2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* Security plug functions
|
|
|
|
*
|
|
|
|
* Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
|
|
|
|
* Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
|
|
|
|
* Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*/
|
|
|
|
|
2006-01-11 20:17:46 +00:00
|
|
|
#include <linux/capability.h>
|
2005-04-16 22:20:36 +00:00
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/security.h>
|
2009-10-22 21:30:13 +00:00
|
|
|
#include <linux/ima.h>
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-03-06 16:09:10 +00:00
|
|
|
/* Boot-time LSM user choice */
|
2009-11-06 01:03:20 +00:00
|
|
|
static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
|
|
|
|
CONFIG_DEFAULT_SECURITY;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-07-03 18:56:05 +00:00
|
|
|
/* things that live in capability.c */
|
2005-04-16 22:20:36 +00:00
|
|
|
extern void security_fixup_ops(struct security_operations *ops);
|
|
|
|
|
2010-02-23 15:15:28 +00:00
|
|
|
static struct security_operations *security_ops;
|
|
|
|
static struct security_operations default_security_ops = {
|
|
|
|
.name = "default",
|
|
|
|
};
|
2008-01-31 20:11:22 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
static inline int verify(struct security_operations *ops)
|
|
|
|
{
|
|
|
|
/* verify the security_operations structure exists */
|
|
|
|
if (!ops)
|
|
|
|
return -EINVAL;
|
|
|
|
security_fixup_ops(ops);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void __init do_security_initcalls(void)
|
|
|
|
{
|
|
|
|
initcall_t *call;
|
|
|
|
call = __security_initcall_start;
|
|
|
|
while (call < __security_initcall_end) {
|
|
|
|
(*call) ();
|
|
|
|
call++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* security_init - initializes the security framework
|
|
|
|
*
|
|
|
|
* This should be called early in the kernel initialization sequence.
|
|
|
|
*/
|
|
|
|
int __init security_init(void)
|
|
|
|
{
|
2007-10-17 06:31:32 +00:00
|
|
|
printk(KERN_INFO "Security Framework initialized\n");
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-07-03 18:56:05 +00:00
|
|
|
security_fixup_ops(&default_security_ops);
|
|
|
|
security_ops = &default_security_ops;
|
2005-04-16 22:20:36 +00:00
|
|
|
do_security_initcalls();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2010-02-23 15:15:28 +00:00
|
|
|
void reset_security_ops(void)
|
|
|
|
{
|
|
|
|
security_ops = &default_security_ops;
|
|
|
|
}
|
|
|
|
|
2008-03-06 16:09:10 +00:00
|
|
|
/* Save user chosen LSM */
|
|
|
|
static int __init choose_lsm(char *str)
|
|
|
|
{
|
|
|
|
strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
__setup("security=", choose_lsm);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* security_module_enable - Load given security module on boot ?
|
|
|
|
* @ops: a pointer to the struct security_operations that is to be checked.
|
|
|
|
*
|
|
|
|
* Each LSM must pass this method before registering its own operations
|
|
|
|
* to avoid security registration races. This method may also be used
|
2008-03-07 01:23:49 +00:00
|
|
|
* to check if your LSM is currently loaded during kernel initialization.
|
2008-03-06 16:09:10 +00:00
|
|
|
*
|
|
|
|
* Return true if:
|
|
|
|
* -The passed LSM is the one chosen by user at boot time,
|
2009-11-06 01:03:20 +00:00
|
|
|
* -or the passed LSM is configured as the default and the user did not
|
|
|
|
* choose an alternate LSM at boot time,
|
|
|
|
* -or there is no default LSM set and the user didn't specify a
|
|
|
|
* specific LSM and we're the first to ask for registration permission,
|
2008-03-06 16:09:10 +00:00
|
|
|
* -or the passed LSM is currently loaded.
|
|
|
|
* Otherwise, return false.
|
|
|
|
*/
|
|
|
|
int __init security_module_enable(struct security_operations *ops)
|
|
|
|
{
|
|
|
|
if (!*chosen_lsm)
|
|
|
|
strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
|
|
|
|
else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/**
|
|
|
|
* register_security - registers a security framework with the kernel
|
|
|
|
* @ops: a pointer to the struct security_options that is to be registered
|
|
|
|
*
|
2008-08-18 04:44:22 +00:00
|
|
|
* This function allows a security module to register itself with the
|
2005-04-16 22:20:36 +00:00
|
|
|
* kernel security subsystem. Some rudimentary checking is done on the @ops
|
2008-03-06 16:09:10 +00:00
|
|
|
* value passed to this function. You'll need to check first if your LSM
|
|
|
|
* is allowed to register its @ops by calling security_module_enable(@ops).
|
2005-04-16 22:20:36 +00:00
|
|
|
*
|
|
|
|
* If there is already a security module registered with the kernel,
|
2008-08-18 04:44:22 +00:00
|
|
|
* an error will be returned. Otherwise %0 is returned on success.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
|
|
|
int register_security(struct security_operations *ops)
|
|
|
|
{
|
|
|
|
if (verify(ops)) {
|
|
|
|
printk(KERN_DEBUG "%s could not verify "
|
2008-03-05 23:03:59 +00:00
|
|
|
"security_operations structure.\n", __func__);
|
2005-04-16 22:20:36 +00:00
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2008-07-03 18:56:05 +00:00
|
|
|
if (security_ops != &default_security_ops)
|
2005-04-16 22:20:36 +00:00
|
|
|
return -EAGAIN;
|
|
|
|
|
|
|
|
security_ops = ops;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2007-10-17 06:31:32 +00:00
|
|
|
/* Security operations */
|
|
|
|
|
2009-05-07 09:26:19 +00:00
|
|
|
int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
|
2007-10-17 06:31:32 +00:00
|
|
|
{
|
2009-05-07 09:26:19 +00:00
|
|
|
return security_ops->ptrace_access_check(child, mode);
|
security: Fix setting of PF_SUPERPRIV by __capable()
Fix the setting of PF_SUPERPRIV by __capable() as it could corrupt the flags
the target process if that is not the current process and it is trying to
change its own flags in a different way at the same time.
__capable() is using neither atomic ops nor locking to protect t->flags. This
patch removes __capable() and introduces has_capability() that doesn't set
PF_SUPERPRIV on the process being queried.
This patch further splits security_ptrace() in two:
(1) security_ptrace_may_access(). This passes judgement on whether one
process may access another only (PTRACE_MODE_ATTACH for ptrace() and
PTRACE_MODE_READ for /proc), and takes a pointer to the child process.
current is the parent.
(2) security_ptrace_traceme(). This passes judgement on PTRACE_TRACEME only,
and takes only a pointer to the parent process. current is the child.
In Smack and commoncap, this uses has_capability() to determine whether
the parent will be permitted to use PTRACE_ATTACH if normal checks fail.
This does not set PF_SUPERPRIV.
Two of the instances of __capable() actually only act on current, and so have
been changed to calls to capable().
Of the places that were using __capable():
(1) The OOM killer calls __capable() thrice when weighing the killability of a
process. All of these now use has_capability().
(2) cap_ptrace() and smack_ptrace() were using __capable() to check to see
whether the parent was allowed to trace any process. As mentioned above,
these have been split. For PTRACE_ATTACH and /proc, capable() is now
used, and for PTRACE_TRACEME, has_capability() is used.
(3) cap_safe_nice() only ever saw current, so now uses capable().
(4) smack_setprocattr() rejected accesses to tasks other than current just
after calling __capable(), so the order of these two tests have been
switched and capable() is used instead.
(5) In smack_file_send_sigiotask(), we need to allow privileged processes to
receive SIGIO on files they're manipulating.
(6) In smack_task_wait(), we let a process wait for a privileged process,
whether or not the process doing the waiting is privileged.
I've tested this with the LTP SELinux and syscalls testscripts.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Acked-by: Casey Schaufler <casey@schaufler-ca.com>
Acked-by: Andrew G. Morgan <morgan@kernel.org>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: James Morris <jmorris@namei.org>
2008-08-14 10:37:28 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int security_ptrace_traceme(struct task_struct *parent)
|
|
|
|
{
|
|
|
|
return security_ops->ptrace_traceme(parent);
|
2007-10-17 06:31:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int security_capget(struct task_struct *target,
|
|
|
|
kernel_cap_t *effective,
|
|
|
|
kernel_cap_t *inheritable,
|
|
|
|
kernel_cap_t *permitted)
|
|
|
|
{
|
|
|
|
return security_ops->capget(target, effective, inheritable, permitted);
|
|
|
|
}
|
|
|
|
|
CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-13 23:39:23 +00:00
|
|
|
int security_capset(struct cred *new, const struct cred *old,
|
|
|
|
const kernel_cap_t *effective,
|
|
|
|
const kernel_cap_t *inheritable,
|
|
|
|
const kernel_cap_t *permitted)
|
2007-10-17 06:31:32 +00:00
|
|
|
{
|
CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-13 23:39:23 +00:00
|
|
|
return security_ops->capset(new, old,
|
|
|
|
effective, inheritable, permitted);
|
2007-10-17 06:31:32 +00:00
|
|
|
}
|
|
|
|
|
CRED: Fix regression in cap_capable() as shown up by sys_faccessat() [ver #3]
Fix a regression in cap_capable() due to:
commit 3b11a1decef07c19443d24ae926982bc8ec9f4c0
Author: David Howells <dhowells@redhat.com>
Date: Fri Nov 14 10:39:26 2008 +1100
CRED: Differentiate objective and effective subjective credentials on a task
The problem is that the above patch allows a process to have two sets of
credentials, and for the most part uses the subjective credentials when
accessing current's creds.
There is, however, one exception: cap_capable(), and thus capable(), uses the
real/objective credentials of the target task, whether or not it is the current
task.
Ordinarily this doesn't matter, since usually the two cred pointers in current
point to the same set of creds. However, sys_faccessat() makes use of this
facility to override the credentials of the calling process to make its test,
without affecting the creds as seen from other processes.
One of the things sys_faccessat() does is to make an adjustment to the
effective capabilities mask, which cap_capable(), as it stands, then ignores.
The affected capability check is in generic_permission():
if (!(mask & MAY_EXEC) || execute_ok(inode))
if (capable(CAP_DAC_OVERRIDE))
return 0;
This change passes the set of credentials to be tested down into the commoncap
and SELinux code. The security functions called by capable() and
has_capability() select the appropriate set of credentials from the process
being checked.
This can be tested by compiling the following program from the XFS testsuite:
/*
* t_access_root.c - trivial test program to show permission bug.
*
* Written by Michael Kerrisk - copyright ownership not pursued.
* Sourced from: http://linux.derkeiler.com/Mailing-Lists/Kernel/2003-10/6030.html
*/
#include <limits.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/stat.h>
#define UID 500
#define GID 100
#define PERM 0
#define TESTPATH "/tmp/t_access"
static void
errExit(char *msg)
{
perror(msg);
exit(EXIT_FAILURE);
} /* errExit */
static void
accessTest(char *file, int mask, char *mstr)
{
printf("access(%s, %s) returns %d\n", file, mstr, access(file, mask));
} /* accessTest */
int
main(int argc, char *argv[])
{
int fd, perm, uid, gid;
char *testpath;
char cmd[PATH_MAX + 20];
testpath = (argc > 1) ? argv[1] : TESTPATH;
perm = (argc > 2) ? strtoul(argv[2], NULL, 8) : PERM;
uid = (argc > 3) ? atoi(argv[3]) : UID;
gid = (argc > 4) ? atoi(argv[4]) : GID;
unlink(testpath);
fd = open(testpath, O_RDWR | O_CREAT, 0);
if (fd == -1) errExit("open");
if (fchown(fd, uid, gid) == -1) errExit("fchown");
if (fchmod(fd, perm) == -1) errExit("fchmod");
close(fd);
snprintf(cmd, sizeof(cmd), "ls -l %s", testpath);
system(cmd);
if (seteuid(uid) == -1) errExit("seteuid");
accessTest(testpath, 0, "0");
accessTest(testpath, R_OK, "R_OK");
accessTest(testpath, W_OK, "W_OK");
accessTest(testpath, X_OK, "X_OK");
accessTest(testpath, R_OK | W_OK, "R_OK | W_OK");
accessTest(testpath, R_OK | X_OK, "R_OK | X_OK");
accessTest(testpath, W_OK | X_OK, "W_OK | X_OK");
accessTest(testpath, R_OK | W_OK | X_OK, "R_OK | W_OK | X_OK");
exit(EXIT_SUCCESS);
} /* main */
This can be run against an Ext3 filesystem as well as against an XFS
filesystem. If successful, it will show:
[root@andromeda src]# ./t_access_root /tmp/xxx 0 4043 4043
---------- 1 dhowells dhowells 0 2008-12-31 03:00 /tmp/xxx
access(/tmp/xxx, 0) returns 0
access(/tmp/xxx, R_OK) returns 0
access(/tmp/xxx, W_OK) returns 0
access(/tmp/xxx, X_OK) returns -1
access(/tmp/xxx, R_OK | W_OK) returns 0
access(/tmp/xxx, R_OK | X_OK) returns -1
access(/tmp/xxx, W_OK | X_OK) returns -1
access(/tmp/xxx, R_OK | W_OK | X_OK) returns -1
If unsuccessful, it will show:
[root@andromeda src]# ./t_access_root /tmp/xxx 0 4043 4043
---------- 1 dhowells dhowells 0 2008-12-31 02:56 /tmp/xxx
access(/tmp/xxx, 0) returns 0
access(/tmp/xxx, R_OK) returns -1
access(/tmp/xxx, W_OK) returns -1
access(/tmp/xxx, X_OK) returns -1
access(/tmp/xxx, R_OK | W_OK) returns -1
access(/tmp/xxx, R_OK | X_OK) returns -1
access(/tmp/xxx, W_OK | X_OK) returns -1
access(/tmp/xxx, R_OK | W_OK | X_OK) returns -1
I've also tested the fix with the SELinux and syscalls LTP testsuites.
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: J. Bruce Fields <bfields@citi.umich.edu>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-01-06 22:27:01 +00:00
|
|
|
int security_capable(int cap)
|
2007-10-17 06:31:32 +00:00
|
|
|
{
|
CRED: Fix regression in cap_capable() as shown up by sys_faccessat() [ver #3]
Fix a regression in cap_capable() due to:
commit 3b11a1decef07c19443d24ae926982bc8ec9f4c0
Author: David Howells <dhowells@redhat.com>
Date: Fri Nov 14 10:39:26 2008 +1100
CRED: Differentiate objective and effective subjective credentials on a task
The problem is that the above patch allows a process to have two sets of
credentials, and for the most part uses the subjective credentials when
accessing current's creds.
There is, however, one exception: cap_capable(), and thus capable(), uses the
real/objective credentials of the target task, whether or not it is the current
task.
Ordinarily this doesn't matter, since usually the two cred pointers in current
point to the same set of creds. However, sys_faccessat() makes use of this
facility to override the credentials of the calling process to make its test,
without affecting the creds as seen from other processes.
One of the things sys_faccessat() does is to make an adjustment to the
effective capabilities mask, which cap_capable(), as it stands, then ignores.
The affected capability check is in generic_permission():
if (!(mask & MAY_EXEC) || execute_ok(inode))
if (capable(CAP_DAC_OVERRIDE))
return 0;
This change passes the set of credentials to be tested down into the commoncap
and SELinux code. The security functions called by capable() and
has_capability() select the appropriate set of credentials from the process
being checked.
This can be tested by compiling the following program from the XFS testsuite:
/*
* t_access_root.c - trivial test program to show permission bug.
*
* Written by Michael Kerrisk - copyright ownership not pursued.
* Sourced from: http://linux.derkeiler.com/Mailing-Lists/Kernel/2003-10/6030.html
*/
#include <limits.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/stat.h>
#define UID 500
#define GID 100
#define PERM 0
#define TESTPATH "/tmp/t_access"
static void
errExit(char *msg)
{
perror(msg);
exit(EXIT_FAILURE);
} /* errExit */
static void
accessTest(char *file, int mask, char *mstr)
{
printf("access(%s, %s) returns %d\n", file, mstr, access(file, mask));
} /* accessTest */
int
main(int argc, char *argv[])
{
int fd, perm, uid, gid;
char *testpath;
char cmd[PATH_MAX + 20];
testpath = (argc > 1) ? argv[1] : TESTPATH;
perm = (argc > 2) ? strtoul(argv[2], NULL, 8) : PERM;
uid = (argc > 3) ? atoi(argv[3]) : UID;
gid = (argc > 4) ? atoi(argv[4]) : GID;
unlink(testpath);
fd = open(testpath, O_RDWR | O_CREAT, 0);
if (fd == -1) errExit("open");
if (fchown(fd, uid, gid) == -1) errExit("fchown");
if (fchmod(fd, perm) == -1) errExit("fchmod");
close(fd);
snprintf(cmd, sizeof(cmd), "ls -l %s", testpath);
system(cmd);
if (seteuid(uid) == -1) errExit("seteuid");
accessTest(testpath, 0, "0");
accessTest(testpath, R_OK, "R_OK");
accessTest(testpath, W_OK, "W_OK");
accessTest(testpath, X_OK, "X_OK");
accessTest(testpath, R_OK | W_OK, "R_OK | W_OK");
accessTest(testpath, R_OK | X_OK, "R_OK | X_OK");
accessTest(testpath, W_OK | X_OK, "W_OK | X_OK");
accessTest(testpath, R_OK | W_OK | X_OK, "R_OK | W_OK | X_OK");
exit(EXIT_SUCCESS);
} /* main */
This can be run against an Ext3 filesystem as well as against an XFS
filesystem. If successful, it will show:
[root@andromeda src]# ./t_access_root /tmp/xxx 0 4043 4043
---------- 1 dhowells dhowells 0 2008-12-31 03:00 /tmp/xxx
access(/tmp/xxx, 0) returns 0
access(/tmp/xxx, R_OK) returns 0
access(/tmp/xxx, W_OK) returns 0
access(/tmp/xxx, X_OK) returns -1
access(/tmp/xxx, R_OK | W_OK) returns 0
access(/tmp/xxx, R_OK | X_OK) returns -1
access(/tmp/xxx, W_OK | X_OK) returns -1
access(/tmp/xxx, R_OK | W_OK | X_OK) returns -1
If unsuccessful, it will show:
[root@andromeda src]# ./t_access_root /tmp/xxx 0 4043 4043
---------- 1 dhowells dhowells 0 2008-12-31 02:56 /tmp/xxx
access(/tmp/xxx, 0) returns 0
access(/tmp/xxx, R_OK) returns -1
access(/tmp/xxx, W_OK) returns -1
access(/tmp/xxx, X_OK) returns -1
access(/tmp/xxx, R_OK | W_OK) returns -1
access(/tmp/xxx, R_OK | X_OK) returns -1
access(/tmp/xxx, W_OK | X_OK) returns -1
access(/tmp/xxx, R_OK | W_OK | X_OK) returns -1
I've also tested the fix with the SELinux and syscalls LTP testsuites.
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: J. Bruce Fields <bfields@citi.umich.edu>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-01-06 22:27:01 +00:00
|
|
|
return security_ops->capable(current, current_cred(), cap,
|
|
|
|
SECURITY_CAP_AUDIT);
|
2008-11-11 11:02:50 +00:00
|
|
|
}
|
|
|
|
|
CRED: Fix regression in cap_capable() as shown up by sys_faccessat() [ver #3]
Fix a regression in cap_capable() due to:
commit 3b11a1decef07c19443d24ae926982bc8ec9f4c0
Author: David Howells <dhowells@redhat.com>
Date: Fri Nov 14 10:39:26 2008 +1100
CRED: Differentiate objective and effective subjective credentials on a task
The problem is that the above patch allows a process to have two sets of
credentials, and for the most part uses the subjective credentials when
accessing current's creds.
There is, however, one exception: cap_capable(), and thus capable(), uses the
real/objective credentials of the target task, whether or not it is the current
task.
Ordinarily this doesn't matter, since usually the two cred pointers in current
point to the same set of creds. However, sys_faccessat() makes use of this
facility to override the credentials of the calling process to make its test,
without affecting the creds as seen from other processes.
One of the things sys_faccessat() does is to make an adjustment to the
effective capabilities mask, which cap_capable(), as it stands, then ignores.
The affected capability check is in generic_permission():
if (!(mask & MAY_EXEC) || execute_ok(inode))
if (capable(CAP_DAC_OVERRIDE))
return 0;
This change passes the set of credentials to be tested down into the commoncap
and SELinux code. The security functions called by capable() and
has_capability() select the appropriate set of credentials from the process
being checked.
This can be tested by compiling the following program from the XFS testsuite:
/*
* t_access_root.c - trivial test program to show permission bug.
*
* Written by Michael Kerrisk - copyright ownership not pursued.
* Sourced from: http://linux.derkeiler.com/Mailing-Lists/Kernel/2003-10/6030.html
*/
#include <limits.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/stat.h>
#define UID 500
#define GID 100
#define PERM 0
#define TESTPATH "/tmp/t_access"
static void
errExit(char *msg)
{
perror(msg);
exit(EXIT_FAILURE);
} /* errExit */
static void
accessTest(char *file, int mask, char *mstr)
{
printf("access(%s, %s) returns %d\n", file, mstr, access(file, mask));
} /* accessTest */
int
main(int argc, char *argv[])
{
int fd, perm, uid, gid;
char *testpath;
char cmd[PATH_MAX + 20];
testpath = (argc > 1) ? argv[1] : TESTPATH;
perm = (argc > 2) ? strtoul(argv[2], NULL, 8) : PERM;
uid = (argc > 3) ? atoi(argv[3]) : UID;
gid = (argc > 4) ? atoi(argv[4]) : GID;
unlink(testpath);
fd = open(testpath, O_RDWR | O_CREAT, 0);
if (fd == -1) errExit("open");
if (fchown(fd, uid, gid) == -1) errExit("fchown");
if (fchmod(fd, perm) == -1) errExit("fchmod");
close(fd);
snprintf(cmd, sizeof(cmd), "ls -l %s", testpath);
system(cmd);
if (seteuid(uid) == -1) errExit("seteuid");
accessTest(testpath, 0, "0");
accessTest(testpath, R_OK, "R_OK");
accessTest(testpath, W_OK, "W_OK");
accessTest(testpath, X_OK, "X_OK");
accessTest(testpath, R_OK | W_OK, "R_OK | W_OK");
accessTest(testpath, R_OK | X_OK, "R_OK | X_OK");
accessTest(testpath, W_OK | X_OK, "W_OK | X_OK");
accessTest(testpath, R_OK | W_OK | X_OK, "R_OK | W_OK | X_OK");
exit(EXIT_SUCCESS);
} /* main */
This can be run against an Ext3 filesystem as well as against an XFS
filesystem. If successful, it will show:
[root@andromeda src]# ./t_access_root /tmp/xxx 0 4043 4043
---------- 1 dhowells dhowells 0 2008-12-31 03:00 /tmp/xxx
access(/tmp/xxx, 0) returns 0
access(/tmp/xxx, R_OK) returns 0
access(/tmp/xxx, W_OK) returns 0
access(/tmp/xxx, X_OK) returns -1
access(/tmp/xxx, R_OK | W_OK) returns 0
access(/tmp/xxx, R_OK | X_OK) returns -1
access(/tmp/xxx, W_OK | X_OK) returns -1
access(/tmp/xxx, R_OK | W_OK | X_OK) returns -1
If unsuccessful, it will show:
[root@andromeda src]# ./t_access_root /tmp/xxx 0 4043 4043
---------- 1 dhowells dhowells 0 2008-12-31 02:56 /tmp/xxx
access(/tmp/xxx, 0) returns 0
access(/tmp/xxx, R_OK) returns -1
access(/tmp/xxx, W_OK) returns -1
access(/tmp/xxx, X_OK) returns -1
access(/tmp/xxx, R_OK | W_OK) returns -1
access(/tmp/xxx, R_OK | X_OK) returns -1
access(/tmp/xxx, W_OK | X_OK) returns -1
access(/tmp/xxx, R_OK | W_OK | X_OK) returns -1
I've also tested the fix with the SELinux and syscalls LTP testsuites.
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: J. Bruce Fields <bfields@citi.umich.edu>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-01-06 22:27:01 +00:00
|
|
|
int security_real_capable(struct task_struct *tsk, int cap)
|
2008-11-11 11:02:50 +00:00
|
|
|
{
|
CRED: Fix regression in cap_capable() as shown up by sys_faccessat() [ver #3]
Fix a regression in cap_capable() due to:
commit 3b11a1decef07c19443d24ae926982bc8ec9f4c0
Author: David Howells <dhowells@redhat.com>
Date: Fri Nov 14 10:39:26 2008 +1100
CRED: Differentiate objective and effective subjective credentials on a task
The problem is that the above patch allows a process to have two sets of
credentials, and for the most part uses the subjective credentials when
accessing current's creds.
There is, however, one exception: cap_capable(), and thus capable(), uses the
real/objective credentials of the target task, whether or not it is the current
task.
Ordinarily this doesn't matter, since usually the two cred pointers in current
point to the same set of creds. However, sys_faccessat() makes use of this
facility to override the credentials of the calling process to make its test,
without affecting the creds as seen from other processes.
One of the things sys_faccessat() does is to make an adjustment to the
effective capabilities mask, which cap_capable(), as it stands, then ignores.
The affected capability check is in generic_permission():
if (!(mask & MAY_EXEC) || execute_ok(inode))
if (capable(CAP_DAC_OVERRIDE))
return 0;
This change passes the set of credentials to be tested down into the commoncap
and SELinux code. The security functions called by capable() and
has_capability() select the appropriate set of credentials from the process
being checked.
This can be tested by compiling the following program from the XFS testsuite:
/*
* t_access_root.c - trivial test program to show permission bug.
*
* Written by Michael Kerrisk - copyright ownership not pursued.
* Sourced from: http://linux.derkeiler.com/Mailing-Lists/Kernel/2003-10/6030.html
*/
#include <limits.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/stat.h>
#define UID 500
#define GID 100
#define PERM 0
#define TESTPATH "/tmp/t_access"
static void
errExit(char *msg)
{
perror(msg);
exit(EXIT_FAILURE);
} /* errExit */
static void
accessTest(char *file, int mask, char *mstr)
{
printf("access(%s, %s) returns %d\n", file, mstr, access(file, mask));
} /* accessTest */
int
main(int argc, char *argv[])
{
int fd, perm, uid, gid;
char *testpath;
char cmd[PATH_MAX + 20];
testpath = (argc > 1) ? argv[1] : TESTPATH;
perm = (argc > 2) ? strtoul(argv[2], NULL, 8) : PERM;
uid = (argc > 3) ? atoi(argv[3]) : UID;
gid = (argc > 4) ? atoi(argv[4]) : GID;
unlink(testpath);
fd = open(testpath, O_RDWR | O_CREAT, 0);
if (fd == -1) errExit("open");
if (fchown(fd, uid, gid) == -1) errExit("fchown");
if (fchmod(fd, perm) == -1) errExit("fchmod");
close(fd);
snprintf(cmd, sizeof(cmd), "ls -l %s", testpath);
system(cmd);
if (seteuid(uid) == -1) errExit("seteuid");
accessTest(testpath, 0, "0");
accessTest(testpath, R_OK, "R_OK");
accessTest(testpath, W_OK, "W_OK");
accessTest(testpath, X_OK, "X_OK");
accessTest(testpath, R_OK | W_OK, "R_OK | W_OK");
accessTest(testpath, R_OK | X_OK, "R_OK | X_OK");
accessTest(testpath, W_OK | X_OK, "W_OK | X_OK");
accessTest(testpath, R_OK | W_OK | X_OK, "R_OK | W_OK | X_OK");
exit(EXIT_SUCCESS);
} /* main */
This can be run against an Ext3 filesystem as well as against an XFS
filesystem. If successful, it will show:
[root@andromeda src]# ./t_access_root /tmp/xxx 0 4043 4043
---------- 1 dhowells dhowells 0 2008-12-31 03:00 /tmp/xxx
access(/tmp/xxx, 0) returns 0
access(/tmp/xxx, R_OK) returns 0
access(/tmp/xxx, W_OK) returns 0
access(/tmp/xxx, X_OK) returns -1
access(/tmp/xxx, R_OK | W_OK) returns 0
access(/tmp/xxx, R_OK | X_OK) returns -1
access(/tmp/xxx, W_OK | X_OK) returns -1
access(/tmp/xxx, R_OK | W_OK | X_OK) returns -1
If unsuccessful, it will show:
[root@andromeda src]# ./t_access_root /tmp/xxx 0 4043 4043
---------- 1 dhowells dhowells 0 2008-12-31 02:56 /tmp/xxx
access(/tmp/xxx, 0) returns 0
access(/tmp/xxx, R_OK) returns -1
access(/tmp/xxx, W_OK) returns -1
access(/tmp/xxx, X_OK) returns -1
access(/tmp/xxx, R_OK | W_OK) returns -1
access(/tmp/xxx, R_OK | X_OK) returns -1
access(/tmp/xxx, W_OK | X_OK) returns -1
access(/tmp/xxx, R_OK | W_OK | X_OK) returns -1
I've also tested the fix with the SELinux and syscalls LTP testsuites.
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: J. Bruce Fields <bfields@citi.umich.edu>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-01-06 22:27:01 +00:00
|
|
|
const struct cred *cred;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
cred = get_task_cred(tsk);
|
|
|
|
ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT);
|
|
|
|
put_cred(cred);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_real_capable_noaudit(struct task_struct *tsk, int cap)
|
|
|
|
{
|
|
|
|
const struct cred *cred;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
cred = get_task_cred(tsk);
|
|
|
|
ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT);
|
|
|
|
put_cred(cred);
|
|
|
|
return ret;
|
2007-10-17 06:31:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int security_acct(struct file *file)
|
|
|
|
{
|
|
|
|
return security_ops->acct(file);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_sysctl(struct ctl_table *table, int op)
|
|
|
|
{
|
|
|
|
return security_ops->sysctl(table, op);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_quotactl(int cmds, int type, int id, struct super_block *sb)
|
|
|
|
{
|
|
|
|
return security_ops->quotactl(cmds, type, id, sb);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_quota_on(struct dentry *dentry)
|
|
|
|
{
|
|
|
|
return security_ops->quota_on(dentry);
|
|
|
|
}
|
|
|
|
|
2010-02-03 23:36:43 +00:00
|
|
|
int security_syslog(int type, bool from_file)
|
2007-10-17 06:31:32 +00:00
|
|
|
{
|
2010-02-03 23:36:43 +00:00
|
|
|
return security_ops->syslog(type, from_file);
|
2007-10-17 06:31:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int security_settime(struct timespec *ts, struct timezone *tz)
|
|
|
|
{
|
|
|
|
return security_ops->settime(ts, tz);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_vm_enough_memory(long pages)
|
|
|
|
{
|
2008-10-29 21:01:20 +00:00
|
|
|
WARN_ON(current->mm == NULL);
|
2007-10-17 06:31:32 +00:00
|
|
|
return security_ops->vm_enough_memory(current->mm, pages);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
|
|
|
|
{
|
2008-10-29 21:01:20 +00:00
|
|
|
WARN_ON(mm == NULL);
|
2007-10-17 06:31:32 +00:00
|
|
|
return security_ops->vm_enough_memory(mm, pages);
|
|
|
|
}
|
|
|
|
|
2008-10-29 21:01:20 +00:00
|
|
|
int security_vm_enough_memory_kern(long pages)
|
|
|
|
{
|
|
|
|
/* If current->mm is a kernel thread then we will pass NULL,
|
|
|
|
for this specific case that is fine */
|
|
|
|
return security_ops->vm_enough_memory(current->mm, pages);
|
|
|
|
}
|
|
|
|
|
CRED: Make execve() take advantage of copy-on-write credentials
Make execve() take advantage of copy-on-write credentials, allowing it to set
up the credentials in advance, and then commit the whole lot after the point
of no return.
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
The credential bits from struct linux_binprm are, for the most part,
replaced with a single credentials pointer (bprm->cred). This means that
all the creds can be calculated in advance and then applied at the point
of no return with no possibility of failure.
I would like to replace bprm->cap_effective with:
cap_isclear(bprm->cap_effective)
but this seems impossible due to special behaviour for processes of pid 1
(they always retain their parent's capability masks where normally they'd
be changed - see cap_bprm_set_creds()).
The following sequence of events now happens:
(a) At the start of do_execve, the current task's cred_exec_mutex is
locked to prevent PTRACE_ATTACH from obsoleting the calculation of
creds that we make.
(a) prepare_exec_creds() is then called to make a copy of the current
task's credentials and prepare it. This copy is then assigned to
bprm->cred.
This renders security_bprm_alloc() and security_bprm_free()
unnecessary, and so they've been removed.
(b) The determination of unsafe execution is now performed immediately
after (a) rather than later on in the code. The result is stored in
bprm->unsafe for future reference.
(c) prepare_binprm() is called, possibly multiple times.
(i) This applies the result of set[ug]id binaries to the new creds
attached to bprm->cred. Personality bit clearance is recorded,
but now deferred on the basis that the exec procedure may yet
fail.
(ii) This then calls the new security_bprm_set_creds(). This should
calculate the new LSM and capability credentials into *bprm->cred.
This folds together security_bprm_set() and parts of
security_bprm_apply_creds() (these two have been removed).
Anything that might fail must be done at this point.
(iii) bprm->cred_prepared is set to 1.
bprm->cred_prepared is 0 on the first pass of the security
calculations, and 1 on all subsequent passes. This allows SELinux
in (ii) to base its calculations only on the initial script and
not on the interpreter.
(d) flush_old_exec() is called to commit the task to execution. This
performs the following steps with regard to credentials:
(i) Clear pdeath_signal and set dumpable on certain circumstances that
may not be covered by commit_creds().
(ii) Clear any bits in current->personality that were deferred from
(c.i).
(e) install_exec_creds() [compute_creds() as was] is called to install the
new credentials. This performs the following steps with regard to
credentials:
(i) Calls security_bprm_committing_creds() to apply any security
requirements, such as flushing unauthorised files in SELinux, that
must be done before the credentials are changed.
This is made up of bits of security_bprm_apply_creds() and
security_bprm_post_apply_creds(), both of which have been removed.
This function is not allowed to fail; anything that might fail
must have been done in (c.ii).
(ii) Calls commit_creds() to apply the new credentials in a single
assignment (more or less). Possibly pdeath_signal and dumpable
should be part of struct creds.
(iii) Unlocks the task's cred_replace_mutex, thus allowing
PTRACE_ATTACH to take place.
(iv) Clears The bprm->cred pointer as the credentials it was holding
are now immutable.
(v) Calls security_bprm_committed_creds() to apply any security
alterations that must be done after the creds have been changed.
SELinux uses this to flush signals and signal handlers.
(f) If an error occurs before (d.i), bprm_free() will call abort_creds()
to destroy the proposed new credentials and will then unlock
cred_replace_mutex. No changes to the credentials will have been
made.
(2) LSM interface.
A number of functions have been changed, added or removed:
(*) security_bprm_alloc(), ->bprm_alloc_security()
(*) security_bprm_free(), ->bprm_free_security()
Removed in favour of preparing new credentials and modifying those.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
(*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds()
Removed; split between security_bprm_set_creds(),
security_bprm_committing_creds() and security_bprm_committed_creds().
(*) security_bprm_set(), ->bprm_set_security()
Removed; folded into security_bprm_set_creds().
(*) security_bprm_set_creds(), ->bprm_set_creds()
New. The new credentials in bprm->creds should be checked and set up
as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the
second and subsequent calls.
(*) security_bprm_committing_creds(), ->bprm_committing_creds()
(*) security_bprm_committed_creds(), ->bprm_committed_creds()
New. Apply the security effects of the new credentials. This
includes closing unauthorised files in SELinux. This function may not
fail. When the former is called, the creds haven't yet been applied
to the process; when the latter is called, they have.
The former may access bprm->cred, the latter may not.
(3) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) The bprm_security_struct struct has been removed in favour of using
the credentials-under-construction approach.
(c) flush_unauthorized_files() now takes a cred pointer and passes it on
to inode_has_perm(), file_has_perm() and dentry_open().
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-13 23:39:24 +00:00
|
|
|
int security_bprm_set_creds(struct linux_binprm *bprm)
|
2007-10-17 06:31:32 +00:00
|
|
|
{
|
CRED: Make execve() take advantage of copy-on-write credentials
Make execve() take advantage of copy-on-write credentials, allowing it to set
up the credentials in advance, and then commit the whole lot after the point
of no return.
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
The credential bits from struct linux_binprm are, for the most part,
replaced with a single credentials pointer (bprm->cred). This means that
all the creds can be calculated in advance and then applied at the point
of no return with no possibility of failure.
I would like to replace bprm->cap_effective with:
cap_isclear(bprm->cap_effective)
but this seems impossible due to special behaviour for processes of pid 1
(they always retain their parent's capability masks where normally they'd
be changed - see cap_bprm_set_creds()).
The following sequence of events now happens:
(a) At the start of do_execve, the current task's cred_exec_mutex is
locked to prevent PTRACE_ATTACH from obsoleting the calculation of
creds that we make.
(a) prepare_exec_creds() is then called to make a copy of the current
task's credentials and prepare it. This copy is then assigned to
bprm->cred.
This renders security_bprm_alloc() and security_bprm_free()
unnecessary, and so they've been removed.
(b) The determination of unsafe execution is now performed immediately
after (a) rather than later on in the code. The result is stored in
bprm->unsafe for future reference.
(c) prepare_binprm() is called, possibly multiple times.
(i) This applies the result of set[ug]id binaries to the new creds
attached to bprm->cred. Personality bit clearance is recorded,
but now deferred on the basis that the exec procedure may yet
fail.
(ii) This then calls the new security_bprm_set_creds(). This should
calculate the new LSM and capability credentials into *bprm->cred.
This folds together security_bprm_set() and parts of
security_bprm_apply_creds() (these two have been removed).
Anything that might fail must be done at this point.
(iii) bprm->cred_prepared is set to 1.
bprm->cred_prepared is 0 on the first pass of the security
calculations, and 1 on all subsequent passes. This allows SELinux
in (ii) to base its calculations only on the initial script and
not on the interpreter.
(d) flush_old_exec() is called to commit the task to execution. This
performs the following steps with regard to credentials:
(i) Clear pdeath_signal and set dumpable on certain circumstances that
may not be covered by commit_creds().
(ii) Clear any bits in current->personality that were deferred from
(c.i).
(e) install_exec_creds() [compute_creds() as was] is called to install the
new credentials. This performs the following steps with regard to
credentials:
(i) Calls security_bprm_committing_creds() to apply any security
requirements, such as flushing unauthorised files in SELinux, that
must be done before the credentials are changed.
This is made up of bits of security_bprm_apply_creds() and
security_bprm_post_apply_creds(), both of which have been removed.
This function is not allowed to fail; anything that might fail
must have been done in (c.ii).
(ii) Calls commit_creds() to apply the new credentials in a single
assignment (more or less). Possibly pdeath_signal and dumpable
should be part of struct creds.
(iii) Unlocks the task's cred_replace_mutex, thus allowing
PTRACE_ATTACH to take place.
(iv) Clears The bprm->cred pointer as the credentials it was holding
are now immutable.
(v) Calls security_bprm_committed_creds() to apply any security
alterations that must be done after the creds have been changed.
SELinux uses this to flush signals and signal handlers.
(f) If an error occurs before (d.i), bprm_free() will call abort_creds()
to destroy the proposed new credentials and will then unlock
cred_replace_mutex. No changes to the credentials will have been
made.
(2) LSM interface.
A number of functions have been changed, added or removed:
(*) security_bprm_alloc(), ->bprm_alloc_security()
(*) security_bprm_free(), ->bprm_free_security()
Removed in favour of preparing new credentials and modifying those.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
(*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds()
Removed; split between security_bprm_set_creds(),
security_bprm_committing_creds() and security_bprm_committed_creds().
(*) security_bprm_set(), ->bprm_set_security()
Removed; folded into security_bprm_set_creds().
(*) security_bprm_set_creds(), ->bprm_set_creds()
New. The new credentials in bprm->creds should be checked and set up
as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the
second and subsequent calls.
(*) security_bprm_committing_creds(), ->bprm_committing_creds()
(*) security_bprm_committed_creds(), ->bprm_committed_creds()
New. Apply the security effects of the new credentials. This
includes closing unauthorised files in SELinux. This function may not
fail. When the former is called, the creds haven't yet been applied
to the process; when the latter is called, they have.
The former may access bprm->cred, the latter may not.
(3) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) The bprm_security_struct struct has been removed in favour of using
the credentials-under-construction approach.
(c) flush_unauthorized_files() now takes a cred pointer and passes it on
to inode_has_perm(), file_has_perm() and dentry_open().
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-13 23:39:24 +00:00
|
|
|
return security_ops->bprm_set_creds(bprm);
|
2007-10-17 06:31:32 +00:00
|
|
|
}
|
|
|
|
|
CRED: Make execve() take advantage of copy-on-write credentials
Make execve() take advantage of copy-on-write credentials, allowing it to set
up the credentials in advance, and then commit the whole lot after the point
of no return.
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
The credential bits from struct linux_binprm are, for the most part,
replaced with a single credentials pointer (bprm->cred). This means that
all the creds can be calculated in advance and then applied at the point
of no return with no possibility of failure.
I would like to replace bprm->cap_effective with:
cap_isclear(bprm->cap_effective)
but this seems impossible due to special behaviour for processes of pid 1
(they always retain their parent's capability masks where normally they'd
be changed - see cap_bprm_set_creds()).
The following sequence of events now happens:
(a) At the start of do_execve, the current task's cred_exec_mutex is
locked to prevent PTRACE_ATTACH from obsoleting the calculation of
creds that we make.
(a) prepare_exec_creds() is then called to make a copy of the current
task's credentials and prepare it. This copy is then assigned to
bprm->cred.
This renders security_bprm_alloc() and security_bprm_free()
unnecessary, and so they've been removed.
(b) The determination of unsafe execution is now performed immediately
after (a) rather than later on in the code. The result is stored in
bprm->unsafe for future reference.
(c) prepare_binprm() is called, possibly multiple times.
(i) This applies the result of set[ug]id binaries to the new creds
attached to bprm->cred. Personality bit clearance is recorded,
but now deferred on the basis that the exec procedure may yet
fail.
(ii) This then calls the new security_bprm_set_creds(). This should
calculate the new LSM and capability credentials into *bprm->cred.
This folds together security_bprm_set() and parts of
security_bprm_apply_creds() (these two have been removed).
Anything that might fail must be done at this point.
(iii) bprm->cred_prepared is set to 1.
bprm->cred_prepared is 0 on the first pass of the security
calculations, and 1 on all subsequent passes. This allows SELinux
in (ii) to base its calculations only on the initial script and
not on the interpreter.
(d) flush_old_exec() is called to commit the task to execution. This
performs the following steps with regard to credentials:
(i) Clear pdeath_signal and set dumpable on certain circumstances that
may not be covered by commit_creds().
(ii) Clear any bits in current->personality that were deferred from
(c.i).
(e) install_exec_creds() [compute_creds() as was] is called to install the
new credentials. This performs the following steps with regard to
credentials:
(i) Calls security_bprm_committing_creds() to apply any security
requirements, such as flushing unauthorised files in SELinux, that
must be done before the credentials are changed.
This is made up of bits of security_bprm_apply_creds() and
security_bprm_post_apply_creds(), both of which have been removed.
This function is not allowed to fail; anything that might fail
must have been done in (c.ii).
(ii) Calls commit_creds() to apply the new credentials in a single
assignment (more or less). Possibly pdeath_signal and dumpable
should be part of struct creds.
(iii) Unlocks the task's cred_replace_mutex, thus allowing
PTRACE_ATTACH to take place.
(iv) Clears The bprm->cred pointer as the credentials it was holding
are now immutable.
(v) Calls security_bprm_committed_creds() to apply any security
alterations that must be done after the creds have been changed.
SELinux uses this to flush signals and signal handlers.
(f) If an error occurs before (d.i), bprm_free() will call abort_creds()
to destroy the proposed new credentials and will then unlock
cred_replace_mutex. No changes to the credentials will have been
made.
(2) LSM interface.
A number of functions have been changed, added or removed:
(*) security_bprm_alloc(), ->bprm_alloc_security()
(*) security_bprm_free(), ->bprm_free_security()
Removed in favour of preparing new credentials and modifying those.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
(*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds()
Removed; split between security_bprm_set_creds(),
security_bprm_committing_creds() and security_bprm_committed_creds().
(*) security_bprm_set(), ->bprm_set_security()
Removed; folded into security_bprm_set_creds().
(*) security_bprm_set_creds(), ->bprm_set_creds()
New. The new credentials in bprm->creds should be checked and set up
as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the
second and subsequent calls.
(*) security_bprm_committing_creds(), ->bprm_committing_creds()
(*) security_bprm_committed_creds(), ->bprm_committed_creds()
New. Apply the security effects of the new credentials. This
includes closing unauthorised files in SELinux. This function may not
fail. When the former is called, the creds haven't yet been applied
to the process; when the latter is called, they have.
The former may access bprm->cred, the latter may not.
(3) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) The bprm_security_struct struct has been removed in favour of using
the credentials-under-construction approach.
(c) flush_unauthorized_files() now takes a cred pointer and passes it on
to inode_has_perm(), file_has_perm() and dentry_open().
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-13 23:39:24 +00:00
|
|
|
int security_bprm_check(struct linux_binprm *bprm)
|
2007-10-17 06:31:32 +00:00
|
|
|
{
|
2009-10-22 21:30:13 +00:00
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = security_ops->bprm_check_security(bprm);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
return ima_bprm_check(bprm);
|
2007-10-17 06:31:32 +00:00
|
|
|
}
|
|
|
|
|
CRED: Make execve() take advantage of copy-on-write credentials
Make execve() take advantage of copy-on-write credentials, allowing it to set
up the credentials in advance, and then commit the whole lot after the point
of no return.
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
The credential bits from struct linux_binprm are, for the most part,
replaced with a single credentials pointer (bprm->cred). This means that
all the creds can be calculated in advance and then applied at the point
of no return with no possibility of failure.
I would like to replace bprm->cap_effective with:
cap_isclear(bprm->cap_effective)
but this seems impossible due to special behaviour for processes of pid 1
(they always retain their parent's capability masks where normally they'd
be changed - see cap_bprm_set_creds()).
The following sequence of events now happens:
(a) At the start of do_execve, the current task's cred_exec_mutex is
locked to prevent PTRACE_ATTACH from obsoleting the calculation of
creds that we make.
(a) prepare_exec_creds() is then called to make a copy of the current
task's credentials and prepare it. This copy is then assigned to
bprm->cred.
This renders security_bprm_alloc() and security_bprm_free()
unnecessary, and so they've been removed.
(b) The determination of unsafe execution is now performed immediately
after (a) rather than later on in the code. The result is stored in
bprm->unsafe for future reference.
(c) prepare_binprm() is called, possibly multiple times.
(i) This applies the result of set[ug]id binaries to the new creds
attached to bprm->cred. Personality bit clearance is recorded,
but now deferred on the basis that the exec procedure may yet
fail.
(ii) This then calls the new security_bprm_set_creds(). This should
calculate the new LSM and capability credentials into *bprm->cred.
This folds together security_bprm_set() and parts of
security_bprm_apply_creds() (these two have been removed).
Anything that might fail must be done at this point.
(iii) bprm->cred_prepared is set to 1.
bprm->cred_prepared is 0 on the first pass of the security
calculations, and 1 on all subsequent passes. This allows SELinux
in (ii) to base its calculations only on the initial script and
not on the interpreter.
(d) flush_old_exec() is called to commit the task to execution. This
performs the following steps with regard to credentials:
(i) Clear pdeath_signal and set dumpable on certain circumstances that
may not be covered by commit_creds().
(ii) Clear any bits in current->personality that were deferred from
(c.i).
(e) install_exec_creds() [compute_creds() as was] is called to install the
new credentials. This performs the following steps with regard to
credentials:
(i) Calls security_bprm_committing_creds() to apply any security
requirements, such as flushing unauthorised files in SELinux, that
must be done before the credentials are changed.
This is made up of bits of security_bprm_apply_creds() and
security_bprm_post_apply_creds(), both of which have been removed.
This function is not allowed to fail; anything that might fail
must have been done in (c.ii).
(ii) Calls commit_creds() to apply the new credentials in a single
assignment (more or less). Possibly pdeath_signal and dumpable
should be part of struct creds.
(iii) Unlocks the task's cred_replace_mutex, thus allowing
PTRACE_ATTACH to take place.
(iv) Clears The bprm->cred pointer as the credentials it was holding
are now immutable.
(v) Calls security_bprm_committed_creds() to apply any security
alterations that must be done after the creds have been changed.
SELinux uses this to flush signals and signal handlers.
(f) If an error occurs before (d.i), bprm_free() will call abort_creds()
to destroy the proposed new credentials and will then unlock
cred_replace_mutex. No changes to the credentials will have been
made.
(2) LSM interface.
A number of functions have been changed, added or removed:
(*) security_bprm_alloc(), ->bprm_alloc_security()
(*) security_bprm_free(), ->bprm_free_security()
Removed in favour of preparing new credentials and modifying those.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
(*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds()
Removed; split between security_bprm_set_creds(),
security_bprm_committing_creds() and security_bprm_committed_creds().
(*) security_bprm_set(), ->bprm_set_security()
Removed; folded into security_bprm_set_creds().
(*) security_bprm_set_creds(), ->bprm_set_creds()
New. The new credentials in bprm->creds should be checked and set up
as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the
second and subsequent calls.
(*) security_bprm_committing_creds(), ->bprm_committing_creds()
(*) security_bprm_committed_creds(), ->bprm_committed_creds()
New. Apply the security effects of the new credentials. This
includes closing unauthorised files in SELinux. This function may not
fail. When the former is called, the creds haven't yet been applied
to the process; when the latter is called, they have.
The former may access bprm->cred, the latter may not.
(3) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) The bprm_security_struct struct has been removed in favour of using
the credentials-under-construction approach.
(c) flush_unauthorized_files() now takes a cred pointer and passes it on
to inode_has_perm(), file_has_perm() and dentry_open().
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-13 23:39:24 +00:00
|
|
|
void security_bprm_committing_creds(struct linux_binprm *bprm)
|
2007-10-17 06:31:32 +00:00
|
|
|
{
|
2008-11-24 21:14:43 +00:00
|
|
|
security_ops->bprm_committing_creds(bprm);
|
2007-10-17 06:31:32 +00:00
|
|
|
}
|
|
|
|
|
CRED: Make execve() take advantage of copy-on-write credentials
Make execve() take advantage of copy-on-write credentials, allowing it to set
up the credentials in advance, and then commit the whole lot after the point
of no return.
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
The credential bits from struct linux_binprm are, for the most part,
replaced with a single credentials pointer (bprm->cred). This means that
all the creds can be calculated in advance and then applied at the point
of no return with no possibility of failure.
I would like to replace bprm->cap_effective with:
cap_isclear(bprm->cap_effective)
but this seems impossible due to special behaviour for processes of pid 1
(they always retain their parent's capability masks where normally they'd
be changed - see cap_bprm_set_creds()).
The following sequence of events now happens:
(a) At the start of do_execve, the current task's cred_exec_mutex is
locked to prevent PTRACE_ATTACH from obsoleting the calculation of
creds that we make.
(a) prepare_exec_creds() is then called to make a copy of the current
task's credentials and prepare it. This copy is then assigned to
bprm->cred.
This renders security_bprm_alloc() and security_bprm_free()
unnecessary, and so they've been removed.
(b) The determination of unsafe execution is now performed immediately
after (a) rather than later on in the code. The result is stored in
bprm->unsafe for future reference.
(c) prepare_binprm() is called, possibly multiple times.
(i) This applies the result of set[ug]id binaries to the new creds
attached to bprm->cred. Personality bit clearance is recorded,
but now deferred on the basis that the exec procedure may yet
fail.
(ii) This then calls the new security_bprm_set_creds(). This should
calculate the new LSM and capability credentials into *bprm->cred.
This folds together security_bprm_set() and parts of
security_bprm_apply_creds() (these two have been removed).
Anything that might fail must be done at this point.
(iii) bprm->cred_prepared is set to 1.
bprm->cred_prepared is 0 on the first pass of the security
calculations, and 1 on all subsequent passes. This allows SELinux
in (ii) to base its calculations only on the initial script and
not on the interpreter.
(d) flush_old_exec() is called to commit the task to execution. This
performs the following steps with regard to credentials:
(i) Clear pdeath_signal and set dumpable on certain circumstances that
may not be covered by commit_creds().
(ii) Clear any bits in current->personality that were deferred from
(c.i).
(e) install_exec_creds() [compute_creds() as was] is called to install the
new credentials. This performs the following steps with regard to
credentials:
(i) Calls security_bprm_committing_creds() to apply any security
requirements, such as flushing unauthorised files in SELinux, that
must be done before the credentials are changed.
This is made up of bits of security_bprm_apply_creds() and
security_bprm_post_apply_creds(), both of which have been removed.
This function is not allowed to fail; anything that might fail
must have been done in (c.ii).
(ii) Calls commit_creds() to apply the new credentials in a single
assignment (more or less). Possibly pdeath_signal and dumpable
should be part of struct creds.
(iii) Unlocks the task's cred_replace_mutex, thus allowing
PTRACE_ATTACH to take place.
(iv) Clears The bprm->cred pointer as the credentials it was holding
are now immutable.
(v) Calls security_bprm_committed_creds() to apply any security
alterations that must be done after the creds have been changed.
SELinux uses this to flush signals and signal handlers.
(f) If an error occurs before (d.i), bprm_free() will call abort_creds()
to destroy the proposed new credentials and will then unlock
cred_replace_mutex. No changes to the credentials will have been
made.
(2) LSM interface.
A number of functions have been changed, added or removed:
(*) security_bprm_alloc(), ->bprm_alloc_security()
(*) security_bprm_free(), ->bprm_free_security()
Removed in favour of preparing new credentials and modifying those.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
(*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds()
Removed; split between security_bprm_set_creds(),
security_bprm_committing_creds() and security_bprm_committed_creds().
(*) security_bprm_set(), ->bprm_set_security()
Removed; folded into security_bprm_set_creds().
(*) security_bprm_set_creds(), ->bprm_set_creds()
New. The new credentials in bprm->creds should be checked and set up
as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the
second and subsequent calls.
(*) security_bprm_committing_creds(), ->bprm_committing_creds()
(*) security_bprm_committed_creds(), ->bprm_committed_creds()
New. Apply the security effects of the new credentials. This
includes closing unauthorised files in SELinux. This function may not
fail. When the former is called, the creds haven't yet been applied
to the process; when the latter is called, they have.
The former may access bprm->cred, the latter may not.
(3) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) The bprm_security_struct struct has been removed in favour of using
the credentials-under-construction approach.
(c) flush_unauthorized_files() now takes a cred pointer and passes it on
to inode_has_perm(), file_has_perm() and dentry_open().
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-13 23:39:24 +00:00
|
|
|
void security_bprm_committed_creds(struct linux_binprm *bprm)
|
2007-10-17 06:31:32 +00:00
|
|
|
{
|
2008-11-24 21:14:43 +00:00
|
|
|
security_ops->bprm_committed_creds(bprm);
|
2007-10-17 06:31:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int security_bprm_secureexec(struct linux_binprm *bprm)
|
|
|
|
{
|
|
|
|
return security_ops->bprm_secureexec(bprm);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_sb_alloc(struct super_block *sb)
|
|
|
|
{
|
|
|
|
return security_ops->sb_alloc_security(sb);
|
|
|
|
}
|
|
|
|
|
|
|
|
void security_sb_free(struct super_block *sb)
|
|
|
|
{
|
|
|
|
security_ops->sb_free_security(sb);
|
|
|
|
}
|
|
|
|
|
2008-03-05 15:31:54 +00:00
|
|
|
int security_sb_copy_data(char *orig, char *copy)
|
2007-10-17 06:31:32 +00:00
|
|
|
{
|
2008-03-05 15:31:54 +00:00
|
|
|
return security_ops->sb_copy_data(orig, copy);
|
2007-10-17 06:31:32 +00:00
|
|
|
}
|
2008-03-05 15:31:54 +00:00
|
|
|
EXPORT_SYMBOL(security_sb_copy_data);
|
2007-10-17 06:31:32 +00:00
|
|
|
|
2008-12-18 23:44:42 +00:00
|
|
|
int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
|
2007-10-17 06:31:32 +00:00
|
|
|
{
|
2008-12-18 23:44:42 +00:00
|
|
|
return security_ops->sb_kern_mount(sb, flags, data);
|
2007-10-17 06:31:32 +00:00
|
|
|
}
|
|
|
|
|
2008-07-03 23:47:13 +00:00
|
|
|
int security_sb_show_options(struct seq_file *m, struct super_block *sb)
|
|
|
|
{
|
|
|
|
return security_ops->sb_show_options(m, sb);
|
|
|
|
}
|
|
|
|
|
2007-10-17 06:31:32 +00:00
|
|
|
int security_sb_statfs(struct dentry *dentry)
|
|
|
|
{
|
|
|
|
return security_ops->sb_statfs(dentry);
|
|
|
|
}
|
|
|
|
|
2008-03-22 21:48:24 +00:00
|
|
|
int security_sb_mount(char *dev_name, struct path *path,
|
2007-10-17 06:31:32 +00:00
|
|
|
char *type, unsigned long flags, void *data)
|
|
|
|
{
|
2008-03-22 21:48:24 +00:00
|
|
|
return security_ops->sb_mount(dev_name, path, type, flags, data);
|
2007-10-17 06:31:32 +00:00
|
|
|
}
|
|
|
|
|
2008-03-22 21:48:24 +00:00
|
|
|
int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
|
2007-10-17 06:31:32 +00:00
|
|
|
{
|
2008-03-22 21:48:24 +00:00
|
|
|
return security_ops->sb_check_sb(mnt, path);
|
2007-10-17 06:31:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int security_sb_umount(struct vfsmount *mnt, int flags)
|
|
|
|
{
|
|
|
|
return security_ops->sb_umount(mnt, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
void security_sb_umount_close(struct vfsmount *mnt)
|
|
|
|
{
|
|
|
|
security_ops->sb_umount_close(mnt);
|
|
|
|
}
|
|
|
|
|
|
|
|
void security_sb_umount_busy(struct vfsmount *mnt)
|
|
|
|
{
|
|
|
|
security_ops->sb_umount_busy(mnt);
|
|
|
|
}
|
|
|
|
|
|
|
|
void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
|
|
|
|
{
|
|
|
|
security_ops->sb_post_remount(mnt, flags, data);
|
|
|
|
}
|
|
|
|
|
2008-03-22 21:48:24 +00:00
|
|
|
void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
|
2007-10-17 06:31:32 +00:00
|
|
|
{
|
2008-03-22 21:48:24 +00:00
|
|
|
security_ops->sb_post_addmount(mnt, mountpoint);
|
2007-10-17 06:31:32 +00:00
|
|
|
}
|
|
|
|
|
2008-03-22 21:48:24 +00:00
|
|
|
int security_sb_pivotroot(struct path *old_path, struct path *new_path)
|
2007-10-17 06:31:32 +00:00
|
|
|
{
|
2008-03-22 21:48:24 +00:00
|
|
|
return security_ops->sb_pivotroot(old_path, new_path);
|
2007-10-17 06:31:32 +00:00
|
|
|
}
|
|
|
|
|
2008-03-22 21:48:24 +00:00
|
|
|
void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
|
2007-10-17 06:31:32 +00:00
|
|
|
{
|
2008-03-22 21:48:24 +00:00
|
|
|
security_ops->sb_post_pivotroot(old_path, new_path);
|
2007-10-17 06:31:32 +00:00
|
|
|
}
|
|
|
|
|
2007-11-30 18:00:35 +00:00
|
|
|
int security_sb_set_mnt_opts(struct super_block *sb,
|
2008-03-05 15:31:54 +00:00
|
|
|
struct security_mnt_opts *opts)
|
2007-11-30 18:00:35 +00:00
|
|
|
{
|
2008-03-05 15:31:54 +00:00
|
|
|
return security_ops->sb_set_mnt_opts(sb, opts);
|
2007-11-30 18:00:35 +00:00
|
|
|
}
|
2008-03-05 15:31:54 +00:00
|
|
|
EXPORT_SYMBOL(security_sb_set_mnt_opts);
|
2007-11-30 18:00:35 +00:00
|
|
|
|
|
|
|
void security_sb_clone_mnt_opts(const struct super_block *oldsb,
|
|
|
|
struct super_block *newsb)
|
|
|
|
{
|
|
|
|
security_ops->sb_clone_mnt_opts(oldsb, newsb);
|
|
|
|
}
|
2008-03-05 15:31:54 +00:00
|
|
|
EXPORT_SYMBOL(security_sb_clone_mnt_opts);
|
|
|
|
|
|
|
|
int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
|
|
|
|
{
|
|
|
|
return security_ops->sb_parse_opts_str(options, opts);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(security_sb_parse_opts_str);
|
2007-11-30 18:00:35 +00:00
|
|
|
|
2007-10-17 06:31:32 +00:00
|
|
|
int security_inode_alloc(struct inode *inode)
|
|
|
|
{
|
2009-10-22 21:30:13 +00:00
|
|
|
int ret;
|
|
|
|
|
2007-10-17 06:31:32 +00:00
|
|
|
inode->i_security = NULL;
|
2009-10-22 21:30:13 +00:00
|
|
|
ret = security_ops->inode_alloc_security(inode);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
ret = ima_inode_alloc(inode);
|
|
|
|
if (ret)
|
|
|
|
security_inode_free(inode);
|
|
|
|
return ret;
|
2007-10-17 06:31:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void security_inode_free(struct inode *inode)
|
|
|
|
{
|
2009-10-22 21:30:13 +00:00
|
|
|
ima_inode_free(inode);
|
2007-10-17 06:31:32 +00:00
|
|
|
security_ops->inode_free_security(inode);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_inode_init_security(struct inode *inode, struct inode *dir,
|
|
|
|
char **name, void **value, size_t *len)
|
|
|
|
{
|
|
|
|
if (unlikely(IS_PRIVATE(inode)))
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
return security_ops->inode_init_security(inode, dir, name, value, len);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(security_inode_init_security);
|
|
|
|
|
2008-12-17 04:24:15 +00:00
|
|
|
#ifdef CONFIG_SECURITY_PATH
|
2009-11-26 06:24:49 +00:00
|
|
|
int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
|
2008-12-17 04:24:15 +00:00
|
|
|
unsigned int dev)
|
|
|
|
{
|
2009-11-26 06:24:49 +00:00
|
|
|
if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
|
2008-12-17 04:24:15 +00:00
|
|
|
return 0;
|
2009-11-26 06:24:49 +00:00
|
|
|
return security_ops->path_mknod(dir, dentry, mode, dev);
|
2008-12-17 04:24:15 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(security_path_mknod);
|
|
|
|
|
2009-11-26 06:24:49 +00:00
|
|
|
int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
|
2008-12-17 04:24:15 +00:00
|
|
|
{
|
2009-11-26 06:24:49 +00:00
|
|
|
if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
|
2008-12-17 04:24:15 +00:00
|
|
|
return 0;
|
2009-11-26 06:24:49 +00:00
|
|
|
return security_ops->path_mkdir(dir, dentry, mode);
|
2008-12-17 04:24:15 +00:00
|
|
|
}
|
|
|
|
|
2009-11-26 06:24:49 +00:00
|
|
|
int security_path_rmdir(struct path *dir, struct dentry *dentry)
|
2008-12-17 04:24:15 +00:00
|
|
|
{
|
2009-11-26 06:24:49 +00:00
|
|
|
if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
|
2008-12-17 04:24:15 +00:00
|
|
|
return 0;
|
2009-11-26 06:24:49 +00:00
|
|
|
return security_ops->path_rmdir(dir, dentry);
|
2008-12-17 04:24:15 +00:00
|
|
|
}
|
|
|
|
|
2009-11-26 06:24:49 +00:00
|
|
|
int security_path_unlink(struct path *dir, struct dentry *dentry)
|
2008-12-17 04:24:15 +00:00
|
|
|
{
|
2009-11-26 06:24:49 +00:00
|
|
|
if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
|
2008-12-17 04:24:15 +00:00
|
|
|
return 0;
|
2009-11-26 06:24:49 +00:00
|
|
|
return security_ops->path_unlink(dir, dentry);
|
2008-12-17 04:24:15 +00:00
|
|
|
}
|
|
|
|
|
2009-11-26 06:24:49 +00:00
|
|
|
int security_path_symlink(struct path *dir, struct dentry *dentry,
|
2008-12-17 04:24:15 +00:00
|
|
|
const char *old_name)
|
|
|
|
{
|
2009-11-26 06:24:49 +00:00
|
|
|
if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
|
2008-12-17 04:24:15 +00:00
|
|
|
return 0;
|
2009-11-26 06:24:49 +00:00
|
|
|
return security_ops->path_symlink(dir, dentry, old_name);
|
2008-12-17 04:24:15 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int security_path_link(struct dentry *old_dentry, struct path *new_dir,
|
|
|
|
struct dentry *new_dentry)
|
|
|
|
{
|
|
|
|
if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
|
|
|
|
return 0;
|
|
|
|
return security_ops->path_link(old_dentry, new_dir, new_dentry);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
|
|
|
|
struct path *new_dir, struct dentry *new_dentry)
|
|
|
|
{
|
|
|
|
if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
|
|
|
|
(new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
|
|
|
|
return 0;
|
|
|
|
return security_ops->path_rename(old_dir, old_dentry, new_dir,
|
|
|
|
new_dentry);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_path_truncate(struct path *path, loff_t length,
|
|
|
|
unsigned int time_attrs)
|
|
|
|
{
|
|
|
|
if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
|
|
|
|
return 0;
|
|
|
|
return security_ops->path_truncate(path, length, time_attrs);
|
|
|
|
}
|
2009-10-04 12:49:47 +00:00
|
|
|
|
|
|
|
int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
|
|
|
|
mode_t mode)
|
|
|
|
{
|
|
|
|
if (unlikely(IS_PRIVATE(dentry->d_inode)))
|
|
|
|
return 0;
|
|
|
|
return security_ops->path_chmod(dentry, mnt, mode);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_path_chown(struct path *path, uid_t uid, gid_t gid)
|
|
|
|
{
|
|
|
|
if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
|
|
|
|
return 0;
|
|
|
|
return security_ops->path_chown(path, uid, gid);
|
|
|
|
}
|
2009-10-04 12:49:48 +00:00
|
|
|
|
|
|
|
int security_path_chroot(struct path *path)
|
|
|
|
{
|
|
|
|
return security_ops->path_chroot(path);
|
|
|
|
}
|
2008-12-17 04:24:15 +00:00
|
|
|
#endif
|
|
|
|
|
2007-10-17 06:31:32 +00:00
|
|
|
int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
|
|
|
|
{
|
|
|
|
if (unlikely(IS_PRIVATE(dir)))
|
|
|
|
return 0;
|
|
|
|
return security_ops->inode_create(dir, dentry, mode);
|
|
|
|
}
|
2009-04-03 15:42:40 +00:00
|
|
|
EXPORT_SYMBOL_GPL(security_inode_create);
|
2007-10-17 06:31:32 +00:00
|
|
|
|
|
|
|
int security_inode_link(struct dentry *old_dentry, struct inode *dir,
|
|
|
|
struct dentry *new_dentry)
|
|
|
|
{
|
|
|
|
if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
|
|
|
|
return 0;
|
|
|
|
return security_ops->inode_link(old_dentry, dir, new_dentry);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_inode_unlink(struct inode *dir, struct dentry *dentry)
|
|
|
|
{
|
|
|
|
if (unlikely(IS_PRIVATE(dentry->d_inode)))
|
|
|
|
return 0;
|
|
|
|
return security_ops->inode_unlink(dir, dentry);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_inode_symlink(struct inode *dir, struct dentry *dentry,
|
|
|
|
const char *old_name)
|
|
|
|
{
|
|
|
|
if (unlikely(IS_PRIVATE(dir)))
|
|
|
|
return 0;
|
|
|
|
return security_ops->inode_symlink(dir, dentry, old_name);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
|
|
|
|
{
|
|
|
|
if (unlikely(IS_PRIVATE(dir)))
|
|
|
|
return 0;
|
|
|
|
return security_ops->inode_mkdir(dir, dentry, mode);
|
|
|
|
}
|
2009-04-03 15:42:40 +00:00
|
|
|
EXPORT_SYMBOL_GPL(security_inode_mkdir);
|
2007-10-17 06:31:32 +00:00
|
|
|
|
|
|
|
int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
|
|
|
|
{
|
|
|
|
if (unlikely(IS_PRIVATE(dentry->d_inode)))
|
|
|
|
return 0;
|
|
|
|
return security_ops->inode_rmdir(dir, dentry);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
|
|
|
|
{
|
|
|
|
if (unlikely(IS_PRIVATE(dir)))
|
|
|
|
return 0;
|
|
|
|
return security_ops->inode_mknod(dir, dentry, mode, dev);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
|
|
|
|
struct inode *new_dir, struct dentry *new_dentry)
|
|
|
|
{
|
|
|
|
if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
|
|
|
|
(new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
|
|
|
|
return 0;
|
|
|
|
return security_ops->inode_rename(old_dir, old_dentry,
|
|
|
|
new_dir, new_dentry);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_inode_readlink(struct dentry *dentry)
|
|
|
|
{
|
|
|
|
if (unlikely(IS_PRIVATE(dentry->d_inode)))
|
|
|
|
return 0;
|
|
|
|
return security_ops->inode_readlink(dentry);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
|
|
|
|
{
|
|
|
|
if (unlikely(IS_PRIVATE(dentry->d_inode)))
|
|
|
|
return 0;
|
|
|
|
return security_ops->inode_follow_link(dentry, nd);
|
|
|
|
}
|
|
|
|
|
2008-07-17 13:37:02 +00:00
|
|
|
int security_inode_permission(struct inode *inode, int mask)
|
2007-10-17 06:31:32 +00:00
|
|
|
{
|
|
|
|
if (unlikely(IS_PRIVATE(inode)))
|
|
|
|
return 0;
|
2008-07-17 13:37:02 +00:00
|
|
|
return security_ops->inode_permission(inode, mask);
|
2007-10-17 06:31:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
|
|
|
|
{
|
|
|
|
if (unlikely(IS_PRIVATE(dentry->d_inode)))
|
|
|
|
return 0;
|
|
|
|
return security_ops->inode_setattr(dentry, attr);
|
|
|
|
}
|
2008-07-01 13:01:28 +00:00
|
|
|
EXPORT_SYMBOL_GPL(security_inode_setattr);
|
2007-10-17 06:31:32 +00:00
|
|
|
|
|
|
|
int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
|
|
|
|
{
|
|
|
|
if (unlikely(IS_PRIVATE(dentry->d_inode)))
|
|
|
|
return 0;
|
|
|
|
return security_ops->inode_getattr(mnt, dentry);
|
|
|
|
}
|
|
|
|
|
|
|
|
void security_inode_delete(struct inode *inode)
|
|
|
|
{
|
|
|
|
if (unlikely(IS_PRIVATE(inode)))
|
|
|
|
return;
|
|
|
|
security_ops->inode_delete(inode);
|
|
|
|
}
|
|
|
|
|
2008-04-29 07:59:41 +00:00
|
|
|
int security_inode_setxattr(struct dentry *dentry, const char *name,
|
|
|
|
const void *value, size_t size, int flags)
|
2007-10-17 06:31:32 +00:00
|
|
|
{
|
|
|
|
if (unlikely(IS_PRIVATE(dentry->d_inode)))
|
|
|
|
return 0;
|
|
|
|
return security_ops->inode_setxattr(dentry, name, value, size, flags);
|
|
|
|
}
|
|
|
|
|
2008-04-29 07:59:41 +00:00
|
|
|
void security_inode_post_setxattr(struct dentry *dentry, const char *name,
|
|
|
|
const void *value, size_t size, int flags)
|
2007-10-17 06:31:32 +00:00
|
|
|
{
|
|
|
|
if (unlikely(IS_PRIVATE(dentry->d_inode)))
|
|
|
|
return;
|
|
|
|
security_ops->inode_post_setxattr(dentry, name, value, size, flags);
|
|
|
|
}
|
|
|
|
|
2008-04-29 07:59:41 +00:00
|
|
|
int security_inode_getxattr(struct dentry *dentry, const char *name)
|
2007-10-17 06:31:32 +00:00
|
|
|
{
|
|
|
|
if (unlikely(IS_PRIVATE(dentry->d_inode)))
|
|
|
|
return 0;
|
|
|
|
return security_ops->inode_getxattr(dentry, name);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_inode_listxattr(struct dentry *dentry)
|
|
|
|
{
|
|
|
|
if (unlikely(IS_PRIVATE(dentry->d_inode)))
|
|
|
|
return 0;
|
|
|
|
return security_ops->inode_listxattr(dentry);
|
|
|
|
}
|
|
|
|
|
2008-04-29 07:59:41 +00:00
|
|
|
int security_inode_removexattr(struct dentry *dentry, const char *name)
|
2007-10-17 06:31:32 +00:00
|
|
|
{
|
|
|
|
if (unlikely(IS_PRIVATE(dentry->d_inode)))
|
|
|
|
return 0;
|
|
|
|
return security_ops->inode_removexattr(dentry, name);
|
|
|
|
}
|
|
|
|
|
Implement file posix capabilities
Implement file posix capabilities. This allows programs to be given a
subset of root's powers regardless of who runs them, without having to use
setuid and giving the binary all of root's powers.
This version works with Kaigai Kohei's userspace tools, found at
http://www.kaigai.gr.jp/index.php. For more information on how to use this
patch, Chris Friedhoff has posted a nice page at
http://www.friedhoff.org/fscaps.html.
Changelog:
Nov 27:
Incorporate fixes from Andrew Morton
(security-introduce-file-caps-tweaks and
security-introduce-file-caps-warning-fix)
Fix Kconfig dependency.
Fix change signaling behavior when file caps are not compiled in.
Nov 13:
Integrate comments from Alexey: Remove CONFIG_ ifdef from
capability.h, and use %zd for printing a size_t.
Nov 13:
Fix endianness warnings by sparse as suggested by Alexey
Dobriyan.
Nov 09:
Address warnings of unused variables at cap_bprm_set_security
when file capabilities are disabled, and simultaneously clean
up the code a little, by pulling the new code into a helper
function.
Nov 08:
For pointers to required userspace tools and how to use
them, see http://www.friedhoff.org/fscaps.html.
Nov 07:
Fix the calculation of the highest bit checked in
check_cap_sanity().
Nov 07:
Allow file caps to be enabled without CONFIG_SECURITY, since
capabilities are the default.
Hook cap_task_setscheduler when !CONFIG_SECURITY.
Move capable(TASK_KILL) to end of cap_task_kill to reduce
audit messages.
Nov 05:
Add secondary calls in selinux/hooks.c to task_setioprio and
task_setscheduler so that selinux and capabilities with file
cap support can be stacked.
Sep 05:
As Seth Arnold points out, uid checks are out of place
for capability code.
Sep 01:
Define task_setscheduler, task_setioprio, cap_task_kill, and
task_setnice to make sure a user cannot affect a process in which
they called a program with some fscaps.
One remaining question is the note under task_setscheduler: are we
ok with CAP_SYS_NICE being sufficient to confine a process to a
cpuset?
It is a semantic change, as without fsccaps, attach_task doesn't
allow CAP_SYS_NICE to override the uid equivalence check. But since
it uses security_task_setscheduler, which elsewhere is used where
CAP_SYS_NICE can be used to override the uid equivalence check,
fixing it might be tough.
task_setscheduler
note: this also controls cpuset:attach_task. Are we ok with
CAP_SYS_NICE being used to confine to a cpuset?
task_setioprio
task_setnice
sys_setpriority uses this (through set_one_prio) for another
process. Need same checks as setrlimit
Aug 21:
Updated secureexec implementation to reflect the fact that
euid and uid might be the same and nonzero, but the process
might still have elevated caps.
Aug 15:
Handle endianness of xattrs.
Enforce capability version match between kernel and disk.
Enforce that no bits beyond the known max capability are
set, else return -EPERM.
With this extra processing, it may be worth reconsidering
doing all the work at bprm_set_security rather than
d_instantiate.
Aug 10:
Always call getxattr at bprm_set_security, rather than
caching it at d_instantiate.
[morgan@kernel.org: file-caps clean up for linux/capability.h]
[bunk@kernel.org: unexport cap_inode_killpriv]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 06:31:36 +00:00
|
|
|
int security_inode_need_killpriv(struct dentry *dentry)
|
|
|
|
{
|
|
|
|
return security_ops->inode_need_killpriv(dentry);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_inode_killpriv(struct dentry *dentry)
|
|
|
|
{
|
|
|
|
return security_ops->inode_killpriv(dentry);
|
|
|
|
}
|
|
|
|
|
2008-02-05 06:29:39 +00:00
|
|
|
int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
|
2007-10-17 06:31:32 +00:00
|
|
|
{
|
|
|
|
if (unlikely(IS_PRIVATE(inode)))
|
2010-01-13 22:33:28 +00:00
|
|
|
return -EOPNOTSUPP;
|
2008-02-05 06:29:39 +00:00
|
|
|
return security_ops->inode_getsecurity(inode, name, buffer, alloc);
|
2007-10-17 06:31:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
|
|
|
|
{
|
|
|
|
if (unlikely(IS_PRIVATE(inode)))
|
2010-01-13 22:33:28 +00:00
|
|
|
return -EOPNOTSUPP;
|
2007-10-17 06:31:32 +00:00
|
|
|
return security_ops->inode_setsecurity(inode, name, value, size, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
|
|
|
|
{
|
|
|
|
if (unlikely(IS_PRIVATE(inode)))
|
|
|
|
return 0;
|
|
|
|
return security_ops->inode_listsecurity(inode, buffer, buffer_size);
|
|
|
|
}
|
|
|
|
|
2008-03-01 19:51:09 +00:00
|
|
|
void security_inode_getsecid(const struct inode *inode, u32 *secid)
|
|
|
|
{
|
|
|
|
security_ops->inode_getsecid(inode, secid);
|
|
|
|
}
|
|
|
|
|
2007-10-17 06:31:32 +00:00
|
|
|
int security_file_permission(struct file *file, int mask)
|
|
|
|
{
|
|
|
|
return security_ops->file_permission(file, mask);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_file_alloc(struct file *file)
|
|
|
|
{
|
|
|
|
return security_ops->file_alloc_security(file);
|
|
|
|
}
|
|
|
|
|
|
|
|
void security_file_free(struct file *file)
|
|
|
|
{
|
|
|
|
security_ops->file_free_security(file);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
|
|
|
|
{
|
|
|
|
return security_ops->file_ioctl(file, cmd, arg);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_file_mmap(struct file *file, unsigned long reqprot,
|
|
|
|
unsigned long prot, unsigned long flags,
|
|
|
|
unsigned long addr, unsigned long addr_only)
|
|
|
|
{
|
2009-10-22 21:30:13 +00:00
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
return ima_file_mmap(file, prot);
|
2007-10-17 06:31:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
|
|
|
|
unsigned long prot)
|
|
|
|
{
|
|
|
|
return security_ops->file_mprotect(vma, reqprot, prot);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_file_lock(struct file *file, unsigned int cmd)
|
|
|
|
{
|
|
|
|
return security_ops->file_lock(file, cmd);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
|
|
|
|
{
|
|
|
|
return security_ops->file_fcntl(file, cmd, arg);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_file_set_fowner(struct file *file)
|
|
|
|
{
|
|
|
|
return security_ops->file_set_fowner(file);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_file_send_sigiotask(struct task_struct *tsk,
|
|
|
|
struct fown_struct *fown, int sig)
|
|
|
|
{
|
|
|
|
return security_ops->file_send_sigiotask(tsk, fown, sig);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_file_receive(struct file *file)
|
|
|
|
{
|
|
|
|
return security_ops->file_receive(file);
|
|
|
|
}
|
|
|
|
|
2008-11-13 23:39:22 +00:00
|
|
|
int security_dentry_open(struct file *file, const struct cred *cred)
|
2007-10-17 06:31:32 +00:00
|
|
|
{
|
2008-11-13 23:39:22 +00:00
|
|
|
return security_ops->dentry_open(file, cred);
|
2007-10-17 06:31:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int security_task_create(unsigned long clone_flags)
|
|
|
|
{
|
|
|
|
return security_ops->task_create(clone_flags);
|
|
|
|
}
|
|
|
|
|
KEYS: Add a keyctl to install a process's session keyring on its parent [try #6]
Add a keyctl to install a process's session keyring onto its parent. This
replaces the parent's session keyring. Because the COW credential code does
not permit one process to change another process's credentials directly, the
change is deferred until userspace next starts executing again. Normally this
will be after a wait*() syscall.
To support this, three new security hooks have been provided:
cred_alloc_blank() to allocate unset security creds, cred_transfer() to fill in
the blank security creds and key_session_to_parent() - which asks the LSM if
the process may replace its parent's session keyring.
The replacement may only happen if the process has the same ownership details
as its parent, and the process has LINK permission on the session keyring, and
the session keyring is owned by the process, and the LSM permits it.
Note that this requires alteration to each architecture's notify_resume path.
This has been done for all arches barring blackfin, m68k* and xtensa, all of
which need assembly alteration to support TIF_NOTIFY_RESUME. This allows the
replacement to be performed at the point the parent process resumes userspace
execution.
This allows the userspace AFS pioctl emulation to fully emulate newpag() and
the VIOCSETTOK and VIOCSETTOK2 pioctls, all of which require the ability to
alter the parent process's PAG membership. However, since kAFS doesn't use
PAGs per se, but rather dumps the keys into the session keyring, the session
keyring of the parent must be replaced if, for example, VIOCSETTOK is passed
the newpag flag.
This can be tested with the following program:
#include <stdio.h>
#include <stdlib.h>
#include <keyutils.h>
#define KEYCTL_SESSION_TO_PARENT 18
#define OSERROR(X, S) do { if ((long)(X) == -1) { perror(S); exit(1); } } while(0)
int main(int argc, char **argv)
{
key_serial_t keyring, key;
long ret;
keyring = keyctl_join_session_keyring(argv[1]);
OSERROR(keyring, "keyctl_join_session_keyring");
key = add_key("user", "a", "b", 1, keyring);
OSERROR(key, "add_key");
ret = keyctl(KEYCTL_SESSION_TO_PARENT);
OSERROR(ret, "KEYCTL_SESSION_TO_PARENT");
return 0;
}
Compiled and linked with -lkeyutils, you should see something like:
[dhowells@andromeda ~]$ keyctl show
Session Keyring
-3 --alswrv 4043 4043 keyring: _ses
355907932 --alswrv 4043 -1 \_ keyring: _uid.4043
[dhowells@andromeda ~]$ /tmp/newpag
[dhowells@andromeda ~]$ keyctl show
Session Keyring
-3 --alswrv 4043 4043 keyring: _ses
1055658746 --alswrv 4043 4043 \_ user: a
[dhowells@andromeda ~]$ /tmp/newpag hello
[dhowells@andromeda ~]$ keyctl show
Session Keyring
-3 --alswrv 4043 4043 keyring: hello
340417692 --alswrv 4043 4043 \_ user: a
Where the test program creates a new session keyring, sticks a user key named
'a' into it and then installs it on its parent.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-09-02 08:14:21 +00:00
|
|
|
int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
|
|
|
|
{
|
|
|
|
return security_ops->cred_alloc_blank(cred, gfp);
|
|
|
|
}
|
|
|
|
|
CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-13 23:39:23 +00:00
|
|
|
void security_cred_free(struct cred *cred)
|
2007-10-17 06:31:32 +00:00
|
|
|
{
|
CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-13 23:39:23 +00:00
|
|
|
security_ops->cred_free(cred);
|
2007-10-17 06:31:32 +00:00
|
|
|
}
|
|
|
|
|
CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-13 23:39:23 +00:00
|
|
|
int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
|
2007-10-17 06:31:32 +00:00
|
|
|
{
|
CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-13 23:39:23 +00:00
|
|
|
return security_ops->cred_prepare(new, old, gfp);
|
|
|
|
}
|
|
|
|
|
|
|
|
void security_commit_creds(struct cred *new, const struct cred *old)
|
|
|
|
{
|
2008-11-24 21:14:43 +00:00
|
|
|
security_ops->cred_commit(new, old);
|
2007-10-17 06:31:32 +00:00
|
|
|
}
|
|
|
|
|
KEYS: Add a keyctl to install a process's session keyring on its parent [try #6]
Add a keyctl to install a process's session keyring onto its parent. This
replaces the parent's session keyring. Because the COW credential code does
not permit one process to change another process's credentials directly, the
change is deferred until userspace next starts executing again. Normally this
will be after a wait*() syscall.
To support this, three new security hooks have been provided:
cred_alloc_blank() to allocate unset security creds, cred_transfer() to fill in
the blank security creds and key_session_to_parent() - which asks the LSM if
the process may replace its parent's session keyring.
The replacement may only happen if the process has the same ownership details
as its parent, and the process has LINK permission on the session keyring, and
the session keyring is owned by the process, and the LSM permits it.
Note that this requires alteration to each architecture's notify_resume path.
This has been done for all arches barring blackfin, m68k* and xtensa, all of
which need assembly alteration to support TIF_NOTIFY_RESUME. This allows the
replacement to be performed at the point the parent process resumes userspace
execution.
This allows the userspace AFS pioctl emulation to fully emulate newpag() and
the VIOCSETTOK and VIOCSETTOK2 pioctls, all of which require the ability to
alter the parent process's PAG membership. However, since kAFS doesn't use
PAGs per se, but rather dumps the keys into the session keyring, the session
keyring of the parent must be replaced if, for example, VIOCSETTOK is passed
the newpag flag.
This can be tested with the following program:
#include <stdio.h>
#include <stdlib.h>
#include <keyutils.h>
#define KEYCTL_SESSION_TO_PARENT 18
#define OSERROR(X, S) do { if ((long)(X) == -1) { perror(S); exit(1); } } while(0)
int main(int argc, char **argv)
{
key_serial_t keyring, key;
long ret;
keyring = keyctl_join_session_keyring(argv[1]);
OSERROR(keyring, "keyctl_join_session_keyring");
key = add_key("user", "a", "b", 1, keyring);
OSERROR(key, "add_key");
ret = keyctl(KEYCTL_SESSION_TO_PARENT);
OSERROR(ret, "KEYCTL_SESSION_TO_PARENT");
return 0;
}
Compiled and linked with -lkeyutils, you should see something like:
[dhowells@andromeda ~]$ keyctl show
Session Keyring
-3 --alswrv 4043 4043 keyring: _ses
355907932 --alswrv 4043 -1 \_ keyring: _uid.4043
[dhowells@andromeda ~]$ /tmp/newpag
[dhowells@andromeda ~]$ keyctl show
Session Keyring
-3 --alswrv 4043 4043 keyring: _ses
1055658746 --alswrv 4043 4043 \_ user: a
[dhowells@andromeda ~]$ /tmp/newpag hello
[dhowells@andromeda ~]$ keyctl show
Session Keyring
-3 --alswrv 4043 4043 keyring: hello
340417692 --alswrv 4043 4043 \_ user: a
Where the test program creates a new session keyring, sticks a user key named
'a' into it and then installs it on its parent.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-09-02 08:14:21 +00:00
|
|
|
void security_transfer_creds(struct cred *new, const struct cred *old)
|
|
|
|
{
|
|
|
|
security_ops->cred_transfer(new, old);
|
|
|
|
}
|
|
|
|
|
2008-11-13 23:39:28 +00:00
|
|
|
int security_kernel_act_as(struct cred *new, u32 secid)
|
|
|
|
{
|
|
|
|
return security_ops->kernel_act_as(new, secid);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_kernel_create_files_as(struct cred *new, struct inode *inode)
|
|
|
|
{
|
|
|
|
return security_ops->kernel_create_files_as(new, inode);
|
|
|
|
}
|
|
|
|
|
2009-11-03 05:35:32 +00:00
|
|
|
int security_kernel_module_request(char *kmod_name)
|
2009-08-13 13:44:57 +00:00
|
|
|
{
|
2009-11-03 05:35:32 +00:00
|
|
|
return security_ops->kernel_module_request(kmod_name);
|
2009-08-13 13:44:57 +00:00
|
|
|
}
|
|
|
|
|
2007-10-17 06:31:32 +00:00
|
|
|
int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
|
|
|
|
{
|
|
|
|
return security_ops->task_setuid(id0, id1, id2, flags);
|
|
|
|
}
|
|
|
|
|
CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-13 23:39:23 +00:00
|
|
|
int security_task_fix_setuid(struct cred *new, const struct cred *old,
|
|
|
|
int flags)
|
2007-10-17 06:31:32 +00:00
|
|
|
{
|
CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-13 23:39:23 +00:00
|
|
|
return security_ops->task_fix_setuid(new, old, flags);
|
2007-10-17 06:31:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
|
|
|
|
{
|
|
|
|
return security_ops->task_setgid(id0, id1, id2, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_task_setpgid(struct task_struct *p, pid_t pgid)
|
|
|
|
{
|
|
|
|
return security_ops->task_setpgid(p, pgid);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_task_getpgid(struct task_struct *p)
|
|
|
|
{
|
|
|
|
return security_ops->task_getpgid(p);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_task_getsid(struct task_struct *p)
|
|
|
|
{
|
|
|
|
return security_ops->task_getsid(p);
|
|
|
|
}
|
|
|
|
|
|
|
|
void security_task_getsecid(struct task_struct *p, u32 *secid)
|
|
|
|
{
|
|
|
|
security_ops->task_getsecid(p, secid);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(security_task_getsecid);
|
|
|
|
|
|
|
|
int security_task_setgroups(struct group_info *group_info)
|
|
|
|
{
|
|
|
|
return security_ops->task_setgroups(group_info);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_task_setnice(struct task_struct *p, int nice)
|
|
|
|
{
|
|
|
|
return security_ops->task_setnice(p, nice);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_task_setioprio(struct task_struct *p, int ioprio)
|
|
|
|
{
|
|
|
|
return security_ops->task_setioprio(p, ioprio);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_task_getioprio(struct task_struct *p)
|
|
|
|
{
|
|
|
|
return security_ops->task_getioprio(p);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
|
|
|
|
{
|
|
|
|
return security_ops->task_setrlimit(resource, new_rlim);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_task_setscheduler(struct task_struct *p,
|
|
|
|
int policy, struct sched_param *lp)
|
|
|
|
{
|
|
|
|
return security_ops->task_setscheduler(p, policy, lp);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_task_getscheduler(struct task_struct *p)
|
|
|
|
{
|
|
|
|
return security_ops->task_getscheduler(p);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_task_movememory(struct task_struct *p)
|
|
|
|
{
|
|
|
|
return security_ops->task_movememory(p);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_task_kill(struct task_struct *p, struct siginfo *info,
|
|
|
|
int sig, u32 secid)
|
|
|
|
{
|
|
|
|
return security_ops->task_kill(p, info, sig, secid);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_task_wait(struct task_struct *p)
|
|
|
|
{
|
|
|
|
return security_ops->task_wait(p);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
|
CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-13 23:39:23 +00:00
|
|
|
unsigned long arg4, unsigned long arg5)
|
2007-10-17 06:31:32 +00:00
|
|
|
{
|
CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-13 23:39:23 +00:00
|
|
|
return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
|
2007-10-17 06:31:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void security_task_to_inode(struct task_struct *p, struct inode *inode)
|
|
|
|
{
|
|
|
|
security_ops->task_to_inode(p, inode);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
|
|
|
|
{
|
|
|
|
return security_ops->ipc_permission(ipcp, flag);
|
|
|
|
}
|
|
|
|
|
2008-03-01 19:51:09 +00:00
|
|
|
void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
|
|
|
|
{
|
|
|
|
security_ops->ipc_getsecid(ipcp, secid);
|
|
|
|
}
|
|
|
|
|
2007-10-17 06:31:32 +00:00
|
|
|
int security_msg_msg_alloc(struct msg_msg *msg)
|
|
|
|
{
|
|
|
|
return security_ops->msg_msg_alloc_security(msg);
|
|
|
|
}
|
|
|
|
|
|
|
|
void security_msg_msg_free(struct msg_msg *msg)
|
|
|
|
{
|
|
|
|
security_ops->msg_msg_free_security(msg);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_msg_queue_alloc(struct msg_queue *msq)
|
|
|
|
{
|
|
|
|
return security_ops->msg_queue_alloc_security(msq);
|
|
|
|
}
|
|
|
|
|
|
|
|
void security_msg_queue_free(struct msg_queue *msq)
|
|
|
|
{
|
|
|
|
security_ops->msg_queue_free_security(msq);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
|
|
|
|
{
|
|
|
|
return security_ops->msg_queue_associate(msq, msqflg);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
|
|
|
|
{
|
|
|
|
return security_ops->msg_queue_msgctl(msq, cmd);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_msg_queue_msgsnd(struct msg_queue *msq,
|
|
|
|
struct msg_msg *msg, int msqflg)
|
|
|
|
{
|
|
|
|
return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
|
|
|
|
struct task_struct *target, long type, int mode)
|
|
|
|
{
|
|
|
|
return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_shm_alloc(struct shmid_kernel *shp)
|
|
|
|
{
|
|
|
|
return security_ops->shm_alloc_security(shp);
|
|
|
|
}
|
|
|
|
|
|
|
|
void security_shm_free(struct shmid_kernel *shp)
|
|
|
|
{
|
|
|
|
security_ops->shm_free_security(shp);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_shm_associate(struct shmid_kernel *shp, int shmflg)
|
|
|
|
{
|
|
|
|
return security_ops->shm_associate(shp, shmflg);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
|
|
|
|
{
|
|
|
|
return security_ops->shm_shmctl(shp, cmd);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
|
|
|
|
{
|
|
|
|
return security_ops->shm_shmat(shp, shmaddr, shmflg);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_sem_alloc(struct sem_array *sma)
|
|
|
|
{
|
|
|
|
return security_ops->sem_alloc_security(sma);
|
|
|
|
}
|
|
|
|
|
|
|
|
void security_sem_free(struct sem_array *sma)
|
|
|
|
{
|
|
|
|
security_ops->sem_free_security(sma);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_sem_associate(struct sem_array *sma, int semflg)
|
|
|
|
{
|
|
|
|
return security_ops->sem_associate(sma, semflg);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_sem_semctl(struct sem_array *sma, int cmd)
|
|
|
|
{
|
|
|
|
return security_ops->sem_semctl(sma, cmd);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
|
|
|
|
unsigned nsops, int alter)
|
|
|
|
{
|
|
|
|
return security_ops->sem_semop(sma, sops, nsops, alter);
|
|
|
|
}
|
|
|
|
|
|
|
|
void security_d_instantiate(struct dentry *dentry, struct inode *inode)
|
|
|
|
{
|
|
|
|
if (unlikely(inode && IS_PRIVATE(inode)))
|
|
|
|
return;
|
|
|
|
security_ops->d_instantiate(dentry, inode);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(security_d_instantiate);
|
|
|
|
|
|
|
|
int security_getprocattr(struct task_struct *p, char *name, char **value)
|
|
|
|
{
|
|
|
|
return security_ops->getprocattr(p, name, value);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
|
|
|
|
{
|
|
|
|
return security_ops->setprocattr(p, name, value, size);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_netlink_send(struct sock *sk, struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
return security_ops->netlink_send(sk, skb);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_netlink_recv(struct sk_buff *skb, int cap)
|
|
|
|
{
|
|
|
|
return security_ops->netlink_recv(skb, cap);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(security_netlink_recv);
|
|
|
|
|
|
|
|
int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
|
|
|
|
{
|
|
|
|
return security_ops->secid_to_secctx(secid, secdata, seclen);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(security_secid_to_secctx);
|
|
|
|
|
2008-04-29 19:52:51 +00:00
|
|
|
int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
|
2008-01-15 23:47:35 +00:00
|
|
|
{
|
|
|
|
return security_ops->secctx_to_secid(secdata, seclen, secid);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(security_secctx_to_secid);
|
|
|
|
|
2007-10-17 06:31:32 +00:00
|
|
|
void security_release_secctx(char *secdata, u32 seclen)
|
|
|
|
{
|
2008-06-11 15:00:10 +00:00
|
|
|
security_ops->release_secctx(secdata, seclen);
|
2007-10-17 06:31:32 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(security_release_secctx);
|
|
|
|
|
2009-09-03 18:25:57 +00:00
|
|
|
int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
|
|
|
|
{
|
|
|
|
return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(security_inode_notifysecctx);
|
|
|
|
|
|
|
|
int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
|
|
|
|
{
|
|
|
|
return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(security_inode_setsecctx);
|
|
|
|
|
|
|
|
int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
|
|
|
|
{
|
|
|
|
return security_ops->inode_getsecctx(inode, ctx, ctxlen);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(security_inode_getsecctx);
|
|
|
|
|
2007-10-17 06:31:32 +00:00
|
|
|
#ifdef CONFIG_SECURITY_NETWORK
|
|
|
|
|
|
|
|
int security_unix_stream_connect(struct socket *sock, struct socket *other,
|
|
|
|
struct sock *newsk)
|
|
|
|
{
|
|
|
|
return security_ops->unix_stream_connect(sock, other, newsk);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(security_unix_stream_connect);
|
|
|
|
|
|
|
|
int security_unix_may_send(struct socket *sock, struct socket *other)
|
|
|
|
{
|
|
|
|
return security_ops->unix_may_send(sock, other);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(security_unix_may_send);
|
|
|
|
|
|
|
|
int security_socket_create(int family, int type, int protocol, int kern)
|
|
|
|
{
|
|
|
|
return security_ops->socket_create(family, type, protocol, kern);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_socket_post_create(struct socket *sock, int family,
|
|
|
|
int type, int protocol, int kern)
|
|
|
|
{
|
|
|
|
return security_ops->socket_post_create(sock, family, type,
|
|
|
|
protocol, kern);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
|
|
|
|
{
|
|
|
|
return security_ops->socket_bind(sock, address, addrlen);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
|
|
|
|
{
|
|
|
|
return security_ops->socket_connect(sock, address, addrlen);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_socket_listen(struct socket *sock, int backlog)
|
|
|
|
{
|
|
|
|
return security_ops->socket_listen(sock, backlog);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_socket_accept(struct socket *sock, struct socket *newsock)
|
|
|
|
{
|
|
|
|
return security_ops->socket_accept(sock, newsock);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
|
|
|
|
{
|
|
|
|
return security_ops->socket_sendmsg(sock, msg, size);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
|
|
|
|
int size, int flags)
|
|
|
|
{
|
|
|
|
return security_ops->socket_recvmsg(sock, msg, size, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_socket_getsockname(struct socket *sock)
|
|
|
|
{
|
|
|
|
return security_ops->socket_getsockname(sock);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_socket_getpeername(struct socket *sock)
|
|
|
|
{
|
|
|
|
return security_ops->socket_getpeername(sock);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_socket_getsockopt(struct socket *sock, int level, int optname)
|
|
|
|
{
|
|
|
|
return security_ops->socket_getsockopt(sock, level, optname);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_socket_setsockopt(struct socket *sock, int level, int optname)
|
|
|
|
{
|
|
|
|
return security_ops->socket_setsockopt(sock, level, optname);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_socket_shutdown(struct socket *sock, int how)
|
|
|
|
{
|
|
|
|
return security_ops->socket_shutdown(sock, how);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
return security_ops->socket_sock_rcv_skb(sk, skb);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(security_sock_rcv_skb);
|
|
|
|
|
|
|
|
int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
|
|
|
|
int __user *optlen, unsigned len)
|
|
|
|
{
|
|
|
|
return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
|
|
|
|
{
|
|
|
|
return security_ops->socket_getpeersec_dgram(sock, skb, secid);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(security_socket_getpeersec_dgram);
|
|
|
|
|
|
|
|
int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
|
|
|
|
{
|
|
|
|
return security_ops->sk_alloc_security(sk, family, priority);
|
|
|
|
}
|
|
|
|
|
|
|
|
void security_sk_free(struct sock *sk)
|
|
|
|
{
|
2008-06-11 15:00:10 +00:00
|
|
|
security_ops->sk_free_security(sk);
|
2007-10-17 06:31:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void security_sk_clone(const struct sock *sk, struct sock *newsk)
|
|
|
|
{
|
2008-06-11 15:00:10 +00:00
|
|
|
security_ops->sk_clone_security(sk, newsk);
|
2007-10-17 06:31:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
|
|
|
|
{
|
|
|
|
security_ops->sk_getsecid(sk, &fl->secid);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(security_sk_classify_flow);
|
|
|
|
|
|
|
|
void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
|
|
|
|
{
|
|
|
|
security_ops->req_classify_flow(req, fl);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(security_req_classify_flow);
|
|
|
|
|
|
|
|
void security_sock_graft(struct sock *sk, struct socket *parent)
|
|
|
|
{
|
|
|
|
security_ops->sock_graft(sk, parent);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(security_sock_graft);
|
|
|
|
|
|
|
|
int security_inet_conn_request(struct sock *sk,
|
|
|
|
struct sk_buff *skb, struct request_sock *req)
|
|
|
|
{
|
|
|
|
return security_ops->inet_conn_request(sk, skb, req);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(security_inet_conn_request);
|
|
|
|
|
|
|
|
void security_inet_csk_clone(struct sock *newsk,
|
|
|
|
const struct request_sock *req)
|
|
|
|
{
|
|
|
|
security_ops->inet_csk_clone(newsk, req);
|
|
|
|
}
|
|
|
|
|
|
|
|
void security_inet_conn_established(struct sock *sk,
|
|
|
|
struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
security_ops->inet_conn_established(sk, skb);
|
|
|
|
}
|
|
|
|
|
2009-08-28 22:12:43 +00:00
|
|
|
int security_tun_dev_create(void)
|
|
|
|
{
|
|
|
|
return security_ops->tun_dev_create();
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(security_tun_dev_create);
|
|
|
|
|
|
|
|
void security_tun_dev_post_create(struct sock *sk)
|
|
|
|
{
|
|
|
|
return security_ops->tun_dev_post_create(sk);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(security_tun_dev_post_create);
|
|
|
|
|
|
|
|
int security_tun_dev_attach(struct sock *sk)
|
|
|
|
{
|
|
|
|
return security_ops->tun_dev_attach(sk);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(security_tun_dev_attach);
|
|
|
|
|
2007-10-17 06:31:32 +00:00
|
|
|
#endif /* CONFIG_SECURITY_NETWORK */
|
|
|
|
|
|
|
|
#ifdef CONFIG_SECURITY_NETWORK_XFRM
|
|
|
|
|
2008-04-13 02:07:52 +00:00
|
|
|
int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
|
2007-10-17 06:31:32 +00:00
|
|
|
{
|
2008-04-13 02:07:52 +00:00
|
|
|
return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
|
2007-10-17 06:31:32 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(security_xfrm_policy_alloc);
|
|
|
|
|
2008-04-13 02:07:52 +00:00
|
|
|
int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
|
|
|
|
struct xfrm_sec_ctx **new_ctxp)
|
2007-10-17 06:31:32 +00:00
|
|
|
{
|
2008-04-13 02:07:52 +00:00
|
|
|
return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
|
2007-10-17 06:31:32 +00:00
|
|
|
}
|
|
|
|
|
2008-04-13 02:07:52 +00:00
|
|
|
void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
|
2007-10-17 06:31:32 +00:00
|
|
|
{
|
2008-04-13 02:07:52 +00:00
|
|
|
security_ops->xfrm_policy_free_security(ctx);
|
2007-10-17 06:31:32 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(security_xfrm_policy_free);
|
|
|
|
|
2008-04-13 02:07:52 +00:00
|
|
|
int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
|
2007-10-17 06:31:32 +00:00
|
|
|
{
|
2008-04-13 02:07:52 +00:00
|
|
|
return security_ops->xfrm_policy_delete_security(ctx);
|
2007-10-17 06:31:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
|
|
|
|
{
|
|
|
|
return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(security_xfrm_state_alloc);
|
|
|
|
|
|
|
|
int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
|
|
|
|
struct xfrm_sec_ctx *polsec, u32 secid)
|
|
|
|
{
|
|
|
|
if (!polsec)
|
|
|
|
return 0;
|
|
|
|
/*
|
|
|
|
* We want the context to be taken from secid which is usually
|
|
|
|
* from the sock.
|
|
|
|
*/
|
|
|
|
return security_ops->xfrm_state_alloc_security(x, NULL, secid);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_xfrm_state_delete(struct xfrm_state *x)
|
|
|
|
{
|
|
|
|
return security_ops->xfrm_state_delete_security(x);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(security_xfrm_state_delete);
|
|
|
|
|
|
|
|
void security_xfrm_state_free(struct xfrm_state *x)
|
|
|
|
{
|
|
|
|
security_ops->xfrm_state_free_security(x);
|
|
|
|
}
|
|
|
|
|
2008-04-13 02:07:52 +00:00
|
|
|
int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
|
2007-10-17 06:31:32 +00:00
|
|
|
{
|
2008-04-13 02:07:52 +00:00
|
|
|
return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
|
2007-10-17 06:31:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
|
|
|
|
struct xfrm_policy *xp, struct flowi *fl)
|
|
|
|
{
|
|
|
|
return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
|
|
|
|
{
|
|
|
|
return security_ops->xfrm_decode_session(skb, secid, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
|
|
|
|
{
|
|
|
|
int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
|
|
|
|
|
|
|
|
BUG_ON(rc);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(security_skb_classify_flow);
|
|
|
|
|
|
|
|
#endif /* CONFIG_SECURITY_NETWORK_XFRM */
|
|
|
|
|
|
|
|
#ifdef CONFIG_KEYS
|
|
|
|
|
CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-13 23:39:23 +00:00
|
|
|
int security_key_alloc(struct key *key, const struct cred *cred,
|
|
|
|
unsigned long flags)
|
2007-10-17 06:31:32 +00:00
|
|
|
{
|
CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-13 23:39:23 +00:00
|
|
|
return security_ops->key_alloc(key, cred, flags);
|
2007-10-17 06:31:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void security_key_free(struct key *key)
|
|
|
|
{
|
|
|
|
security_ops->key_free(key);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_key_permission(key_ref_t key_ref,
|
CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-13 23:39:23 +00:00
|
|
|
const struct cred *cred, key_perm_t perm)
|
2007-10-17 06:31:32 +00:00
|
|
|
{
|
CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-13 23:39:23 +00:00
|
|
|
return security_ops->key_permission(key_ref, cred, perm);
|
2007-10-17 06:31:32 +00:00
|
|
|
}
|
|
|
|
|
2008-04-29 08:01:26 +00:00
|
|
|
int security_key_getsecurity(struct key *key, char **_buffer)
|
|
|
|
{
|
|
|
|
return security_ops->key_getsecurity(key, _buffer);
|
|
|
|
}
|
|
|
|
|
KEYS: Add a keyctl to install a process's session keyring on its parent [try #6]
Add a keyctl to install a process's session keyring onto its parent. This
replaces the parent's session keyring. Because the COW credential code does
not permit one process to change another process's credentials directly, the
change is deferred until userspace next starts executing again. Normally this
will be after a wait*() syscall.
To support this, three new security hooks have been provided:
cred_alloc_blank() to allocate unset security creds, cred_transfer() to fill in
the blank security creds and key_session_to_parent() - which asks the LSM if
the process may replace its parent's session keyring.
The replacement may only happen if the process has the same ownership details
as its parent, and the process has LINK permission on the session keyring, and
the session keyring is owned by the process, and the LSM permits it.
Note that this requires alteration to each architecture's notify_resume path.
This has been done for all arches barring blackfin, m68k* and xtensa, all of
which need assembly alteration to support TIF_NOTIFY_RESUME. This allows the
replacement to be performed at the point the parent process resumes userspace
execution.
This allows the userspace AFS pioctl emulation to fully emulate newpag() and
the VIOCSETTOK and VIOCSETTOK2 pioctls, all of which require the ability to
alter the parent process's PAG membership. However, since kAFS doesn't use
PAGs per se, but rather dumps the keys into the session keyring, the session
keyring of the parent must be replaced if, for example, VIOCSETTOK is passed
the newpag flag.
This can be tested with the following program:
#include <stdio.h>
#include <stdlib.h>
#include <keyutils.h>
#define KEYCTL_SESSION_TO_PARENT 18
#define OSERROR(X, S) do { if ((long)(X) == -1) { perror(S); exit(1); } } while(0)
int main(int argc, char **argv)
{
key_serial_t keyring, key;
long ret;
keyring = keyctl_join_session_keyring(argv[1]);
OSERROR(keyring, "keyctl_join_session_keyring");
key = add_key("user", "a", "b", 1, keyring);
OSERROR(key, "add_key");
ret = keyctl(KEYCTL_SESSION_TO_PARENT);
OSERROR(ret, "KEYCTL_SESSION_TO_PARENT");
return 0;
}
Compiled and linked with -lkeyutils, you should see something like:
[dhowells@andromeda ~]$ keyctl show
Session Keyring
-3 --alswrv 4043 4043 keyring: _ses
355907932 --alswrv 4043 -1 \_ keyring: _uid.4043
[dhowells@andromeda ~]$ /tmp/newpag
[dhowells@andromeda ~]$ keyctl show
Session Keyring
-3 --alswrv 4043 4043 keyring: _ses
1055658746 --alswrv 4043 4043 \_ user: a
[dhowells@andromeda ~]$ /tmp/newpag hello
[dhowells@andromeda ~]$ keyctl show
Session Keyring
-3 --alswrv 4043 4043 keyring: hello
340417692 --alswrv 4043 4043 \_ user: a
Where the test program creates a new session keyring, sticks a user key named
'a' into it and then installs it on its parent.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-09-02 08:14:21 +00:00
|
|
|
int security_key_session_to_parent(const struct cred *cred,
|
|
|
|
const struct cred *parent_cred,
|
|
|
|
struct key *key)
|
|
|
|
{
|
|
|
|
return security_ops->key_session_to_parent(cred, parent_cred, key);
|
|
|
|
}
|
|
|
|
|
2007-10-17 06:31:32 +00:00
|
|
|
#endif /* CONFIG_KEYS */
|
2008-03-01 20:00:05 +00:00
|
|
|
|
|
|
|
#ifdef CONFIG_AUDIT
|
|
|
|
|
|
|
|
int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
|
|
|
|
{
|
|
|
|
return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_audit_rule_known(struct audit_krule *krule)
|
|
|
|
{
|
|
|
|
return security_ops->audit_rule_known(krule);
|
|
|
|
}
|
|
|
|
|
|
|
|
void security_audit_rule_free(void *lsmrule)
|
|
|
|
{
|
|
|
|
security_ops->audit_rule_free(lsmrule);
|
|
|
|
}
|
|
|
|
|
|
|
|
int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
|
|
|
|
struct audit_context *actx)
|
|
|
|
{
|
|
|
|
return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* CONFIG_AUDIT */
|