2019-05-20 17:08:01 +00:00
|
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
2015-06-16 17:31:01 +00:00
|
|
|
/* RSA asymmetric public-key algorithm [RFC3447]
|
|
|
|
*
|
|
|
|
* Copyright (c) 2015, Intel Corporation
|
|
|
|
* Authors: Tadeusz Struk <tadeusz.struk@intel.com>
|
|
|
|
*/
|
|
|
|
|
2021-11-21 14:31:27 +00:00
|
|
|
#include <linux/fips.h>
|
2015-06-16 17:31:01 +00:00
|
|
|
#include <linux/module.h>
|
2016-06-14 13:14:58 +00:00
|
|
|
#include <linux/mpi.h>
|
2015-06-16 17:31:01 +00:00
|
|
|
#include <crypto/internal/rsa.h>
|
|
|
|
#include <crypto/internal/akcipher.h>
|
|
|
|
#include <crypto/akcipher.h>
|
2015-12-05 16:09:34 +00:00
|
|
|
#include <crypto/algapi.h>
|
2015-06-16 17:31:01 +00:00
|
|
|
|
2016-06-14 13:14:58 +00:00
|
|
|
struct rsa_mpi_key {
|
|
|
|
MPI n;
|
|
|
|
MPI e;
|
|
|
|
MPI d;
|
crypto: rsa - implement Chinese Remainder Theorem for faster private key operations
Changes from v1:
* exported mpi_sub and mpi_mul, otherwise the build fails when RSA is a module
The kernel RSA ASN.1 private key parser already supports only private keys with
additional values to be used with the Chinese Remainder Theorem [1], but these
values are currently not used.
This rudimentary CRT implementation speeds up RSA private key operations for the
following Go benchmark up to ~3x.
This implementation also tries to minimise the allocation of additional MPIs,
so existing MPIs are reused as much as possible (hence the variable names are a
bit weird).
The benchmark used:
```
package keyring_test
import (
"crypto"
"crypto/rand"
"crypto/rsa"
"crypto/x509"
"io"
"syscall"
"testing"
"unsafe"
)
type KeySerial int32
type Keyring int32
const (
KEY_SPEC_PROCESS_KEYRING Keyring = -2
KEYCTL_PKEY_SIGN = 27
)
var (
keyTypeAsym = []byte("asymmetric\x00")
sha256pkcs1 = []byte("enc=pkcs1 hash=sha256\x00")
)
func (keyring Keyring) LoadAsym(desc string, payload []byte) (KeySerial, error) {
cdesc := []byte(desc + "\x00")
serial, _, errno := syscall.Syscall6(syscall.SYS_ADD_KEY, uintptr(unsafe.Pointer(&keyTypeAsym[0])), uintptr(unsafe.Pointer(&cdesc[0])), uintptr(unsafe.Pointer(&payload[0])), uintptr(len(payload)), uintptr(keyring), uintptr(0))
if errno == 0 {
return KeySerial(serial), nil
}
return KeySerial(serial), errno
}
type pkeyParams struct {
key_id KeySerial
in_len uint32
out_or_in2_len uint32
__spare [7]uint32
}
// the output signature buffer is an input parameter here, because we want to
// avoid Go buffer allocation leaking into our benchmarks
func (key KeySerial) Sign(info, digest, out []byte) error {
var params pkeyParams
params.key_id = key
params.in_len = uint32(len(digest))
params.out_or_in2_len = uint32(len(out))
_, _, errno := syscall.Syscall6(syscall.SYS_KEYCTL, KEYCTL_PKEY_SIGN, uintptr(unsafe.Pointer(¶ms)), uintptr(unsafe.Pointer(&info[0])), uintptr(unsafe.Pointer(&digest[0])), uintptr(unsafe.Pointer(&out[0])), uintptr(0))
if errno == 0 {
return nil
}
return errno
}
func BenchmarkSign(b *testing.B) {
priv, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
b.Fatalf("failed to generate private key: %v", err)
}
pkcs8, err := x509.MarshalPKCS8PrivateKey(priv)
if err != nil {
b.Fatalf("failed to serialize the private key to PKCS8 blob: %v", err)
}
serial, err := KEY_SPEC_PROCESS_KEYRING.LoadAsym("test rsa key", pkcs8)
if err != nil {
b.Fatalf("failed to load the private key into the keyring: %v", err)
}
b.Logf("loaded test rsa key: %v", serial)
digest := make([]byte, 32)
_, err = io.ReadFull(rand.Reader, digest)
if err != nil {
b.Fatalf("failed to generate a random digest: %v", err)
}
sig := make([]byte, 256)
for n := 0; n < b.N; n++ {
err = serial.Sign(sha256pkcs1, digest, sig)
if err != nil {
b.Fatalf("failed to sign the digest: %v", err)
}
}
err = rsa.VerifyPKCS1v15(&priv.PublicKey, crypto.SHA256, digest, sig)
if err != nil {
b.Fatalf("failed to verify the signature: %v", err)
}
}
```
[1]: https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Using_the_Chinese_remainder_algorithm
Signed-off-by: Ignat Korchagin <ignat@cloudflare.com>
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2022-06-17 08:42:10 +00:00
|
|
|
MPI p;
|
|
|
|
MPI q;
|
|
|
|
MPI dp;
|
|
|
|
MPI dq;
|
|
|
|
MPI qinv;
|
2016-06-14 13:14:58 +00:00
|
|
|
};
|
|
|
|
|
2024-02-03 07:19:59 +00:00
|
|
|
static int rsa_check_payload(MPI x, MPI n)
|
|
|
|
{
|
|
|
|
MPI n1;
|
|
|
|
|
|
|
|
if (mpi_cmp_ui(x, 1) <= 0)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
n1 = mpi_alloc(0);
|
|
|
|
if (!n1)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
if (mpi_sub_ui(n1, n, 1) || mpi_cmp(x, n1) >= 0) {
|
|
|
|
mpi_free(n1);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
mpi_free(n1);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2015-06-16 17:31:01 +00:00
|
|
|
/*
|
|
|
|
* RSAEP function [RFC3447 sec 5.1.1]
|
|
|
|
* c = m^e mod n;
|
|
|
|
*/
|
2016-06-14 13:14:58 +00:00
|
|
|
static int _rsa_enc(const struct rsa_mpi_key *key, MPI c, MPI m)
|
2015-06-16 17:31:01 +00:00
|
|
|
{
|
2024-02-03 07:19:59 +00:00
|
|
|
/*
|
|
|
|
* Even though (1) in RFC3447 only requires 0 <= m <= n - 1, we are
|
|
|
|
* slightly more conservative and require 1 < m < n - 1. This is in line
|
|
|
|
* with SP 800-56Br2, Section 7.1.1.
|
|
|
|
*/
|
|
|
|
if (rsa_check_payload(m, key->n))
|
2015-06-16 17:31:01 +00:00
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/* (2) c = m^e mod n */
|
|
|
|
return mpi_powm(c, m, key->e, key->n);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* RSADP function [RFC3447 sec 5.1.2]
|
crypto: rsa - implement Chinese Remainder Theorem for faster private key operations
Changes from v1:
* exported mpi_sub and mpi_mul, otherwise the build fails when RSA is a module
The kernel RSA ASN.1 private key parser already supports only private keys with
additional values to be used with the Chinese Remainder Theorem [1], but these
values are currently not used.
This rudimentary CRT implementation speeds up RSA private key operations for the
following Go benchmark up to ~3x.
This implementation also tries to minimise the allocation of additional MPIs,
so existing MPIs are reused as much as possible (hence the variable names are a
bit weird).
The benchmark used:
```
package keyring_test
import (
"crypto"
"crypto/rand"
"crypto/rsa"
"crypto/x509"
"io"
"syscall"
"testing"
"unsafe"
)
type KeySerial int32
type Keyring int32
const (
KEY_SPEC_PROCESS_KEYRING Keyring = -2
KEYCTL_PKEY_SIGN = 27
)
var (
keyTypeAsym = []byte("asymmetric\x00")
sha256pkcs1 = []byte("enc=pkcs1 hash=sha256\x00")
)
func (keyring Keyring) LoadAsym(desc string, payload []byte) (KeySerial, error) {
cdesc := []byte(desc + "\x00")
serial, _, errno := syscall.Syscall6(syscall.SYS_ADD_KEY, uintptr(unsafe.Pointer(&keyTypeAsym[0])), uintptr(unsafe.Pointer(&cdesc[0])), uintptr(unsafe.Pointer(&payload[0])), uintptr(len(payload)), uintptr(keyring), uintptr(0))
if errno == 0 {
return KeySerial(serial), nil
}
return KeySerial(serial), errno
}
type pkeyParams struct {
key_id KeySerial
in_len uint32
out_or_in2_len uint32
__spare [7]uint32
}
// the output signature buffer is an input parameter here, because we want to
// avoid Go buffer allocation leaking into our benchmarks
func (key KeySerial) Sign(info, digest, out []byte) error {
var params pkeyParams
params.key_id = key
params.in_len = uint32(len(digest))
params.out_or_in2_len = uint32(len(out))
_, _, errno := syscall.Syscall6(syscall.SYS_KEYCTL, KEYCTL_PKEY_SIGN, uintptr(unsafe.Pointer(¶ms)), uintptr(unsafe.Pointer(&info[0])), uintptr(unsafe.Pointer(&digest[0])), uintptr(unsafe.Pointer(&out[0])), uintptr(0))
if errno == 0 {
return nil
}
return errno
}
func BenchmarkSign(b *testing.B) {
priv, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
b.Fatalf("failed to generate private key: %v", err)
}
pkcs8, err := x509.MarshalPKCS8PrivateKey(priv)
if err != nil {
b.Fatalf("failed to serialize the private key to PKCS8 blob: %v", err)
}
serial, err := KEY_SPEC_PROCESS_KEYRING.LoadAsym("test rsa key", pkcs8)
if err != nil {
b.Fatalf("failed to load the private key into the keyring: %v", err)
}
b.Logf("loaded test rsa key: %v", serial)
digest := make([]byte, 32)
_, err = io.ReadFull(rand.Reader, digest)
if err != nil {
b.Fatalf("failed to generate a random digest: %v", err)
}
sig := make([]byte, 256)
for n := 0; n < b.N; n++ {
err = serial.Sign(sha256pkcs1, digest, sig)
if err != nil {
b.Fatalf("failed to sign the digest: %v", err)
}
}
err = rsa.VerifyPKCS1v15(&priv.PublicKey, crypto.SHA256, digest, sig)
if err != nil {
b.Fatalf("failed to verify the signature: %v", err)
}
}
```
[1]: https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Using_the_Chinese_remainder_algorithm
Signed-off-by: Ignat Korchagin <ignat@cloudflare.com>
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2022-06-17 08:42:10 +00:00
|
|
|
* m_1 = c^dP mod p;
|
|
|
|
* m_2 = c^dQ mod q;
|
|
|
|
* h = (m_1 - m_2) * qInv mod p;
|
|
|
|
* m = m_2 + q * h;
|
2015-06-16 17:31:01 +00:00
|
|
|
*/
|
crypto: rsa - implement Chinese Remainder Theorem for faster private key operations
Changes from v1:
* exported mpi_sub and mpi_mul, otherwise the build fails when RSA is a module
The kernel RSA ASN.1 private key parser already supports only private keys with
additional values to be used with the Chinese Remainder Theorem [1], but these
values are currently not used.
This rudimentary CRT implementation speeds up RSA private key operations for the
following Go benchmark up to ~3x.
This implementation also tries to minimise the allocation of additional MPIs,
so existing MPIs are reused as much as possible (hence the variable names are a
bit weird).
The benchmark used:
```
package keyring_test
import (
"crypto"
"crypto/rand"
"crypto/rsa"
"crypto/x509"
"io"
"syscall"
"testing"
"unsafe"
)
type KeySerial int32
type Keyring int32
const (
KEY_SPEC_PROCESS_KEYRING Keyring = -2
KEYCTL_PKEY_SIGN = 27
)
var (
keyTypeAsym = []byte("asymmetric\x00")
sha256pkcs1 = []byte("enc=pkcs1 hash=sha256\x00")
)
func (keyring Keyring) LoadAsym(desc string, payload []byte) (KeySerial, error) {
cdesc := []byte(desc + "\x00")
serial, _, errno := syscall.Syscall6(syscall.SYS_ADD_KEY, uintptr(unsafe.Pointer(&keyTypeAsym[0])), uintptr(unsafe.Pointer(&cdesc[0])), uintptr(unsafe.Pointer(&payload[0])), uintptr(len(payload)), uintptr(keyring), uintptr(0))
if errno == 0 {
return KeySerial(serial), nil
}
return KeySerial(serial), errno
}
type pkeyParams struct {
key_id KeySerial
in_len uint32
out_or_in2_len uint32
__spare [7]uint32
}
// the output signature buffer is an input parameter here, because we want to
// avoid Go buffer allocation leaking into our benchmarks
func (key KeySerial) Sign(info, digest, out []byte) error {
var params pkeyParams
params.key_id = key
params.in_len = uint32(len(digest))
params.out_or_in2_len = uint32(len(out))
_, _, errno := syscall.Syscall6(syscall.SYS_KEYCTL, KEYCTL_PKEY_SIGN, uintptr(unsafe.Pointer(¶ms)), uintptr(unsafe.Pointer(&info[0])), uintptr(unsafe.Pointer(&digest[0])), uintptr(unsafe.Pointer(&out[0])), uintptr(0))
if errno == 0 {
return nil
}
return errno
}
func BenchmarkSign(b *testing.B) {
priv, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
b.Fatalf("failed to generate private key: %v", err)
}
pkcs8, err := x509.MarshalPKCS8PrivateKey(priv)
if err != nil {
b.Fatalf("failed to serialize the private key to PKCS8 blob: %v", err)
}
serial, err := KEY_SPEC_PROCESS_KEYRING.LoadAsym("test rsa key", pkcs8)
if err != nil {
b.Fatalf("failed to load the private key into the keyring: %v", err)
}
b.Logf("loaded test rsa key: %v", serial)
digest := make([]byte, 32)
_, err = io.ReadFull(rand.Reader, digest)
if err != nil {
b.Fatalf("failed to generate a random digest: %v", err)
}
sig := make([]byte, 256)
for n := 0; n < b.N; n++ {
err = serial.Sign(sha256pkcs1, digest, sig)
if err != nil {
b.Fatalf("failed to sign the digest: %v", err)
}
}
err = rsa.VerifyPKCS1v15(&priv.PublicKey, crypto.SHA256, digest, sig)
if err != nil {
b.Fatalf("failed to verify the signature: %v", err)
}
}
```
[1]: https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Using_the_Chinese_remainder_algorithm
Signed-off-by: Ignat Korchagin <ignat@cloudflare.com>
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2022-06-17 08:42:10 +00:00
|
|
|
static int _rsa_dec_crt(const struct rsa_mpi_key *key, MPI m_or_m1_or_h, MPI c)
|
2015-06-16 17:31:01 +00:00
|
|
|
{
|
crypto: rsa - implement Chinese Remainder Theorem for faster private key operations
Changes from v1:
* exported mpi_sub and mpi_mul, otherwise the build fails when RSA is a module
The kernel RSA ASN.1 private key parser already supports only private keys with
additional values to be used with the Chinese Remainder Theorem [1], but these
values are currently not used.
This rudimentary CRT implementation speeds up RSA private key operations for the
following Go benchmark up to ~3x.
This implementation also tries to minimise the allocation of additional MPIs,
so existing MPIs are reused as much as possible (hence the variable names are a
bit weird).
The benchmark used:
```
package keyring_test
import (
"crypto"
"crypto/rand"
"crypto/rsa"
"crypto/x509"
"io"
"syscall"
"testing"
"unsafe"
)
type KeySerial int32
type Keyring int32
const (
KEY_SPEC_PROCESS_KEYRING Keyring = -2
KEYCTL_PKEY_SIGN = 27
)
var (
keyTypeAsym = []byte("asymmetric\x00")
sha256pkcs1 = []byte("enc=pkcs1 hash=sha256\x00")
)
func (keyring Keyring) LoadAsym(desc string, payload []byte) (KeySerial, error) {
cdesc := []byte(desc + "\x00")
serial, _, errno := syscall.Syscall6(syscall.SYS_ADD_KEY, uintptr(unsafe.Pointer(&keyTypeAsym[0])), uintptr(unsafe.Pointer(&cdesc[0])), uintptr(unsafe.Pointer(&payload[0])), uintptr(len(payload)), uintptr(keyring), uintptr(0))
if errno == 0 {
return KeySerial(serial), nil
}
return KeySerial(serial), errno
}
type pkeyParams struct {
key_id KeySerial
in_len uint32
out_or_in2_len uint32
__spare [7]uint32
}
// the output signature buffer is an input parameter here, because we want to
// avoid Go buffer allocation leaking into our benchmarks
func (key KeySerial) Sign(info, digest, out []byte) error {
var params pkeyParams
params.key_id = key
params.in_len = uint32(len(digest))
params.out_or_in2_len = uint32(len(out))
_, _, errno := syscall.Syscall6(syscall.SYS_KEYCTL, KEYCTL_PKEY_SIGN, uintptr(unsafe.Pointer(¶ms)), uintptr(unsafe.Pointer(&info[0])), uintptr(unsafe.Pointer(&digest[0])), uintptr(unsafe.Pointer(&out[0])), uintptr(0))
if errno == 0 {
return nil
}
return errno
}
func BenchmarkSign(b *testing.B) {
priv, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
b.Fatalf("failed to generate private key: %v", err)
}
pkcs8, err := x509.MarshalPKCS8PrivateKey(priv)
if err != nil {
b.Fatalf("failed to serialize the private key to PKCS8 blob: %v", err)
}
serial, err := KEY_SPEC_PROCESS_KEYRING.LoadAsym("test rsa key", pkcs8)
if err != nil {
b.Fatalf("failed to load the private key into the keyring: %v", err)
}
b.Logf("loaded test rsa key: %v", serial)
digest := make([]byte, 32)
_, err = io.ReadFull(rand.Reader, digest)
if err != nil {
b.Fatalf("failed to generate a random digest: %v", err)
}
sig := make([]byte, 256)
for n := 0; n < b.N; n++ {
err = serial.Sign(sha256pkcs1, digest, sig)
if err != nil {
b.Fatalf("failed to sign the digest: %v", err)
}
}
err = rsa.VerifyPKCS1v15(&priv.PublicKey, crypto.SHA256, digest, sig)
if err != nil {
b.Fatalf("failed to verify the signature: %v", err)
}
}
```
[1]: https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Using_the_Chinese_remainder_algorithm
Signed-off-by: Ignat Korchagin <ignat@cloudflare.com>
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2022-06-17 08:42:10 +00:00
|
|
|
MPI m2, m12_or_qh;
|
|
|
|
int ret = -ENOMEM;
|
|
|
|
|
2024-02-03 07:19:59 +00:00
|
|
|
/*
|
|
|
|
* Even though (1) in RFC3447 only requires 0 <= c <= n - 1, we are
|
|
|
|
* slightly more conservative and require 1 < c < n - 1. This is in line
|
|
|
|
* with SP 800-56Br2, Section 7.1.2.
|
|
|
|
*/
|
|
|
|
if (rsa_check_payload(c, key->n))
|
2015-06-16 17:31:01 +00:00
|
|
|
return -EINVAL;
|
|
|
|
|
crypto: rsa - implement Chinese Remainder Theorem for faster private key operations
Changes from v1:
* exported mpi_sub and mpi_mul, otherwise the build fails when RSA is a module
The kernel RSA ASN.1 private key parser already supports only private keys with
additional values to be used with the Chinese Remainder Theorem [1], but these
values are currently not used.
This rudimentary CRT implementation speeds up RSA private key operations for the
following Go benchmark up to ~3x.
This implementation also tries to minimise the allocation of additional MPIs,
so existing MPIs are reused as much as possible (hence the variable names are a
bit weird).
The benchmark used:
```
package keyring_test
import (
"crypto"
"crypto/rand"
"crypto/rsa"
"crypto/x509"
"io"
"syscall"
"testing"
"unsafe"
)
type KeySerial int32
type Keyring int32
const (
KEY_SPEC_PROCESS_KEYRING Keyring = -2
KEYCTL_PKEY_SIGN = 27
)
var (
keyTypeAsym = []byte("asymmetric\x00")
sha256pkcs1 = []byte("enc=pkcs1 hash=sha256\x00")
)
func (keyring Keyring) LoadAsym(desc string, payload []byte) (KeySerial, error) {
cdesc := []byte(desc + "\x00")
serial, _, errno := syscall.Syscall6(syscall.SYS_ADD_KEY, uintptr(unsafe.Pointer(&keyTypeAsym[0])), uintptr(unsafe.Pointer(&cdesc[0])), uintptr(unsafe.Pointer(&payload[0])), uintptr(len(payload)), uintptr(keyring), uintptr(0))
if errno == 0 {
return KeySerial(serial), nil
}
return KeySerial(serial), errno
}
type pkeyParams struct {
key_id KeySerial
in_len uint32
out_or_in2_len uint32
__spare [7]uint32
}
// the output signature buffer is an input parameter here, because we want to
// avoid Go buffer allocation leaking into our benchmarks
func (key KeySerial) Sign(info, digest, out []byte) error {
var params pkeyParams
params.key_id = key
params.in_len = uint32(len(digest))
params.out_or_in2_len = uint32(len(out))
_, _, errno := syscall.Syscall6(syscall.SYS_KEYCTL, KEYCTL_PKEY_SIGN, uintptr(unsafe.Pointer(¶ms)), uintptr(unsafe.Pointer(&info[0])), uintptr(unsafe.Pointer(&digest[0])), uintptr(unsafe.Pointer(&out[0])), uintptr(0))
if errno == 0 {
return nil
}
return errno
}
func BenchmarkSign(b *testing.B) {
priv, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
b.Fatalf("failed to generate private key: %v", err)
}
pkcs8, err := x509.MarshalPKCS8PrivateKey(priv)
if err != nil {
b.Fatalf("failed to serialize the private key to PKCS8 blob: %v", err)
}
serial, err := KEY_SPEC_PROCESS_KEYRING.LoadAsym("test rsa key", pkcs8)
if err != nil {
b.Fatalf("failed to load the private key into the keyring: %v", err)
}
b.Logf("loaded test rsa key: %v", serial)
digest := make([]byte, 32)
_, err = io.ReadFull(rand.Reader, digest)
if err != nil {
b.Fatalf("failed to generate a random digest: %v", err)
}
sig := make([]byte, 256)
for n := 0; n < b.N; n++ {
err = serial.Sign(sha256pkcs1, digest, sig)
if err != nil {
b.Fatalf("failed to sign the digest: %v", err)
}
}
err = rsa.VerifyPKCS1v15(&priv.PublicKey, crypto.SHA256, digest, sig)
if err != nil {
b.Fatalf("failed to verify the signature: %v", err)
}
}
```
[1]: https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Using_the_Chinese_remainder_algorithm
Signed-off-by: Ignat Korchagin <ignat@cloudflare.com>
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2022-06-17 08:42:10 +00:00
|
|
|
m2 = mpi_alloc(0);
|
|
|
|
m12_or_qh = mpi_alloc(0);
|
|
|
|
if (!m2 || !m12_or_qh)
|
|
|
|
goto err_free_mpi;
|
|
|
|
|
|
|
|
/* (2i) m_1 = c^dP mod p */
|
|
|
|
ret = mpi_powm(m_or_m1_or_h, c, key->dp, key->p);
|
|
|
|
if (ret)
|
|
|
|
goto err_free_mpi;
|
|
|
|
|
|
|
|
/* (2i) m_2 = c^dQ mod q */
|
|
|
|
ret = mpi_powm(m2, c, key->dq, key->q);
|
|
|
|
if (ret)
|
|
|
|
goto err_free_mpi;
|
|
|
|
|
|
|
|
/* (2iii) h = (m_1 - m_2) * qInv mod p */
|
|
|
|
mpi_sub(m12_or_qh, m_or_m1_or_h, m2);
|
|
|
|
mpi_mulm(m_or_m1_or_h, m12_or_qh, key->qinv, key->p);
|
|
|
|
|
|
|
|
/* (2iv) m = m_2 + q * h */
|
|
|
|
mpi_mul(m12_or_qh, key->q, m_or_m1_or_h);
|
|
|
|
mpi_addm(m_or_m1_or_h, m2, m12_or_qh, key->n);
|
|
|
|
|
|
|
|
ret = 0;
|
|
|
|
|
|
|
|
err_free_mpi:
|
|
|
|
mpi_free(m12_or_qh);
|
|
|
|
mpi_free(m2);
|
|
|
|
return ret;
|
2015-06-16 17:31:01 +00:00
|
|
|
}
|
|
|
|
|
2016-06-14 13:14:58 +00:00
|
|
|
static inline struct rsa_mpi_key *rsa_get_key(struct crypto_akcipher *tfm)
|
2015-06-16 17:31:01 +00:00
|
|
|
{
|
|
|
|
return akcipher_tfm_ctx(tfm);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int rsa_enc(struct akcipher_request *req)
|
|
|
|
{
|
|
|
|
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
|
2016-06-14 13:14:58 +00:00
|
|
|
const struct rsa_mpi_key *pkey = rsa_get_key(tfm);
|
2015-06-16 17:31:01 +00:00
|
|
|
MPI m, c = mpi_alloc(0);
|
|
|
|
int ret = 0;
|
|
|
|
int sign;
|
|
|
|
|
|
|
|
if (!c)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
if (unlikely(!pkey->n || !pkey->e)) {
|
|
|
|
ret = -EINVAL;
|
|
|
|
goto err_free_c;
|
|
|
|
}
|
|
|
|
|
2015-10-08 16:26:55 +00:00
|
|
|
ret = -ENOMEM;
|
|
|
|
m = mpi_read_raw_from_sgl(req->src, req->src_len);
|
|
|
|
if (!m)
|
2015-06-16 17:31:01 +00:00
|
|
|
goto err_free_c;
|
|
|
|
|
|
|
|
ret = _rsa_enc(pkey, c, m);
|
|
|
|
if (ret)
|
|
|
|
goto err_free_m;
|
|
|
|
|
2016-06-29 11:32:21 +00:00
|
|
|
ret = mpi_write_to_sgl(c, req->dst, req->dst_len, &sign);
|
2015-06-16 17:31:01 +00:00
|
|
|
if (ret)
|
|
|
|
goto err_free_m;
|
|
|
|
|
2015-10-08 16:26:55 +00:00
|
|
|
if (sign < 0)
|
2015-06-16 17:31:01 +00:00
|
|
|
ret = -EBADMSG;
|
|
|
|
|
|
|
|
err_free_m:
|
|
|
|
mpi_free(m);
|
|
|
|
err_free_c:
|
|
|
|
mpi_free(c);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int rsa_dec(struct akcipher_request *req)
|
|
|
|
{
|
|
|
|
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
|
2016-06-14 13:14:58 +00:00
|
|
|
const struct rsa_mpi_key *pkey = rsa_get_key(tfm);
|
2015-06-16 17:31:01 +00:00
|
|
|
MPI c, m = mpi_alloc(0);
|
|
|
|
int ret = 0;
|
|
|
|
int sign;
|
|
|
|
|
|
|
|
if (!m)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
if (unlikely(!pkey->n || !pkey->d)) {
|
|
|
|
ret = -EINVAL;
|
|
|
|
goto err_free_m;
|
|
|
|
}
|
|
|
|
|
2015-10-08 16:26:55 +00:00
|
|
|
ret = -ENOMEM;
|
|
|
|
c = mpi_read_raw_from_sgl(req->src, req->src_len);
|
|
|
|
if (!c)
|
2015-06-16 17:31:01 +00:00
|
|
|
goto err_free_m;
|
|
|
|
|
crypto: rsa - implement Chinese Remainder Theorem for faster private key operations
Changes from v1:
* exported mpi_sub and mpi_mul, otherwise the build fails when RSA is a module
The kernel RSA ASN.1 private key parser already supports only private keys with
additional values to be used with the Chinese Remainder Theorem [1], but these
values are currently not used.
This rudimentary CRT implementation speeds up RSA private key operations for the
following Go benchmark up to ~3x.
This implementation also tries to minimise the allocation of additional MPIs,
so existing MPIs are reused as much as possible (hence the variable names are a
bit weird).
The benchmark used:
```
package keyring_test
import (
"crypto"
"crypto/rand"
"crypto/rsa"
"crypto/x509"
"io"
"syscall"
"testing"
"unsafe"
)
type KeySerial int32
type Keyring int32
const (
KEY_SPEC_PROCESS_KEYRING Keyring = -2
KEYCTL_PKEY_SIGN = 27
)
var (
keyTypeAsym = []byte("asymmetric\x00")
sha256pkcs1 = []byte("enc=pkcs1 hash=sha256\x00")
)
func (keyring Keyring) LoadAsym(desc string, payload []byte) (KeySerial, error) {
cdesc := []byte(desc + "\x00")
serial, _, errno := syscall.Syscall6(syscall.SYS_ADD_KEY, uintptr(unsafe.Pointer(&keyTypeAsym[0])), uintptr(unsafe.Pointer(&cdesc[0])), uintptr(unsafe.Pointer(&payload[0])), uintptr(len(payload)), uintptr(keyring), uintptr(0))
if errno == 0 {
return KeySerial(serial), nil
}
return KeySerial(serial), errno
}
type pkeyParams struct {
key_id KeySerial
in_len uint32
out_or_in2_len uint32
__spare [7]uint32
}
// the output signature buffer is an input parameter here, because we want to
// avoid Go buffer allocation leaking into our benchmarks
func (key KeySerial) Sign(info, digest, out []byte) error {
var params pkeyParams
params.key_id = key
params.in_len = uint32(len(digest))
params.out_or_in2_len = uint32(len(out))
_, _, errno := syscall.Syscall6(syscall.SYS_KEYCTL, KEYCTL_PKEY_SIGN, uintptr(unsafe.Pointer(¶ms)), uintptr(unsafe.Pointer(&info[0])), uintptr(unsafe.Pointer(&digest[0])), uintptr(unsafe.Pointer(&out[0])), uintptr(0))
if errno == 0 {
return nil
}
return errno
}
func BenchmarkSign(b *testing.B) {
priv, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
b.Fatalf("failed to generate private key: %v", err)
}
pkcs8, err := x509.MarshalPKCS8PrivateKey(priv)
if err != nil {
b.Fatalf("failed to serialize the private key to PKCS8 blob: %v", err)
}
serial, err := KEY_SPEC_PROCESS_KEYRING.LoadAsym("test rsa key", pkcs8)
if err != nil {
b.Fatalf("failed to load the private key into the keyring: %v", err)
}
b.Logf("loaded test rsa key: %v", serial)
digest := make([]byte, 32)
_, err = io.ReadFull(rand.Reader, digest)
if err != nil {
b.Fatalf("failed to generate a random digest: %v", err)
}
sig := make([]byte, 256)
for n := 0; n < b.N; n++ {
err = serial.Sign(sha256pkcs1, digest, sig)
if err != nil {
b.Fatalf("failed to sign the digest: %v", err)
}
}
err = rsa.VerifyPKCS1v15(&priv.PublicKey, crypto.SHA256, digest, sig)
if err != nil {
b.Fatalf("failed to verify the signature: %v", err)
}
}
```
[1]: https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Using_the_Chinese_remainder_algorithm
Signed-off-by: Ignat Korchagin <ignat@cloudflare.com>
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2022-06-17 08:42:10 +00:00
|
|
|
ret = _rsa_dec_crt(pkey, m, c);
|
2015-06-16 17:31:01 +00:00
|
|
|
if (ret)
|
|
|
|
goto err_free_c;
|
|
|
|
|
2016-06-29 11:32:21 +00:00
|
|
|
ret = mpi_write_to_sgl(m, req->dst, req->dst_len, &sign);
|
2015-06-16 17:31:01 +00:00
|
|
|
if (ret)
|
|
|
|
goto err_free_c;
|
|
|
|
|
2015-10-08 16:26:55 +00:00
|
|
|
if (sign < 0)
|
2015-06-16 17:31:01 +00:00
|
|
|
ret = -EBADMSG;
|
|
|
|
err_free_c:
|
|
|
|
mpi_free(c);
|
|
|
|
err_free_m:
|
|
|
|
mpi_free(m);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2016-06-14 13:14:58 +00:00
|
|
|
static void rsa_free_mpi_key(struct rsa_mpi_key *key)
|
|
|
|
{
|
|
|
|
mpi_free(key->d);
|
|
|
|
mpi_free(key->e);
|
|
|
|
mpi_free(key->n);
|
crypto: rsa - implement Chinese Remainder Theorem for faster private key operations
Changes from v1:
* exported mpi_sub and mpi_mul, otherwise the build fails when RSA is a module
The kernel RSA ASN.1 private key parser already supports only private keys with
additional values to be used with the Chinese Remainder Theorem [1], but these
values are currently not used.
This rudimentary CRT implementation speeds up RSA private key operations for the
following Go benchmark up to ~3x.
This implementation also tries to minimise the allocation of additional MPIs,
so existing MPIs are reused as much as possible (hence the variable names are a
bit weird).
The benchmark used:
```
package keyring_test
import (
"crypto"
"crypto/rand"
"crypto/rsa"
"crypto/x509"
"io"
"syscall"
"testing"
"unsafe"
)
type KeySerial int32
type Keyring int32
const (
KEY_SPEC_PROCESS_KEYRING Keyring = -2
KEYCTL_PKEY_SIGN = 27
)
var (
keyTypeAsym = []byte("asymmetric\x00")
sha256pkcs1 = []byte("enc=pkcs1 hash=sha256\x00")
)
func (keyring Keyring) LoadAsym(desc string, payload []byte) (KeySerial, error) {
cdesc := []byte(desc + "\x00")
serial, _, errno := syscall.Syscall6(syscall.SYS_ADD_KEY, uintptr(unsafe.Pointer(&keyTypeAsym[0])), uintptr(unsafe.Pointer(&cdesc[0])), uintptr(unsafe.Pointer(&payload[0])), uintptr(len(payload)), uintptr(keyring), uintptr(0))
if errno == 0 {
return KeySerial(serial), nil
}
return KeySerial(serial), errno
}
type pkeyParams struct {
key_id KeySerial
in_len uint32
out_or_in2_len uint32
__spare [7]uint32
}
// the output signature buffer is an input parameter here, because we want to
// avoid Go buffer allocation leaking into our benchmarks
func (key KeySerial) Sign(info, digest, out []byte) error {
var params pkeyParams
params.key_id = key
params.in_len = uint32(len(digest))
params.out_or_in2_len = uint32(len(out))
_, _, errno := syscall.Syscall6(syscall.SYS_KEYCTL, KEYCTL_PKEY_SIGN, uintptr(unsafe.Pointer(¶ms)), uintptr(unsafe.Pointer(&info[0])), uintptr(unsafe.Pointer(&digest[0])), uintptr(unsafe.Pointer(&out[0])), uintptr(0))
if errno == 0 {
return nil
}
return errno
}
func BenchmarkSign(b *testing.B) {
priv, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
b.Fatalf("failed to generate private key: %v", err)
}
pkcs8, err := x509.MarshalPKCS8PrivateKey(priv)
if err != nil {
b.Fatalf("failed to serialize the private key to PKCS8 blob: %v", err)
}
serial, err := KEY_SPEC_PROCESS_KEYRING.LoadAsym("test rsa key", pkcs8)
if err != nil {
b.Fatalf("failed to load the private key into the keyring: %v", err)
}
b.Logf("loaded test rsa key: %v", serial)
digest := make([]byte, 32)
_, err = io.ReadFull(rand.Reader, digest)
if err != nil {
b.Fatalf("failed to generate a random digest: %v", err)
}
sig := make([]byte, 256)
for n := 0; n < b.N; n++ {
err = serial.Sign(sha256pkcs1, digest, sig)
if err != nil {
b.Fatalf("failed to sign the digest: %v", err)
}
}
err = rsa.VerifyPKCS1v15(&priv.PublicKey, crypto.SHA256, digest, sig)
if err != nil {
b.Fatalf("failed to verify the signature: %v", err)
}
}
```
[1]: https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Using_the_Chinese_remainder_algorithm
Signed-off-by: Ignat Korchagin <ignat@cloudflare.com>
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2022-06-17 08:42:10 +00:00
|
|
|
mpi_free(key->p);
|
|
|
|
mpi_free(key->q);
|
|
|
|
mpi_free(key->dp);
|
|
|
|
mpi_free(key->dq);
|
|
|
|
mpi_free(key->qinv);
|
2016-06-14 13:14:58 +00:00
|
|
|
key->d = NULL;
|
|
|
|
key->e = NULL;
|
|
|
|
key->n = NULL;
|
crypto: rsa - implement Chinese Remainder Theorem for faster private key operations
Changes from v1:
* exported mpi_sub and mpi_mul, otherwise the build fails when RSA is a module
The kernel RSA ASN.1 private key parser already supports only private keys with
additional values to be used with the Chinese Remainder Theorem [1], but these
values are currently not used.
This rudimentary CRT implementation speeds up RSA private key operations for the
following Go benchmark up to ~3x.
This implementation also tries to minimise the allocation of additional MPIs,
so existing MPIs are reused as much as possible (hence the variable names are a
bit weird).
The benchmark used:
```
package keyring_test
import (
"crypto"
"crypto/rand"
"crypto/rsa"
"crypto/x509"
"io"
"syscall"
"testing"
"unsafe"
)
type KeySerial int32
type Keyring int32
const (
KEY_SPEC_PROCESS_KEYRING Keyring = -2
KEYCTL_PKEY_SIGN = 27
)
var (
keyTypeAsym = []byte("asymmetric\x00")
sha256pkcs1 = []byte("enc=pkcs1 hash=sha256\x00")
)
func (keyring Keyring) LoadAsym(desc string, payload []byte) (KeySerial, error) {
cdesc := []byte(desc + "\x00")
serial, _, errno := syscall.Syscall6(syscall.SYS_ADD_KEY, uintptr(unsafe.Pointer(&keyTypeAsym[0])), uintptr(unsafe.Pointer(&cdesc[0])), uintptr(unsafe.Pointer(&payload[0])), uintptr(len(payload)), uintptr(keyring), uintptr(0))
if errno == 0 {
return KeySerial(serial), nil
}
return KeySerial(serial), errno
}
type pkeyParams struct {
key_id KeySerial
in_len uint32
out_or_in2_len uint32
__spare [7]uint32
}
// the output signature buffer is an input parameter here, because we want to
// avoid Go buffer allocation leaking into our benchmarks
func (key KeySerial) Sign(info, digest, out []byte) error {
var params pkeyParams
params.key_id = key
params.in_len = uint32(len(digest))
params.out_or_in2_len = uint32(len(out))
_, _, errno := syscall.Syscall6(syscall.SYS_KEYCTL, KEYCTL_PKEY_SIGN, uintptr(unsafe.Pointer(¶ms)), uintptr(unsafe.Pointer(&info[0])), uintptr(unsafe.Pointer(&digest[0])), uintptr(unsafe.Pointer(&out[0])), uintptr(0))
if errno == 0 {
return nil
}
return errno
}
func BenchmarkSign(b *testing.B) {
priv, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
b.Fatalf("failed to generate private key: %v", err)
}
pkcs8, err := x509.MarshalPKCS8PrivateKey(priv)
if err != nil {
b.Fatalf("failed to serialize the private key to PKCS8 blob: %v", err)
}
serial, err := KEY_SPEC_PROCESS_KEYRING.LoadAsym("test rsa key", pkcs8)
if err != nil {
b.Fatalf("failed to load the private key into the keyring: %v", err)
}
b.Logf("loaded test rsa key: %v", serial)
digest := make([]byte, 32)
_, err = io.ReadFull(rand.Reader, digest)
if err != nil {
b.Fatalf("failed to generate a random digest: %v", err)
}
sig := make([]byte, 256)
for n := 0; n < b.N; n++ {
err = serial.Sign(sha256pkcs1, digest, sig)
if err != nil {
b.Fatalf("failed to sign the digest: %v", err)
}
}
err = rsa.VerifyPKCS1v15(&priv.PublicKey, crypto.SHA256, digest, sig)
if err != nil {
b.Fatalf("failed to verify the signature: %v", err)
}
}
```
[1]: https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Using_the_Chinese_remainder_algorithm
Signed-off-by: Ignat Korchagin <ignat@cloudflare.com>
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2022-06-17 08:42:10 +00:00
|
|
|
key->p = NULL;
|
|
|
|
key->q = NULL;
|
|
|
|
key->dp = NULL;
|
|
|
|
key->dq = NULL;
|
|
|
|
key->qinv = NULL;
|
2016-06-14 13:14:58 +00:00
|
|
|
}
|
|
|
|
|
2015-07-15 22:28:43 +00:00
|
|
|
static int rsa_check_key_length(unsigned int len)
|
|
|
|
{
|
|
|
|
switch (len) {
|
|
|
|
case 512:
|
|
|
|
case 1024:
|
|
|
|
case 1536:
|
2021-11-21 14:31:27 +00:00
|
|
|
if (fips_enabled)
|
|
|
|
return -EINVAL;
|
|
|
|
fallthrough;
|
2015-07-15 22:28:43 +00:00
|
|
|
case 2048:
|
|
|
|
case 3072:
|
|
|
|
case 4096:
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2023-06-13 16:17:31 +00:00
|
|
|
static int rsa_check_exponent_fips(MPI e)
|
|
|
|
{
|
|
|
|
MPI e_max = NULL;
|
|
|
|
|
|
|
|
/* check if odd */
|
|
|
|
if (!mpi_test_bit(e, 0)) {
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* check if 2^16 < e < 2^256. */
|
|
|
|
if (mpi_cmp_ui(e, 65536) <= 0) {
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
e_max = mpi_alloc(0);
|
2023-10-30 09:02:59 +00:00
|
|
|
if (!e_max)
|
|
|
|
return -ENOMEM;
|
2023-06-13 16:17:31 +00:00
|
|
|
mpi_set_bit(e_max, 256);
|
|
|
|
|
|
|
|
if (mpi_cmp(e, e_max) >= 0) {
|
|
|
|
mpi_free(e_max);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
mpi_free(e_max);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2015-10-08 16:26:55 +00:00
|
|
|
static int rsa_set_pub_key(struct crypto_akcipher *tfm, const void *key,
|
|
|
|
unsigned int keylen)
|
2015-06-16 17:31:01 +00:00
|
|
|
{
|
2016-06-14 13:14:58 +00:00
|
|
|
struct rsa_mpi_key *mpi_key = akcipher_tfm_ctx(tfm);
|
|
|
|
struct rsa_key raw_key = {0};
|
2015-07-15 22:28:43 +00:00
|
|
|
int ret;
|
2015-06-16 17:31:01 +00:00
|
|
|
|
2016-06-14 13:14:58 +00:00
|
|
|
/* Free the old MPI key if any */
|
|
|
|
rsa_free_mpi_key(mpi_key);
|
|
|
|
|
|
|
|
ret = rsa_parse_pub_key(&raw_key, key, keylen);
|
2015-07-15 22:28:43 +00:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2016-06-14 13:14:58 +00:00
|
|
|
mpi_key->e = mpi_read_raw_data(raw_key.e, raw_key.e_sz);
|
|
|
|
if (!mpi_key->e)
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
mpi_key->n = mpi_read_raw_data(raw_key.n, raw_key.n_sz);
|
|
|
|
if (!mpi_key->n)
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
if (rsa_check_key_length(mpi_get_size(mpi_key->n) << 3)) {
|
|
|
|
rsa_free_mpi_key(mpi_key);
|
|
|
|
return -EINVAL;
|
2015-07-15 22:28:43 +00:00
|
|
|
}
|
2016-06-14 13:14:58 +00:00
|
|
|
|
2023-06-13 16:17:31 +00:00
|
|
|
if (fips_enabled && rsa_check_exponent_fips(mpi_key->e)) {
|
|
|
|
rsa_free_mpi_key(mpi_key);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2016-06-14 13:14:58 +00:00
|
|
|
return 0;
|
|
|
|
|
|
|
|
err:
|
|
|
|
rsa_free_mpi_key(mpi_key);
|
|
|
|
return -ENOMEM;
|
2015-06-16 17:31:01 +00:00
|
|
|
}
|
|
|
|
|
2015-10-08 16:26:55 +00:00
|
|
|
static int rsa_set_priv_key(struct crypto_akcipher *tfm, const void *key,
|
|
|
|
unsigned int keylen)
|
|
|
|
{
|
2016-06-14 13:14:58 +00:00
|
|
|
struct rsa_mpi_key *mpi_key = akcipher_tfm_ctx(tfm);
|
|
|
|
struct rsa_key raw_key = {0};
|
2015-10-08 16:26:55 +00:00
|
|
|
int ret;
|
|
|
|
|
2016-06-14 13:14:58 +00:00
|
|
|
/* Free the old MPI key if any */
|
|
|
|
rsa_free_mpi_key(mpi_key);
|
|
|
|
|
|
|
|
ret = rsa_parse_priv_key(&raw_key, key, keylen);
|
2015-10-08 16:26:55 +00:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2016-06-14 13:14:58 +00:00
|
|
|
mpi_key->d = mpi_read_raw_data(raw_key.d, raw_key.d_sz);
|
|
|
|
if (!mpi_key->d)
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
mpi_key->e = mpi_read_raw_data(raw_key.e, raw_key.e_sz);
|
|
|
|
if (!mpi_key->e)
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
mpi_key->n = mpi_read_raw_data(raw_key.n, raw_key.n_sz);
|
|
|
|
if (!mpi_key->n)
|
|
|
|
goto err;
|
|
|
|
|
crypto: rsa - implement Chinese Remainder Theorem for faster private key operations
Changes from v1:
* exported mpi_sub and mpi_mul, otherwise the build fails when RSA is a module
The kernel RSA ASN.1 private key parser already supports only private keys with
additional values to be used with the Chinese Remainder Theorem [1], but these
values are currently not used.
This rudimentary CRT implementation speeds up RSA private key operations for the
following Go benchmark up to ~3x.
This implementation also tries to minimise the allocation of additional MPIs,
so existing MPIs are reused as much as possible (hence the variable names are a
bit weird).
The benchmark used:
```
package keyring_test
import (
"crypto"
"crypto/rand"
"crypto/rsa"
"crypto/x509"
"io"
"syscall"
"testing"
"unsafe"
)
type KeySerial int32
type Keyring int32
const (
KEY_SPEC_PROCESS_KEYRING Keyring = -2
KEYCTL_PKEY_SIGN = 27
)
var (
keyTypeAsym = []byte("asymmetric\x00")
sha256pkcs1 = []byte("enc=pkcs1 hash=sha256\x00")
)
func (keyring Keyring) LoadAsym(desc string, payload []byte) (KeySerial, error) {
cdesc := []byte(desc + "\x00")
serial, _, errno := syscall.Syscall6(syscall.SYS_ADD_KEY, uintptr(unsafe.Pointer(&keyTypeAsym[0])), uintptr(unsafe.Pointer(&cdesc[0])), uintptr(unsafe.Pointer(&payload[0])), uintptr(len(payload)), uintptr(keyring), uintptr(0))
if errno == 0 {
return KeySerial(serial), nil
}
return KeySerial(serial), errno
}
type pkeyParams struct {
key_id KeySerial
in_len uint32
out_or_in2_len uint32
__spare [7]uint32
}
// the output signature buffer is an input parameter here, because we want to
// avoid Go buffer allocation leaking into our benchmarks
func (key KeySerial) Sign(info, digest, out []byte) error {
var params pkeyParams
params.key_id = key
params.in_len = uint32(len(digest))
params.out_or_in2_len = uint32(len(out))
_, _, errno := syscall.Syscall6(syscall.SYS_KEYCTL, KEYCTL_PKEY_SIGN, uintptr(unsafe.Pointer(¶ms)), uintptr(unsafe.Pointer(&info[0])), uintptr(unsafe.Pointer(&digest[0])), uintptr(unsafe.Pointer(&out[0])), uintptr(0))
if errno == 0 {
return nil
}
return errno
}
func BenchmarkSign(b *testing.B) {
priv, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
b.Fatalf("failed to generate private key: %v", err)
}
pkcs8, err := x509.MarshalPKCS8PrivateKey(priv)
if err != nil {
b.Fatalf("failed to serialize the private key to PKCS8 blob: %v", err)
}
serial, err := KEY_SPEC_PROCESS_KEYRING.LoadAsym("test rsa key", pkcs8)
if err != nil {
b.Fatalf("failed to load the private key into the keyring: %v", err)
}
b.Logf("loaded test rsa key: %v", serial)
digest := make([]byte, 32)
_, err = io.ReadFull(rand.Reader, digest)
if err != nil {
b.Fatalf("failed to generate a random digest: %v", err)
}
sig := make([]byte, 256)
for n := 0; n < b.N; n++ {
err = serial.Sign(sha256pkcs1, digest, sig)
if err != nil {
b.Fatalf("failed to sign the digest: %v", err)
}
}
err = rsa.VerifyPKCS1v15(&priv.PublicKey, crypto.SHA256, digest, sig)
if err != nil {
b.Fatalf("failed to verify the signature: %v", err)
}
}
```
[1]: https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Using_the_Chinese_remainder_algorithm
Signed-off-by: Ignat Korchagin <ignat@cloudflare.com>
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2022-06-17 08:42:10 +00:00
|
|
|
mpi_key->p = mpi_read_raw_data(raw_key.p, raw_key.p_sz);
|
|
|
|
if (!mpi_key->p)
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
mpi_key->q = mpi_read_raw_data(raw_key.q, raw_key.q_sz);
|
|
|
|
if (!mpi_key->q)
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
mpi_key->dp = mpi_read_raw_data(raw_key.dp, raw_key.dp_sz);
|
|
|
|
if (!mpi_key->dp)
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
mpi_key->dq = mpi_read_raw_data(raw_key.dq, raw_key.dq_sz);
|
|
|
|
if (!mpi_key->dq)
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
mpi_key->qinv = mpi_read_raw_data(raw_key.qinv, raw_key.qinv_sz);
|
|
|
|
if (!mpi_key->qinv)
|
|
|
|
goto err;
|
|
|
|
|
2016-06-14 13:14:58 +00:00
|
|
|
if (rsa_check_key_length(mpi_get_size(mpi_key->n) << 3)) {
|
|
|
|
rsa_free_mpi_key(mpi_key);
|
|
|
|
return -EINVAL;
|
2015-10-08 16:26:55 +00:00
|
|
|
}
|
2016-06-14 13:14:58 +00:00
|
|
|
|
2023-06-13 16:17:31 +00:00
|
|
|
if (fips_enabled && rsa_check_exponent_fips(mpi_key->e)) {
|
|
|
|
rsa_free_mpi_key(mpi_key);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2016-06-14 13:14:58 +00:00
|
|
|
return 0;
|
|
|
|
|
|
|
|
err:
|
|
|
|
rsa_free_mpi_key(mpi_key);
|
|
|
|
return -ENOMEM;
|
2015-10-08 16:26:55 +00:00
|
|
|
}
|
|
|
|
|
2017-05-25 07:18:13 +00:00
|
|
|
static unsigned int rsa_max_size(struct crypto_akcipher *tfm)
|
2015-10-08 16:26:55 +00:00
|
|
|
{
|
2016-06-14 13:14:58 +00:00
|
|
|
struct rsa_mpi_key *pkey = akcipher_tfm_ctx(tfm);
|
2015-10-08 16:26:55 +00:00
|
|
|
|
2017-05-25 07:18:13 +00:00
|
|
|
return mpi_get_size(pkey->n);
|
2015-10-08 16:26:55 +00:00
|
|
|
}
|
|
|
|
|
2015-06-16 17:31:01 +00:00
|
|
|
static void rsa_exit_tfm(struct crypto_akcipher *tfm)
|
|
|
|
{
|
2016-06-14 13:14:58 +00:00
|
|
|
struct rsa_mpi_key *pkey = akcipher_tfm_ctx(tfm);
|
2015-06-16 17:31:01 +00:00
|
|
|
|
2016-06-14 13:14:58 +00:00
|
|
|
rsa_free_mpi_key(pkey);
|
2015-06-16 17:31:01 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static struct akcipher_alg rsa = {
|
|
|
|
.encrypt = rsa_enc,
|
|
|
|
.decrypt = rsa_dec,
|
2015-10-08 16:26:55 +00:00
|
|
|
.set_priv_key = rsa_set_priv_key,
|
|
|
|
.set_pub_key = rsa_set_pub_key,
|
|
|
|
.max_size = rsa_max_size,
|
2015-06-16 17:31:01 +00:00
|
|
|
.exit = rsa_exit_tfm,
|
|
|
|
.base = {
|
|
|
|
.cra_name = "rsa",
|
|
|
|
.cra_driver_name = "rsa-generic",
|
|
|
|
.cra_priority = 100,
|
|
|
|
.cra_module = THIS_MODULE,
|
2016-06-14 13:14:58 +00:00
|
|
|
.cra_ctxsize = sizeof(struct rsa_mpi_key),
|
2015-06-16 17:31:01 +00:00
|
|
|
},
|
|
|
|
};
|
|
|
|
|
2022-09-15 03:36:15 +00:00
|
|
|
static int __init rsa_init(void)
|
2015-06-16 17:31:01 +00:00
|
|
|
{
|
2015-12-05 16:09:34 +00:00
|
|
|
int err;
|
|
|
|
|
|
|
|
err = crypto_register_akcipher(&rsa);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
err = crypto_register_template(&rsa_pkcs1pad_tmpl);
|
|
|
|
if (err) {
|
|
|
|
crypto_unregister_akcipher(&rsa);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
2015-06-16 17:31:01 +00:00
|
|
|
}
|
|
|
|
|
2022-09-15 03:36:15 +00:00
|
|
|
static void __exit rsa_exit(void)
|
2015-06-16 17:31:01 +00:00
|
|
|
{
|
2015-12-05 16:09:34 +00:00
|
|
|
crypto_unregister_template(&rsa_pkcs1pad_tmpl);
|
2015-06-16 17:31:01 +00:00
|
|
|
crypto_unregister_akcipher(&rsa);
|
|
|
|
}
|
|
|
|
|
2019-04-12 04:57:42 +00:00
|
|
|
subsys_initcall(rsa_init);
|
2015-06-16 17:31:01 +00:00
|
|
|
module_exit(rsa_exit);
|
|
|
|
MODULE_ALIAS_CRYPTO("rsa");
|
|
|
|
MODULE_LICENSE("GPL");
|
|
|
|
MODULE_DESCRIPTION("RSA generic algorithm");
|