsigned int divisor; /* number of slots in hash table */
unsigned int maxflows; /* number of flows in flows array */
int headdrop;
int maxdepth; /* limit of packets per flow */
u32 perturbation;
struct tcf_proto *filter_list;
sfq_index cur_depth; /* depth of longest slot */
unsigned short scaled_quantum; /* SFQ_ALLOT_SIZE(quantum) */
struct sfq_slot *tail; /* current slot in round */
sfq_index *ht; /* Hash table ('divisor' slots) */
struct sfq_slot *slots; /* Flows table ('maxflows' entries) */
struct sfq_head dep[SFQ_MAX_DEPTH + 1];
/* Linked lists of slots, indexed by depth
* dep[0] : list of unused flows
* dep[1] : list of flows with 1 packet
* dep[X] : list of flows with X packets
*/
int perturb_period;
unsigned int quantum; /* Allotment per round: MUST BE >= MTU */
struct timer_list perturb_timer;
};
/*
* sfq_head are either in a sfq_slot or in dep[] array
*/
static inline struct sfq_head *sfq_dep_head(struct sfq_sched_data *q, sfq_index val)
{
if (val < SFQ_MAX_FLOWS)
return &q->slots[val].dep;
return &q->dep[val - SFQ_MAX_FLOWS];
}
/*
* In order to be able to quickly rehash our queue when timer changes
* q->perturbation, we store flow_keys in skb->cb[]
*/
struct sfq_skb_cb {
struct flow_keys keys;
};
static inline struct sfq_skb_cb *sfq_skb_cb(const struct sk_buff *skb)
{
BUILD_BUG_ON(sizeof(skb->cb) <
sizeof(struct qdisc_skb_cb) + sizeof(struct sfq_skb_cb));
return (struct sfq_skb_cb *)qdisc_skb_cb(skb)->data;
}
static unsigned int sfq_hash(const struct sfq_sched_data *q,
const struct sk_buff *skb)
{
const struct flow_keys *keys = &sfq_skb_cb(skb)->keys;
unsigned int hash;
hash = jhash_3words((__force u32)keys->dst,
(__force u32)keys->src ^ keys->ip_proto,
(__force u32)keys->ports, q->perturbation);
return hash & (q->divisor - 1);
}
static unsigned int sfq_classify(struct sk_buff *skb, struct Qdisc *sch,
int *qerr)
{
struct sfq_sched_data *q = qdisc_priv(sch);
struct tcf_result res;
int result;
if (TC_H_MAJ(skb->priority) == sch->handle &&
TC_H_MIN(skb->priority) > 0 &&
TC_H_MIN(skb->priority) <= q->divisor)
return TC_H_MIN(skb->priority);
if (!q->filter_list) {
skb_flow_dissect(skb, &sfq_skb_cb(skb)->keys);
return sfq_hash(q, skb) + 1;
}
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
result = tc_classify(skb, q->filter_list, &res);
if (result >= 0) {
#ifdef CONFIG_NET_CLS_ACT
switch (result) {
case TC_ACT_STOLEN:
case TC_ACT_QUEUED:
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
case TC_ACT_SHOT:
return 0;
}
#endif
if (TC_H_MIN(res.classid) <= q->divisor)
return TC_H_MIN(res.classid);
}
return 0;
}
/*
* x : slot number [0 .. SFQ_MAX_FLOWS - 1]
*/
static inline void sfq_link(struct sfq_sched_data *q, sfq_index x)
{
sfq_index p, n;
struct sfq_slot *slot = &q->slots[x];
int qlen = slot->qlen;
p = qlen + SFQ_MAX_FLOWS;
n = q->dep[qlen].next;
slot->dep.next = n;
slot->dep.prev = p;
q->dep[qlen].next = x; /* sfq_dep_head(q, p)->next = x */
sfq_dep_head(q, n)->prev = x;
}
#define sfq_unlink(q, x, n, p) \
n = q->slots[x].dep.next; \
p = q->slots[x].dep.prev; \
sfq_dep_head(q, p)->next = n; \
sfq_dep_head(q, n)->prev = p
static inline void sfq_dec(struct sfq_sched_data *q, sfq_index x)
{
sfq_index p, n;
int d;
sfq_unlink(q, x, n, p);
d = q->slots[x].qlen--;
if (n == p && q->cur_depth == d)
q->cur_depth--;
sfq_link(q, x);
}
static inline void sfq_inc(struct sfq_sched_data *q, sfq_index x)
{
sfq_index p, n;
int d;
sfq_unlink(q, x, n, p);
d = ++q->slots[x].qlen;
if (q->cur_depth < d)
q->cur_depth = d;
sfq_link(q, x);
}
/* helper functions : might be changed when/if skb use a standard list_head */
/* remove one skb from tail of slot queue */
static inline struct sk_buff *slot_dequeue_tail(struct sfq_slot *slot)
{
struct sk_buff *skb = slot->skblist_prev;
slot->skblist_prev = skb->prev;
skb->prev->next = (struct sk_buff *)slot;
skb->next = skb->prev = NULL;
return skb;
}
/* remove one skb from head of slot queue */
static inline struct sk_buff *slot_dequeue_head(struct sfq_slot *slot)
{
struct sk_buff *skb = slot->skblist_next;
slot->skblist_next = skb->next;
skb->next->prev = (struct sk_buff *)slot;
skb->next = skb->prev = NULL;
return skb;
}
static inline void slot_queue_init(struct sfq_slot *slot)
{
memset(slot, 0, sizeof(*slot));
slot->skblist_prev = slot->skblist_next = (struct sk_buff *)slot;
}
/* add skb to slot queue (tail add) */
static inline void slot_queue_add(struct sfq_slot *slot, struct sk_buff *skb)
{
skb->prev = slot->skblist_prev;
skb->next = (struct sk_buff *)slot;
slot->skblist_prev->next = skb;
slot->skblist_prev = skb;
}
#define slot_queue_walk(slot, skb) \
for (skb = slot->skblist_next; \
skb != (struct sk_buff *)slot; \
skb = skb->next)
static unsigned int sfq_drop(struct Qdisc *sch)
{
struct sfq_sched_data *q = qdisc_priv(sch);
sfq_index x, d = q->cur_depth;
struct sk_buff *skb;
unsigned int len;
struct sfq_slot *slot;
/* Queue is full! Find the longest slot and drop tail packet from it */
if (d > 1) {
x = q->dep[d].next;
slot = &q->slots[x];
drop:
skb = q->headdrop ? slot_dequeue_head(slot) : slot_dequeue_tail(slot);
len = qdisc_pkt_len(skb);
sfq_dec(q, x);
kfree_skb(skb);
sch->q.qlen--;
sch->qstats.drops++;
sch->qstats.backlog -= len;
return len;
}
if (d == 1) {
/* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */
x = q->tail->next;
slot = &q->slots[x];
q->tail->next = slot->next;
q->ht[slot->hash] = SFQ_EMPTY_SLOT;
goto drop;
}
return 0;
}
static int
sfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
{
struct sfq_sched_data *q = qdisc_priv(sch);
unsigned int hash;
sfq_index x, qlen;
struct sfq_slot *slot;
int uninitialized_var(ret);
hash = sfq_classify(skb, sch, &ret);
if (hash == 0) {
if (ret & __NET_XMIT_BYPASS)
sch->qstats.drops++;
kfree_skb(skb);
return ret;
}
hash--;
x = q->ht[hash];
slot = &q->slots[x];
if (x == SFQ_EMPTY_SLOT) {
x = q->dep[0].next; /* get a free slot */
if (x >= SFQ_MAX_FLOWS)
return qdisc_drop(skb, sch);
q->ht[hash] = x;
slot = &q->slots[x];
slot->hash = hash;
}
if (slot->qlen >= q->maxdepth) {
struct sk_buff *head;
if (!q->headdrop)
return qdisc_drop(skb, sch);
head = slot_dequeue_head(slot);
sch->qstats.backlog -= qdisc_pkt_len(head);
qdisc_drop(head, sch);
sch->qstats.backlog += qdisc_pkt_len(skb);
slot_queue_add(slot, skb);
return NET_XMIT_CN;
}
sch->qstats.backlog += qdisc_pkt_len(skb);
slot_queue_add(slot, skb);
sfq_inc(q, x);
if (slot->qlen == 1) { /* The flow is new */
if (q->tail == NULL) { /* It is the first flow */
slot->next = x;
q->tail = slot;
} else {
slot->next = q->tail->next;
q->tail->next = x;
}
slot->allot = q->scaled_quantum;
}
if (++sch->q.qlen <= q->limit)
return NET_XMIT_SUCCESS;
qlen = slot->qlen;
sfq_drop(sch);
/* Return Congestion Notification only if we dropped a packet
* from this flow.
*/
if (qlen != slot->qlen)
return NET_XMIT_CN;
/* As we dropped a packet, better let upper stack know this */
qdisc_tree_decrease_qlen(sch, 1);
return NET_XMIT_SUCCESS;
}
static struct sk_buff *
sfq_dequeue(struct Qdisc *sch)
{
struct sfq_sched_data *q = qdisc_priv(sch);
struct sk_buff *skb;
sfq_index a, next_a;
struct sfq_slot *slot;
/* No active slots */
if (q->tail == NULL)
return NULL;
next_slot:
a = q->tail->next;
slot = &q->slots[a];
if (slot->allot <= 0) {
q->tail = slot;
slot->allot += q->scaled_quantum;
goto next_slot;
}
skb = slot_dequeue_head(slot);
sfq_dec(q, a);
qdisc_bstats_update(sch, skb);
sch->q.qlen--;
sch->qstats.backlog -= qdisc_pkt_len(skb);
/* Is the slot empty? */
if (slot->qlen == 0) {
q->ht[slot->hash] = SFQ_EMPTY_SLOT;
next_a = slot->next;
if (a == next_a) {
q->tail = NULL; /* no more active slots */
return skb;
}
q->tail->next = next_a;
} else {
slot->allot -= SFQ_ALLOT_SIZE(qdisc_pkt_len(skb));
}
return skb;
}
static void
sfq_reset(struct Qdisc *sch)
{
struct sk_buff *skb;
while ((skb = sfq_dequeue(sch)) != NULL)
kfree_skb(skb);
}
/*
* When q->perturbation is changed, we rehash all queued skbs
* to avoid OOO (Out Of Order) effects.
* We dont use sfq_dequeue()/sfq_enqueue() because we dont want to change
* counters.
*/
static void sfq_rehash(struct Qdisc *sch)
{
struct sfq_sched_data *q = qdisc_priv(sch);
struct sk_buff *skb;
int i;
struct sfq_slot *slot;
struct sk_buff_head list;
int dropped = 0;
__skb_queue_head_init(&list);
for (i = 0; i < q->maxflows; i++) {
slot = &q->slots[i];
if (!slot->qlen)
continue;
while (slot->qlen) {
skb = slot_dequeue_head(slot);
sfq_dec(q, i);
__skb_queue_tail(&list, skb);
}
q->ht[slot->hash] = SFQ_EMPTY_SLOT;
}
q->tail = NULL;
while ((skb = __skb_dequeue(&list)) != NULL) {
unsigned int hash = sfq_hash(q, skb);
sfq_index x = q->ht[hash];
slot = &q->slots[x];
if (x == SFQ_EMPTY_SLOT) {
x = q->dep[0].next; /* get a free slot */
if (x >= SFQ_MAX_FLOWS) {
drop: sch->qstats.backlog -= qdisc_pkt_len(skb);
kfree_skb(skb);
dropped++;
continue;
}
q->ht[hash] = x;
slot = &q->slots[x];
slot->hash = hash;
}
if (slot->qlen >= q->maxdepth)
goto drop;
slot_queue_add(slot, skb);
sfq_inc(q, x);
if (slot->qlen == 1) { /* The flow is new */
if (q->tail == NULL) { /* It is the first flow */
slot->next = x;
} else {
slot->next = q->tail->next;
q->tail->next = x;
}
q->tail = slot;
slot->allot = q->scaled_quantum;
}
}
sch->q.qlen -= dropped;
qdisc_tree_decrease_qlen(sch, dropped);
}
static void sfq_perturbation(unsigned long arg)
{
struct Qdisc *sch = (struct Qdisc *)arg;
struct sfq_sched_data *q = qdisc_priv(sch);
spinlock_t *root_lock = qdisc_lock(qdisc_root_sleeping(sch));
spin_lock(root_lock);
q->perturbation = net_random();
if (!q->filter_list && q->tail)
sfq_rehash(sch);
spin_unlock(root_lock);
if (q->perturb_period)
mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
}
static int sfq_change(struct Qdisc *sch, struct nlattr *opt)
{
struct sfq_sched_data *q = qdisc_priv(sch);
struct tc_sfq_qopt *ctl = nla_data(opt);
struct tc_sfq_qopt_v1 *ctl_v1 = NULL;
unsigned int qlen;
if (opt->nla_len < nla_attr_size(sizeof(*ctl)))
return -EINVAL;
if (opt->nla_len >= nla_attr_size(sizeof(*ctl_v1)))
ctl_v1 = nla_data(opt);
if (ctl->divisor &&
(!is_power_of_2(ctl->divisor) || ctl->divisor > 65536))
return -EINVAL;
sch_tree_lock(sch);
if (ctl->quantum) {
q->quantum = ctl->quantum;
q->scaled_quantum = SFQ_ALLOT_SIZE(q->quantum);
}
q->perturb_period = ctl->perturb_period * HZ;
if (ctl->flows)
q->maxflows = min_t(u32, ctl->flows, SFQ_MAX_FLOWS);
if (ctl->divisor) {
q->divisor = ctl->divisor;
q->maxflows = min_t(u32, q->maxflows, q->divisor);
}
if (ctl_v1) {
if (ctl_v1->depth)
q->maxdepth = min_t(u32, ctl_v1->depth, SFQ_MAX_DEPTH);
q->headdrop = ctl_v1->headdrop;
}
if (ctl->limit) {
q->limit = min_t(u32, ctl->limit, q->maxdepth * q->maxflows);
q->maxflows = min_t(u32, q->maxflows, q->limit);
}
qlen = sch->q.qlen;
while (sch->q.qlen > q->limit)
sfq_drop(sch);
qdisc_tree_decrease_qlen(sch, qlen - sch->q.qlen);
del_timer(&q->perturb_timer);
if (q->perturb_period) {
mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
q->perturbation = net_random();
}
sch_tree_unlock(sch);
return 0;
}
static void *sfq_alloc(size_t sz)
{
void *ptr = kmalloc(sz, GFP_KERNEL | __GFP_NOWARN);
if (!ptr)
ptr = vmalloc(sz);
return ptr;
}
static void sfq_free(void *addr)
{
if (addr) {
if (is_vmalloc_addr(addr))
vfree(addr);
else
kfree(addr);
}
}
static void sfq_destroy(struct Qdisc *sch)
{
struct sfq_sched_data *q = qdisc_priv(sch);
tcf_destroy_chain(&q->filter_list);
q->perturb_period = 0;
del_timer_sync(&q->perturb_timer);
sfq_free(q->ht);
sfq_free(q->slots);
}
static int sfq_init(struct Qdisc *sch, struct nlattr *opt)
{
struct sfq_sched_data *q = qdisc_priv(sch);
int i;
q->perturb_timer.function = sfq_perturbation;
q->perturb_timer.data = (unsigned long)sch;
init_timer_deferrable(&q->perturb_timer);
for (i = 0; i < SFQ_MAX_DEPTH + 1; i++) {
q->dep[i].next = i + SFQ_MAX_FLOWS;
q->dep[i].prev = i + SFQ_MAX_FLOWS;
}
q->limit = SFQ_MAX_DEPTH;
q->maxdepth = SFQ_MAX_DEPTH;
q->cur_depth = 0;
q->tail = NULL;
q->divisor = SFQ_DEFAULT_HASH_DIVISOR;
q->maxflows = SFQ_DEFAULT_FLOWS;
q->quantum = psched_mtu(qdisc_dev(sch));
q->scaled_quantum = SFQ_ALLOT_SIZE(q->quantum);
q->perturb_period = 0;
q->perturbation = net_random();
if (opt) {
int err = sfq_change(sch, opt);
if (err)
return err;
}
q->ht = sfq_alloc(sizeof(q->ht[0]) * q->divisor);
q->slots = sfq_alloc(sizeof(q->slots[0]) * q->maxflows);
if (!q->ht || !q->slots) {
sfq_destroy(sch);
return -ENOMEM;
}
for (i = 0; i < q->divisor; i++)
q->ht[i] = SFQ_EMPTY_SLOT;
for (i = 0; i < q->maxflows; i++) {
slot_queue_init(&q->slots[i]);
sfq_link(q, i);
}
if (q->limit >= 1)
sch->flags |= TCQ_F_CAN_BYPASS;
else
sch->flags &= ~TCQ_F_CAN_BYPASS;
return 0;
}
static int sfq_dump(struct Qdisc *sch, struct sk_buff *skb)
{
struct sfq_sched_data *q = qdisc_priv(sch);
unsigned char *b = skb_tail_pointer(skb);
struct tc_sfq_qopt_v1 opt;
memset(&opt, 0, sizeof(opt));
opt.v0.quantum = q->quantum;
opt.v0.perturb_period = q->perturb_period / HZ;
opt.v0.limit = q->limit;
opt.v0.divisor = q->divisor;
opt.v0.flows = q->maxflows;
opt.depth = q->maxdepth;
opt.headdrop = q->headdrop;
NLA_PUT(skb, TCA_OPTIONS, sizeof(opt), &opt);
return skb->len;
nla_put_failure:
nlmsg_trim(skb, b);
return -1;
}
static struct Qdisc *sfq_leaf(struct Qdisc *sch, unsigned long arg)
{
return NULL;
}
static unsigned long sfq_get(struct Qdisc *sch, u32 classid)
{
return 0;
}
static unsigned long sfq_bind(struct Qdisc *sch, unsigned long parent,
u32 classid)
{
/* we cannot bypass queue discipline anymore */
sch->flags &= ~TCQ_F_CAN_BYPASS;
return 0;
}
static void sfq_put(struct Qdisc *q, unsigned long cl)
{
}
static struct tcf_proto **sfq_find_tcf(struct Qdisc *sch, unsigned long cl)
{
struct sfq_sched_data *q = qdisc_priv(sch);
if (cl)
return NULL;
return &q->filter_list;
}
static int sfq_dump_class(struct Qdisc *sch, unsigned long cl,
struct sk_buff *skb, struct tcmsg *tcm)
{
tcm->tcm_handle |= TC_H_MIN(cl);
return 0;
}
static int sfq_dump_class_stats(struct Qdisc *sch, unsigned long cl,
struct gnet_dump *d)
{
struct sfq_sched_data *q = qdisc_priv(sch);
sfq_index idx = q->ht[cl - 1];
struct gnet_stats_queue qs = { 0 };
struct tc_sfq_xstats xstats = { 0 };
struct sk_buff *skb;
if (idx != SFQ_EMPTY_SLOT) {
const struct sfq_slot *slot = &q->slots[idx];
xstats.allot = slot->allot << SFQ_ALLOT_SHIFT;
qs.qlen = slot->qlen;
slot_queue_walk(slot, skb)
qs.backlog += qdisc_pkt_len(skb);
}
if (gnet_stats_copy_queue(d, &qs) < 0)
return -1;
return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
}
static void sfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
{
struct sfq_sched_data *q = qdisc_priv(sch);
unsigned int i;
if (arg->stop)
return;
for (i = 0; i < q->divisor; i++) {
if (q->ht[i] == SFQ_EMPTY_SLOT ||
arg->count < arg->skip) {
arg->count++;
continue;
}
if (arg->fn(sch, i + 1, arg) < 0) {
arg->stop = 1;
break;
}
arg->count++;
}
}
static const struct Qdisc_class_ops sfq_class_ops = {
.leaf = sfq_leaf,
.get = sfq_get,
.put = sfq_put,
.tcf_chain = sfq_find_tcf,
.bind_tcf = sfq_bind,
.unbind_tcf = sfq_put,
.dump = sfq_dump_class,
.dump_stats = sfq_dump_class_stats,
.walk = sfq_walk,
};
static struct Qdisc_ops sfq_qdisc_ops __read_mostly = {
.cl_ops = &sfq_class_ops,
.id = "sfq",
.priv_size = sizeof(struct sfq_sched_data),
.enqueue = sfq_enqueue,
.dequeue = sfq_dequeue,
.peek = qdisc_peek_dequeued,
.drop = sfq_drop,
.init = sfq_init,
.reset = sfq_reset,
.destroy = sfq_destroy,
.change = NULL,
.dump = sfq_dump,
.owner = THIS_MODULE,
};
static int __init sfq_module_init(void)
{
return register_qdisc(&sfq_qdisc_ops);
}
static void __exit sfq_module_exit(void)
{
unregister_qdisc(&sfq_qdisc_ops);
}
module_init(sfq_module_init)
module_exit(sfq_module_exit)
MODULE_LICENSE("GPL");