linux/fs/xfs/xfs_inode_buf.h

51 lines
1.8 KiB
C
Raw Normal View History

/*
* Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef __XFS_INODE_BUF_H__
#define __XFS_INODE_BUF_H__
struct xfs_inode;
struct xfs_dinode;
struct xfs_icdinode;
/*
* Inode location information. Stored in the inode and passed to
* xfs_imap_to_bp() to get a buffer and dinode for a given inode.
*/
struct xfs_imap {
xfs_daddr_t im_blkno; /* starting BB of inode chunk */
ushort im_len; /* length in BBs of inode chunk */
ushort im_boffset; /* inode offset in block in bytes */
};
xfs: recovery of swap extents operations for CRC filesystems This is the recovery side of the btree block owner change operation performed by swapext on CRC enabled filesystems. We detect that an owner change is needed by the flag that has been placed on the inode log format flag field. Because the inode recovery is being replayed after the buffers that make up the BMBT in the given checkpoint, we can walk all the buffers and directly modify them when we see the flag set on an inode. Because the inode can be relogged and hence present in multiple chekpoints with the "change owner" flag set, we could do multiple passes across the inode to do this change. While this isn't optimal, we can't directly ignore the flag as there may be multiple independent swap extent operations being replayed on the same inode in different checkpoints so we can't ignore them. Further, because the owner change operation uses ordered buffers, we might have buffers that are newer on disk than the current checkpoint and so already have the owner changed in them. Hence we cannot just peek at a buffer in the tree and check that it has the correct owner and assume that the change was completed. So, for the moment just brute force the owner change every time we see an inode with the flag set. Note that we have to be careful here because the owner of the buffers may point to either the old owner or the new owner. Currently the verifier can't verify the owner directly, so there is no failure case here right now. If we verify the owner exactly in future, then we'll have to take this into account. This was tested in terms of normal operation via xfstests - all of the fsr tests now pass without failure. however, we really need to modify xfs/227 to stress v3 inodes correctly to ensure we fully cover this case for v5 filesystems. In terms of recovery testing, I used a hacked version of xfs_fsr that held the temp inode open for a few seconds before exiting so that the filesystem could be shut down with an open owner change recovery flags set on at least the temp inode. fsr leaves the temp inode unlinked and in btree format, so this was necessary for the owner change to be reliably replayed. logprint confirmed the tmp inode in the log had the correct flag set: INO: cnt:3 total:3 a:0x69e9e0 len:56 a:0x69ea20 len:176 a:0x69eae0 len:88 INODE: #regs:3 ino:0x44 flags:0x209 dsize:88 ^^^^^ 0x200 is set, indicating a data fork owner change needed to be replayed on inode 0x44. A printk in the revoery code confirmed that the inode change was recovered: XFS (vdc): Mounting Filesystem XFS (vdc): Starting recovery (logdev: internal) recovering owner change ino 0x44 XFS (vdc): Version 5 superblock detected. This kernel L support enabled! Use of these features in this kernel is at your own risk! XFS (vdc): Ending recovery (logdev: internal) The script used to test this was: $ cat ./recovery-fsr.sh #!/bin/bash dev=/dev/vdc mntpt=/mnt/scratch testfile=$mntpt/testfile umount $mntpt mkfs.xfs -f -m crc=1 $dev mount $dev $mntpt chmod 777 $mntpt for i in `seq 10000 -1 0`; do xfs_io -f -d -c "pwrite $(($i * 4096)) 4096" $testfile > /dev/null 2>&1 done xfs_bmap -vp $testfile |head -20 xfs_fsr -d -v $testfile & sleep 10 /home/dave/src/xfstests-dev/src/godown -f $mntpt wait umount $mntpt xfs_logprint -t $dev |tail -20 time mount $dev $mntpt xfs_bmap -vp $testfile umount $mntpt $ Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-30 00:23:45 +00:00
int xfs_imap_to_bp(struct xfs_mount *, struct xfs_trans *,
struct xfs_imap *, struct xfs_dinode **,
struct xfs_buf **, uint, uint);
int xfs_iread(struct xfs_mount *, struct xfs_trans *,
struct xfs_inode *, uint);
void xfs_dinode_calc_crc(struct xfs_mount *, struct xfs_dinode *);
void xfs_dinode_to_disk(struct xfs_dinode *to, struct xfs_icdinode *from);
void xfs_dinode_from_disk(struct xfs_icdinode *to, struct xfs_dinode *from);
#if defined(DEBUG)
xfs: recovery of swap extents operations for CRC filesystems This is the recovery side of the btree block owner change operation performed by swapext on CRC enabled filesystems. We detect that an owner change is needed by the flag that has been placed on the inode log format flag field. Because the inode recovery is being replayed after the buffers that make up the BMBT in the given checkpoint, we can walk all the buffers and directly modify them when we see the flag set on an inode. Because the inode can be relogged and hence present in multiple chekpoints with the "change owner" flag set, we could do multiple passes across the inode to do this change. While this isn't optimal, we can't directly ignore the flag as there may be multiple independent swap extent operations being replayed on the same inode in different checkpoints so we can't ignore them. Further, because the owner change operation uses ordered buffers, we might have buffers that are newer on disk than the current checkpoint and so already have the owner changed in them. Hence we cannot just peek at a buffer in the tree and check that it has the correct owner and assume that the change was completed. So, for the moment just brute force the owner change every time we see an inode with the flag set. Note that we have to be careful here because the owner of the buffers may point to either the old owner or the new owner. Currently the verifier can't verify the owner directly, so there is no failure case here right now. If we verify the owner exactly in future, then we'll have to take this into account. This was tested in terms of normal operation via xfstests - all of the fsr tests now pass without failure. however, we really need to modify xfs/227 to stress v3 inodes correctly to ensure we fully cover this case for v5 filesystems. In terms of recovery testing, I used a hacked version of xfs_fsr that held the temp inode open for a few seconds before exiting so that the filesystem could be shut down with an open owner change recovery flags set on at least the temp inode. fsr leaves the temp inode unlinked and in btree format, so this was necessary for the owner change to be reliably replayed. logprint confirmed the tmp inode in the log had the correct flag set: INO: cnt:3 total:3 a:0x69e9e0 len:56 a:0x69ea20 len:176 a:0x69eae0 len:88 INODE: #regs:3 ino:0x44 flags:0x209 dsize:88 ^^^^^ 0x200 is set, indicating a data fork owner change needed to be replayed on inode 0x44. A printk in the revoery code confirmed that the inode change was recovered: XFS (vdc): Mounting Filesystem XFS (vdc): Starting recovery (logdev: internal) recovering owner change ino 0x44 XFS (vdc): Version 5 superblock detected. This kernel L support enabled! Use of these features in this kernel is at your own risk! XFS (vdc): Ending recovery (logdev: internal) The script used to test this was: $ cat ./recovery-fsr.sh #!/bin/bash dev=/dev/vdc mntpt=/mnt/scratch testfile=$mntpt/testfile umount $mntpt mkfs.xfs -f -m crc=1 $dev mount $dev $mntpt chmod 777 $mntpt for i in `seq 10000 -1 0`; do xfs_io -f -d -c "pwrite $(($i * 4096)) 4096" $testfile > /dev/null 2>&1 done xfs_bmap -vp $testfile |head -20 xfs_fsr -d -v $testfile & sleep 10 /home/dave/src/xfstests-dev/src/godown -f $mntpt wait umount $mntpt xfs_logprint -t $dev |tail -20 time mount $dev $mntpt xfs_bmap -vp $testfile umount $mntpt $ Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-30 00:23:45 +00:00
void xfs_inobp_check(struct xfs_mount *, struct xfs_buf *);
#else
#define xfs_inobp_check(mp, bp)
#endif /* DEBUG */
#endif /* __XFS_INODE_BUF_H__ */