linux/tools/perf/bench/synthesize.c

263 lines
6.8 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Benchmark synthesis of perf events such as at the start of a 'perf
* record'. Synthesis is done on the current process and the 'dummy' event
* handlers are invoked that support dump_trace but otherwise do nothing.
*
* Copyright 2019 Google LLC.
*/
#include <stdio.h>
#include "bench.h"
#include "../util/debug.h"
#include "../util/session.h"
perf bench: Add a multi-threaded synthesize benchmark By default this isn't run as it reads /proc and may not have access. For consistency, modify the single threaded benchmark to compute an average time per event. Committer testing: $ grep -m1 "model name" /proc/cpuinfo model name : Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz $ grep "model name" /proc/cpuinfo | wc -l 8 $ $ perf bench internals synthesize -h # Running 'internals/synthesize' benchmark: Usage: perf bench internals synthesize <options> -I, --multi-iterations <n> Number of iterations used to compute multi-threaded average -i, --single-iterations <n> Number of iterations used to compute single-threaded average -M, --max-threads <n> Maximum number of threads in multithreaded bench -m, --min-threads <n> Minimum number of threads in multithreaded bench -s, --st Run single threaded benchmark -t, --mt Run multi-threaded benchmark $ $ perf bench internals synthesize -t # Running 'internals/synthesize' benchmark: Computing performance of multi threaded perf event synthesis by synthesizing events on CPU 0: Number of synthesis threads: 1 Average synthesis took: 65449.000 usec (+- 586.442 usec) Average num. events: 9405.400 (+- 0.306) Average time per event 6.959 usec Number of synthesis threads: 2 Average synthesis took: 37838.300 usec (+- 130.259 usec) Average num. events: 9501.800 (+- 20.469) Average time per event 3.982 usec Number of synthesis threads: 3 Average synthesis took: 48551.400 usec (+- 225.686 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 5.087 usec Number of synthesis threads: 4 Average synthesis took: 29632.500 usec (+- 50.808 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.105 usec Number of synthesis threads: 5 Average synthesis took: 33920.400 usec (+- 284.509 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.554 usec Number of synthesis threads: 6 Average synthesis took: 27604.100 usec (+- 72.344 usec) Average num. events: 9548.000 (+- 0.000) Average time per event 2.891 usec Number of synthesis threads: 7 Average synthesis took: 25406.300 usec (+- 933.371 usec) Average num. events: 9545.500 (+- 0.167) Average time per event 2.662 usec Number of synthesis threads: 8 Average synthesis took: 24110.400 usec (+- 73.229 usec) Average num. events: 9551.000 (+- 0.000) Average time per event 2.524 usec $ Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Acked-by: Namhyung Kim <namhyung@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrey Zhizhikin <andrey.z@gmail.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lore.kernel.org/lkml/20200415054050.31645-2-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-04-15 05:40:48 +00:00
#include "../util/stat.h"
#include "../util/synthetic-events.h"
#include "../util/target.h"
#include "../util/thread_map.h"
#include "../util/tool.h"
perf bench: Add a multi-threaded synthesize benchmark By default this isn't run as it reads /proc and may not have access. For consistency, modify the single threaded benchmark to compute an average time per event. Committer testing: $ grep -m1 "model name" /proc/cpuinfo model name : Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz $ grep "model name" /proc/cpuinfo | wc -l 8 $ $ perf bench internals synthesize -h # Running 'internals/synthesize' benchmark: Usage: perf bench internals synthesize <options> -I, --multi-iterations <n> Number of iterations used to compute multi-threaded average -i, --single-iterations <n> Number of iterations used to compute single-threaded average -M, --max-threads <n> Maximum number of threads in multithreaded bench -m, --min-threads <n> Minimum number of threads in multithreaded bench -s, --st Run single threaded benchmark -t, --mt Run multi-threaded benchmark $ $ perf bench internals synthesize -t # Running 'internals/synthesize' benchmark: Computing performance of multi threaded perf event synthesis by synthesizing events on CPU 0: Number of synthesis threads: 1 Average synthesis took: 65449.000 usec (+- 586.442 usec) Average num. events: 9405.400 (+- 0.306) Average time per event 6.959 usec Number of synthesis threads: 2 Average synthesis took: 37838.300 usec (+- 130.259 usec) Average num. events: 9501.800 (+- 20.469) Average time per event 3.982 usec Number of synthesis threads: 3 Average synthesis took: 48551.400 usec (+- 225.686 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 5.087 usec Number of synthesis threads: 4 Average synthesis took: 29632.500 usec (+- 50.808 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.105 usec Number of synthesis threads: 5 Average synthesis took: 33920.400 usec (+- 284.509 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.554 usec Number of synthesis threads: 6 Average synthesis took: 27604.100 usec (+- 72.344 usec) Average num. events: 9548.000 (+- 0.000) Average time per event 2.891 usec Number of synthesis threads: 7 Average synthesis took: 25406.300 usec (+- 933.371 usec) Average num. events: 9545.500 (+- 0.167) Average time per event 2.662 usec Number of synthesis threads: 8 Average synthesis took: 24110.400 usec (+- 73.229 usec) Average num. events: 9551.000 (+- 0.000) Average time per event 2.524 usec $ Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Acked-by: Namhyung Kim <namhyung@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrey Zhizhikin <andrey.z@gmail.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lore.kernel.org/lkml/20200415054050.31645-2-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-04-15 05:40:48 +00:00
#include "../util/util.h"
#include <linux/atomic.h>
#include <linux/err.h>
#include <linux/time64.h>
#include <subcmd/parse-options.h>
perf bench: Add a multi-threaded synthesize benchmark By default this isn't run as it reads /proc and may not have access. For consistency, modify the single threaded benchmark to compute an average time per event. Committer testing: $ grep -m1 "model name" /proc/cpuinfo model name : Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz $ grep "model name" /proc/cpuinfo | wc -l 8 $ $ perf bench internals synthesize -h # Running 'internals/synthesize' benchmark: Usage: perf bench internals synthesize <options> -I, --multi-iterations <n> Number of iterations used to compute multi-threaded average -i, --single-iterations <n> Number of iterations used to compute single-threaded average -M, --max-threads <n> Maximum number of threads in multithreaded bench -m, --min-threads <n> Minimum number of threads in multithreaded bench -s, --st Run single threaded benchmark -t, --mt Run multi-threaded benchmark $ $ perf bench internals synthesize -t # Running 'internals/synthesize' benchmark: Computing performance of multi threaded perf event synthesis by synthesizing events on CPU 0: Number of synthesis threads: 1 Average synthesis took: 65449.000 usec (+- 586.442 usec) Average num. events: 9405.400 (+- 0.306) Average time per event 6.959 usec Number of synthesis threads: 2 Average synthesis took: 37838.300 usec (+- 130.259 usec) Average num. events: 9501.800 (+- 20.469) Average time per event 3.982 usec Number of synthesis threads: 3 Average synthesis took: 48551.400 usec (+- 225.686 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 5.087 usec Number of synthesis threads: 4 Average synthesis took: 29632.500 usec (+- 50.808 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.105 usec Number of synthesis threads: 5 Average synthesis took: 33920.400 usec (+- 284.509 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.554 usec Number of synthesis threads: 6 Average synthesis took: 27604.100 usec (+- 72.344 usec) Average num. events: 9548.000 (+- 0.000) Average time per event 2.891 usec Number of synthesis threads: 7 Average synthesis took: 25406.300 usec (+- 933.371 usec) Average num. events: 9545.500 (+- 0.167) Average time per event 2.662 usec Number of synthesis threads: 8 Average synthesis took: 24110.400 usec (+- 73.229 usec) Average num. events: 9551.000 (+- 0.000) Average time per event 2.524 usec $ Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Acked-by: Namhyung Kim <namhyung@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrey Zhizhikin <andrey.z@gmail.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lore.kernel.org/lkml/20200415054050.31645-2-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-04-15 05:40:48 +00:00
static unsigned int min_threads = 1;
static unsigned int max_threads = UINT_MAX;
static unsigned int single_iterations = 10000;
static unsigned int multi_iterations = 10;
static bool run_st;
static bool run_mt;
static const struct option options[] = {
perf bench: Add a multi-threaded synthesize benchmark By default this isn't run as it reads /proc and may not have access. For consistency, modify the single threaded benchmark to compute an average time per event. Committer testing: $ grep -m1 "model name" /proc/cpuinfo model name : Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz $ grep "model name" /proc/cpuinfo | wc -l 8 $ $ perf bench internals synthesize -h # Running 'internals/synthesize' benchmark: Usage: perf bench internals synthesize <options> -I, --multi-iterations <n> Number of iterations used to compute multi-threaded average -i, --single-iterations <n> Number of iterations used to compute single-threaded average -M, --max-threads <n> Maximum number of threads in multithreaded bench -m, --min-threads <n> Minimum number of threads in multithreaded bench -s, --st Run single threaded benchmark -t, --mt Run multi-threaded benchmark $ $ perf bench internals synthesize -t # Running 'internals/synthesize' benchmark: Computing performance of multi threaded perf event synthesis by synthesizing events on CPU 0: Number of synthesis threads: 1 Average synthesis took: 65449.000 usec (+- 586.442 usec) Average num. events: 9405.400 (+- 0.306) Average time per event 6.959 usec Number of synthesis threads: 2 Average synthesis took: 37838.300 usec (+- 130.259 usec) Average num. events: 9501.800 (+- 20.469) Average time per event 3.982 usec Number of synthesis threads: 3 Average synthesis took: 48551.400 usec (+- 225.686 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 5.087 usec Number of synthesis threads: 4 Average synthesis took: 29632.500 usec (+- 50.808 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.105 usec Number of synthesis threads: 5 Average synthesis took: 33920.400 usec (+- 284.509 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.554 usec Number of synthesis threads: 6 Average synthesis took: 27604.100 usec (+- 72.344 usec) Average num. events: 9548.000 (+- 0.000) Average time per event 2.891 usec Number of synthesis threads: 7 Average synthesis took: 25406.300 usec (+- 933.371 usec) Average num. events: 9545.500 (+- 0.167) Average time per event 2.662 usec Number of synthesis threads: 8 Average synthesis took: 24110.400 usec (+- 73.229 usec) Average num. events: 9551.000 (+- 0.000) Average time per event 2.524 usec $ Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Acked-by: Namhyung Kim <namhyung@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrey Zhizhikin <andrey.z@gmail.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lore.kernel.org/lkml/20200415054050.31645-2-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-04-15 05:40:48 +00:00
OPT_BOOLEAN('s', "st", &run_st, "Run single threaded benchmark"),
OPT_BOOLEAN('t', "mt", &run_mt, "Run multi-threaded benchmark"),
OPT_UINTEGER('m', "min-threads", &min_threads,
"Minimum number of threads in multithreaded bench"),
OPT_UINTEGER('M', "max-threads", &max_threads,
"Maximum number of threads in multithreaded bench"),
OPT_UINTEGER('i', "single-iterations", &single_iterations,
"Number of iterations used to compute single-threaded average"),
OPT_UINTEGER('I', "multi-iterations", &multi_iterations,
"Number of iterations used to compute multi-threaded average"),
OPT_END()
};
perf bench: Add a multi-threaded synthesize benchmark By default this isn't run as it reads /proc and may not have access. For consistency, modify the single threaded benchmark to compute an average time per event. Committer testing: $ grep -m1 "model name" /proc/cpuinfo model name : Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz $ grep "model name" /proc/cpuinfo | wc -l 8 $ $ perf bench internals synthesize -h # Running 'internals/synthesize' benchmark: Usage: perf bench internals synthesize <options> -I, --multi-iterations <n> Number of iterations used to compute multi-threaded average -i, --single-iterations <n> Number of iterations used to compute single-threaded average -M, --max-threads <n> Maximum number of threads in multithreaded bench -m, --min-threads <n> Minimum number of threads in multithreaded bench -s, --st Run single threaded benchmark -t, --mt Run multi-threaded benchmark $ $ perf bench internals synthesize -t # Running 'internals/synthesize' benchmark: Computing performance of multi threaded perf event synthesis by synthesizing events on CPU 0: Number of synthesis threads: 1 Average synthesis took: 65449.000 usec (+- 586.442 usec) Average num. events: 9405.400 (+- 0.306) Average time per event 6.959 usec Number of synthesis threads: 2 Average synthesis took: 37838.300 usec (+- 130.259 usec) Average num. events: 9501.800 (+- 20.469) Average time per event 3.982 usec Number of synthesis threads: 3 Average synthesis took: 48551.400 usec (+- 225.686 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 5.087 usec Number of synthesis threads: 4 Average synthesis took: 29632.500 usec (+- 50.808 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.105 usec Number of synthesis threads: 5 Average synthesis took: 33920.400 usec (+- 284.509 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.554 usec Number of synthesis threads: 6 Average synthesis took: 27604.100 usec (+- 72.344 usec) Average num. events: 9548.000 (+- 0.000) Average time per event 2.891 usec Number of synthesis threads: 7 Average synthesis took: 25406.300 usec (+- 933.371 usec) Average num. events: 9545.500 (+- 0.167) Average time per event 2.662 usec Number of synthesis threads: 8 Average synthesis took: 24110.400 usec (+- 73.229 usec) Average num. events: 9551.000 (+- 0.000) Average time per event 2.524 usec $ Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Acked-by: Namhyung Kim <namhyung@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrey Zhizhikin <andrey.z@gmail.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lore.kernel.org/lkml/20200415054050.31645-2-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-04-15 05:40:48 +00:00
static const char *const bench_usage[] = {
"perf bench internals synthesize <options>",
NULL
};
perf bench: Add a multi-threaded synthesize benchmark By default this isn't run as it reads /proc and may not have access. For consistency, modify the single threaded benchmark to compute an average time per event. Committer testing: $ grep -m1 "model name" /proc/cpuinfo model name : Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz $ grep "model name" /proc/cpuinfo | wc -l 8 $ $ perf bench internals synthesize -h # Running 'internals/synthesize' benchmark: Usage: perf bench internals synthesize <options> -I, --multi-iterations <n> Number of iterations used to compute multi-threaded average -i, --single-iterations <n> Number of iterations used to compute single-threaded average -M, --max-threads <n> Maximum number of threads in multithreaded bench -m, --min-threads <n> Minimum number of threads in multithreaded bench -s, --st Run single threaded benchmark -t, --mt Run multi-threaded benchmark $ $ perf bench internals synthesize -t # Running 'internals/synthesize' benchmark: Computing performance of multi threaded perf event synthesis by synthesizing events on CPU 0: Number of synthesis threads: 1 Average synthesis took: 65449.000 usec (+- 586.442 usec) Average num. events: 9405.400 (+- 0.306) Average time per event 6.959 usec Number of synthesis threads: 2 Average synthesis took: 37838.300 usec (+- 130.259 usec) Average num. events: 9501.800 (+- 20.469) Average time per event 3.982 usec Number of synthesis threads: 3 Average synthesis took: 48551.400 usec (+- 225.686 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 5.087 usec Number of synthesis threads: 4 Average synthesis took: 29632.500 usec (+- 50.808 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.105 usec Number of synthesis threads: 5 Average synthesis took: 33920.400 usec (+- 284.509 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.554 usec Number of synthesis threads: 6 Average synthesis took: 27604.100 usec (+- 72.344 usec) Average num. events: 9548.000 (+- 0.000) Average time per event 2.891 usec Number of synthesis threads: 7 Average synthesis took: 25406.300 usec (+- 933.371 usec) Average num. events: 9545.500 (+- 0.167) Average time per event 2.662 usec Number of synthesis threads: 8 Average synthesis took: 24110.400 usec (+- 73.229 usec) Average num. events: 9551.000 (+- 0.000) Average time per event 2.524 usec $ Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Acked-by: Namhyung Kim <namhyung@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrey Zhizhikin <andrey.z@gmail.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lore.kernel.org/lkml/20200415054050.31645-2-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-04-15 05:40:48 +00:00
static atomic_t event_count;
perf bench: Add a multi-threaded synthesize benchmark By default this isn't run as it reads /proc and may not have access. For consistency, modify the single threaded benchmark to compute an average time per event. Committer testing: $ grep -m1 "model name" /proc/cpuinfo model name : Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz $ grep "model name" /proc/cpuinfo | wc -l 8 $ $ perf bench internals synthesize -h # Running 'internals/synthesize' benchmark: Usage: perf bench internals synthesize <options> -I, --multi-iterations <n> Number of iterations used to compute multi-threaded average -i, --single-iterations <n> Number of iterations used to compute single-threaded average -M, --max-threads <n> Maximum number of threads in multithreaded bench -m, --min-threads <n> Minimum number of threads in multithreaded bench -s, --st Run single threaded benchmark -t, --mt Run multi-threaded benchmark $ $ perf bench internals synthesize -t # Running 'internals/synthesize' benchmark: Computing performance of multi threaded perf event synthesis by synthesizing events on CPU 0: Number of synthesis threads: 1 Average synthesis took: 65449.000 usec (+- 586.442 usec) Average num. events: 9405.400 (+- 0.306) Average time per event 6.959 usec Number of synthesis threads: 2 Average synthesis took: 37838.300 usec (+- 130.259 usec) Average num. events: 9501.800 (+- 20.469) Average time per event 3.982 usec Number of synthesis threads: 3 Average synthesis took: 48551.400 usec (+- 225.686 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 5.087 usec Number of synthesis threads: 4 Average synthesis took: 29632.500 usec (+- 50.808 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.105 usec Number of synthesis threads: 5 Average synthesis took: 33920.400 usec (+- 284.509 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.554 usec Number of synthesis threads: 6 Average synthesis took: 27604.100 usec (+- 72.344 usec) Average num. events: 9548.000 (+- 0.000) Average time per event 2.891 usec Number of synthesis threads: 7 Average synthesis took: 25406.300 usec (+- 933.371 usec) Average num. events: 9545.500 (+- 0.167) Average time per event 2.662 usec Number of synthesis threads: 8 Average synthesis took: 24110.400 usec (+- 73.229 usec) Average num. events: 9551.000 (+- 0.000) Average time per event 2.524 usec $ Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Acked-by: Namhyung Kim <namhyung@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrey Zhizhikin <andrey.z@gmail.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lore.kernel.org/lkml/20200415054050.31645-2-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-04-15 05:40:48 +00:00
static int process_synthesized_event(struct perf_tool *tool __maybe_unused,
union perf_event *event __maybe_unused,
struct perf_sample *sample __maybe_unused,
struct machine *machine __maybe_unused)
{
atomic_inc(&event_count);
return 0;
}
static int do_run_single_threaded(struct perf_session *session,
struct perf_thread_map *threads,
struct target *target, bool data_mmap)
{
const unsigned int nr_threads_synthesize = 1;
struct timeval start, end, diff;
u64 runtime_us;
unsigned int i;
perf bench: Add a multi-threaded synthesize benchmark By default this isn't run as it reads /proc and may not have access. For consistency, modify the single threaded benchmark to compute an average time per event. Committer testing: $ grep -m1 "model name" /proc/cpuinfo model name : Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz $ grep "model name" /proc/cpuinfo | wc -l 8 $ $ perf bench internals synthesize -h # Running 'internals/synthesize' benchmark: Usage: perf bench internals synthesize <options> -I, --multi-iterations <n> Number of iterations used to compute multi-threaded average -i, --single-iterations <n> Number of iterations used to compute single-threaded average -M, --max-threads <n> Maximum number of threads in multithreaded bench -m, --min-threads <n> Minimum number of threads in multithreaded bench -s, --st Run single threaded benchmark -t, --mt Run multi-threaded benchmark $ $ perf bench internals synthesize -t # Running 'internals/synthesize' benchmark: Computing performance of multi threaded perf event synthesis by synthesizing events on CPU 0: Number of synthesis threads: 1 Average synthesis took: 65449.000 usec (+- 586.442 usec) Average num. events: 9405.400 (+- 0.306) Average time per event 6.959 usec Number of synthesis threads: 2 Average synthesis took: 37838.300 usec (+- 130.259 usec) Average num. events: 9501.800 (+- 20.469) Average time per event 3.982 usec Number of synthesis threads: 3 Average synthesis took: 48551.400 usec (+- 225.686 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 5.087 usec Number of synthesis threads: 4 Average synthesis took: 29632.500 usec (+- 50.808 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.105 usec Number of synthesis threads: 5 Average synthesis took: 33920.400 usec (+- 284.509 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.554 usec Number of synthesis threads: 6 Average synthesis took: 27604.100 usec (+- 72.344 usec) Average num. events: 9548.000 (+- 0.000) Average time per event 2.891 usec Number of synthesis threads: 7 Average synthesis took: 25406.300 usec (+- 933.371 usec) Average num. events: 9545.500 (+- 0.167) Average time per event 2.662 usec Number of synthesis threads: 8 Average synthesis took: 24110.400 usec (+- 73.229 usec) Average num. events: 9551.000 (+- 0.000) Average time per event 2.524 usec $ Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Acked-by: Namhyung Kim <namhyung@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrey Zhizhikin <andrey.z@gmail.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lore.kernel.org/lkml/20200415054050.31645-2-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-04-15 05:40:48 +00:00
double time_average, time_stddev, event_average, event_stddev;
int err;
perf bench: Add a multi-threaded synthesize benchmark By default this isn't run as it reads /proc and may not have access. For consistency, modify the single threaded benchmark to compute an average time per event. Committer testing: $ grep -m1 "model name" /proc/cpuinfo model name : Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz $ grep "model name" /proc/cpuinfo | wc -l 8 $ $ perf bench internals synthesize -h # Running 'internals/synthesize' benchmark: Usage: perf bench internals synthesize <options> -I, --multi-iterations <n> Number of iterations used to compute multi-threaded average -i, --single-iterations <n> Number of iterations used to compute single-threaded average -M, --max-threads <n> Maximum number of threads in multithreaded bench -m, --min-threads <n> Minimum number of threads in multithreaded bench -s, --st Run single threaded benchmark -t, --mt Run multi-threaded benchmark $ $ perf bench internals synthesize -t # Running 'internals/synthesize' benchmark: Computing performance of multi threaded perf event synthesis by synthesizing events on CPU 0: Number of synthesis threads: 1 Average synthesis took: 65449.000 usec (+- 586.442 usec) Average num. events: 9405.400 (+- 0.306) Average time per event 6.959 usec Number of synthesis threads: 2 Average synthesis took: 37838.300 usec (+- 130.259 usec) Average num. events: 9501.800 (+- 20.469) Average time per event 3.982 usec Number of synthesis threads: 3 Average synthesis took: 48551.400 usec (+- 225.686 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 5.087 usec Number of synthesis threads: 4 Average synthesis took: 29632.500 usec (+- 50.808 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.105 usec Number of synthesis threads: 5 Average synthesis took: 33920.400 usec (+- 284.509 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.554 usec Number of synthesis threads: 6 Average synthesis took: 27604.100 usec (+- 72.344 usec) Average num. events: 9548.000 (+- 0.000) Average time per event 2.891 usec Number of synthesis threads: 7 Average synthesis took: 25406.300 usec (+- 933.371 usec) Average num. events: 9545.500 (+- 0.167) Average time per event 2.662 usec Number of synthesis threads: 8 Average synthesis took: 24110.400 usec (+- 73.229 usec) Average num. events: 9551.000 (+- 0.000) Average time per event 2.524 usec $ Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Acked-by: Namhyung Kim <namhyung@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrey Zhizhikin <andrey.z@gmail.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lore.kernel.org/lkml/20200415054050.31645-2-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-04-15 05:40:48 +00:00
struct stats time_stats, event_stats;
perf bench: Add a multi-threaded synthesize benchmark By default this isn't run as it reads /proc and may not have access. For consistency, modify the single threaded benchmark to compute an average time per event. Committer testing: $ grep -m1 "model name" /proc/cpuinfo model name : Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz $ grep "model name" /proc/cpuinfo | wc -l 8 $ $ perf bench internals synthesize -h # Running 'internals/synthesize' benchmark: Usage: perf bench internals synthesize <options> -I, --multi-iterations <n> Number of iterations used to compute multi-threaded average -i, --single-iterations <n> Number of iterations used to compute single-threaded average -M, --max-threads <n> Maximum number of threads in multithreaded bench -m, --min-threads <n> Minimum number of threads in multithreaded bench -s, --st Run single threaded benchmark -t, --mt Run multi-threaded benchmark $ $ perf bench internals synthesize -t # Running 'internals/synthesize' benchmark: Computing performance of multi threaded perf event synthesis by synthesizing events on CPU 0: Number of synthesis threads: 1 Average synthesis took: 65449.000 usec (+- 586.442 usec) Average num. events: 9405.400 (+- 0.306) Average time per event 6.959 usec Number of synthesis threads: 2 Average synthesis took: 37838.300 usec (+- 130.259 usec) Average num. events: 9501.800 (+- 20.469) Average time per event 3.982 usec Number of synthesis threads: 3 Average synthesis took: 48551.400 usec (+- 225.686 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 5.087 usec Number of synthesis threads: 4 Average synthesis took: 29632.500 usec (+- 50.808 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.105 usec Number of synthesis threads: 5 Average synthesis took: 33920.400 usec (+- 284.509 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.554 usec Number of synthesis threads: 6 Average synthesis took: 27604.100 usec (+- 72.344 usec) Average num. events: 9548.000 (+- 0.000) Average time per event 2.891 usec Number of synthesis threads: 7 Average synthesis took: 25406.300 usec (+- 933.371 usec) Average num. events: 9545.500 (+- 0.167) Average time per event 2.662 usec Number of synthesis threads: 8 Average synthesis took: 24110.400 usec (+- 73.229 usec) Average num. events: 9551.000 (+- 0.000) Average time per event 2.524 usec $ Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Acked-by: Namhyung Kim <namhyung@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrey Zhizhikin <andrey.z@gmail.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lore.kernel.org/lkml/20200415054050.31645-2-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-04-15 05:40:48 +00:00
init_stats(&time_stats);
init_stats(&event_stats);
for (i = 0; i < single_iterations; i++) {
atomic_set(&event_count, 0);
gettimeofday(&start, NULL);
err = __machine__synthesize_threads(&session->machines.host,
NULL,
target, threads,
process_synthesized_event,
true, data_mmap,
nr_threads_synthesize);
if (err)
return err;
perf bench: Add a multi-threaded synthesize benchmark By default this isn't run as it reads /proc and may not have access. For consistency, modify the single threaded benchmark to compute an average time per event. Committer testing: $ grep -m1 "model name" /proc/cpuinfo model name : Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz $ grep "model name" /proc/cpuinfo | wc -l 8 $ $ perf bench internals synthesize -h # Running 'internals/synthesize' benchmark: Usage: perf bench internals synthesize <options> -I, --multi-iterations <n> Number of iterations used to compute multi-threaded average -i, --single-iterations <n> Number of iterations used to compute single-threaded average -M, --max-threads <n> Maximum number of threads in multithreaded bench -m, --min-threads <n> Minimum number of threads in multithreaded bench -s, --st Run single threaded benchmark -t, --mt Run multi-threaded benchmark $ $ perf bench internals synthesize -t # Running 'internals/synthesize' benchmark: Computing performance of multi threaded perf event synthesis by synthesizing events on CPU 0: Number of synthesis threads: 1 Average synthesis took: 65449.000 usec (+- 586.442 usec) Average num. events: 9405.400 (+- 0.306) Average time per event 6.959 usec Number of synthesis threads: 2 Average synthesis took: 37838.300 usec (+- 130.259 usec) Average num. events: 9501.800 (+- 20.469) Average time per event 3.982 usec Number of synthesis threads: 3 Average synthesis took: 48551.400 usec (+- 225.686 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 5.087 usec Number of synthesis threads: 4 Average synthesis took: 29632.500 usec (+- 50.808 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.105 usec Number of synthesis threads: 5 Average synthesis took: 33920.400 usec (+- 284.509 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.554 usec Number of synthesis threads: 6 Average synthesis took: 27604.100 usec (+- 72.344 usec) Average num. events: 9548.000 (+- 0.000) Average time per event 2.891 usec Number of synthesis threads: 7 Average synthesis took: 25406.300 usec (+- 933.371 usec) Average num. events: 9545.500 (+- 0.167) Average time per event 2.662 usec Number of synthesis threads: 8 Average synthesis took: 24110.400 usec (+- 73.229 usec) Average num. events: 9551.000 (+- 0.000) Average time per event 2.524 usec $ Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Acked-by: Namhyung Kim <namhyung@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrey Zhizhikin <andrey.z@gmail.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lore.kernel.org/lkml/20200415054050.31645-2-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-04-15 05:40:48 +00:00
gettimeofday(&end, NULL);
timersub(&end, &start, &diff);
runtime_us = diff.tv_sec * USEC_PER_SEC + diff.tv_usec;
update_stats(&time_stats, runtime_us);
update_stats(&event_stats, atomic_read(&event_count));
}
perf bench: Add a multi-threaded synthesize benchmark By default this isn't run as it reads /proc and may not have access. For consistency, modify the single threaded benchmark to compute an average time per event. Committer testing: $ grep -m1 "model name" /proc/cpuinfo model name : Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz $ grep "model name" /proc/cpuinfo | wc -l 8 $ $ perf bench internals synthesize -h # Running 'internals/synthesize' benchmark: Usage: perf bench internals synthesize <options> -I, --multi-iterations <n> Number of iterations used to compute multi-threaded average -i, --single-iterations <n> Number of iterations used to compute single-threaded average -M, --max-threads <n> Maximum number of threads in multithreaded bench -m, --min-threads <n> Minimum number of threads in multithreaded bench -s, --st Run single threaded benchmark -t, --mt Run multi-threaded benchmark $ $ perf bench internals synthesize -t # Running 'internals/synthesize' benchmark: Computing performance of multi threaded perf event synthesis by synthesizing events on CPU 0: Number of synthesis threads: 1 Average synthesis took: 65449.000 usec (+- 586.442 usec) Average num. events: 9405.400 (+- 0.306) Average time per event 6.959 usec Number of synthesis threads: 2 Average synthesis took: 37838.300 usec (+- 130.259 usec) Average num. events: 9501.800 (+- 20.469) Average time per event 3.982 usec Number of synthesis threads: 3 Average synthesis took: 48551.400 usec (+- 225.686 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 5.087 usec Number of synthesis threads: 4 Average synthesis took: 29632.500 usec (+- 50.808 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.105 usec Number of synthesis threads: 5 Average synthesis took: 33920.400 usec (+- 284.509 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.554 usec Number of synthesis threads: 6 Average synthesis took: 27604.100 usec (+- 72.344 usec) Average num. events: 9548.000 (+- 0.000) Average time per event 2.891 usec Number of synthesis threads: 7 Average synthesis took: 25406.300 usec (+- 933.371 usec) Average num. events: 9545.500 (+- 0.167) Average time per event 2.662 usec Number of synthesis threads: 8 Average synthesis took: 24110.400 usec (+- 73.229 usec) Average num. events: 9551.000 (+- 0.000) Average time per event 2.524 usec $ Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Acked-by: Namhyung Kim <namhyung@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrey Zhizhikin <andrey.z@gmail.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lore.kernel.org/lkml/20200415054050.31645-2-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-04-15 05:40:48 +00:00
time_average = avg_stats(&time_stats);
time_stddev = stddev_stats(&time_stats);
printf(" Average %ssynthesis took: %.3f usec (+- %.3f usec)\n",
data_mmap ? "data " : "", time_average, time_stddev);
event_average = avg_stats(&event_stats);
event_stddev = stddev_stats(&event_stats);
printf(" Average num. events: %.3f (+- %.3f)\n",
event_average, event_stddev);
printf(" Average time per event %.3f usec\n",
time_average / event_average);
return 0;
}
perf bench: Add a multi-threaded synthesize benchmark By default this isn't run as it reads /proc and may not have access. For consistency, modify the single threaded benchmark to compute an average time per event. Committer testing: $ grep -m1 "model name" /proc/cpuinfo model name : Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz $ grep "model name" /proc/cpuinfo | wc -l 8 $ $ perf bench internals synthesize -h # Running 'internals/synthesize' benchmark: Usage: perf bench internals synthesize <options> -I, --multi-iterations <n> Number of iterations used to compute multi-threaded average -i, --single-iterations <n> Number of iterations used to compute single-threaded average -M, --max-threads <n> Maximum number of threads in multithreaded bench -m, --min-threads <n> Minimum number of threads in multithreaded bench -s, --st Run single threaded benchmark -t, --mt Run multi-threaded benchmark $ $ perf bench internals synthesize -t # Running 'internals/synthesize' benchmark: Computing performance of multi threaded perf event synthesis by synthesizing events on CPU 0: Number of synthesis threads: 1 Average synthesis took: 65449.000 usec (+- 586.442 usec) Average num. events: 9405.400 (+- 0.306) Average time per event 6.959 usec Number of synthesis threads: 2 Average synthesis took: 37838.300 usec (+- 130.259 usec) Average num. events: 9501.800 (+- 20.469) Average time per event 3.982 usec Number of synthesis threads: 3 Average synthesis took: 48551.400 usec (+- 225.686 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 5.087 usec Number of synthesis threads: 4 Average synthesis took: 29632.500 usec (+- 50.808 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.105 usec Number of synthesis threads: 5 Average synthesis took: 33920.400 usec (+- 284.509 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.554 usec Number of synthesis threads: 6 Average synthesis took: 27604.100 usec (+- 72.344 usec) Average num. events: 9548.000 (+- 0.000) Average time per event 2.891 usec Number of synthesis threads: 7 Average synthesis took: 25406.300 usec (+- 933.371 usec) Average num. events: 9545.500 (+- 0.167) Average time per event 2.662 usec Number of synthesis threads: 8 Average synthesis took: 24110.400 usec (+- 73.229 usec) Average num. events: 9551.000 (+- 0.000) Average time per event 2.524 usec $ Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Acked-by: Namhyung Kim <namhyung@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrey Zhizhikin <andrey.z@gmail.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lore.kernel.org/lkml/20200415054050.31645-2-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-04-15 05:40:48 +00:00
static int run_single_threaded(void)
{
struct perf_session *session;
struct target target = {
.pid = "self",
};
struct perf_thread_map *threads;
int err;
perf bench: Add a multi-threaded synthesize benchmark By default this isn't run as it reads /proc and may not have access. For consistency, modify the single threaded benchmark to compute an average time per event. Committer testing: $ grep -m1 "model name" /proc/cpuinfo model name : Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz $ grep "model name" /proc/cpuinfo | wc -l 8 $ $ perf bench internals synthesize -h # Running 'internals/synthesize' benchmark: Usage: perf bench internals synthesize <options> -I, --multi-iterations <n> Number of iterations used to compute multi-threaded average -i, --single-iterations <n> Number of iterations used to compute single-threaded average -M, --max-threads <n> Maximum number of threads in multithreaded bench -m, --min-threads <n> Minimum number of threads in multithreaded bench -s, --st Run single threaded benchmark -t, --mt Run multi-threaded benchmark $ $ perf bench internals synthesize -t # Running 'internals/synthesize' benchmark: Computing performance of multi threaded perf event synthesis by synthesizing events on CPU 0: Number of synthesis threads: 1 Average synthesis took: 65449.000 usec (+- 586.442 usec) Average num. events: 9405.400 (+- 0.306) Average time per event 6.959 usec Number of synthesis threads: 2 Average synthesis took: 37838.300 usec (+- 130.259 usec) Average num. events: 9501.800 (+- 20.469) Average time per event 3.982 usec Number of synthesis threads: 3 Average synthesis took: 48551.400 usec (+- 225.686 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 5.087 usec Number of synthesis threads: 4 Average synthesis took: 29632.500 usec (+- 50.808 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.105 usec Number of synthesis threads: 5 Average synthesis took: 33920.400 usec (+- 284.509 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.554 usec Number of synthesis threads: 6 Average synthesis took: 27604.100 usec (+- 72.344 usec) Average num. events: 9548.000 (+- 0.000) Average time per event 2.891 usec Number of synthesis threads: 7 Average synthesis took: 25406.300 usec (+- 933.371 usec) Average num. events: 9545.500 (+- 0.167) Average time per event 2.662 usec Number of synthesis threads: 8 Average synthesis took: 24110.400 usec (+- 73.229 usec) Average num. events: 9551.000 (+- 0.000) Average time per event 2.524 usec $ Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Acked-by: Namhyung Kim <namhyung@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrey Zhizhikin <andrey.z@gmail.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lore.kernel.org/lkml/20200415054050.31645-2-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-04-15 05:40:48 +00:00
perf_set_singlethreaded();
session = perf_session__new(NULL, NULL);
if (IS_ERR(session)) {
pr_err("Session creation failed.\n");
return PTR_ERR(session);
}
threads = thread_map__new_by_pid(getpid());
if (!threads) {
pr_err("Thread map creation failed.\n");
err = -ENOMEM;
goto err_out;
}
perf bench: Add a multi-threaded synthesize benchmark By default this isn't run as it reads /proc and may not have access. For consistency, modify the single threaded benchmark to compute an average time per event. Committer testing: $ grep -m1 "model name" /proc/cpuinfo model name : Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz $ grep "model name" /proc/cpuinfo | wc -l 8 $ $ perf bench internals synthesize -h # Running 'internals/synthesize' benchmark: Usage: perf bench internals synthesize <options> -I, --multi-iterations <n> Number of iterations used to compute multi-threaded average -i, --single-iterations <n> Number of iterations used to compute single-threaded average -M, --max-threads <n> Maximum number of threads in multithreaded bench -m, --min-threads <n> Minimum number of threads in multithreaded bench -s, --st Run single threaded benchmark -t, --mt Run multi-threaded benchmark $ $ perf bench internals synthesize -t # Running 'internals/synthesize' benchmark: Computing performance of multi threaded perf event synthesis by synthesizing events on CPU 0: Number of synthesis threads: 1 Average synthesis took: 65449.000 usec (+- 586.442 usec) Average num. events: 9405.400 (+- 0.306) Average time per event 6.959 usec Number of synthesis threads: 2 Average synthesis took: 37838.300 usec (+- 130.259 usec) Average num. events: 9501.800 (+- 20.469) Average time per event 3.982 usec Number of synthesis threads: 3 Average synthesis took: 48551.400 usec (+- 225.686 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 5.087 usec Number of synthesis threads: 4 Average synthesis took: 29632.500 usec (+- 50.808 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.105 usec Number of synthesis threads: 5 Average synthesis took: 33920.400 usec (+- 284.509 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.554 usec Number of synthesis threads: 6 Average synthesis took: 27604.100 usec (+- 72.344 usec) Average num. events: 9548.000 (+- 0.000) Average time per event 2.891 usec Number of synthesis threads: 7 Average synthesis took: 25406.300 usec (+- 933.371 usec) Average num. events: 9545.500 (+- 0.167) Average time per event 2.662 usec Number of synthesis threads: 8 Average synthesis took: 24110.400 usec (+- 73.229 usec) Average num. events: 9551.000 (+- 0.000) Average time per event 2.524 usec $ Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Acked-by: Namhyung Kim <namhyung@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrey Zhizhikin <andrey.z@gmail.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lore.kernel.org/lkml/20200415054050.31645-2-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-04-15 05:40:48 +00:00
puts(
"Computing performance of single threaded perf event synthesis by\n"
"synthesizing events on the perf process itself:");
err = do_run_single_threaded(session, threads, &target, false);
if (err)
goto err_out;
perf bench: Add a multi-threaded synthesize benchmark By default this isn't run as it reads /proc and may not have access. For consistency, modify the single threaded benchmark to compute an average time per event. Committer testing: $ grep -m1 "model name" /proc/cpuinfo model name : Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz $ grep "model name" /proc/cpuinfo | wc -l 8 $ $ perf bench internals synthesize -h # Running 'internals/synthesize' benchmark: Usage: perf bench internals synthesize <options> -I, --multi-iterations <n> Number of iterations used to compute multi-threaded average -i, --single-iterations <n> Number of iterations used to compute single-threaded average -M, --max-threads <n> Maximum number of threads in multithreaded bench -m, --min-threads <n> Minimum number of threads in multithreaded bench -s, --st Run single threaded benchmark -t, --mt Run multi-threaded benchmark $ $ perf bench internals synthesize -t # Running 'internals/synthesize' benchmark: Computing performance of multi threaded perf event synthesis by synthesizing events on CPU 0: Number of synthesis threads: 1 Average synthesis took: 65449.000 usec (+- 586.442 usec) Average num. events: 9405.400 (+- 0.306) Average time per event 6.959 usec Number of synthesis threads: 2 Average synthesis took: 37838.300 usec (+- 130.259 usec) Average num. events: 9501.800 (+- 20.469) Average time per event 3.982 usec Number of synthesis threads: 3 Average synthesis took: 48551.400 usec (+- 225.686 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 5.087 usec Number of synthesis threads: 4 Average synthesis took: 29632.500 usec (+- 50.808 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.105 usec Number of synthesis threads: 5 Average synthesis took: 33920.400 usec (+- 284.509 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.554 usec Number of synthesis threads: 6 Average synthesis took: 27604.100 usec (+- 72.344 usec) Average num. events: 9548.000 (+- 0.000) Average time per event 2.891 usec Number of synthesis threads: 7 Average synthesis took: 25406.300 usec (+- 933.371 usec) Average num. events: 9545.500 (+- 0.167) Average time per event 2.662 usec Number of synthesis threads: 8 Average synthesis took: 24110.400 usec (+- 73.229 usec) Average num. events: 9551.000 (+- 0.000) Average time per event 2.524 usec $ Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Acked-by: Namhyung Kim <namhyung@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrey Zhizhikin <andrey.z@gmail.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lore.kernel.org/lkml/20200415054050.31645-2-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-04-15 05:40:48 +00:00
err = do_run_single_threaded(session, threads, &target, true);
err_out:
if (threads)
perf_thread_map__put(threads);
perf_session__delete(session);
return err;
}
perf bench: Add a multi-threaded synthesize benchmark By default this isn't run as it reads /proc and may not have access. For consistency, modify the single threaded benchmark to compute an average time per event. Committer testing: $ grep -m1 "model name" /proc/cpuinfo model name : Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz $ grep "model name" /proc/cpuinfo | wc -l 8 $ $ perf bench internals synthesize -h # Running 'internals/synthesize' benchmark: Usage: perf bench internals synthesize <options> -I, --multi-iterations <n> Number of iterations used to compute multi-threaded average -i, --single-iterations <n> Number of iterations used to compute single-threaded average -M, --max-threads <n> Maximum number of threads in multithreaded bench -m, --min-threads <n> Minimum number of threads in multithreaded bench -s, --st Run single threaded benchmark -t, --mt Run multi-threaded benchmark $ $ perf bench internals synthesize -t # Running 'internals/synthesize' benchmark: Computing performance of multi threaded perf event synthesis by synthesizing events on CPU 0: Number of synthesis threads: 1 Average synthesis took: 65449.000 usec (+- 586.442 usec) Average num. events: 9405.400 (+- 0.306) Average time per event 6.959 usec Number of synthesis threads: 2 Average synthesis took: 37838.300 usec (+- 130.259 usec) Average num. events: 9501.800 (+- 20.469) Average time per event 3.982 usec Number of synthesis threads: 3 Average synthesis took: 48551.400 usec (+- 225.686 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 5.087 usec Number of synthesis threads: 4 Average synthesis took: 29632.500 usec (+- 50.808 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.105 usec Number of synthesis threads: 5 Average synthesis took: 33920.400 usec (+- 284.509 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.554 usec Number of synthesis threads: 6 Average synthesis took: 27604.100 usec (+- 72.344 usec) Average num. events: 9548.000 (+- 0.000) Average time per event 2.891 usec Number of synthesis threads: 7 Average synthesis took: 25406.300 usec (+- 933.371 usec) Average num. events: 9545.500 (+- 0.167) Average time per event 2.662 usec Number of synthesis threads: 8 Average synthesis took: 24110.400 usec (+- 73.229 usec) Average num. events: 9551.000 (+- 0.000) Average time per event 2.524 usec $ Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Acked-by: Namhyung Kim <namhyung@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrey Zhizhikin <andrey.z@gmail.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lore.kernel.org/lkml/20200415054050.31645-2-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-04-15 05:40:48 +00:00
static int do_run_multi_threaded(struct target *target,
unsigned int nr_threads_synthesize)
{
struct timeval start, end, diff;
u64 runtime_us;
unsigned int i;
double time_average, time_stddev, event_average, event_stddev;
int err;
struct stats time_stats, event_stats;
struct perf_session *session;
init_stats(&time_stats);
init_stats(&event_stats);
for (i = 0; i < multi_iterations; i++) {
session = perf_session__new(NULL, NULL);
if (IS_ERR(session))
return PTR_ERR(session);
perf bench: Add a multi-threaded synthesize benchmark By default this isn't run as it reads /proc and may not have access. For consistency, modify the single threaded benchmark to compute an average time per event. Committer testing: $ grep -m1 "model name" /proc/cpuinfo model name : Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz $ grep "model name" /proc/cpuinfo | wc -l 8 $ $ perf bench internals synthesize -h # Running 'internals/synthesize' benchmark: Usage: perf bench internals synthesize <options> -I, --multi-iterations <n> Number of iterations used to compute multi-threaded average -i, --single-iterations <n> Number of iterations used to compute single-threaded average -M, --max-threads <n> Maximum number of threads in multithreaded bench -m, --min-threads <n> Minimum number of threads in multithreaded bench -s, --st Run single threaded benchmark -t, --mt Run multi-threaded benchmark $ $ perf bench internals synthesize -t # Running 'internals/synthesize' benchmark: Computing performance of multi threaded perf event synthesis by synthesizing events on CPU 0: Number of synthesis threads: 1 Average synthesis took: 65449.000 usec (+- 586.442 usec) Average num. events: 9405.400 (+- 0.306) Average time per event 6.959 usec Number of synthesis threads: 2 Average synthesis took: 37838.300 usec (+- 130.259 usec) Average num. events: 9501.800 (+- 20.469) Average time per event 3.982 usec Number of synthesis threads: 3 Average synthesis took: 48551.400 usec (+- 225.686 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 5.087 usec Number of synthesis threads: 4 Average synthesis took: 29632.500 usec (+- 50.808 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.105 usec Number of synthesis threads: 5 Average synthesis took: 33920.400 usec (+- 284.509 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.554 usec Number of synthesis threads: 6 Average synthesis took: 27604.100 usec (+- 72.344 usec) Average num. events: 9548.000 (+- 0.000) Average time per event 2.891 usec Number of synthesis threads: 7 Average synthesis took: 25406.300 usec (+- 933.371 usec) Average num. events: 9545.500 (+- 0.167) Average time per event 2.662 usec Number of synthesis threads: 8 Average synthesis took: 24110.400 usec (+- 73.229 usec) Average num. events: 9551.000 (+- 0.000) Average time per event 2.524 usec $ Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Acked-by: Namhyung Kim <namhyung@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrey Zhizhikin <andrey.z@gmail.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lore.kernel.org/lkml/20200415054050.31645-2-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-04-15 05:40:48 +00:00
atomic_set(&event_count, 0);
gettimeofday(&start, NULL);
err = __machine__synthesize_threads(&session->machines.host,
NULL,
target, NULL,
process_synthesized_event,
true, false,
perf bench: Add a multi-threaded synthesize benchmark By default this isn't run as it reads /proc and may not have access. For consistency, modify the single threaded benchmark to compute an average time per event. Committer testing: $ grep -m1 "model name" /proc/cpuinfo model name : Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz $ grep "model name" /proc/cpuinfo | wc -l 8 $ $ perf bench internals synthesize -h # Running 'internals/synthesize' benchmark: Usage: perf bench internals synthesize <options> -I, --multi-iterations <n> Number of iterations used to compute multi-threaded average -i, --single-iterations <n> Number of iterations used to compute single-threaded average -M, --max-threads <n> Maximum number of threads in multithreaded bench -m, --min-threads <n> Minimum number of threads in multithreaded bench -s, --st Run single threaded benchmark -t, --mt Run multi-threaded benchmark $ $ perf bench internals synthesize -t # Running 'internals/synthesize' benchmark: Computing performance of multi threaded perf event synthesis by synthesizing events on CPU 0: Number of synthesis threads: 1 Average synthesis took: 65449.000 usec (+- 586.442 usec) Average num. events: 9405.400 (+- 0.306) Average time per event 6.959 usec Number of synthesis threads: 2 Average synthesis took: 37838.300 usec (+- 130.259 usec) Average num. events: 9501.800 (+- 20.469) Average time per event 3.982 usec Number of synthesis threads: 3 Average synthesis took: 48551.400 usec (+- 225.686 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 5.087 usec Number of synthesis threads: 4 Average synthesis took: 29632.500 usec (+- 50.808 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.105 usec Number of synthesis threads: 5 Average synthesis took: 33920.400 usec (+- 284.509 usec) Average num. events: 9544.000 (+- 0.000) Average time per event 3.554 usec Number of synthesis threads: 6 Average synthesis took: 27604.100 usec (+- 72.344 usec) Average num. events: 9548.000 (+- 0.000) Average time per event 2.891 usec Number of synthesis threads: 7 Average synthesis took: 25406.300 usec (+- 933.371 usec) Average num. events: 9545.500 (+- 0.167) Average time per event 2.662 usec Number of synthesis threads: 8 Average synthesis took: 24110.400 usec (+- 73.229 usec) Average num. events: 9551.000 (+- 0.000) Average time per event 2.524 usec $ Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Acked-by: Namhyung Kim <namhyung@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrey Zhizhikin <andrey.z@gmail.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lore.kernel.org/lkml/20200415054050.31645-2-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-04-15 05:40:48 +00:00
nr_threads_synthesize);
if (err) {
perf_session__delete(session);
return err;
}
gettimeofday(&end, NULL);
timersub(&end, &start, &diff);
runtime_us = diff.tv_sec * USEC_PER_SEC + diff.tv_usec;
update_stats(&time_stats, runtime_us);
update_stats(&event_stats, atomic_read(&event_count));
perf_session__delete(session);
}
time_average = avg_stats(&time_stats);
time_stddev = stddev_stats(&time_stats);
printf(" Average synthesis took: %.3f usec (+- %.3f usec)\n",
time_average, time_stddev);
event_average = avg_stats(&event_stats);
event_stddev = stddev_stats(&event_stats);
printf(" Average num. events: %.3f (+- %.3f)\n",
event_average, event_stddev);
printf(" Average time per event %.3f usec\n",
time_average / event_average);
return 0;
}
static int run_multi_threaded(void)
{
struct target target = {
.cpu_list = "0"
};
unsigned int nr_threads_synthesize;
int err;
if (max_threads == UINT_MAX)
max_threads = sysconf(_SC_NPROCESSORS_ONLN);
puts(
"Computing performance of multi threaded perf event synthesis by\n"
"synthesizing events on CPU 0:");
for (nr_threads_synthesize = min_threads;
nr_threads_synthesize <= max_threads;
nr_threads_synthesize++) {
if (nr_threads_synthesize == 1)
perf_set_singlethreaded();
else
perf_set_multithreaded();
printf(" Number of synthesis threads: %u\n",
nr_threads_synthesize);
err = do_run_multi_threaded(&target, nr_threads_synthesize);
if (err)
return err;
}
perf_set_singlethreaded();
return 0;
}
int bench_synthesize(int argc, const char **argv)
{
int err = 0;
argc = parse_options(argc, argv, options, bench_usage, 0);
if (argc) {
usage_with_options(bench_usage, options);
exit(EXIT_FAILURE);
}
/*
* If neither single threaded or multi-threaded are specified, default
* to running just single threaded.
*/
if (!run_st && !run_mt)
run_st = true;
if (run_st)
err = run_single_threaded();
if (!err && run_mt)
err = run_multi_threaded();
return err;
}