linux/drivers/cpuidle/cpuidle-qcom-spm.c

197 lines
4.5 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
ARM: qcom: Add Subsystem Power Manager (SPM) driver SPM is a hardware block that controls the peripheral logic surrounding the application cores (cpu/l$). When the core executes WFI instruction, the SPM takes over the putting the core in low power state as configured. The wake up for the SPM is an interrupt at the GIC, which then completes the rest of low power mode sequence and brings the core out of low power mode. The SPM has a set of control registers that configure the SPMs individually based on the type of the core and the runtime conditions. SPM is a finite state machine block to which a sequence is provided and it interprets the bytes and executes them in sequence. Each low power mode that the core can enter into is provided to the SPM as a sequence. Configure the SPM to set the core (cpu or L2) into its low power mode, the index of the first command in the sequence is set in the SPM_CTL register. When the core executes ARM wfi instruction, it triggers the SPM state machine to start executing from that index. The SPM state machine waits until the interrupt occurs and starts executing the rest of the sequence until it hits the end of the sequence. The end of the sequence jumps the core out of its low power mode. Add support for an idle driver to set up the SPM to place the core in Standby or Standalone power collapse mode when the core is idle. Based on work by: Mahesh Sivasubramanian <msivasub@codeaurora.org>, Ai Li <ali@codeaurora.org>, Praveen Chidambaram <pchidamb@codeaurora.org> Original tree available at - git://codeaurora.org/quic/la/kernel/msm-3.10.git Cc: Stephen Boyd <sboyd@codeaurora.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Kevin Hilman <khilman@linaro.org> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Tested-by: Kevin Hilman <khilman@linaro.org> Acked-by: Kumar Gala <galak@codeaurora.org> Acked-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Kumar Gala <galak@codeaurora.org>
2015-04-09 19:20:41 +00:00
/*
* Copyright (c) 2011-2014, The Linux Foundation. All rights reserved.
* Copyright (c) 2014,2015, Linaro Ltd.
*
* SAW power controller driver
ARM: qcom: Add Subsystem Power Manager (SPM) driver SPM is a hardware block that controls the peripheral logic surrounding the application cores (cpu/l$). When the core executes WFI instruction, the SPM takes over the putting the core in low power state as configured. The wake up for the SPM is an interrupt at the GIC, which then completes the rest of low power mode sequence and brings the core out of low power mode. The SPM has a set of control registers that configure the SPMs individually based on the type of the core and the runtime conditions. SPM is a finite state machine block to which a sequence is provided and it interprets the bytes and executes them in sequence. Each low power mode that the core can enter into is provided to the SPM as a sequence. Configure the SPM to set the core (cpu or L2) into its low power mode, the index of the first command in the sequence is set in the SPM_CTL register. When the core executes ARM wfi instruction, it triggers the SPM state machine to start executing from that index. The SPM state machine waits until the interrupt occurs and starts executing the rest of the sequence until it hits the end of the sequence. The end of the sequence jumps the core out of its low power mode. Add support for an idle driver to set up the SPM to place the core in Standby or Standalone power collapse mode when the core is idle. Based on work by: Mahesh Sivasubramanian <msivasub@codeaurora.org>, Ai Li <ali@codeaurora.org>, Praveen Chidambaram <pchidamb@codeaurora.org> Original tree available at - git://codeaurora.org/quic/la/kernel/msm-3.10.git Cc: Stephen Boyd <sboyd@codeaurora.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Kevin Hilman <khilman@linaro.org> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Tested-by: Kevin Hilman <khilman@linaro.org> Acked-by: Kumar Gala <galak@codeaurora.org> Acked-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Kumar Gala <galak@codeaurora.org>
2015-04-09 19:20:41 +00:00
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/cpuidle.h>
#include <linux/cpu_pm.h>
#include <linux/qcom_scm.h>
cpuidle: qcom_spm: Detach state machine from main SPM handling In commit a871be6b8eee ("cpuidle: Convert Qualcomm SPM driver to a generic CPUidle driver") the SPM driver has been converted to a generic CPUidle driver: that was mainly made to simplify the driver and that was a great accomplishment; Though, at that time, this driver was only applicable to ARM 32-bit SoCs, lacking logic about the handling of newer generation SAW. In preparation for the enablement of SPM features on AArch64/ARM64, split the cpuidle-qcom-spm driver in two: the CPUIdle related state machine (currently used only on ARM SoCs) stays there, while the SPM communication handling lands back in soc/qcom/spm.c and also making sure to not discard the simplifications that were introduced in the aforementioned commit. Since now the "two drivers" are split, the SCM dependency in the main SPM handling is gone and for this reason it was also possible to move the SPM initialization early: this will also make sure that whenever the SAW CPUIdle driver is getting initialized, the SPM driver will be ready to do the job. Please note that the anticipation of the SPM initialization was also done to optimize the boot times on platforms that have their CPU/L2 idle states managed by other means (such as PSCI), while needing SAW initialization for other purposes, like AVS control. Signed-off-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@somainline.org> Reviewed-by: Stephan Gerhold <stephan@gerhold.net> Tested-by: Stephan Gerhold <stephan@gerhold.net> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Link: https://lore.kernel.org/r/20210729155609.608159-2-angelogioacchino.delregno@somainline.org
2021-07-29 15:56:05 +00:00
#include <soc/qcom/spm.h>
ARM: qcom: Add Subsystem Power Manager (SPM) driver SPM is a hardware block that controls the peripheral logic surrounding the application cores (cpu/l$). When the core executes WFI instruction, the SPM takes over the putting the core in low power state as configured. The wake up for the SPM is an interrupt at the GIC, which then completes the rest of low power mode sequence and brings the core out of low power mode. The SPM has a set of control registers that configure the SPMs individually based on the type of the core and the runtime conditions. SPM is a finite state machine block to which a sequence is provided and it interprets the bytes and executes them in sequence. Each low power mode that the core can enter into is provided to the SPM as a sequence. Configure the SPM to set the core (cpu or L2) into its low power mode, the index of the first command in the sequence is set in the SPM_CTL register. When the core executes ARM wfi instruction, it triggers the SPM state machine to start executing from that index. The SPM state machine waits until the interrupt occurs and starts executing the rest of the sequence until it hits the end of the sequence. The end of the sequence jumps the core out of its low power mode. Add support for an idle driver to set up the SPM to place the core in Standby or Standalone power collapse mode when the core is idle. Based on work by: Mahesh Sivasubramanian <msivasub@codeaurora.org>, Ai Li <ali@codeaurora.org>, Praveen Chidambaram <pchidamb@codeaurora.org> Original tree available at - git://codeaurora.org/quic/la/kernel/msm-3.10.git Cc: Stephen Boyd <sboyd@codeaurora.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Kevin Hilman <khilman@linaro.org> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Tested-by: Kevin Hilman <khilman@linaro.org> Acked-by: Kumar Gala <galak@codeaurora.org> Acked-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Kumar Gala <galak@codeaurora.org>
2015-04-09 19:20:41 +00:00
#include <asm/proc-fns.h>
#include <asm/suspend.h>
#include "dt_idle_states.h"
cpuidle: qcom_spm: Detach state machine from main SPM handling In commit a871be6b8eee ("cpuidle: Convert Qualcomm SPM driver to a generic CPUidle driver") the SPM driver has been converted to a generic CPUidle driver: that was mainly made to simplify the driver and that was a great accomplishment; Though, at that time, this driver was only applicable to ARM 32-bit SoCs, lacking logic about the handling of newer generation SAW. In preparation for the enablement of SPM features on AArch64/ARM64, split the cpuidle-qcom-spm driver in two: the CPUIdle related state machine (currently used only on ARM SoCs) stays there, while the SPM communication handling lands back in soc/qcom/spm.c and also making sure to not discard the simplifications that were introduced in the aforementioned commit. Since now the "two drivers" are split, the SCM dependency in the main SPM handling is gone and for this reason it was also possible to move the SPM initialization early: this will also make sure that whenever the SAW CPUIdle driver is getting initialized, the SPM driver will be ready to do the job. Please note that the anticipation of the SPM initialization was also done to optimize the boot times on platforms that have their CPU/L2 idle states managed by other means (such as PSCI), while needing SAW initialization for other purposes, like AVS control. Signed-off-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@somainline.org> Reviewed-by: Stephan Gerhold <stephan@gerhold.net> Tested-by: Stephan Gerhold <stephan@gerhold.net> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Link: https://lore.kernel.org/r/20210729155609.608159-2-angelogioacchino.delregno@somainline.org
2021-07-29 15:56:05 +00:00
struct cpuidle_qcom_spm_data {
struct cpuidle_driver cpuidle_driver;
cpuidle: qcom_spm: Detach state machine from main SPM handling In commit a871be6b8eee ("cpuidle: Convert Qualcomm SPM driver to a generic CPUidle driver") the SPM driver has been converted to a generic CPUidle driver: that was mainly made to simplify the driver and that was a great accomplishment; Though, at that time, this driver was only applicable to ARM 32-bit SoCs, lacking logic about the handling of newer generation SAW. In preparation for the enablement of SPM features on AArch64/ARM64, split the cpuidle-qcom-spm driver in two: the CPUIdle related state machine (currently used only on ARM SoCs) stays there, while the SPM communication handling lands back in soc/qcom/spm.c and also making sure to not discard the simplifications that were introduced in the aforementioned commit. Since now the "two drivers" are split, the SCM dependency in the main SPM handling is gone and for this reason it was also possible to move the SPM initialization early: this will also make sure that whenever the SAW CPUIdle driver is getting initialized, the SPM driver will be ready to do the job. Please note that the anticipation of the SPM initialization was also done to optimize the boot times on platforms that have their CPU/L2 idle states managed by other means (such as PSCI), while needing SAW initialization for other purposes, like AVS control. Signed-off-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@somainline.org> Reviewed-by: Stephan Gerhold <stephan@gerhold.net> Tested-by: Stephan Gerhold <stephan@gerhold.net> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Link: https://lore.kernel.org/r/20210729155609.608159-2-angelogioacchino.delregno@somainline.org
2021-07-29 15:56:05 +00:00
struct spm_driver_data *spm;
ARM: qcom: Add Subsystem Power Manager (SPM) driver SPM is a hardware block that controls the peripheral logic surrounding the application cores (cpu/l$). When the core executes WFI instruction, the SPM takes over the putting the core in low power state as configured. The wake up for the SPM is an interrupt at the GIC, which then completes the rest of low power mode sequence and brings the core out of low power mode. The SPM has a set of control registers that configure the SPMs individually based on the type of the core and the runtime conditions. SPM is a finite state machine block to which a sequence is provided and it interprets the bytes and executes them in sequence. Each low power mode that the core can enter into is provided to the SPM as a sequence. Configure the SPM to set the core (cpu or L2) into its low power mode, the index of the first command in the sequence is set in the SPM_CTL register. When the core executes ARM wfi instruction, it triggers the SPM state machine to start executing from that index. The SPM state machine waits until the interrupt occurs and starts executing the rest of the sequence until it hits the end of the sequence. The end of the sequence jumps the core out of its low power mode. Add support for an idle driver to set up the SPM to place the core in Standby or Standalone power collapse mode when the core is idle. Based on work by: Mahesh Sivasubramanian <msivasub@codeaurora.org>, Ai Li <ali@codeaurora.org>, Praveen Chidambaram <pchidamb@codeaurora.org> Original tree available at - git://codeaurora.org/quic/la/kernel/msm-3.10.git Cc: Stephen Boyd <sboyd@codeaurora.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Kevin Hilman <khilman@linaro.org> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Tested-by: Kevin Hilman <khilman@linaro.org> Acked-by: Kumar Gala <galak@codeaurora.org> Acked-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Kumar Gala <galak@codeaurora.org>
2015-04-09 19:20:41 +00:00
};
static int qcom_pm_collapse(unsigned long int unused)
{
qcom_scm_cpu_power_down(QCOM_SCM_CPU_PWR_DOWN_L2_ON);
/*
* Returns here only if there was a pending interrupt and we did not
* power down as a result.
*/
return -1;
}
static int qcom_cpu_spc(struct spm_driver_data *drv)
ARM: qcom: Add Subsystem Power Manager (SPM) driver SPM is a hardware block that controls the peripheral logic surrounding the application cores (cpu/l$). When the core executes WFI instruction, the SPM takes over the putting the core in low power state as configured. The wake up for the SPM is an interrupt at the GIC, which then completes the rest of low power mode sequence and brings the core out of low power mode. The SPM has a set of control registers that configure the SPMs individually based on the type of the core and the runtime conditions. SPM is a finite state machine block to which a sequence is provided and it interprets the bytes and executes them in sequence. Each low power mode that the core can enter into is provided to the SPM as a sequence. Configure the SPM to set the core (cpu or L2) into its low power mode, the index of the first command in the sequence is set in the SPM_CTL register. When the core executes ARM wfi instruction, it triggers the SPM state machine to start executing from that index. The SPM state machine waits until the interrupt occurs and starts executing the rest of the sequence until it hits the end of the sequence. The end of the sequence jumps the core out of its low power mode. Add support for an idle driver to set up the SPM to place the core in Standby or Standalone power collapse mode when the core is idle. Based on work by: Mahesh Sivasubramanian <msivasub@codeaurora.org>, Ai Li <ali@codeaurora.org>, Praveen Chidambaram <pchidamb@codeaurora.org> Original tree available at - git://codeaurora.org/quic/la/kernel/msm-3.10.git Cc: Stephen Boyd <sboyd@codeaurora.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Kevin Hilman <khilman@linaro.org> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Tested-by: Kevin Hilman <khilman@linaro.org> Acked-by: Kumar Gala <galak@codeaurora.org> Acked-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Kumar Gala <galak@codeaurora.org>
2015-04-09 19:20:41 +00:00
{
int ret;
spm_set_low_power_mode(drv, PM_SLEEP_MODE_SPC);
ret = cpu_suspend(0, qcom_pm_collapse);
/*
* ARM common code executes WFI without calling into our driver and
* if the SPM mode is not reset, then we may accidently power down the
* cpu when we intended only to gate the cpu clock.
* Ensure the state is set to standby before returning.
*/
spm_set_low_power_mode(drv, PM_SLEEP_MODE_STBY);
return ret;
}
static int spm_enter_idle_state(struct cpuidle_device *dev,
struct cpuidle_driver *drv, int idx)
ARM: qcom: Add Subsystem Power Manager (SPM) driver SPM is a hardware block that controls the peripheral logic surrounding the application cores (cpu/l$). When the core executes WFI instruction, the SPM takes over the putting the core in low power state as configured. The wake up for the SPM is an interrupt at the GIC, which then completes the rest of low power mode sequence and brings the core out of low power mode. The SPM has a set of control registers that configure the SPMs individually based on the type of the core and the runtime conditions. SPM is a finite state machine block to which a sequence is provided and it interprets the bytes and executes them in sequence. Each low power mode that the core can enter into is provided to the SPM as a sequence. Configure the SPM to set the core (cpu or L2) into its low power mode, the index of the first command in the sequence is set in the SPM_CTL register. When the core executes ARM wfi instruction, it triggers the SPM state machine to start executing from that index. The SPM state machine waits until the interrupt occurs and starts executing the rest of the sequence until it hits the end of the sequence. The end of the sequence jumps the core out of its low power mode. Add support for an idle driver to set up the SPM to place the core in Standby or Standalone power collapse mode when the core is idle. Based on work by: Mahesh Sivasubramanian <msivasub@codeaurora.org>, Ai Li <ali@codeaurora.org>, Praveen Chidambaram <pchidamb@codeaurora.org> Original tree available at - git://codeaurora.org/quic/la/kernel/msm-3.10.git Cc: Stephen Boyd <sboyd@codeaurora.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Kevin Hilman <khilman@linaro.org> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Tested-by: Kevin Hilman <khilman@linaro.org> Acked-by: Kumar Gala <galak@codeaurora.org> Acked-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Kumar Gala <galak@codeaurora.org>
2015-04-09 19:20:41 +00:00
{
cpuidle: qcom_spm: Detach state machine from main SPM handling In commit a871be6b8eee ("cpuidle: Convert Qualcomm SPM driver to a generic CPUidle driver") the SPM driver has been converted to a generic CPUidle driver: that was mainly made to simplify the driver and that was a great accomplishment; Though, at that time, this driver was only applicable to ARM 32-bit SoCs, lacking logic about the handling of newer generation SAW. In preparation for the enablement of SPM features on AArch64/ARM64, split the cpuidle-qcom-spm driver in two: the CPUIdle related state machine (currently used only on ARM SoCs) stays there, while the SPM communication handling lands back in soc/qcom/spm.c and also making sure to not discard the simplifications that were introduced in the aforementioned commit. Since now the "two drivers" are split, the SCM dependency in the main SPM handling is gone and for this reason it was also possible to move the SPM initialization early: this will also make sure that whenever the SAW CPUIdle driver is getting initialized, the SPM driver will be ready to do the job. Please note that the anticipation of the SPM initialization was also done to optimize the boot times on platforms that have their CPU/L2 idle states managed by other means (such as PSCI), while needing SAW initialization for other purposes, like AVS control. Signed-off-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@somainline.org> Reviewed-by: Stephan Gerhold <stephan@gerhold.net> Tested-by: Stephan Gerhold <stephan@gerhold.net> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Link: https://lore.kernel.org/r/20210729155609.608159-2-angelogioacchino.delregno@somainline.org
2021-07-29 15:56:05 +00:00
struct cpuidle_qcom_spm_data *data = container_of(drv, struct cpuidle_qcom_spm_data,
cpuidle_driver);
cpuidle: qcom_spm: Detach state machine from main SPM handling In commit a871be6b8eee ("cpuidle: Convert Qualcomm SPM driver to a generic CPUidle driver") the SPM driver has been converted to a generic CPUidle driver: that was mainly made to simplify the driver and that was a great accomplishment; Though, at that time, this driver was only applicable to ARM 32-bit SoCs, lacking logic about the handling of newer generation SAW. In preparation for the enablement of SPM features on AArch64/ARM64, split the cpuidle-qcom-spm driver in two: the CPUIdle related state machine (currently used only on ARM SoCs) stays there, while the SPM communication handling lands back in soc/qcom/spm.c and also making sure to not discard the simplifications that were introduced in the aforementioned commit. Since now the "two drivers" are split, the SCM dependency in the main SPM handling is gone and for this reason it was also possible to move the SPM initialization early: this will also make sure that whenever the SAW CPUIdle driver is getting initialized, the SPM driver will be ready to do the job. Please note that the anticipation of the SPM initialization was also done to optimize the boot times on platforms that have their CPU/L2 idle states managed by other means (such as PSCI), while needing SAW initialization for other purposes, like AVS control. Signed-off-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@somainline.org> Reviewed-by: Stephan Gerhold <stephan@gerhold.net> Tested-by: Stephan Gerhold <stephan@gerhold.net> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Link: https://lore.kernel.org/r/20210729155609.608159-2-angelogioacchino.delregno@somainline.org
2021-07-29 15:56:05 +00:00
return CPU_PM_CPU_IDLE_ENTER_PARAM(qcom_cpu_spc, idx, data->spm);
ARM: qcom: Add Subsystem Power Manager (SPM) driver SPM is a hardware block that controls the peripheral logic surrounding the application cores (cpu/l$). When the core executes WFI instruction, the SPM takes over the putting the core in low power state as configured. The wake up for the SPM is an interrupt at the GIC, which then completes the rest of low power mode sequence and brings the core out of low power mode. The SPM has a set of control registers that configure the SPMs individually based on the type of the core and the runtime conditions. SPM is a finite state machine block to which a sequence is provided and it interprets the bytes and executes them in sequence. Each low power mode that the core can enter into is provided to the SPM as a sequence. Configure the SPM to set the core (cpu or L2) into its low power mode, the index of the first command in the sequence is set in the SPM_CTL register. When the core executes ARM wfi instruction, it triggers the SPM state machine to start executing from that index. The SPM state machine waits until the interrupt occurs and starts executing the rest of the sequence until it hits the end of the sequence. The end of the sequence jumps the core out of its low power mode. Add support for an idle driver to set up the SPM to place the core in Standby or Standalone power collapse mode when the core is idle. Based on work by: Mahesh Sivasubramanian <msivasub@codeaurora.org>, Ai Li <ali@codeaurora.org>, Praveen Chidambaram <pchidamb@codeaurora.org> Original tree available at - git://codeaurora.org/quic/la/kernel/msm-3.10.git Cc: Stephen Boyd <sboyd@codeaurora.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Kevin Hilman <khilman@linaro.org> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Tested-by: Kevin Hilman <khilman@linaro.org> Acked-by: Kumar Gala <galak@codeaurora.org> Acked-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Kumar Gala <galak@codeaurora.org>
2015-04-09 19:20:41 +00:00
}
static struct cpuidle_driver qcom_spm_idle_driver = {
.name = "qcom_spm",
.owner = THIS_MODULE,
.states[0] = {
.enter = spm_enter_idle_state,
.exit_latency = 1,
.target_residency = 1,
.power_usage = UINT_MAX,
.name = "WFI",
.desc = "ARM WFI",
}
};
static const struct of_device_id qcom_idle_state_match[] = {
{ .compatible = "qcom,idle-state-spc", .data = spm_enter_idle_state },
ARM: qcom: Add Subsystem Power Manager (SPM) driver SPM is a hardware block that controls the peripheral logic surrounding the application cores (cpu/l$). When the core executes WFI instruction, the SPM takes over the putting the core in low power state as configured. The wake up for the SPM is an interrupt at the GIC, which then completes the rest of low power mode sequence and brings the core out of low power mode. The SPM has a set of control registers that configure the SPMs individually based on the type of the core and the runtime conditions. SPM is a finite state machine block to which a sequence is provided and it interprets the bytes and executes them in sequence. Each low power mode that the core can enter into is provided to the SPM as a sequence. Configure the SPM to set the core (cpu or L2) into its low power mode, the index of the first command in the sequence is set in the SPM_CTL register. When the core executes ARM wfi instruction, it triggers the SPM state machine to start executing from that index. The SPM state machine waits until the interrupt occurs and starts executing the rest of the sequence until it hits the end of the sequence. The end of the sequence jumps the core out of its low power mode. Add support for an idle driver to set up the SPM to place the core in Standby or Standalone power collapse mode when the core is idle. Based on work by: Mahesh Sivasubramanian <msivasub@codeaurora.org>, Ai Li <ali@codeaurora.org>, Praveen Chidambaram <pchidamb@codeaurora.org> Original tree available at - git://codeaurora.org/quic/la/kernel/msm-3.10.git Cc: Stephen Boyd <sboyd@codeaurora.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Kevin Hilman <khilman@linaro.org> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Tested-by: Kevin Hilman <khilman@linaro.org> Acked-by: Kumar Gala <galak@codeaurora.org> Acked-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Kumar Gala <galak@codeaurora.org>
2015-04-09 19:20:41 +00:00
{ },
};
cpuidle: qcom_spm: Detach state machine from main SPM handling In commit a871be6b8eee ("cpuidle: Convert Qualcomm SPM driver to a generic CPUidle driver") the SPM driver has been converted to a generic CPUidle driver: that was mainly made to simplify the driver and that was a great accomplishment; Though, at that time, this driver was only applicable to ARM 32-bit SoCs, lacking logic about the handling of newer generation SAW. In preparation for the enablement of SPM features on AArch64/ARM64, split the cpuidle-qcom-spm driver in two: the CPUIdle related state machine (currently used only on ARM SoCs) stays there, while the SPM communication handling lands back in soc/qcom/spm.c and also making sure to not discard the simplifications that were introduced in the aforementioned commit. Since now the "two drivers" are split, the SCM dependency in the main SPM handling is gone and for this reason it was also possible to move the SPM initialization early: this will also make sure that whenever the SAW CPUIdle driver is getting initialized, the SPM driver will be ready to do the job. Please note that the anticipation of the SPM initialization was also done to optimize the boot times on platforms that have their CPU/L2 idle states managed by other means (such as PSCI), while needing SAW initialization for other purposes, like AVS control. Signed-off-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@somainline.org> Reviewed-by: Stephan Gerhold <stephan@gerhold.net> Tested-by: Stephan Gerhold <stephan@gerhold.net> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Link: https://lore.kernel.org/r/20210729155609.608159-2-angelogioacchino.delregno@somainline.org
2021-07-29 15:56:05 +00:00
static int spm_cpuidle_register(struct device *cpuidle_dev, int cpu)
ARM: qcom: Add Subsystem Power Manager (SPM) driver SPM is a hardware block that controls the peripheral logic surrounding the application cores (cpu/l$). When the core executes WFI instruction, the SPM takes over the putting the core in low power state as configured. The wake up for the SPM is an interrupt at the GIC, which then completes the rest of low power mode sequence and brings the core out of low power mode. The SPM has a set of control registers that configure the SPMs individually based on the type of the core and the runtime conditions. SPM is a finite state machine block to which a sequence is provided and it interprets the bytes and executes them in sequence. Each low power mode that the core can enter into is provided to the SPM as a sequence. Configure the SPM to set the core (cpu or L2) into its low power mode, the index of the first command in the sequence is set in the SPM_CTL register. When the core executes ARM wfi instruction, it triggers the SPM state machine to start executing from that index. The SPM state machine waits until the interrupt occurs and starts executing the rest of the sequence until it hits the end of the sequence. The end of the sequence jumps the core out of its low power mode. Add support for an idle driver to set up the SPM to place the core in Standby or Standalone power collapse mode when the core is idle. Based on work by: Mahesh Sivasubramanian <msivasub@codeaurora.org>, Ai Li <ali@codeaurora.org>, Praveen Chidambaram <pchidamb@codeaurora.org> Original tree available at - git://codeaurora.org/quic/la/kernel/msm-3.10.git Cc: Stephen Boyd <sboyd@codeaurora.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Kevin Hilman <khilman@linaro.org> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Tested-by: Kevin Hilman <khilman@linaro.org> Acked-by: Kumar Gala <galak@codeaurora.org> Acked-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Kumar Gala <galak@codeaurora.org>
2015-04-09 19:20:41 +00:00
{
cpuidle: qcom_spm: Detach state machine from main SPM handling In commit a871be6b8eee ("cpuidle: Convert Qualcomm SPM driver to a generic CPUidle driver") the SPM driver has been converted to a generic CPUidle driver: that was mainly made to simplify the driver and that was a great accomplishment; Though, at that time, this driver was only applicable to ARM 32-bit SoCs, lacking logic about the handling of newer generation SAW. In preparation for the enablement of SPM features on AArch64/ARM64, split the cpuidle-qcom-spm driver in two: the CPUIdle related state machine (currently used only on ARM SoCs) stays there, while the SPM communication handling lands back in soc/qcom/spm.c and also making sure to not discard the simplifications that were introduced in the aforementioned commit. Since now the "two drivers" are split, the SCM dependency in the main SPM handling is gone and for this reason it was also possible to move the SPM initialization early: this will also make sure that whenever the SAW CPUIdle driver is getting initialized, the SPM driver will be ready to do the job. Please note that the anticipation of the SPM initialization was also done to optimize the boot times on platforms that have their CPU/L2 idle states managed by other means (such as PSCI), while needing SAW initialization for other purposes, like AVS control. Signed-off-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@somainline.org> Reviewed-by: Stephan Gerhold <stephan@gerhold.net> Tested-by: Stephan Gerhold <stephan@gerhold.net> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Link: https://lore.kernel.org/r/20210729155609.608159-2-angelogioacchino.delregno@somainline.org
2021-07-29 15:56:05 +00:00
struct platform_device *pdev = NULL;
struct device_node *cpu_node, *saw_node;
struct cpuidle_qcom_spm_data *data = NULL;
int ret;
ARM: qcom: Add Subsystem Power Manager (SPM) driver SPM is a hardware block that controls the peripheral logic surrounding the application cores (cpu/l$). When the core executes WFI instruction, the SPM takes over the putting the core in low power state as configured. The wake up for the SPM is an interrupt at the GIC, which then completes the rest of low power mode sequence and brings the core out of low power mode. The SPM has a set of control registers that configure the SPMs individually based on the type of the core and the runtime conditions. SPM is a finite state machine block to which a sequence is provided and it interprets the bytes and executes them in sequence. Each low power mode that the core can enter into is provided to the SPM as a sequence. Configure the SPM to set the core (cpu or L2) into its low power mode, the index of the first command in the sequence is set in the SPM_CTL register. When the core executes ARM wfi instruction, it triggers the SPM state machine to start executing from that index. The SPM state machine waits until the interrupt occurs and starts executing the rest of the sequence until it hits the end of the sequence. The end of the sequence jumps the core out of its low power mode. Add support for an idle driver to set up the SPM to place the core in Standby or Standalone power collapse mode when the core is idle. Based on work by: Mahesh Sivasubramanian <msivasub@codeaurora.org>, Ai Li <ali@codeaurora.org>, Praveen Chidambaram <pchidamb@codeaurora.org> Original tree available at - git://codeaurora.org/quic/la/kernel/msm-3.10.git Cc: Stephen Boyd <sboyd@codeaurora.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Kevin Hilman <khilman@linaro.org> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Tested-by: Kevin Hilman <khilman@linaro.org> Acked-by: Kumar Gala <galak@codeaurora.org> Acked-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Kumar Gala <galak@codeaurora.org>
2015-04-09 19:20:41 +00:00
cpuidle: qcom_spm: Detach state machine from main SPM handling In commit a871be6b8eee ("cpuidle: Convert Qualcomm SPM driver to a generic CPUidle driver") the SPM driver has been converted to a generic CPUidle driver: that was mainly made to simplify the driver and that was a great accomplishment; Though, at that time, this driver was only applicable to ARM 32-bit SoCs, lacking logic about the handling of newer generation SAW. In preparation for the enablement of SPM features on AArch64/ARM64, split the cpuidle-qcom-spm driver in two: the CPUIdle related state machine (currently used only on ARM SoCs) stays there, while the SPM communication handling lands back in soc/qcom/spm.c and also making sure to not discard the simplifications that were introduced in the aforementioned commit. Since now the "two drivers" are split, the SCM dependency in the main SPM handling is gone and for this reason it was also possible to move the SPM initialization early: this will also make sure that whenever the SAW CPUIdle driver is getting initialized, the SPM driver will be ready to do the job. Please note that the anticipation of the SPM initialization was also done to optimize the boot times on platforms that have their CPU/L2 idle states managed by other means (such as PSCI), while needing SAW initialization for other purposes, like AVS control. Signed-off-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@somainline.org> Reviewed-by: Stephan Gerhold <stephan@gerhold.net> Tested-by: Stephan Gerhold <stephan@gerhold.net> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Link: https://lore.kernel.org/r/20210729155609.608159-2-angelogioacchino.delregno@somainline.org
2021-07-29 15:56:05 +00:00
cpu_node = of_cpu_device_node_get(cpu);
if (!cpu_node)
return -ENODEV;
ARM: qcom: Add Subsystem Power Manager (SPM) driver SPM is a hardware block that controls the peripheral logic surrounding the application cores (cpu/l$). When the core executes WFI instruction, the SPM takes over the putting the core in low power state as configured. The wake up for the SPM is an interrupt at the GIC, which then completes the rest of low power mode sequence and brings the core out of low power mode. The SPM has a set of control registers that configure the SPMs individually based on the type of the core and the runtime conditions. SPM is a finite state machine block to which a sequence is provided and it interprets the bytes and executes them in sequence. Each low power mode that the core can enter into is provided to the SPM as a sequence. Configure the SPM to set the core (cpu or L2) into its low power mode, the index of the first command in the sequence is set in the SPM_CTL register. When the core executes ARM wfi instruction, it triggers the SPM state machine to start executing from that index. The SPM state machine waits until the interrupt occurs and starts executing the rest of the sequence until it hits the end of the sequence. The end of the sequence jumps the core out of its low power mode. Add support for an idle driver to set up the SPM to place the core in Standby or Standalone power collapse mode when the core is idle. Based on work by: Mahesh Sivasubramanian <msivasub@codeaurora.org>, Ai Li <ali@codeaurora.org>, Praveen Chidambaram <pchidamb@codeaurora.org> Original tree available at - git://codeaurora.org/quic/la/kernel/msm-3.10.git Cc: Stephen Boyd <sboyd@codeaurora.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Kevin Hilman <khilman@linaro.org> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Tested-by: Kevin Hilman <khilman@linaro.org> Acked-by: Kumar Gala <galak@codeaurora.org> Acked-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Kumar Gala <galak@codeaurora.org>
2015-04-09 19:20:41 +00:00
cpuidle: qcom_spm: Detach state machine from main SPM handling In commit a871be6b8eee ("cpuidle: Convert Qualcomm SPM driver to a generic CPUidle driver") the SPM driver has been converted to a generic CPUidle driver: that was mainly made to simplify the driver and that was a great accomplishment; Though, at that time, this driver was only applicable to ARM 32-bit SoCs, lacking logic about the handling of newer generation SAW. In preparation for the enablement of SPM features on AArch64/ARM64, split the cpuidle-qcom-spm driver in two: the CPUIdle related state machine (currently used only on ARM SoCs) stays there, while the SPM communication handling lands back in soc/qcom/spm.c and also making sure to not discard the simplifications that were introduced in the aforementioned commit. Since now the "two drivers" are split, the SCM dependency in the main SPM handling is gone and for this reason it was also possible to move the SPM initialization early: this will also make sure that whenever the SAW CPUIdle driver is getting initialized, the SPM driver will be ready to do the job. Please note that the anticipation of the SPM initialization was also done to optimize the boot times on platforms that have their CPU/L2 idle states managed by other means (such as PSCI), while needing SAW initialization for other purposes, like AVS control. Signed-off-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@somainline.org> Reviewed-by: Stephan Gerhold <stephan@gerhold.net> Tested-by: Stephan Gerhold <stephan@gerhold.net> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Link: https://lore.kernel.org/r/20210729155609.608159-2-angelogioacchino.delregno@somainline.org
2021-07-29 15:56:05 +00:00
saw_node = of_parse_phandle(cpu_node, "qcom,saw", 0);
if (!saw_node)
return -ENODEV;
ARM: qcom: Add Subsystem Power Manager (SPM) driver SPM is a hardware block that controls the peripheral logic surrounding the application cores (cpu/l$). When the core executes WFI instruction, the SPM takes over the putting the core in low power state as configured. The wake up for the SPM is an interrupt at the GIC, which then completes the rest of low power mode sequence and brings the core out of low power mode. The SPM has a set of control registers that configure the SPMs individually based on the type of the core and the runtime conditions. SPM is a finite state machine block to which a sequence is provided and it interprets the bytes and executes them in sequence. Each low power mode that the core can enter into is provided to the SPM as a sequence. Configure the SPM to set the core (cpu or L2) into its low power mode, the index of the first command in the sequence is set in the SPM_CTL register. When the core executes ARM wfi instruction, it triggers the SPM state machine to start executing from that index. The SPM state machine waits until the interrupt occurs and starts executing the rest of the sequence until it hits the end of the sequence. The end of the sequence jumps the core out of its low power mode. Add support for an idle driver to set up the SPM to place the core in Standby or Standalone power collapse mode when the core is idle. Based on work by: Mahesh Sivasubramanian <msivasub@codeaurora.org>, Ai Li <ali@codeaurora.org>, Praveen Chidambaram <pchidamb@codeaurora.org> Original tree available at - git://codeaurora.org/quic/la/kernel/msm-3.10.git Cc: Stephen Boyd <sboyd@codeaurora.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Kevin Hilman <khilman@linaro.org> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Tested-by: Kevin Hilman <khilman@linaro.org> Acked-by: Kumar Gala <galak@codeaurora.org> Acked-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Kumar Gala <galak@codeaurora.org>
2015-04-09 19:20:41 +00:00
cpuidle: qcom_spm: Detach state machine from main SPM handling In commit a871be6b8eee ("cpuidle: Convert Qualcomm SPM driver to a generic CPUidle driver") the SPM driver has been converted to a generic CPUidle driver: that was mainly made to simplify the driver and that was a great accomplishment; Though, at that time, this driver was only applicable to ARM 32-bit SoCs, lacking logic about the handling of newer generation SAW. In preparation for the enablement of SPM features on AArch64/ARM64, split the cpuidle-qcom-spm driver in two: the CPUIdle related state machine (currently used only on ARM SoCs) stays there, while the SPM communication handling lands back in soc/qcom/spm.c and also making sure to not discard the simplifications that were introduced in the aforementioned commit. Since now the "two drivers" are split, the SCM dependency in the main SPM handling is gone and for this reason it was also possible to move the SPM initialization early: this will also make sure that whenever the SAW CPUIdle driver is getting initialized, the SPM driver will be ready to do the job. Please note that the anticipation of the SPM initialization was also done to optimize the boot times on platforms that have their CPU/L2 idle states managed by other means (such as PSCI), while needing SAW initialization for other purposes, like AVS control. Signed-off-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@somainline.org> Reviewed-by: Stephan Gerhold <stephan@gerhold.net> Tested-by: Stephan Gerhold <stephan@gerhold.net> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Link: https://lore.kernel.org/r/20210729155609.608159-2-angelogioacchino.delregno@somainline.org
2021-07-29 15:56:05 +00:00
pdev = of_find_device_by_node(saw_node);
of_node_put(saw_node);
of_node_put(cpu_node);
if (!pdev)
return -ENODEV;
ARM: qcom: Add Subsystem Power Manager (SPM) driver SPM is a hardware block that controls the peripheral logic surrounding the application cores (cpu/l$). When the core executes WFI instruction, the SPM takes over the putting the core in low power state as configured. The wake up for the SPM is an interrupt at the GIC, which then completes the rest of low power mode sequence and brings the core out of low power mode. The SPM has a set of control registers that configure the SPMs individually based on the type of the core and the runtime conditions. SPM is a finite state machine block to which a sequence is provided and it interprets the bytes and executes them in sequence. Each low power mode that the core can enter into is provided to the SPM as a sequence. Configure the SPM to set the core (cpu or L2) into its low power mode, the index of the first command in the sequence is set in the SPM_CTL register. When the core executes ARM wfi instruction, it triggers the SPM state machine to start executing from that index. The SPM state machine waits until the interrupt occurs and starts executing the rest of the sequence until it hits the end of the sequence. The end of the sequence jumps the core out of its low power mode. Add support for an idle driver to set up the SPM to place the core in Standby or Standalone power collapse mode when the core is idle. Based on work by: Mahesh Sivasubramanian <msivasub@codeaurora.org>, Ai Li <ali@codeaurora.org>, Praveen Chidambaram <pchidamb@codeaurora.org> Original tree available at - git://codeaurora.org/quic/la/kernel/msm-3.10.git Cc: Stephen Boyd <sboyd@codeaurora.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Kevin Hilman <khilman@linaro.org> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Tested-by: Kevin Hilman <khilman@linaro.org> Acked-by: Kumar Gala <galak@codeaurora.org> Acked-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Kumar Gala <galak@codeaurora.org>
2015-04-09 19:20:41 +00:00
cpuidle: qcom_spm: Detach state machine from main SPM handling In commit a871be6b8eee ("cpuidle: Convert Qualcomm SPM driver to a generic CPUidle driver") the SPM driver has been converted to a generic CPUidle driver: that was mainly made to simplify the driver and that was a great accomplishment; Though, at that time, this driver was only applicable to ARM 32-bit SoCs, lacking logic about the handling of newer generation SAW. In preparation for the enablement of SPM features on AArch64/ARM64, split the cpuidle-qcom-spm driver in two: the CPUIdle related state machine (currently used only on ARM SoCs) stays there, while the SPM communication handling lands back in soc/qcom/spm.c and also making sure to not discard the simplifications that were introduced in the aforementioned commit. Since now the "two drivers" are split, the SCM dependency in the main SPM handling is gone and for this reason it was also possible to move the SPM initialization early: this will also make sure that whenever the SAW CPUIdle driver is getting initialized, the SPM driver will be ready to do the job. Please note that the anticipation of the SPM initialization was also done to optimize the boot times on platforms that have their CPU/L2 idle states managed by other means (such as PSCI), while needing SAW initialization for other purposes, like AVS control. Signed-off-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@somainline.org> Reviewed-by: Stephan Gerhold <stephan@gerhold.net> Tested-by: Stephan Gerhold <stephan@gerhold.net> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Link: https://lore.kernel.org/r/20210729155609.608159-2-angelogioacchino.delregno@somainline.org
2021-07-29 15:56:05 +00:00
data = devm_kzalloc(cpuidle_dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
ARM: qcom: Add Subsystem Power Manager (SPM) driver SPM is a hardware block that controls the peripheral logic surrounding the application cores (cpu/l$). When the core executes WFI instruction, the SPM takes over the putting the core in low power state as configured. The wake up for the SPM is an interrupt at the GIC, which then completes the rest of low power mode sequence and brings the core out of low power mode. The SPM has a set of control registers that configure the SPMs individually based on the type of the core and the runtime conditions. SPM is a finite state machine block to which a sequence is provided and it interprets the bytes and executes them in sequence. Each low power mode that the core can enter into is provided to the SPM as a sequence. Configure the SPM to set the core (cpu or L2) into its low power mode, the index of the first command in the sequence is set in the SPM_CTL register. When the core executes ARM wfi instruction, it triggers the SPM state machine to start executing from that index. The SPM state machine waits until the interrupt occurs and starts executing the rest of the sequence until it hits the end of the sequence. The end of the sequence jumps the core out of its low power mode. Add support for an idle driver to set up the SPM to place the core in Standby or Standalone power collapse mode when the core is idle. Based on work by: Mahesh Sivasubramanian <msivasub@codeaurora.org>, Ai Li <ali@codeaurora.org>, Praveen Chidambaram <pchidamb@codeaurora.org> Original tree available at - git://codeaurora.org/quic/la/kernel/msm-3.10.git Cc: Stephen Boyd <sboyd@codeaurora.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Kevin Hilman <khilman@linaro.org> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Tested-by: Kevin Hilman <khilman@linaro.org> Acked-by: Kumar Gala <galak@codeaurora.org> Acked-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Kumar Gala <galak@codeaurora.org>
2015-04-09 19:20:41 +00:00
cpuidle: qcom_spm: Detach state machine from main SPM handling In commit a871be6b8eee ("cpuidle: Convert Qualcomm SPM driver to a generic CPUidle driver") the SPM driver has been converted to a generic CPUidle driver: that was mainly made to simplify the driver and that was a great accomplishment; Though, at that time, this driver was only applicable to ARM 32-bit SoCs, lacking logic about the handling of newer generation SAW. In preparation for the enablement of SPM features on AArch64/ARM64, split the cpuidle-qcom-spm driver in two: the CPUIdle related state machine (currently used only on ARM SoCs) stays there, while the SPM communication handling lands back in soc/qcom/spm.c and also making sure to not discard the simplifications that were introduced in the aforementioned commit. Since now the "two drivers" are split, the SCM dependency in the main SPM handling is gone and for this reason it was also possible to move the SPM initialization early: this will also make sure that whenever the SAW CPUIdle driver is getting initialized, the SPM driver will be ready to do the job. Please note that the anticipation of the SPM initialization was also done to optimize the boot times on platforms that have their CPU/L2 idle states managed by other means (such as PSCI), while needing SAW initialization for other purposes, like AVS control. Signed-off-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@somainline.org> Reviewed-by: Stephan Gerhold <stephan@gerhold.net> Tested-by: Stephan Gerhold <stephan@gerhold.net> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Link: https://lore.kernel.org/r/20210729155609.608159-2-angelogioacchino.delregno@somainline.org
2021-07-29 15:56:05 +00:00
data->spm = dev_get_drvdata(&pdev->dev);
if (!data->spm)
return -EINVAL;
ARM: qcom: Add Subsystem Power Manager (SPM) driver SPM is a hardware block that controls the peripheral logic surrounding the application cores (cpu/l$). When the core executes WFI instruction, the SPM takes over the putting the core in low power state as configured. The wake up for the SPM is an interrupt at the GIC, which then completes the rest of low power mode sequence and brings the core out of low power mode. The SPM has a set of control registers that configure the SPMs individually based on the type of the core and the runtime conditions. SPM is a finite state machine block to which a sequence is provided and it interprets the bytes and executes them in sequence. Each low power mode that the core can enter into is provided to the SPM as a sequence. Configure the SPM to set the core (cpu or L2) into its low power mode, the index of the first command in the sequence is set in the SPM_CTL register. When the core executes ARM wfi instruction, it triggers the SPM state machine to start executing from that index. The SPM state machine waits until the interrupt occurs and starts executing the rest of the sequence until it hits the end of the sequence. The end of the sequence jumps the core out of its low power mode. Add support for an idle driver to set up the SPM to place the core in Standby or Standalone power collapse mode when the core is idle. Based on work by: Mahesh Sivasubramanian <msivasub@codeaurora.org>, Ai Li <ali@codeaurora.org>, Praveen Chidambaram <pchidamb@codeaurora.org> Original tree available at - git://codeaurora.org/quic/la/kernel/msm-3.10.git Cc: Stephen Boyd <sboyd@codeaurora.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Kevin Hilman <khilman@linaro.org> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Tested-by: Kevin Hilman <khilman@linaro.org> Acked-by: Kumar Gala <galak@codeaurora.org> Acked-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Kumar Gala <galak@codeaurora.org>
2015-04-09 19:20:41 +00:00
cpuidle: qcom_spm: Detach state machine from main SPM handling In commit a871be6b8eee ("cpuidle: Convert Qualcomm SPM driver to a generic CPUidle driver") the SPM driver has been converted to a generic CPUidle driver: that was mainly made to simplify the driver and that was a great accomplishment; Though, at that time, this driver was only applicable to ARM 32-bit SoCs, lacking logic about the handling of newer generation SAW. In preparation for the enablement of SPM features on AArch64/ARM64, split the cpuidle-qcom-spm driver in two: the CPUIdle related state machine (currently used only on ARM SoCs) stays there, while the SPM communication handling lands back in soc/qcom/spm.c and also making sure to not discard the simplifications that were introduced in the aforementioned commit. Since now the "two drivers" are split, the SCM dependency in the main SPM handling is gone and for this reason it was also possible to move the SPM initialization early: this will also make sure that whenever the SAW CPUIdle driver is getting initialized, the SPM driver will be ready to do the job. Please note that the anticipation of the SPM initialization was also done to optimize the boot times on platforms that have their CPU/L2 idle states managed by other means (such as PSCI), while needing SAW initialization for other purposes, like AVS control. Signed-off-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@somainline.org> Reviewed-by: Stephan Gerhold <stephan@gerhold.net> Tested-by: Stephan Gerhold <stephan@gerhold.net> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Link: https://lore.kernel.org/r/20210729155609.608159-2-angelogioacchino.delregno@somainline.org
2021-07-29 15:56:05 +00:00
data->cpuidle_driver = qcom_spm_idle_driver;
data->cpuidle_driver.cpumask = (struct cpumask *)cpumask_of(cpu);
ARM: qcom: Add Subsystem Power Manager (SPM) driver SPM is a hardware block that controls the peripheral logic surrounding the application cores (cpu/l$). When the core executes WFI instruction, the SPM takes over the putting the core in low power state as configured. The wake up for the SPM is an interrupt at the GIC, which then completes the rest of low power mode sequence and brings the core out of low power mode. The SPM has a set of control registers that configure the SPMs individually based on the type of the core and the runtime conditions. SPM is a finite state machine block to which a sequence is provided and it interprets the bytes and executes them in sequence. Each low power mode that the core can enter into is provided to the SPM as a sequence. Configure the SPM to set the core (cpu or L2) into its low power mode, the index of the first command in the sequence is set in the SPM_CTL register. When the core executes ARM wfi instruction, it triggers the SPM state machine to start executing from that index. The SPM state machine waits until the interrupt occurs and starts executing the rest of the sequence until it hits the end of the sequence. The end of the sequence jumps the core out of its low power mode. Add support for an idle driver to set up the SPM to place the core in Standby or Standalone power collapse mode when the core is idle. Based on work by: Mahesh Sivasubramanian <msivasub@codeaurora.org>, Ai Li <ali@codeaurora.org>, Praveen Chidambaram <pchidamb@codeaurora.org> Original tree available at - git://codeaurora.org/quic/la/kernel/msm-3.10.git Cc: Stephen Boyd <sboyd@codeaurora.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Kevin Hilman <khilman@linaro.org> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Tested-by: Kevin Hilman <khilman@linaro.org> Acked-by: Kumar Gala <galak@codeaurora.org> Acked-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Kumar Gala <galak@codeaurora.org>
2015-04-09 19:20:41 +00:00
cpuidle: qcom_spm: Detach state machine from main SPM handling In commit a871be6b8eee ("cpuidle: Convert Qualcomm SPM driver to a generic CPUidle driver") the SPM driver has been converted to a generic CPUidle driver: that was mainly made to simplify the driver and that was a great accomplishment; Though, at that time, this driver was only applicable to ARM 32-bit SoCs, lacking logic about the handling of newer generation SAW. In preparation for the enablement of SPM features on AArch64/ARM64, split the cpuidle-qcom-spm driver in two: the CPUIdle related state machine (currently used only on ARM SoCs) stays there, while the SPM communication handling lands back in soc/qcom/spm.c and also making sure to not discard the simplifications that were introduced in the aforementioned commit. Since now the "two drivers" are split, the SCM dependency in the main SPM handling is gone and for this reason it was also possible to move the SPM initialization early: this will also make sure that whenever the SAW CPUIdle driver is getting initialized, the SPM driver will be ready to do the job. Please note that the anticipation of the SPM initialization was also done to optimize the boot times on platforms that have their CPU/L2 idle states managed by other means (such as PSCI), while needing SAW initialization for other purposes, like AVS control. Signed-off-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@somainline.org> Reviewed-by: Stephan Gerhold <stephan@gerhold.net> Tested-by: Stephan Gerhold <stephan@gerhold.net> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Link: https://lore.kernel.org/r/20210729155609.608159-2-angelogioacchino.delregno@somainline.org
2021-07-29 15:56:05 +00:00
ret = dt_init_idle_driver(&data->cpuidle_driver,
qcom_idle_state_match, 1);
if (ret <= 0)
return ret ? : -ENODEV;
ARM: qcom: Add Subsystem Power Manager (SPM) driver SPM is a hardware block that controls the peripheral logic surrounding the application cores (cpu/l$). When the core executes WFI instruction, the SPM takes over the putting the core in low power state as configured. The wake up for the SPM is an interrupt at the GIC, which then completes the rest of low power mode sequence and brings the core out of low power mode. The SPM has a set of control registers that configure the SPMs individually based on the type of the core and the runtime conditions. SPM is a finite state machine block to which a sequence is provided and it interprets the bytes and executes them in sequence. Each low power mode that the core can enter into is provided to the SPM as a sequence. Configure the SPM to set the core (cpu or L2) into its low power mode, the index of the first command in the sequence is set in the SPM_CTL register. When the core executes ARM wfi instruction, it triggers the SPM state machine to start executing from that index. The SPM state machine waits until the interrupt occurs and starts executing the rest of the sequence until it hits the end of the sequence. The end of the sequence jumps the core out of its low power mode. Add support for an idle driver to set up the SPM to place the core in Standby or Standalone power collapse mode when the core is idle. Based on work by: Mahesh Sivasubramanian <msivasub@codeaurora.org>, Ai Li <ali@codeaurora.org>, Praveen Chidambaram <pchidamb@codeaurora.org> Original tree available at - git://codeaurora.org/quic/la/kernel/msm-3.10.git Cc: Stephen Boyd <sboyd@codeaurora.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Kevin Hilman <khilman@linaro.org> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Tested-by: Kevin Hilman <khilman@linaro.org> Acked-by: Kumar Gala <galak@codeaurora.org> Acked-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Kumar Gala <galak@codeaurora.org>
2015-04-09 19:20:41 +00:00
cpuidle: qcom_spm: Detach state machine from main SPM handling In commit a871be6b8eee ("cpuidle: Convert Qualcomm SPM driver to a generic CPUidle driver") the SPM driver has been converted to a generic CPUidle driver: that was mainly made to simplify the driver and that was a great accomplishment; Though, at that time, this driver was only applicable to ARM 32-bit SoCs, lacking logic about the handling of newer generation SAW. In preparation for the enablement of SPM features on AArch64/ARM64, split the cpuidle-qcom-spm driver in two: the CPUIdle related state machine (currently used only on ARM SoCs) stays there, while the SPM communication handling lands back in soc/qcom/spm.c and also making sure to not discard the simplifications that were introduced in the aforementioned commit. Since now the "two drivers" are split, the SCM dependency in the main SPM handling is gone and for this reason it was also possible to move the SPM initialization early: this will also make sure that whenever the SAW CPUIdle driver is getting initialized, the SPM driver will be ready to do the job. Please note that the anticipation of the SPM initialization was also done to optimize the boot times on platforms that have their CPU/L2 idle states managed by other means (such as PSCI), while needing SAW initialization for other purposes, like AVS control. Signed-off-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@somainline.org> Reviewed-by: Stephan Gerhold <stephan@gerhold.net> Tested-by: Stephan Gerhold <stephan@gerhold.net> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Link: https://lore.kernel.org/r/20210729155609.608159-2-angelogioacchino.delregno@somainline.org
2021-07-29 15:56:05 +00:00
return cpuidle_register(&data->cpuidle_driver, NULL);
}
ARM: qcom: Add Subsystem Power Manager (SPM) driver SPM is a hardware block that controls the peripheral logic surrounding the application cores (cpu/l$). When the core executes WFI instruction, the SPM takes over the putting the core in low power state as configured. The wake up for the SPM is an interrupt at the GIC, which then completes the rest of low power mode sequence and brings the core out of low power mode. The SPM has a set of control registers that configure the SPMs individually based on the type of the core and the runtime conditions. SPM is a finite state machine block to which a sequence is provided and it interprets the bytes and executes them in sequence. Each low power mode that the core can enter into is provided to the SPM as a sequence. Configure the SPM to set the core (cpu or L2) into its low power mode, the index of the first command in the sequence is set in the SPM_CTL register. When the core executes ARM wfi instruction, it triggers the SPM state machine to start executing from that index. The SPM state machine waits until the interrupt occurs and starts executing the rest of the sequence until it hits the end of the sequence. The end of the sequence jumps the core out of its low power mode. Add support for an idle driver to set up the SPM to place the core in Standby or Standalone power collapse mode when the core is idle. Based on work by: Mahesh Sivasubramanian <msivasub@codeaurora.org>, Ai Li <ali@codeaurora.org>, Praveen Chidambaram <pchidamb@codeaurora.org> Original tree available at - git://codeaurora.org/quic/la/kernel/msm-3.10.git Cc: Stephen Boyd <sboyd@codeaurora.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Kevin Hilman <khilman@linaro.org> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Tested-by: Kevin Hilman <khilman@linaro.org> Acked-by: Kumar Gala <galak@codeaurora.org> Acked-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Kumar Gala <galak@codeaurora.org>
2015-04-09 19:20:41 +00:00
cpuidle: qcom_spm: Detach state machine from main SPM handling In commit a871be6b8eee ("cpuidle: Convert Qualcomm SPM driver to a generic CPUidle driver") the SPM driver has been converted to a generic CPUidle driver: that was mainly made to simplify the driver and that was a great accomplishment; Though, at that time, this driver was only applicable to ARM 32-bit SoCs, lacking logic about the handling of newer generation SAW. In preparation for the enablement of SPM features on AArch64/ARM64, split the cpuidle-qcom-spm driver in two: the CPUIdle related state machine (currently used only on ARM SoCs) stays there, while the SPM communication handling lands back in soc/qcom/spm.c and also making sure to not discard the simplifications that were introduced in the aforementioned commit. Since now the "two drivers" are split, the SCM dependency in the main SPM handling is gone and for this reason it was also possible to move the SPM initialization early: this will also make sure that whenever the SAW CPUIdle driver is getting initialized, the SPM driver will be ready to do the job. Please note that the anticipation of the SPM initialization was also done to optimize the boot times on platforms that have their CPU/L2 idle states managed by other means (such as PSCI), while needing SAW initialization for other purposes, like AVS control. Signed-off-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@somainline.org> Reviewed-by: Stephan Gerhold <stephan@gerhold.net> Tested-by: Stephan Gerhold <stephan@gerhold.net> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Link: https://lore.kernel.org/r/20210729155609.608159-2-angelogioacchino.delregno@somainline.org
2021-07-29 15:56:05 +00:00
static int spm_cpuidle_drv_probe(struct platform_device *pdev)
ARM: qcom: Add Subsystem Power Manager (SPM) driver SPM is a hardware block that controls the peripheral logic surrounding the application cores (cpu/l$). When the core executes WFI instruction, the SPM takes over the putting the core in low power state as configured. The wake up for the SPM is an interrupt at the GIC, which then completes the rest of low power mode sequence and brings the core out of low power mode. The SPM has a set of control registers that configure the SPMs individually based on the type of the core and the runtime conditions. SPM is a finite state machine block to which a sequence is provided and it interprets the bytes and executes them in sequence. Each low power mode that the core can enter into is provided to the SPM as a sequence. Configure the SPM to set the core (cpu or L2) into its low power mode, the index of the first command in the sequence is set in the SPM_CTL register. When the core executes ARM wfi instruction, it triggers the SPM state machine to start executing from that index. The SPM state machine waits until the interrupt occurs and starts executing the rest of the sequence until it hits the end of the sequence. The end of the sequence jumps the core out of its low power mode. Add support for an idle driver to set up the SPM to place the core in Standby or Standalone power collapse mode when the core is idle. Based on work by: Mahesh Sivasubramanian <msivasub@codeaurora.org>, Ai Li <ali@codeaurora.org>, Praveen Chidambaram <pchidamb@codeaurora.org> Original tree available at - git://codeaurora.org/quic/la/kernel/msm-3.10.git Cc: Stephen Boyd <sboyd@codeaurora.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Kevin Hilman <khilman@linaro.org> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Tested-by: Kevin Hilman <khilman@linaro.org> Acked-by: Kumar Gala <galak@codeaurora.org> Acked-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Kumar Gala <galak@codeaurora.org>
2015-04-09 19:20:41 +00:00
{
int cpu, ret;
if (!qcom_scm_is_available())
return -EPROBE_DEFER;
ARM: qcom: Add Subsystem Power Manager (SPM) driver SPM is a hardware block that controls the peripheral logic surrounding the application cores (cpu/l$). When the core executes WFI instruction, the SPM takes over the putting the core in low power state as configured. The wake up for the SPM is an interrupt at the GIC, which then completes the rest of low power mode sequence and brings the core out of low power mode. The SPM has a set of control registers that configure the SPMs individually based on the type of the core and the runtime conditions. SPM is a finite state machine block to which a sequence is provided and it interprets the bytes and executes them in sequence. Each low power mode that the core can enter into is provided to the SPM as a sequence. Configure the SPM to set the core (cpu or L2) into its low power mode, the index of the first command in the sequence is set in the SPM_CTL register. When the core executes ARM wfi instruction, it triggers the SPM state machine to start executing from that index. The SPM state machine waits until the interrupt occurs and starts executing the rest of the sequence until it hits the end of the sequence. The end of the sequence jumps the core out of its low power mode. Add support for an idle driver to set up the SPM to place the core in Standby or Standalone power collapse mode when the core is idle. Based on work by: Mahesh Sivasubramanian <msivasub@codeaurora.org>, Ai Li <ali@codeaurora.org>, Praveen Chidambaram <pchidamb@codeaurora.org> Original tree available at - git://codeaurora.org/quic/la/kernel/msm-3.10.git Cc: Stephen Boyd <sboyd@codeaurora.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Kevin Hilman <khilman@linaro.org> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Tested-by: Kevin Hilman <khilman@linaro.org> Acked-by: Kumar Gala <galak@codeaurora.org> Acked-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Kumar Gala <galak@codeaurora.org>
2015-04-09 19:20:41 +00:00
ret = qcom_scm_set_warm_boot_addr(cpu_resume_arm);
if (ret)
return dev_err_probe(&pdev->dev, ret, "set warm boot addr failed");
cpuidle: qcom_spm: Detach state machine from main SPM handling In commit a871be6b8eee ("cpuidle: Convert Qualcomm SPM driver to a generic CPUidle driver") the SPM driver has been converted to a generic CPUidle driver: that was mainly made to simplify the driver and that was a great accomplishment; Though, at that time, this driver was only applicable to ARM 32-bit SoCs, lacking logic about the handling of newer generation SAW. In preparation for the enablement of SPM features on AArch64/ARM64, split the cpuidle-qcom-spm driver in two: the CPUIdle related state machine (currently used only on ARM SoCs) stays there, while the SPM communication handling lands back in soc/qcom/spm.c and also making sure to not discard the simplifications that were introduced in the aforementioned commit. Since now the "two drivers" are split, the SCM dependency in the main SPM handling is gone and for this reason it was also possible to move the SPM initialization early: this will also make sure that whenever the SAW CPUIdle driver is getting initialized, the SPM driver will be ready to do the job. Please note that the anticipation of the SPM initialization was also done to optimize the boot times on platforms that have their CPU/L2 idle states managed by other means (such as PSCI), while needing SAW initialization for other purposes, like AVS control. Signed-off-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@somainline.org> Reviewed-by: Stephan Gerhold <stephan@gerhold.net> Tested-by: Stephan Gerhold <stephan@gerhold.net> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Link: https://lore.kernel.org/r/20210729155609.608159-2-angelogioacchino.delregno@somainline.org
2021-07-29 15:56:05 +00:00
for_each_possible_cpu(cpu) {
ret = spm_cpuidle_register(&pdev->dev, cpu);
if (ret && ret != -ENODEV) {
dev_err(&pdev->dev,
"Cannot register for CPU%d: %d\n", cpu, ret);
}
}
ARM: qcom: Add Subsystem Power Manager (SPM) driver SPM is a hardware block that controls the peripheral logic surrounding the application cores (cpu/l$). When the core executes WFI instruction, the SPM takes over the putting the core in low power state as configured. The wake up for the SPM is an interrupt at the GIC, which then completes the rest of low power mode sequence and brings the core out of low power mode. The SPM has a set of control registers that configure the SPMs individually based on the type of the core and the runtime conditions. SPM is a finite state machine block to which a sequence is provided and it interprets the bytes and executes them in sequence. Each low power mode that the core can enter into is provided to the SPM as a sequence. Configure the SPM to set the core (cpu or L2) into its low power mode, the index of the first command in the sequence is set in the SPM_CTL register. When the core executes ARM wfi instruction, it triggers the SPM state machine to start executing from that index. The SPM state machine waits until the interrupt occurs and starts executing the rest of the sequence until it hits the end of the sequence. The end of the sequence jumps the core out of its low power mode. Add support for an idle driver to set up the SPM to place the core in Standby or Standalone power collapse mode when the core is idle. Based on work by: Mahesh Sivasubramanian <msivasub@codeaurora.org>, Ai Li <ali@codeaurora.org>, Praveen Chidambaram <pchidamb@codeaurora.org> Original tree available at - git://codeaurora.org/quic/la/kernel/msm-3.10.git Cc: Stephen Boyd <sboyd@codeaurora.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Kevin Hilman <khilman@linaro.org> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Tested-by: Kevin Hilman <khilman@linaro.org> Acked-by: Kumar Gala <galak@codeaurora.org> Acked-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Kumar Gala <galak@codeaurora.org>
2015-04-09 19:20:41 +00:00
cpuidle: qcom_spm: Detach state machine from main SPM handling In commit a871be6b8eee ("cpuidle: Convert Qualcomm SPM driver to a generic CPUidle driver") the SPM driver has been converted to a generic CPUidle driver: that was mainly made to simplify the driver and that was a great accomplishment; Though, at that time, this driver was only applicable to ARM 32-bit SoCs, lacking logic about the handling of newer generation SAW. In preparation for the enablement of SPM features on AArch64/ARM64, split the cpuidle-qcom-spm driver in two: the CPUIdle related state machine (currently used only on ARM SoCs) stays there, while the SPM communication handling lands back in soc/qcom/spm.c and also making sure to not discard the simplifications that were introduced in the aforementioned commit. Since now the "two drivers" are split, the SCM dependency in the main SPM handling is gone and for this reason it was also possible to move the SPM initialization early: this will also make sure that whenever the SAW CPUIdle driver is getting initialized, the SPM driver will be ready to do the job. Please note that the anticipation of the SPM initialization was also done to optimize the boot times on platforms that have their CPU/L2 idle states managed by other means (such as PSCI), while needing SAW initialization for other purposes, like AVS control. Signed-off-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@somainline.org> Reviewed-by: Stephan Gerhold <stephan@gerhold.net> Tested-by: Stephan Gerhold <stephan@gerhold.net> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Link: https://lore.kernel.org/r/20210729155609.608159-2-angelogioacchino.delregno@somainline.org
2021-07-29 15:56:05 +00:00
return 0;
}
ARM: qcom: Add Subsystem Power Manager (SPM) driver SPM is a hardware block that controls the peripheral logic surrounding the application cores (cpu/l$). When the core executes WFI instruction, the SPM takes over the putting the core in low power state as configured. The wake up for the SPM is an interrupt at the GIC, which then completes the rest of low power mode sequence and brings the core out of low power mode. The SPM has a set of control registers that configure the SPMs individually based on the type of the core and the runtime conditions. SPM is a finite state machine block to which a sequence is provided and it interprets the bytes and executes them in sequence. Each low power mode that the core can enter into is provided to the SPM as a sequence. Configure the SPM to set the core (cpu or L2) into its low power mode, the index of the first command in the sequence is set in the SPM_CTL register. When the core executes ARM wfi instruction, it triggers the SPM state machine to start executing from that index. The SPM state machine waits until the interrupt occurs and starts executing the rest of the sequence until it hits the end of the sequence. The end of the sequence jumps the core out of its low power mode. Add support for an idle driver to set up the SPM to place the core in Standby or Standalone power collapse mode when the core is idle. Based on work by: Mahesh Sivasubramanian <msivasub@codeaurora.org>, Ai Li <ali@codeaurora.org>, Praveen Chidambaram <pchidamb@codeaurora.org> Original tree available at - git://codeaurora.org/quic/la/kernel/msm-3.10.git Cc: Stephen Boyd <sboyd@codeaurora.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Kevin Hilman <khilman@linaro.org> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Tested-by: Kevin Hilman <khilman@linaro.org> Acked-by: Kumar Gala <galak@codeaurora.org> Acked-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Kumar Gala <galak@codeaurora.org>
2015-04-09 19:20:41 +00:00
cpuidle: qcom_spm: Detach state machine from main SPM handling In commit a871be6b8eee ("cpuidle: Convert Qualcomm SPM driver to a generic CPUidle driver") the SPM driver has been converted to a generic CPUidle driver: that was mainly made to simplify the driver and that was a great accomplishment; Though, at that time, this driver was only applicable to ARM 32-bit SoCs, lacking logic about the handling of newer generation SAW. In preparation for the enablement of SPM features on AArch64/ARM64, split the cpuidle-qcom-spm driver in two: the CPUIdle related state machine (currently used only on ARM SoCs) stays there, while the SPM communication handling lands back in soc/qcom/spm.c and also making sure to not discard the simplifications that were introduced in the aforementioned commit. Since now the "two drivers" are split, the SCM dependency in the main SPM handling is gone and for this reason it was also possible to move the SPM initialization early: this will also make sure that whenever the SAW CPUIdle driver is getting initialized, the SPM driver will be ready to do the job. Please note that the anticipation of the SPM initialization was also done to optimize the boot times on platforms that have their CPU/L2 idle states managed by other means (such as PSCI), while needing SAW initialization for other purposes, like AVS control. Signed-off-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@somainline.org> Reviewed-by: Stephan Gerhold <stephan@gerhold.net> Tested-by: Stephan Gerhold <stephan@gerhold.net> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Link: https://lore.kernel.org/r/20210729155609.608159-2-angelogioacchino.delregno@somainline.org
2021-07-29 15:56:05 +00:00
static struct platform_driver spm_cpuidle_driver = {
.probe = spm_cpuidle_drv_probe,
.driver = {
.name = "qcom-spm-cpuidle",
.suppress_bind_attrs = true,
},
};
ARM: qcom: Add Subsystem Power Manager (SPM) driver SPM is a hardware block that controls the peripheral logic surrounding the application cores (cpu/l$). When the core executes WFI instruction, the SPM takes over the putting the core in low power state as configured. The wake up for the SPM is an interrupt at the GIC, which then completes the rest of low power mode sequence and brings the core out of low power mode. The SPM has a set of control registers that configure the SPMs individually based on the type of the core and the runtime conditions. SPM is a finite state machine block to which a sequence is provided and it interprets the bytes and executes them in sequence. Each low power mode that the core can enter into is provided to the SPM as a sequence. Configure the SPM to set the core (cpu or L2) into its low power mode, the index of the first command in the sequence is set in the SPM_CTL register. When the core executes ARM wfi instruction, it triggers the SPM state machine to start executing from that index. The SPM state machine waits until the interrupt occurs and starts executing the rest of the sequence until it hits the end of the sequence. The end of the sequence jumps the core out of its low power mode. Add support for an idle driver to set up the SPM to place the core in Standby or Standalone power collapse mode when the core is idle. Based on work by: Mahesh Sivasubramanian <msivasub@codeaurora.org>, Ai Li <ali@codeaurora.org>, Praveen Chidambaram <pchidamb@codeaurora.org> Original tree available at - git://codeaurora.org/quic/la/kernel/msm-3.10.git Cc: Stephen Boyd <sboyd@codeaurora.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Kevin Hilman <khilman@linaro.org> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Tested-by: Kevin Hilman <khilman@linaro.org> Acked-by: Kumar Gala <galak@codeaurora.org> Acked-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Kumar Gala <galak@codeaurora.org>
2015-04-09 19:20:41 +00:00
static bool __init qcom_spm_find_any_cpu(void)
{
struct device_node *cpu_node, *saw_node;
for_each_of_cpu_node(cpu_node) {
saw_node = of_parse_phandle(cpu_node, "qcom,saw", 0);
if (of_device_is_available(saw_node)) {
of_node_put(saw_node);
of_node_put(cpu_node);
return true;
}
of_node_put(saw_node);
}
return false;
}
cpuidle: qcom_spm: Detach state machine from main SPM handling In commit a871be6b8eee ("cpuidle: Convert Qualcomm SPM driver to a generic CPUidle driver") the SPM driver has been converted to a generic CPUidle driver: that was mainly made to simplify the driver and that was a great accomplishment; Though, at that time, this driver was only applicable to ARM 32-bit SoCs, lacking logic about the handling of newer generation SAW. In preparation for the enablement of SPM features on AArch64/ARM64, split the cpuidle-qcom-spm driver in two: the CPUIdle related state machine (currently used only on ARM SoCs) stays there, while the SPM communication handling lands back in soc/qcom/spm.c and also making sure to not discard the simplifications that were introduced in the aforementioned commit. Since now the "two drivers" are split, the SCM dependency in the main SPM handling is gone and for this reason it was also possible to move the SPM initialization early: this will also make sure that whenever the SAW CPUIdle driver is getting initialized, the SPM driver will be ready to do the job. Please note that the anticipation of the SPM initialization was also done to optimize the boot times on platforms that have their CPU/L2 idle states managed by other means (such as PSCI), while needing SAW initialization for other purposes, like AVS control. Signed-off-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@somainline.org> Reviewed-by: Stephan Gerhold <stephan@gerhold.net> Tested-by: Stephan Gerhold <stephan@gerhold.net> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Link: https://lore.kernel.org/r/20210729155609.608159-2-angelogioacchino.delregno@somainline.org
2021-07-29 15:56:05 +00:00
static int __init qcom_spm_cpuidle_init(void)
{
struct platform_device *pdev;
int ret;
ARM: qcom: Add Subsystem Power Manager (SPM) driver SPM is a hardware block that controls the peripheral logic surrounding the application cores (cpu/l$). When the core executes WFI instruction, the SPM takes over the putting the core in low power state as configured. The wake up for the SPM is an interrupt at the GIC, which then completes the rest of low power mode sequence and brings the core out of low power mode. The SPM has a set of control registers that configure the SPMs individually based on the type of the core and the runtime conditions. SPM is a finite state machine block to which a sequence is provided and it interprets the bytes and executes them in sequence. Each low power mode that the core can enter into is provided to the SPM as a sequence. Configure the SPM to set the core (cpu or L2) into its low power mode, the index of the first command in the sequence is set in the SPM_CTL register. When the core executes ARM wfi instruction, it triggers the SPM state machine to start executing from that index. The SPM state machine waits until the interrupt occurs and starts executing the rest of the sequence until it hits the end of the sequence. The end of the sequence jumps the core out of its low power mode. Add support for an idle driver to set up the SPM to place the core in Standby or Standalone power collapse mode when the core is idle. Based on work by: Mahesh Sivasubramanian <msivasub@codeaurora.org>, Ai Li <ali@codeaurora.org>, Praveen Chidambaram <pchidamb@codeaurora.org> Original tree available at - git://codeaurora.org/quic/la/kernel/msm-3.10.git Cc: Stephen Boyd <sboyd@codeaurora.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Kevin Hilman <khilman@linaro.org> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Tested-by: Kevin Hilman <khilman@linaro.org> Acked-by: Kumar Gala <galak@codeaurora.org> Acked-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Kumar Gala <galak@codeaurora.org>
2015-04-09 19:20:41 +00:00
cpuidle: qcom_spm: Detach state machine from main SPM handling In commit a871be6b8eee ("cpuidle: Convert Qualcomm SPM driver to a generic CPUidle driver") the SPM driver has been converted to a generic CPUidle driver: that was mainly made to simplify the driver and that was a great accomplishment; Though, at that time, this driver was only applicable to ARM 32-bit SoCs, lacking logic about the handling of newer generation SAW. In preparation for the enablement of SPM features on AArch64/ARM64, split the cpuidle-qcom-spm driver in two: the CPUIdle related state machine (currently used only on ARM SoCs) stays there, while the SPM communication handling lands back in soc/qcom/spm.c and also making sure to not discard the simplifications that were introduced in the aforementioned commit. Since now the "two drivers" are split, the SCM dependency in the main SPM handling is gone and for this reason it was also possible to move the SPM initialization early: this will also make sure that whenever the SAW CPUIdle driver is getting initialized, the SPM driver will be ready to do the job. Please note that the anticipation of the SPM initialization was also done to optimize the boot times on platforms that have their CPU/L2 idle states managed by other means (such as PSCI), while needing SAW initialization for other purposes, like AVS control. Signed-off-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@somainline.org> Reviewed-by: Stephan Gerhold <stephan@gerhold.net> Tested-by: Stephan Gerhold <stephan@gerhold.net> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Link: https://lore.kernel.org/r/20210729155609.608159-2-angelogioacchino.delregno@somainline.org
2021-07-29 15:56:05 +00:00
ret = platform_driver_register(&spm_cpuidle_driver);
if (ret)
return ret;
/* Make sure there is actually any CPU managed by the SPM */
if (!qcom_spm_find_any_cpu())
return 0;
cpuidle: qcom_spm: Detach state machine from main SPM handling In commit a871be6b8eee ("cpuidle: Convert Qualcomm SPM driver to a generic CPUidle driver") the SPM driver has been converted to a generic CPUidle driver: that was mainly made to simplify the driver and that was a great accomplishment; Though, at that time, this driver was only applicable to ARM 32-bit SoCs, lacking logic about the handling of newer generation SAW. In preparation for the enablement of SPM features on AArch64/ARM64, split the cpuidle-qcom-spm driver in two: the CPUIdle related state machine (currently used only on ARM SoCs) stays there, while the SPM communication handling lands back in soc/qcom/spm.c and also making sure to not discard the simplifications that were introduced in the aforementioned commit. Since now the "two drivers" are split, the SCM dependency in the main SPM handling is gone and for this reason it was also possible to move the SPM initialization early: this will also make sure that whenever the SAW CPUIdle driver is getting initialized, the SPM driver will be ready to do the job. Please note that the anticipation of the SPM initialization was also done to optimize the boot times on platforms that have their CPU/L2 idle states managed by other means (such as PSCI), while needing SAW initialization for other purposes, like AVS control. Signed-off-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@somainline.org> Reviewed-by: Stephan Gerhold <stephan@gerhold.net> Tested-by: Stephan Gerhold <stephan@gerhold.net> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Link: https://lore.kernel.org/r/20210729155609.608159-2-angelogioacchino.delregno@somainline.org
2021-07-29 15:56:05 +00:00
pdev = platform_device_register_simple("qcom-spm-cpuidle",
-1, NULL, 0);
if (IS_ERR(pdev)) {
platform_driver_unregister(&spm_cpuidle_driver);
return PTR_ERR(pdev);
}
ARM: qcom: Add Subsystem Power Manager (SPM) driver SPM is a hardware block that controls the peripheral logic surrounding the application cores (cpu/l$). When the core executes WFI instruction, the SPM takes over the putting the core in low power state as configured. The wake up for the SPM is an interrupt at the GIC, which then completes the rest of low power mode sequence and brings the core out of low power mode. The SPM has a set of control registers that configure the SPMs individually based on the type of the core and the runtime conditions. SPM is a finite state machine block to which a sequence is provided and it interprets the bytes and executes them in sequence. Each low power mode that the core can enter into is provided to the SPM as a sequence. Configure the SPM to set the core (cpu or L2) into its low power mode, the index of the first command in the sequence is set in the SPM_CTL register. When the core executes ARM wfi instruction, it triggers the SPM state machine to start executing from that index. The SPM state machine waits until the interrupt occurs and starts executing the rest of the sequence until it hits the end of the sequence. The end of the sequence jumps the core out of its low power mode. Add support for an idle driver to set up the SPM to place the core in Standby or Standalone power collapse mode when the core is idle. Based on work by: Mahesh Sivasubramanian <msivasub@codeaurora.org>, Ai Li <ali@codeaurora.org>, Praveen Chidambaram <pchidamb@codeaurora.org> Original tree available at - git://codeaurora.org/quic/la/kernel/msm-3.10.git Cc: Stephen Boyd <sboyd@codeaurora.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Kevin Hilman <khilman@linaro.org> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Lina Iyer <lina.iyer@linaro.org> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Tested-by: Kevin Hilman <khilman@linaro.org> Acked-by: Kumar Gala <galak@codeaurora.org> Acked-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Kumar Gala <galak@codeaurora.org>
2015-04-09 19:20:41 +00:00
return 0;
}
cpuidle: qcom_spm: Detach state machine from main SPM handling In commit a871be6b8eee ("cpuidle: Convert Qualcomm SPM driver to a generic CPUidle driver") the SPM driver has been converted to a generic CPUidle driver: that was mainly made to simplify the driver and that was a great accomplishment; Though, at that time, this driver was only applicable to ARM 32-bit SoCs, lacking logic about the handling of newer generation SAW. In preparation for the enablement of SPM features on AArch64/ARM64, split the cpuidle-qcom-spm driver in two: the CPUIdle related state machine (currently used only on ARM SoCs) stays there, while the SPM communication handling lands back in soc/qcom/spm.c and also making sure to not discard the simplifications that were introduced in the aforementioned commit. Since now the "two drivers" are split, the SCM dependency in the main SPM handling is gone and for this reason it was also possible to move the SPM initialization early: this will also make sure that whenever the SAW CPUIdle driver is getting initialized, the SPM driver will be ready to do the job. Please note that the anticipation of the SPM initialization was also done to optimize the boot times on platforms that have their CPU/L2 idle states managed by other means (such as PSCI), while needing SAW initialization for other purposes, like AVS control. Signed-off-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@somainline.org> Reviewed-by: Stephan Gerhold <stephan@gerhold.net> Tested-by: Stephan Gerhold <stephan@gerhold.net> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Link: https://lore.kernel.org/r/20210729155609.608159-2-angelogioacchino.delregno@somainline.org
2021-07-29 15:56:05 +00:00
device_initcall(qcom_spm_cpuidle_init);