linux/drivers/crypto/caam/caamalg.c

4684 lines
129 KiB
C
Raw Normal View History

/*
* caam - Freescale FSL CAAM support for crypto API
*
* Copyright 2008-2011 Freescale Semiconductor, Inc.
*
* Based on talitos crypto API driver.
*
* relationship of job descriptors to shared descriptors (SteveC Dec 10 2008):
*
* --------------- ---------------
* | JobDesc #1 |-------------------->| ShareDesc |
* | *(packet 1) | | (PDB) |
* --------------- |------------->| (hashKey) |
* . | | (cipherKey) |
* . | |-------->| (operation) |
* --------------- | | ---------------
* | JobDesc #2 |------| |
* | *(packet 2) | |
* --------------- |
* . |
* . |
* --------------- |
* | JobDesc #3 |------------
* | *(packet 3) |
* ---------------
*
* The SharedDesc never changes for a connection unless rekeyed, but
* each packet will likely be in a different place. So all we need
* to know to process the packet is where the input is, where the
* output goes, and what context we want to process with. Context is
* in the SharedDesc, packet references in the JobDesc.
*
* So, a job desc looks like:
*
* ---------------------
* | Header |
* | ShareDesc Pointer |
* | SEQ_OUT_PTR |
* | (output buffer) |
* | (output length) |
* | SEQ_IN_PTR |
* | (input buffer) |
* | (input length) |
* ---------------------
*/
#include "compat.h"
#include "regs.h"
#include "intern.h"
#include "desc_constr.h"
#include "jr.h"
#include "error.h"
#include "sg_sw_sec4.h"
#include "key_gen.h"
/*
* crypto alg
*/
#define CAAM_CRA_PRIORITY 3000
/* max key is sum of AES_MAX_KEY_SIZE, max split key size */
#define CAAM_MAX_KEY_SIZE (AES_MAX_KEY_SIZE + \
CTR_RFC3686_NONCE_SIZE + \
SHA512_DIGEST_SIZE * 2)
#define AEAD_DESC_JOB_IO_LEN (DESC_JOB_IO_LEN + CAAM_CMD_SZ * 2)
#define GCM_DESC_JOB_IO_LEN (AEAD_DESC_JOB_IO_LEN + \
CAAM_CMD_SZ * 4)
#define AUTHENC_DESC_JOB_IO_LEN (AEAD_DESC_JOB_IO_LEN + \
CAAM_CMD_SZ * 5)
/* length of descriptors text */
#define DESC_AEAD_BASE (4 * CAAM_CMD_SZ)
#define DESC_AEAD_ENC_LEN (DESC_AEAD_BASE + 11 * CAAM_CMD_SZ)
#define DESC_AEAD_DEC_LEN (DESC_AEAD_BASE + 15 * CAAM_CMD_SZ)
#define DESC_AEAD_GIVENC_LEN (DESC_AEAD_ENC_LEN + 7 * CAAM_CMD_SZ)
/* Note: Nonce is counted in enckeylen */
#define DESC_AEAD_CTR_RFC3686_LEN (4 * CAAM_CMD_SZ)
#define DESC_AEAD_NULL_BASE (3 * CAAM_CMD_SZ)
#define DESC_AEAD_NULL_ENC_LEN (DESC_AEAD_NULL_BASE + 11 * CAAM_CMD_SZ)
#define DESC_AEAD_NULL_DEC_LEN (DESC_AEAD_NULL_BASE + 13 * CAAM_CMD_SZ)
#define DESC_GCM_BASE (3 * CAAM_CMD_SZ)
#define DESC_GCM_ENC_LEN (DESC_GCM_BASE + 16 * CAAM_CMD_SZ)
#define DESC_GCM_DEC_LEN (DESC_GCM_BASE + 12 * CAAM_CMD_SZ)
#define DESC_RFC4106_BASE (3 * CAAM_CMD_SZ)
#define DESC_RFC4106_ENC_LEN (DESC_RFC4106_BASE + 13 * CAAM_CMD_SZ)
#define DESC_RFC4106_DEC_LEN (DESC_RFC4106_BASE + 13 * CAAM_CMD_SZ)
#define DESC_RFC4543_BASE (3 * CAAM_CMD_SZ)
#define DESC_RFC4543_ENC_LEN (DESC_RFC4543_BASE + 11 * CAAM_CMD_SZ)
#define DESC_RFC4543_DEC_LEN (DESC_RFC4543_BASE + 12 * CAAM_CMD_SZ)
#define DESC_ABLKCIPHER_BASE (3 * CAAM_CMD_SZ)
#define DESC_ABLKCIPHER_ENC_LEN (DESC_ABLKCIPHER_BASE + \
20 * CAAM_CMD_SZ)
#define DESC_ABLKCIPHER_DEC_LEN (DESC_ABLKCIPHER_BASE + \
15 * CAAM_CMD_SZ)
#define DESC_MAX_USED_BYTES (CAAM_DESC_BYTES_MAX - DESC_JOB_IO_LEN)
#define DESC_MAX_USED_LEN (DESC_MAX_USED_BYTES / CAAM_CMD_SZ)
#ifdef DEBUG
/* for print_hex_dumps with line references */
#define debug(format, arg...) printk(format, arg)
#else
#define debug(format, arg...)
#endif
#ifdef DEBUG
#include <linux/highmem.h>
static void dbg_dump_sg(const char *level, const char *prefix_str,
int prefix_type, int rowsize, int groupsize,
struct scatterlist *sg, size_t tlen, bool ascii)
{
struct scatterlist *it;
void *it_page;
size_t len;
void *buf;
for (it = sg; it != NULL && tlen > 0 ; it = sg_next(sg)) {
/*
* make sure the scatterlist's page
* has a valid virtual memory mapping
*/
it_page = kmap_atomic(sg_page(it));
if (unlikely(!it_page)) {
printk(KERN_ERR "dbg_dump_sg: kmap failed\n");
return;
}
buf = it_page + it->offset;
len = min_t(size_t, tlen, it->length);
print_hex_dump(level, prefix_str, prefix_type, rowsize,
groupsize, buf, len, ascii);
tlen -= len;
kunmap_atomic(it_page);
}
}
#endif
static struct list_head alg_list;
struct caam_alg_entry {
int class1_alg_type;
int class2_alg_type;
int alg_op;
bool rfc3686;
bool geniv;
};
struct caam_aead_alg {
struct aead_alg aead;
struct caam_alg_entry caam;
bool registered;
};
/* Set DK bit in class 1 operation if shared */
static inline void append_dec_op1(u32 *desc, u32 type)
{
u32 *jump_cmd, *uncond_jump_cmd;
/* DK bit is valid only for AES */
if ((type & OP_ALG_ALGSEL_MASK) != OP_ALG_ALGSEL_AES) {
append_operation(desc, type | OP_ALG_AS_INITFINAL |
OP_ALG_DECRYPT);
return;
}
jump_cmd = append_jump(desc, JUMP_TEST_ALL | JUMP_COND_SHRD);
append_operation(desc, type | OP_ALG_AS_INITFINAL |
OP_ALG_DECRYPT);
uncond_jump_cmd = append_jump(desc, JUMP_TEST_ALL);
set_jump_tgt_here(desc, jump_cmd);
append_operation(desc, type | OP_ALG_AS_INITFINAL |
OP_ALG_DECRYPT | OP_ALG_AAI_DK);
set_jump_tgt_here(desc, uncond_jump_cmd);
}
/*
* For aead functions, read payload and write payload,
* both of which are specified in req->src and req->dst
*/
static inline void aead_append_src_dst(u32 *desc, u32 msg_type)
{
append_seq_fifo_store(desc, 0, FIFOST_TYPE_MESSAGE_DATA | KEY_VLF);
append_seq_fifo_load(desc, 0, FIFOLD_CLASS_BOTH |
KEY_VLF | msg_type | FIFOLD_TYPE_LASTBOTH);
}
/*
* For ablkcipher encrypt and decrypt, read from req->src and
* write to req->dst
*/
static inline void ablkcipher_append_src_dst(u32 *desc)
{
append_math_add(desc, VARSEQOUTLEN, SEQINLEN, REG0, CAAM_CMD_SZ);
append_math_add(desc, VARSEQINLEN, SEQINLEN, REG0, CAAM_CMD_SZ);
append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS1 |
KEY_VLF | FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST1);
append_seq_fifo_store(desc, 0, FIFOST_TYPE_MESSAGE_DATA | KEY_VLF);
}
/*
* per-session context
*/
struct caam_ctx {
struct device *jrdev;
u32 sh_desc_enc[DESC_MAX_USED_LEN];
u32 sh_desc_dec[DESC_MAX_USED_LEN];
u32 sh_desc_givenc[DESC_MAX_USED_LEN];
dma_addr_t sh_desc_enc_dma;
dma_addr_t sh_desc_dec_dma;
dma_addr_t sh_desc_givenc_dma;
u32 class1_alg_type;
u32 class2_alg_type;
u32 alg_op;
u8 key[CAAM_MAX_KEY_SIZE];
dma_addr_t key_dma;
unsigned int enckeylen;
unsigned int split_key_len;
unsigned int split_key_pad_len;
unsigned int authsize;
};
static void init_sh_desc_key_aead(u32 *desc, struct caam_ctx *ctx,
int keys_fit_inline, bool is_rfc3686)
{
u32 *key_jump_cmd;
unsigned int enckeylen = ctx->enckeylen;
/* Note: Context registers are saved. */
init_sh_desc(desc, HDR_SHARE_SERIAL | HDR_SAVECTX);
/* Skip if already shared */
key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
JUMP_COND_SHRD);
/*
* RFC3686 specific:
* | ctx->key = {AUTH_KEY, ENC_KEY, NONCE}
* | enckeylen = encryption key size + nonce size
*/
if (is_rfc3686)
enckeylen -= CTR_RFC3686_NONCE_SIZE;
if (keys_fit_inline) {
append_key_as_imm(desc, ctx->key, ctx->split_key_pad_len,
ctx->split_key_len, CLASS_2 |
KEY_DEST_MDHA_SPLIT | KEY_ENC);
append_key_as_imm(desc, (void *)ctx->key +
ctx->split_key_pad_len, enckeylen,
enckeylen, CLASS_1 | KEY_DEST_CLASS_REG);
} else {
append_key(desc, ctx->key_dma, ctx->split_key_len, CLASS_2 |
KEY_DEST_MDHA_SPLIT | KEY_ENC);
append_key(desc, ctx->key_dma + ctx->split_key_pad_len,
enckeylen, CLASS_1 | KEY_DEST_CLASS_REG);
}
/* Load Counter into CONTEXT1 reg */
if (is_rfc3686) {
u32 *nonce;
nonce = (u32 *)((void *)ctx->key + ctx->split_key_pad_len +
enckeylen);
append_load_as_imm(desc, nonce, CTR_RFC3686_NONCE_SIZE,
LDST_CLASS_IND_CCB |
LDST_SRCDST_BYTE_OUTFIFO | LDST_IMM);
append_move(desc,
MOVE_SRC_OUTFIFO |
MOVE_DEST_CLASS1CTX |
(16 << MOVE_OFFSET_SHIFT) |
(CTR_RFC3686_NONCE_SIZE << MOVE_LEN_SHIFT));
}
set_jump_tgt_here(desc, key_jump_cmd);
}
static int aead_null_set_sh_desc(struct crypto_aead *aead)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
bool keys_fit_inline = false;
u32 *key_jump_cmd, *jump_cmd, *read_move_cmd, *write_move_cmd;
u32 *desc;
/*
* Job Descriptor and Shared Descriptors
* must all fit into the 64-word Descriptor h/w Buffer
*/
if (DESC_AEAD_NULL_ENC_LEN + AEAD_DESC_JOB_IO_LEN +
ctx->split_key_pad_len <= CAAM_DESC_BYTES_MAX)
keys_fit_inline = true;
/* aead_encrypt shared descriptor */
desc = ctx->sh_desc_enc;
init_sh_desc(desc, HDR_SHARE_SERIAL);
/* Skip if already shared */
key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
JUMP_COND_SHRD);
if (keys_fit_inline)
append_key_as_imm(desc, ctx->key, ctx->split_key_pad_len,
ctx->split_key_len, CLASS_2 |
KEY_DEST_MDHA_SPLIT | KEY_ENC);
else
append_key(desc, ctx->key_dma, ctx->split_key_len, CLASS_2 |
KEY_DEST_MDHA_SPLIT | KEY_ENC);
set_jump_tgt_here(desc, key_jump_cmd);
/* assoclen + cryptlen = seqinlen */
append_math_sub(desc, REG3, SEQINLEN, REG0, CAAM_CMD_SZ);
/* Prepare to read and write cryptlen + assoclen bytes */
append_math_add(desc, VARSEQINLEN, ZERO, REG3, CAAM_CMD_SZ);
append_math_add(desc, VARSEQOUTLEN, ZERO, REG3, CAAM_CMD_SZ);
/*
* MOVE_LEN opcode is not available in all SEC HW revisions,
* thus need to do some magic, i.e. self-patch the descriptor
* buffer.
*/
read_move_cmd = append_move(desc, MOVE_SRC_DESCBUF |
MOVE_DEST_MATH3 |
(0x6 << MOVE_LEN_SHIFT));
write_move_cmd = append_move(desc, MOVE_SRC_MATH3 |
MOVE_DEST_DESCBUF |
MOVE_WAITCOMP |
(0x8 << MOVE_LEN_SHIFT));
/* Class 2 operation */
append_operation(desc, ctx->class2_alg_type |
OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT);
/* Read and write cryptlen bytes */
aead_append_src_dst(desc, FIFOLD_TYPE_MSG | FIFOLD_TYPE_FLUSH1);
set_move_tgt_here(desc, read_move_cmd);
set_move_tgt_here(desc, write_move_cmd);
append_cmd(desc, CMD_LOAD | DISABLE_AUTO_INFO_FIFO);
append_move(desc, MOVE_SRC_INFIFO_CL | MOVE_DEST_OUTFIFO |
MOVE_AUX_LS);
/* Write ICV */
append_seq_store(desc, ctx->authsize, LDST_CLASS_2_CCB |
LDST_SRCDST_BYTE_CONTEXT);
ctx->sh_desc_enc_dma = dma_map_single(jrdev, desc,
desc_bytes(desc),
DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, ctx->sh_desc_enc_dma)) {
dev_err(jrdev, "unable to map shared descriptor\n");
return -ENOMEM;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR,
"aead null enc shdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc,
desc_bytes(desc), 1);
#endif
/*
* Job Descriptor and Shared Descriptors
* must all fit into the 64-word Descriptor h/w Buffer
*/
keys_fit_inline = false;
if (DESC_AEAD_NULL_DEC_LEN + DESC_JOB_IO_LEN +
ctx->split_key_pad_len <= CAAM_DESC_BYTES_MAX)
keys_fit_inline = true;
desc = ctx->sh_desc_dec;
/* aead_decrypt shared descriptor */
init_sh_desc(desc, HDR_SHARE_SERIAL);
/* Skip if already shared */
key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
JUMP_COND_SHRD);
if (keys_fit_inline)
append_key_as_imm(desc, ctx->key, ctx->split_key_pad_len,
ctx->split_key_len, CLASS_2 |
KEY_DEST_MDHA_SPLIT | KEY_ENC);
else
append_key(desc, ctx->key_dma, ctx->split_key_len, CLASS_2 |
KEY_DEST_MDHA_SPLIT | KEY_ENC);
set_jump_tgt_here(desc, key_jump_cmd);
/* Class 2 operation */
append_operation(desc, ctx->class2_alg_type |
OP_ALG_AS_INITFINAL | OP_ALG_DECRYPT | OP_ALG_ICV_ON);
/* assoclen + cryptlen = seqoutlen */
append_math_sub(desc, REG2, SEQOUTLEN, REG0, CAAM_CMD_SZ);
/* Prepare to read and write cryptlen + assoclen bytes */
append_math_add(desc, VARSEQINLEN, ZERO, REG2, CAAM_CMD_SZ);
append_math_add(desc, VARSEQOUTLEN, ZERO, REG2, CAAM_CMD_SZ);
/*
* MOVE_LEN opcode is not available in all SEC HW revisions,
* thus need to do some magic, i.e. self-patch the descriptor
* buffer.
*/
read_move_cmd = append_move(desc, MOVE_SRC_DESCBUF |
MOVE_DEST_MATH2 |
(0x6 << MOVE_LEN_SHIFT));
write_move_cmd = append_move(desc, MOVE_SRC_MATH2 |
MOVE_DEST_DESCBUF |
MOVE_WAITCOMP |
(0x8 << MOVE_LEN_SHIFT));
/* Read and write cryptlen bytes */
aead_append_src_dst(desc, FIFOLD_TYPE_MSG | FIFOLD_TYPE_FLUSH1);
/*
* Insert a NOP here, since we need at least 4 instructions between
* code patching the descriptor buffer and the location being patched.
*/
jump_cmd = append_jump(desc, JUMP_TEST_ALL);
set_jump_tgt_here(desc, jump_cmd);
set_move_tgt_here(desc, read_move_cmd);
set_move_tgt_here(desc, write_move_cmd);
append_cmd(desc, CMD_LOAD | DISABLE_AUTO_INFO_FIFO);
append_move(desc, MOVE_SRC_INFIFO_CL | MOVE_DEST_OUTFIFO |
MOVE_AUX_LS);
append_cmd(desc, CMD_LOAD | ENABLE_AUTO_INFO_FIFO);
/* Load ICV */
append_seq_fifo_load(desc, ctx->authsize, FIFOLD_CLASS_CLASS2 |
FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_ICV);
ctx->sh_desc_dec_dma = dma_map_single(jrdev, desc,
desc_bytes(desc),
DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, ctx->sh_desc_dec_dma)) {
dev_err(jrdev, "unable to map shared descriptor\n");
return -ENOMEM;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR,
"aead null dec shdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc,
desc_bytes(desc), 1);
#endif
return 0;
}
static int aead_set_sh_desc(struct crypto_aead *aead)
{
struct caam_aead_alg *alg = container_of(crypto_aead_alg(aead),
struct caam_aead_alg, aead);
unsigned int ivsize = crypto_aead_ivsize(aead);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
bool keys_fit_inline;
u32 geniv, moveiv;
u32 ctx1_iv_off = 0;
u32 *desc;
const bool ctr_mode = ((ctx->class1_alg_type & OP_ALG_AAI_MASK) ==
OP_ALG_AAI_CTR_MOD128);
const bool is_rfc3686 = alg->caam.rfc3686;
if (!ctx->authsize)
return 0;
/* NULL encryption / decryption */
if (!ctx->enckeylen)
return aead_null_set_sh_desc(aead);
/*
* AES-CTR needs to load IV in CONTEXT1 reg
* at an offset of 128bits (16bytes)
* CONTEXT1[255:128] = IV
*/
if (ctr_mode)
ctx1_iv_off = 16;
/*
* RFC3686 specific:
* CONTEXT1[255:128] = {NONCE, IV, COUNTER}
*/
if (is_rfc3686)
ctx1_iv_off = 16 + CTR_RFC3686_NONCE_SIZE;
if (alg->caam.geniv)
goto skip_enc;
/*
* Job Descriptor and Shared Descriptors
* must all fit into the 64-word Descriptor h/w Buffer
*/
keys_fit_inline = false;
if (DESC_AEAD_ENC_LEN + AUTHENC_DESC_JOB_IO_LEN +
ctx->split_key_pad_len + ctx->enckeylen +
(is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0) <=
CAAM_DESC_BYTES_MAX)
keys_fit_inline = true;
/* aead_encrypt shared descriptor */
desc = ctx->sh_desc_enc;
/* Note: Context registers are saved. */
init_sh_desc_key_aead(desc, ctx, keys_fit_inline, is_rfc3686);
/* Class 2 operation */
append_operation(desc, ctx->class2_alg_type |
OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT);
/* Read and write assoclen bytes */
append_math_add(desc, VARSEQINLEN, ZERO, REG3, CAAM_CMD_SZ);
append_math_add(desc, VARSEQOUTLEN, ZERO, REG3, CAAM_CMD_SZ);
/* Skip assoc data */
append_seq_fifo_store(desc, 0, FIFOST_TYPE_SKIP | FIFOLDST_VLF);
/* read assoc before reading payload */
append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_MSG |
FIFOLDST_VLF);
/* Load Counter into CONTEXT1 reg */
if (is_rfc3686)
append_load_imm_be32(desc, 1, LDST_IMM | LDST_CLASS_1_CCB |
LDST_SRCDST_BYTE_CONTEXT |
((ctx1_iv_off + CTR_RFC3686_IV_SIZE) <<
LDST_OFFSET_SHIFT));
/* Class 1 operation */
append_operation(desc, ctx->class1_alg_type |
OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT);
/* Read and write cryptlen bytes */
append_math_add(desc, VARSEQINLEN, SEQINLEN, REG0, CAAM_CMD_SZ);
append_math_add(desc, VARSEQOUTLEN, SEQINLEN, REG0, CAAM_CMD_SZ);
aead_append_src_dst(desc, FIFOLD_TYPE_MSG1OUT2);
/* Write ICV */
append_seq_store(desc, ctx->authsize, LDST_CLASS_2_CCB |
LDST_SRCDST_BYTE_CONTEXT);
ctx->sh_desc_enc_dma = dma_map_single(jrdev, desc,
desc_bytes(desc),
DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, ctx->sh_desc_enc_dma)) {
dev_err(jrdev, "unable to map shared descriptor\n");
return -ENOMEM;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "aead enc shdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc,
desc_bytes(desc), 1);
#endif
skip_enc:
/*
* Job Descriptor and Shared Descriptors
* must all fit into the 64-word Descriptor h/w Buffer
*/
keys_fit_inline = false;
if (DESC_AEAD_DEC_LEN + AUTHENC_DESC_JOB_IO_LEN +
ctx->split_key_pad_len + ctx->enckeylen +
(is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0) <=
CAAM_DESC_BYTES_MAX)
keys_fit_inline = true;
/* aead_decrypt shared descriptor */
desc = ctx->sh_desc_dec;
/* Note: Context registers are saved. */
init_sh_desc_key_aead(desc, ctx, keys_fit_inline, is_rfc3686);
/* Class 2 operation */
append_operation(desc, ctx->class2_alg_type |
OP_ALG_AS_INITFINAL | OP_ALG_DECRYPT | OP_ALG_ICV_ON);
/* Read and write assoclen bytes */
append_math_add(desc, VARSEQINLEN, ZERO, REG3, CAAM_CMD_SZ);
if (alg->caam.geniv)
append_math_add_imm_u32(desc, VARSEQOUTLEN, REG3, IMM, ivsize);
else
append_math_add(desc, VARSEQOUTLEN, ZERO, REG3, CAAM_CMD_SZ);
/* Skip assoc data */
append_seq_fifo_store(desc, 0, FIFOST_TYPE_SKIP | FIFOLDST_VLF);
/* read assoc before reading payload */
append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_MSG |
KEY_VLF);
if (alg->caam.geniv) {
append_seq_load(desc, ivsize, LDST_CLASS_1_CCB |
LDST_SRCDST_BYTE_CONTEXT |
(ctx1_iv_off << LDST_OFFSET_SHIFT));
append_move(desc, MOVE_SRC_CLASS1CTX | MOVE_DEST_CLASS2INFIFO |
(ctx1_iv_off << MOVE_OFFSET_SHIFT) | ivsize);
}
/* Load Counter into CONTEXT1 reg */
if (is_rfc3686)
append_load_imm_be32(desc, 1, LDST_IMM | LDST_CLASS_1_CCB |
LDST_SRCDST_BYTE_CONTEXT |
((ctx1_iv_off + CTR_RFC3686_IV_SIZE) <<
LDST_OFFSET_SHIFT));
/* Choose operation */
if (ctr_mode)
append_operation(desc, ctx->class1_alg_type |
OP_ALG_AS_INITFINAL | OP_ALG_DECRYPT);
else
append_dec_op1(desc, ctx->class1_alg_type);
/* Read and write cryptlen bytes */
append_math_add(desc, VARSEQINLEN, SEQOUTLEN, REG0, CAAM_CMD_SZ);
append_math_add(desc, VARSEQOUTLEN, SEQOUTLEN, REG0, CAAM_CMD_SZ);
aead_append_src_dst(desc, FIFOLD_TYPE_MSG);
/* Load ICV */
append_seq_fifo_load(desc, ctx->authsize, FIFOLD_CLASS_CLASS2 |
FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_ICV);
ctx->sh_desc_dec_dma = dma_map_single(jrdev, desc,
desc_bytes(desc),
DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, ctx->sh_desc_dec_dma)) {
dev_err(jrdev, "unable to map shared descriptor\n");
return -ENOMEM;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "aead dec shdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc,
desc_bytes(desc), 1);
#endif
if (!alg->caam.geniv)
goto skip_givenc;
/*
* Job Descriptor and Shared Descriptors
* must all fit into the 64-word Descriptor h/w Buffer
*/
keys_fit_inline = false;
if (DESC_AEAD_GIVENC_LEN + AUTHENC_DESC_JOB_IO_LEN +
ctx->split_key_pad_len + ctx->enckeylen +
(is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0) <=
CAAM_DESC_BYTES_MAX)
keys_fit_inline = true;
/* aead_givencrypt shared descriptor */
desc = ctx->sh_desc_enc;
/* Note: Context registers are saved. */
init_sh_desc_key_aead(desc, ctx, keys_fit_inline, is_rfc3686);
if (is_rfc3686)
goto copy_iv;
/* Generate IV */
geniv = NFIFOENTRY_STYPE_PAD | NFIFOENTRY_DEST_DECO |
NFIFOENTRY_DTYPE_MSG | NFIFOENTRY_LC1 |
NFIFOENTRY_PTYPE_RND | (ivsize << NFIFOENTRY_DLEN_SHIFT);
append_load_imm_u32(desc, geniv, LDST_CLASS_IND_CCB |
LDST_SRCDST_WORD_INFO_FIFO | LDST_IMM);
append_cmd(desc, CMD_LOAD | DISABLE_AUTO_INFO_FIFO);
append_move(desc, MOVE_WAITCOMP |
MOVE_SRC_INFIFO | MOVE_DEST_CLASS1CTX |
(ctx1_iv_off << MOVE_OFFSET_SHIFT) |
(ivsize << MOVE_LEN_SHIFT));
append_cmd(desc, CMD_LOAD | ENABLE_AUTO_INFO_FIFO);
copy_iv:
/* Copy IV to class 1 context */
append_move(desc, MOVE_SRC_CLASS1CTX | MOVE_DEST_OUTFIFO |
(ctx1_iv_off << MOVE_OFFSET_SHIFT) |
(ivsize << MOVE_LEN_SHIFT));
/* Return to encryption */
append_operation(desc, ctx->class2_alg_type |
OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT);
/* Read and write assoclen bytes */
append_math_add(desc, VARSEQINLEN, ZERO, REG3, CAAM_CMD_SZ);
append_math_add(desc, VARSEQOUTLEN, ZERO, REG3, CAAM_CMD_SZ);
/* Skip assoc data */
append_seq_fifo_store(desc, 0, FIFOST_TYPE_SKIP | FIFOLDST_VLF);
/* read assoc before reading payload */
append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_MSG |
KEY_VLF);
/* Copy iv from outfifo to class 2 fifo */
moveiv = NFIFOENTRY_STYPE_OFIFO | NFIFOENTRY_DEST_CLASS2 |
NFIFOENTRY_DTYPE_MSG | (ivsize << NFIFOENTRY_DLEN_SHIFT);
append_load_imm_u32(desc, moveiv, LDST_CLASS_IND_CCB |
LDST_SRCDST_WORD_INFO_FIFO | LDST_IMM);
append_load_imm_u32(desc, ivsize, LDST_CLASS_2_CCB |
LDST_SRCDST_WORD_DATASZ_REG | LDST_IMM);
/* Load Counter into CONTEXT1 reg */
if (is_rfc3686)
append_load_imm_be32(desc, 1, LDST_IMM | LDST_CLASS_1_CCB |
LDST_SRCDST_BYTE_CONTEXT |
((ctx1_iv_off + CTR_RFC3686_IV_SIZE) <<
LDST_OFFSET_SHIFT));
/* Class 1 operation */
append_operation(desc, ctx->class1_alg_type |
OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT);
/* Will write ivsize + cryptlen */
append_math_add(desc, VARSEQOUTLEN, SEQINLEN, REG0, CAAM_CMD_SZ);
/* Not need to reload iv */
append_seq_fifo_load(desc, ivsize,
FIFOLD_CLASS_SKIP);
/* Will read cryptlen */
append_math_add(desc, VARSEQINLEN, SEQINLEN, REG0, CAAM_CMD_SZ);
append_seq_fifo_load(desc, 0, FIFOLD_CLASS_BOTH | KEY_VLF |
FIFOLD_TYPE_MSG1OUT2 | FIFOLD_TYPE_LASTBOTH);
append_seq_fifo_store(desc, 0, FIFOST_TYPE_MESSAGE_DATA | KEY_VLF);
/* Write ICV */
append_seq_store(desc, ctx->authsize, LDST_CLASS_2_CCB |
LDST_SRCDST_BYTE_CONTEXT);
ctx->sh_desc_enc_dma = dma_map_single(jrdev, desc,
desc_bytes(desc),
DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, ctx->sh_desc_enc_dma)) {
dev_err(jrdev, "unable to map shared descriptor\n");
return -ENOMEM;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "aead givenc shdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc,
desc_bytes(desc), 1);
#endif
skip_givenc:
return 0;
}
static int aead_setauthsize(struct crypto_aead *authenc,
unsigned int authsize)
{
struct caam_ctx *ctx = crypto_aead_ctx(authenc);
ctx->authsize = authsize;
aead_set_sh_desc(authenc);
return 0;
}
static int gcm_set_sh_desc(struct crypto_aead *aead)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
bool keys_fit_inline = false;
u32 *key_jump_cmd, *zero_payload_jump_cmd,
*zero_assoc_jump_cmd1, *zero_assoc_jump_cmd2;
u32 *desc;
if (!ctx->enckeylen || !ctx->authsize)
return 0;
/*
* AES GCM encrypt shared descriptor
* Job Descriptor and Shared Descriptor
* must fit into the 64-word Descriptor h/w Buffer
*/
if (DESC_GCM_ENC_LEN + GCM_DESC_JOB_IO_LEN +
ctx->enckeylen <= CAAM_DESC_BYTES_MAX)
keys_fit_inline = true;
desc = ctx->sh_desc_enc;
init_sh_desc(desc, HDR_SHARE_SERIAL);
/* skip key loading if they are loaded due to sharing */
key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
JUMP_COND_SHRD | JUMP_COND_SELF);
if (keys_fit_inline)
append_key_as_imm(desc, (void *)ctx->key, ctx->enckeylen,
ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG);
else
append_key(desc, ctx->key_dma, ctx->enckeylen,
CLASS_1 | KEY_DEST_CLASS_REG);
set_jump_tgt_here(desc, key_jump_cmd);
/* class 1 operation */
append_operation(desc, ctx->class1_alg_type |
OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT);
/* if assoclen + cryptlen is ZERO, skip to ICV write */
append_math_sub(desc, VARSEQOUTLEN, SEQINLEN, REG0, CAAM_CMD_SZ);
zero_assoc_jump_cmd2 = append_jump(desc, JUMP_TEST_ALL |
JUMP_COND_MATH_Z);
/* if assoclen is ZERO, skip reading the assoc data */
append_math_add(desc, VARSEQINLEN, ZERO, REG3, CAAM_CMD_SZ);
zero_assoc_jump_cmd1 = append_jump(desc, JUMP_TEST_ALL |
JUMP_COND_MATH_Z);
append_math_add(desc, VARSEQOUTLEN, ZERO, REG3, CAAM_CMD_SZ);
/* skip assoc data */
append_seq_fifo_store(desc, 0, FIFOST_TYPE_SKIP | FIFOLDST_VLF);
/* cryptlen = seqinlen - assoclen */
append_math_sub(desc, VARSEQOUTLEN, SEQINLEN, REG3, CAAM_CMD_SZ);
/* if cryptlen is ZERO jump to zero-payload commands */
zero_payload_jump_cmd = append_jump(desc, JUMP_TEST_ALL |
JUMP_COND_MATH_Z);
/* read assoc data */
append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS1 | FIFOLDST_VLF |
FIFOLD_TYPE_AAD | FIFOLD_TYPE_FLUSH1);
set_jump_tgt_here(desc, zero_assoc_jump_cmd1);
append_math_sub(desc, VARSEQINLEN, SEQINLEN, REG0, CAAM_CMD_SZ);
/* write encrypted data */
append_seq_fifo_store(desc, 0, FIFOST_TYPE_MESSAGE_DATA | FIFOLDST_VLF);
/* read payload data */
append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS1 | FIFOLDST_VLF |
FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST1);
/* jump the zero-payload commands */
append_jump(desc, JUMP_TEST_ALL | 2);
/* zero-payload commands */
set_jump_tgt_here(desc, zero_payload_jump_cmd);
/* read assoc data */
append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS1 | FIFOLDST_VLF |
FIFOLD_TYPE_AAD | FIFOLD_TYPE_LAST1);
/* There is no input data */
set_jump_tgt_here(desc, zero_assoc_jump_cmd2);
/* write ICV */
append_seq_store(desc, ctx->authsize, LDST_CLASS_1_CCB |
LDST_SRCDST_BYTE_CONTEXT);
ctx->sh_desc_enc_dma = dma_map_single(jrdev, desc,
desc_bytes(desc),
DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, ctx->sh_desc_enc_dma)) {
dev_err(jrdev, "unable to map shared descriptor\n");
return -ENOMEM;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "gcm enc shdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc,
desc_bytes(desc), 1);
#endif
/*
* Job Descriptor and Shared Descriptors
* must all fit into the 64-word Descriptor h/w Buffer
*/
keys_fit_inline = false;
if (DESC_GCM_DEC_LEN + GCM_DESC_JOB_IO_LEN +
ctx->enckeylen <= CAAM_DESC_BYTES_MAX)
keys_fit_inline = true;
desc = ctx->sh_desc_dec;
init_sh_desc(desc, HDR_SHARE_SERIAL);
/* skip key loading if they are loaded due to sharing */
key_jump_cmd = append_jump(desc, JUMP_JSL |
JUMP_TEST_ALL | JUMP_COND_SHRD |
JUMP_COND_SELF);
if (keys_fit_inline)
append_key_as_imm(desc, (void *)ctx->key, ctx->enckeylen,
ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG);
else
append_key(desc, ctx->key_dma, ctx->enckeylen,
CLASS_1 | KEY_DEST_CLASS_REG);
set_jump_tgt_here(desc, key_jump_cmd);
/* class 1 operation */
append_operation(desc, ctx->class1_alg_type |
OP_ALG_AS_INITFINAL | OP_ALG_DECRYPT | OP_ALG_ICV_ON);
/* if assoclen is ZERO, skip reading the assoc data */
append_math_add(desc, VARSEQINLEN, ZERO, REG3, CAAM_CMD_SZ);
zero_assoc_jump_cmd1 = append_jump(desc, JUMP_TEST_ALL |
JUMP_COND_MATH_Z);
append_math_add(desc, VARSEQOUTLEN, ZERO, REG3, CAAM_CMD_SZ);
/* skip assoc data */
append_seq_fifo_store(desc, 0, FIFOST_TYPE_SKIP | FIFOLDST_VLF);
/* read assoc data */
append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS1 | FIFOLDST_VLF |
FIFOLD_TYPE_AAD | FIFOLD_TYPE_FLUSH1);
set_jump_tgt_here(desc, zero_assoc_jump_cmd1);
/* cryptlen = seqoutlen - assoclen */
append_math_sub(desc, VARSEQINLEN, SEQOUTLEN, REG0, CAAM_CMD_SZ);
/* jump to zero-payload command if cryptlen is zero */
zero_payload_jump_cmd = append_jump(desc, JUMP_TEST_ALL |
JUMP_COND_MATH_Z);
append_math_sub(desc, VARSEQOUTLEN, SEQOUTLEN, REG0, CAAM_CMD_SZ);
/* store encrypted data */
append_seq_fifo_store(desc, 0, FIFOST_TYPE_MESSAGE_DATA | FIFOLDST_VLF);
/* read payload data */
append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS1 | FIFOLDST_VLF |
FIFOLD_TYPE_MSG | FIFOLD_TYPE_FLUSH1);
/* zero-payload command */
set_jump_tgt_here(desc, zero_payload_jump_cmd);
/* read ICV */
append_seq_fifo_load(desc, ctx->authsize, FIFOLD_CLASS_CLASS1 |
FIFOLD_TYPE_ICV | FIFOLD_TYPE_LAST1);
ctx->sh_desc_dec_dma = dma_map_single(jrdev, desc,
desc_bytes(desc),
DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, ctx->sh_desc_dec_dma)) {
dev_err(jrdev, "unable to map shared descriptor\n");
return -ENOMEM;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "gcm dec shdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc,
desc_bytes(desc), 1);
#endif
return 0;
}
static int gcm_setauthsize(struct crypto_aead *authenc, unsigned int authsize)
{
struct caam_ctx *ctx = crypto_aead_ctx(authenc);
ctx->authsize = authsize;
gcm_set_sh_desc(authenc);
return 0;
}
static int rfc4106_set_sh_desc(struct crypto_aead *aead)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
bool keys_fit_inline = false;
u32 *key_jump_cmd;
u32 *desc;
if (!ctx->enckeylen || !ctx->authsize)
return 0;
/*
* RFC4106 encrypt shared descriptor
* Job Descriptor and Shared Descriptor
* must fit into the 64-word Descriptor h/w Buffer
*/
if (DESC_RFC4106_ENC_LEN + GCM_DESC_JOB_IO_LEN +
ctx->enckeylen <= CAAM_DESC_BYTES_MAX)
keys_fit_inline = true;
desc = ctx->sh_desc_enc;
init_sh_desc(desc, HDR_SHARE_SERIAL);
/* Skip key loading if it is loaded due to sharing */
key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
JUMP_COND_SHRD);
if (keys_fit_inline)
append_key_as_imm(desc, (void *)ctx->key, ctx->enckeylen,
ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG);
else
append_key(desc, ctx->key_dma, ctx->enckeylen,
CLASS_1 | KEY_DEST_CLASS_REG);
set_jump_tgt_here(desc, key_jump_cmd);
/* Class 1 operation */
append_operation(desc, ctx->class1_alg_type |
OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT);
append_math_sub_imm_u32(desc, VARSEQINLEN, REG3, IMM, 8);
append_math_add(desc, VARSEQOUTLEN, ZERO, REG3, CAAM_CMD_SZ);
/* Read assoc data */
append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS1 | FIFOLDST_VLF |
FIFOLD_TYPE_AAD | FIFOLD_TYPE_FLUSH1);
/* Skip IV */
append_seq_fifo_load(desc, 8, FIFOLD_CLASS_SKIP);
/* Will read cryptlen bytes */
append_math_sub(desc, VARSEQINLEN, SEQINLEN, REG0, CAAM_CMD_SZ);
/* Workaround for erratum A-005473 (simultaneous SEQ FIFO skips) */
append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS1 | FIFOLD_TYPE_MSG);
/* Skip assoc data */
append_seq_fifo_store(desc, 0, FIFOST_TYPE_SKIP | FIFOLDST_VLF);
/* cryptlen = seqoutlen - assoclen */
append_math_sub(desc, VARSEQOUTLEN, VARSEQINLEN, REG0, CAAM_CMD_SZ);
/* Write encrypted data */
append_seq_fifo_store(desc, 0, FIFOST_TYPE_MESSAGE_DATA | FIFOLDST_VLF);
/* Read payload data */
append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS1 | FIFOLDST_VLF |
FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST1);
/* Write ICV */
append_seq_store(desc, ctx->authsize, LDST_CLASS_1_CCB |
LDST_SRCDST_BYTE_CONTEXT);
ctx->sh_desc_enc_dma = dma_map_single(jrdev, desc,
desc_bytes(desc),
DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, ctx->sh_desc_enc_dma)) {
dev_err(jrdev, "unable to map shared descriptor\n");
return -ENOMEM;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "rfc4106 enc shdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc,
desc_bytes(desc), 1);
#endif
/*
* Job Descriptor and Shared Descriptors
* must all fit into the 64-word Descriptor h/w Buffer
*/
keys_fit_inline = false;
if (DESC_RFC4106_DEC_LEN + DESC_JOB_IO_LEN +
ctx->enckeylen <= CAAM_DESC_BYTES_MAX)
keys_fit_inline = true;
desc = ctx->sh_desc_dec;
init_sh_desc(desc, HDR_SHARE_SERIAL);
/* Skip key loading if it is loaded due to sharing */
key_jump_cmd = append_jump(desc, JUMP_JSL |
JUMP_TEST_ALL | JUMP_COND_SHRD);
if (keys_fit_inline)
append_key_as_imm(desc, (void *)ctx->key, ctx->enckeylen,
ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG);
else
append_key(desc, ctx->key_dma, ctx->enckeylen,
CLASS_1 | KEY_DEST_CLASS_REG);
set_jump_tgt_here(desc, key_jump_cmd);
/* Class 1 operation */
append_operation(desc, ctx->class1_alg_type |
OP_ALG_AS_INITFINAL | OP_ALG_DECRYPT | OP_ALG_ICV_ON);
append_math_sub_imm_u32(desc, VARSEQINLEN, REG3, IMM, 8);
append_math_add(desc, VARSEQOUTLEN, ZERO, REG3, CAAM_CMD_SZ);
/* Read assoc data */
append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS1 | FIFOLDST_VLF |
FIFOLD_TYPE_AAD | FIFOLD_TYPE_FLUSH1);
/* Skip IV */
append_seq_fifo_load(desc, 8, FIFOLD_CLASS_SKIP);
/* Will read cryptlen bytes */
append_math_sub(desc, VARSEQINLEN, SEQOUTLEN, REG3, CAAM_CMD_SZ);
/* Workaround for erratum A-005473 (simultaneous SEQ FIFO skips) */
append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS1 | FIFOLD_TYPE_MSG);
/* Skip assoc data */
append_seq_fifo_store(desc, 0, FIFOST_TYPE_SKIP | FIFOLDST_VLF);
/* Will write cryptlen bytes */
append_math_sub(desc, VARSEQOUTLEN, SEQOUTLEN, REG0, CAAM_CMD_SZ);
/* Store payload data */
append_seq_fifo_store(desc, 0, FIFOST_TYPE_MESSAGE_DATA | FIFOLDST_VLF);
/* Read encrypted data */
append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS1 | FIFOLDST_VLF |
FIFOLD_TYPE_MSG | FIFOLD_TYPE_FLUSH1);
/* Read ICV */
append_seq_fifo_load(desc, ctx->authsize, FIFOLD_CLASS_CLASS1 |
FIFOLD_TYPE_ICV | FIFOLD_TYPE_LAST1);
ctx->sh_desc_dec_dma = dma_map_single(jrdev, desc,
desc_bytes(desc),
DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, ctx->sh_desc_dec_dma)) {
dev_err(jrdev, "unable to map shared descriptor\n");
return -ENOMEM;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "rfc4106 dec shdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc,
desc_bytes(desc), 1);
#endif
return 0;
}
static int rfc4106_setauthsize(struct crypto_aead *authenc,
unsigned int authsize)
{
struct caam_ctx *ctx = crypto_aead_ctx(authenc);
ctx->authsize = authsize;
rfc4106_set_sh_desc(authenc);
return 0;
}
static int rfc4543_set_sh_desc(struct crypto_aead *aead)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
bool keys_fit_inline = false;
u32 *key_jump_cmd;
u32 *read_move_cmd, *write_move_cmd;
u32 *desc;
if (!ctx->enckeylen || !ctx->authsize)
return 0;
/*
* RFC4543 encrypt shared descriptor
* Job Descriptor and Shared Descriptor
* must fit into the 64-word Descriptor h/w Buffer
*/
if (DESC_RFC4543_ENC_LEN + GCM_DESC_JOB_IO_LEN +
ctx->enckeylen <= CAAM_DESC_BYTES_MAX)
keys_fit_inline = true;
desc = ctx->sh_desc_enc;
init_sh_desc(desc, HDR_SHARE_SERIAL);
/* Skip key loading if it is loaded due to sharing */
key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
JUMP_COND_SHRD);
if (keys_fit_inline)
append_key_as_imm(desc, (void *)ctx->key, ctx->enckeylen,
ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG);
else
append_key(desc, ctx->key_dma, ctx->enckeylen,
CLASS_1 | KEY_DEST_CLASS_REG);
set_jump_tgt_here(desc, key_jump_cmd);
/* Class 1 operation */
append_operation(desc, ctx->class1_alg_type |
OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT);
/* assoclen + cryptlen = seqinlen */
append_math_sub(desc, REG3, SEQINLEN, REG0, CAAM_CMD_SZ);
/*
* MOVE_LEN opcode is not available in all SEC HW revisions,
* thus need to do some magic, i.e. self-patch the descriptor
* buffer.
*/
read_move_cmd = append_move(desc, MOVE_SRC_DESCBUF | MOVE_DEST_MATH3 |
(0x6 << MOVE_LEN_SHIFT));
write_move_cmd = append_move(desc, MOVE_SRC_MATH3 | MOVE_DEST_DESCBUF |
(0x8 << MOVE_LEN_SHIFT));
/* Will read assoclen + cryptlen bytes */
append_math_sub(desc, VARSEQINLEN, SEQINLEN, REG0, CAAM_CMD_SZ);
/* Will write assoclen + cryptlen bytes */
append_math_sub(desc, VARSEQOUTLEN, SEQINLEN, REG0, CAAM_CMD_SZ);
/* Read and write assoclen + cryptlen bytes */
aead_append_src_dst(desc, FIFOLD_TYPE_AAD);
set_move_tgt_here(desc, read_move_cmd);
set_move_tgt_here(desc, write_move_cmd);
append_cmd(desc, CMD_LOAD | DISABLE_AUTO_INFO_FIFO);
/* Move payload data to OFIFO */
append_move(desc, MOVE_SRC_INFIFO_CL | MOVE_DEST_OUTFIFO);
/* Write ICV */
append_seq_store(desc, ctx->authsize, LDST_CLASS_1_CCB |
LDST_SRCDST_BYTE_CONTEXT);
ctx->sh_desc_enc_dma = dma_map_single(jrdev, desc,
desc_bytes(desc),
DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, ctx->sh_desc_enc_dma)) {
dev_err(jrdev, "unable to map shared descriptor\n");
return -ENOMEM;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "rfc4543 enc shdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc,
desc_bytes(desc), 1);
#endif
/*
* Job Descriptor and Shared Descriptors
* must all fit into the 64-word Descriptor h/w Buffer
*/
keys_fit_inline = false;
if (DESC_RFC4543_DEC_LEN + GCM_DESC_JOB_IO_LEN +
ctx->enckeylen <= CAAM_DESC_BYTES_MAX)
keys_fit_inline = true;
desc = ctx->sh_desc_dec;
init_sh_desc(desc, HDR_SHARE_SERIAL);
/* Skip key loading if it is loaded due to sharing */
key_jump_cmd = append_jump(desc, JUMP_JSL |
JUMP_TEST_ALL | JUMP_COND_SHRD);
if (keys_fit_inline)
append_key_as_imm(desc, (void *)ctx->key, ctx->enckeylen,
ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG);
else
append_key(desc, ctx->key_dma, ctx->enckeylen,
CLASS_1 | KEY_DEST_CLASS_REG);
set_jump_tgt_here(desc, key_jump_cmd);
/* Class 1 operation */
append_operation(desc, ctx->class1_alg_type |
OP_ALG_AS_INITFINAL | OP_ALG_DECRYPT | OP_ALG_ICV_ON);
/* assoclen + cryptlen = seqoutlen */
append_math_sub(desc, REG3, SEQOUTLEN, REG0, CAAM_CMD_SZ);
/*
* MOVE_LEN opcode is not available in all SEC HW revisions,
* thus need to do some magic, i.e. self-patch the descriptor
* buffer.
*/
read_move_cmd = append_move(desc, MOVE_SRC_DESCBUF | MOVE_DEST_MATH3 |
(0x6 << MOVE_LEN_SHIFT));
write_move_cmd = append_move(desc, MOVE_SRC_MATH3 | MOVE_DEST_DESCBUF |
(0x8 << MOVE_LEN_SHIFT));
/* Will read assoclen + cryptlen bytes */
append_math_sub(desc, VARSEQINLEN, SEQOUTLEN, REG0, CAAM_CMD_SZ);
/* Will write assoclen + cryptlen bytes */
append_math_sub(desc, VARSEQOUTLEN, SEQOUTLEN, REG0, CAAM_CMD_SZ);
/* Store payload data */
append_seq_fifo_store(desc, 0, FIFOST_TYPE_MESSAGE_DATA | FIFOLDST_VLF);
/* In-snoop assoclen + cryptlen data */
append_seq_fifo_load(desc, 0, FIFOLD_CLASS_BOTH | FIFOLDST_VLF |
FIFOLD_TYPE_AAD | FIFOLD_TYPE_LAST2FLUSH1);
set_move_tgt_here(desc, read_move_cmd);
set_move_tgt_here(desc, write_move_cmd);
append_cmd(desc, CMD_LOAD | DISABLE_AUTO_INFO_FIFO);
/* Move payload data to OFIFO */
append_move(desc, MOVE_SRC_INFIFO_CL | MOVE_DEST_OUTFIFO);
append_cmd(desc, CMD_LOAD | ENABLE_AUTO_INFO_FIFO);
/* Read ICV */
append_seq_fifo_load(desc, ctx->authsize, FIFOLD_CLASS_CLASS1 |
FIFOLD_TYPE_ICV | FIFOLD_TYPE_LAST1);
ctx->sh_desc_dec_dma = dma_map_single(jrdev, desc,
desc_bytes(desc),
DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, ctx->sh_desc_dec_dma)) {
dev_err(jrdev, "unable to map shared descriptor\n");
return -ENOMEM;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "rfc4543 dec shdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc,
desc_bytes(desc), 1);
#endif
return 0;
}
static int rfc4543_setauthsize(struct crypto_aead *authenc,
unsigned int authsize)
{
struct caam_ctx *ctx = crypto_aead_ctx(authenc);
ctx->authsize = authsize;
rfc4543_set_sh_desc(authenc);
return 0;
}
static u32 gen_split_aead_key(struct caam_ctx *ctx, const u8 *key_in,
u32 authkeylen)
{
return gen_split_key(ctx->jrdev, ctx->key, ctx->split_key_len,
ctx->split_key_pad_len, key_in, authkeylen,
ctx->alg_op);
}
static int aead_setkey(struct crypto_aead *aead,
const u8 *key, unsigned int keylen)
{
/* Sizes for MDHA pads (*not* keys): MD5, SHA1, 224, 256, 384, 512 */
static const u8 mdpadlen[] = { 16, 20, 32, 32, 64, 64 };
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
struct crypto_authenc_keys keys;
int ret = 0;
if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
goto badkey;
/* Pick class 2 key length from algorithm submask */
ctx->split_key_len = mdpadlen[(ctx->alg_op & OP_ALG_ALGSEL_SUBMASK) >>
OP_ALG_ALGSEL_SHIFT] * 2;
ctx->split_key_pad_len = ALIGN(ctx->split_key_len, 16);
if (ctx->split_key_pad_len + keys.enckeylen > CAAM_MAX_KEY_SIZE)
goto badkey;
#ifdef DEBUG
printk(KERN_ERR "keylen %d enckeylen %d authkeylen %d\n",
keys.authkeylen + keys.enckeylen, keys.enckeylen,
keys.authkeylen);
printk(KERN_ERR "split_key_len %d split_key_pad_len %d\n",
ctx->split_key_len, ctx->split_key_pad_len);
print_hex_dump(KERN_ERR, "key in @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
#endif
ret = gen_split_aead_key(ctx, keys.authkey, keys.authkeylen);
if (ret) {
goto badkey;
}
/* postpend encryption key to auth split key */
memcpy(ctx->key + ctx->split_key_pad_len, keys.enckey, keys.enckeylen);
ctx->key_dma = dma_map_single(jrdev, ctx->key, ctx->split_key_pad_len +
keys.enckeylen, DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, ctx->key_dma)) {
dev_err(jrdev, "unable to map key i/o memory\n");
return -ENOMEM;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ctx.key@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
ctx->split_key_pad_len + keys.enckeylen, 1);
#endif
ctx->enckeylen = keys.enckeylen;
ret = aead_set_sh_desc(aead);
if (ret) {
dma_unmap_single(jrdev, ctx->key_dma, ctx->split_key_pad_len +
keys.enckeylen, DMA_TO_DEVICE);
}
return ret;
badkey:
crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
static int gcm_setkey(struct crypto_aead *aead,
const u8 *key, unsigned int keylen)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
int ret = 0;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "key in @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
#endif
memcpy(ctx->key, key, keylen);
ctx->key_dma = dma_map_single(jrdev, ctx->key, keylen,
DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, ctx->key_dma)) {
dev_err(jrdev, "unable to map key i/o memory\n");
return -ENOMEM;
}
ctx->enckeylen = keylen;
ret = gcm_set_sh_desc(aead);
if (ret) {
dma_unmap_single(jrdev, ctx->key_dma, ctx->enckeylen,
DMA_TO_DEVICE);
}
return ret;
}
static int rfc4106_setkey(struct crypto_aead *aead,
const u8 *key, unsigned int keylen)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
int ret = 0;
if (keylen < 4)
return -EINVAL;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "key in @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
#endif
memcpy(ctx->key, key, keylen);
/*
* The last four bytes of the key material are used as the salt value
* in the nonce. Update the AES key length.
*/
ctx->enckeylen = keylen - 4;
ctx->key_dma = dma_map_single(jrdev, ctx->key, ctx->enckeylen,
DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, ctx->key_dma)) {
dev_err(jrdev, "unable to map key i/o memory\n");
return -ENOMEM;
}
ret = rfc4106_set_sh_desc(aead);
if (ret) {
dma_unmap_single(jrdev, ctx->key_dma, ctx->enckeylen,
DMA_TO_DEVICE);
}
return ret;
}
static int rfc4543_setkey(struct crypto_aead *aead,
const u8 *key, unsigned int keylen)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
int ret = 0;
if (keylen < 4)
return -EINVAL;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "key in @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
#endif
memcpy(ctx->key, key, keylen);
/*
* The last four bytes of the key material are used as the salt value
* in the nonce. Update the AES key length.
*/
ctx->enckeylen = keylen - 4;
ctx->key_dma = dma_map_single(jrdev, ctx->key, ctx->enckeylen,
DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, ctx->key_dma)) {
dev_err(jrdev, "unable to map key i/o memory\n");
return -ENOMEM;
}
ret = rfc4543_set_sh_desc(aead);
if (ret) {
dma_unmap_single(jrdev, ctx->key_dma, ctx->enckeylen,
DMA_TO_DEVICE);
}
return ret;
}
static int ablkcipher_setkey(struct crypto_ablkcipher *ablkcipher,
const u8 *key, unsigned int keylen)
{
struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
struct ablkcipher_tfm *crt = &ablkcipher->base.crt_ablkcipher;
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(ablkcipher);
const char *alg_name = crypto_tfm_alg_name(tfm);
struct device *jrdev = ctx->jrdev;
int ret = 0;
u32 *key_jump_cmd;
u32 *desc;
u8 *nonce;
u32 geniv;
u32 ctx1_iv_off = 0;
const bool ctr_mode = ((ctx->class1_alg_type & OP_ALG_AAI_MASK) ==
OP_ALG_AAI_CTR_MOD128);
const bool is_rfc3686 = (ctr_mode &&
(strstr(alg_name, "rfc3686") != NULL));
#ifdef DEBUG
print_hex_dump(KERN_ERR, "key in @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
#endif
/*
* AES-CTR needs to load IV in CONTEXT1 reg
* at an offset of 128bits (16bytes)
* CONTEXT1[255:128] = IV
*/
if (ctr_mode)
ctx1_iv_off = 16;
/*
* RFC3686 specific:
* | CONTEXT1[255:128] = {NONCE, IV, COUNTER}
* | *key = {KEY, NONCE}
*/
if (is_rfc3686) {
ctx1_iv_off = 16 + CTR_RFC3686_NONCE_SIZE;
keylen -= CTR_RFC3686_NONCE_SIZE;
}
memcpy(ctx->key, key, keylen);
ctx->key_dma = dma_map_single(jrdev, ctx->key, keylen,
DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, ctx->key_dma)) {
dev_err(jrdev, "unable to map key i/o memory\n");
return -ENOMEM;
}
ctx->enckeylen = keylen;
/* ablkcipher_encrypt shared descriptor */
desc = ctx->sh_desc_enc;
init_sh_desc(desc, HDR_SHARE_SERIAL | HDR_SAVECTX);
/* Skip if already shared */
key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
JUMP_COND_SHRD);
/* Load class1 key only */
append_key_as_imm(desc, (void *)ctx->key, ctx->enckeylen,
ctx->enckeylen, CLASS_1 |
KEY_DEST_CLASS_REG);
/* Load nonce into CONTEXT1 reg */
if (is_rfc3686) {
nonce = (u8 *)key + keylen;
append_load_as_imm(desc, nonce, CTR_RFC3686_NONCE_SIZE,
LDST_CLASS_IND_CCB |
LDST_SRCDST_BYTE_OUTFIFO | LDST_IMM);
append_move(desc, MOVE_WAITCOMP |
MOVE_SRC_OUTFIFO |
MOVE_DEST_CLASS1CTX |
(16 << MOVE_OFFSET_SHIFT) |
(CTR_RFC3686_NONCE_SIZE << MOVE_LEN_SHIFT));
}
set_jump_tgt_here(desc, key_jump_cmd);
/* Load iv */
append_seq_load(desc, crt->ivsize, LDST_SRCDST_BYTE_CONTEXT |
LDST_CLASS_1_CCB | (ctx1_iv_off << LDST_OFFSET_SHIFT));
/* Load counter into CONTEXT1 reg */
if (is_rfc3686)
append_load_imm_be32(desc, 1, LDST_IMM | LDST_CLASS_1_CCB |
LDST_SRCDST_BYTE_CONTEXT |
((ctx1_iv_off + CTR_RFC3686_IV_SIZE) <<
LDST_OFFSET_SHIFT));
/* Load operation */
append_operation(desc, ctx->class1_alg_type |
OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT);
/* Perform operation */
ablkcipher_append_src_dst(desc);
ctx->sh_desc_enc_dma = dma_map_single(jrdev, desc,
desc_bytes(desc),
DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, ctx->sh_desc_enc_dma)) {
dev_err(jrdev, "unable to map shared descriptor\n");
return -ENOMEM;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR,
"ablkcipher enc shdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc,
desc_bytes(desc), 1);
#endif
/* ablkcipher_decrypt shared descriptor */
desc = ctx->sh_desc_dec;
init_sh_desc(desc, HDR_SHARE_SERIAL | HDR_SAVECTX);
/* Skip if already shared */
key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
JUMP_COND_SHRD);
/* Load class1 key only */
append_key_as_imm(desc, (void *)ctx->key, ctx->enckeylen,
ctx->enckeylen, CLASS_1 |
KEY_DEST_CLASS_REG);
/* Load nonce into CONTEXT1 reg */
if (is_rfc3686) {
nonce = (u8 *)key + keylen;
append_load_as_imm(desc, nonce, CTR_RFC3686_NONCE_SIZE,
LDST_CLASS_IND_CCB |
LDST_SRCDST_BYTE_OUTFIFO | LDST_IMM);
append_move(desc, MOVE_WAITCOMP |
MOVE_SRC_OUTFIFO |
MOVE_DEST_CLASS1CTX |
(16 << MOVE_OFFSET_SHIFT) |
(CTR_RFC3686_NONCE_SIZE << MOVE_LEN_SHIFT));
}
set_jump_tgt_here(desc, key_jump_cmd);
/* load IV */
append_seq_load(desc, crt->ivsize, LDST_SRCDST_BYTE_CONTEXT |
LDST_CLASS_1_CCB | (ctx1_iv_off << LDST_OFFSET_SHIFT));
/* Load counter into CONTEXT1 reg */
if (is_rfc3686)
append_load_imm_be32(desc, 1, LDST_IMM | LDST_CLASS_1_CCB |
LDST_SRCDST_BYTE_CONTEXT |
((ctx1_iv_off + CTR_RFC3686_IV_SIZE) <<
LDST_OFFSET_SHIFT));
/* Choose operation */
if (ctr_mode)
append_operation(desc, ctx->class1_alg_type |
OP_ALG_AS_INITFINAL | OP_ALG_DECRYPT);
else
append_dec_op1(desc, ctx->class1_alg_type);
/* Perform operation */
ablkcipher_append_src_dst(desc);
ctx->sh_desc_dec_dma = dma_map_single(jrdev, desc,
desc_bytes(desc),
DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, ctx->sh_desc_dec_dma)) {
dev_err(jrdev, "unable to map shared descriptor\n");
return -ENOMEM;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR,
"ablkcipher dec shdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc,
desc_bytes(desc), 1);
#endif
/* ablkcipher_givencrypt shared descriptor */
desc = ctx->sh_desc_givenc;
init_sh_desc(desc, HDR_SHARE_SERIAL | HDR_SAVECTX);
/* Skip if already shared */
key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
JUMP_COND_SHRD);
/* Load class1 key only */
append_key_as_imm(desc, (void *)ctx->key, ctx->enckeylen,
ctx->enckeylen, CLASS_1 |
KEY_DEST_CLASS_REG);
/* Load Nonce into CONTEXT1 reg */
if (is_rfc3686) {
nonce = (u8 *)key + keylen;
append_load_as_imm(desc, nonce, CTR_RFC3686_NONCE_SIZE,
LDST_CLASS_IND_CCB |
LDST_SRCDST_BYTE_OUTFIFO | LDST_IMM);
append_move(desc, MOVE_WAITCOMP |
MOVE_SRC_OUTFIFO |
MOVE_DEST_CLASS1CTX |
(16 << MOVE_OFFSET_SHIFT) |
(CTR_RFC3686_NONCE_SIZE << MOVE_LEN_SHIFT));
}
set_jump_tgt_here(desc, key_jump_cmd);
/* Generate IV */
geniv = NFIFOENTRY_STYPE_PAD | NFIFOENTRY_DEST_DECO |
NFIFOENTRY_DTYPE_MSG | NFIFOENTRY_LC1 |
NFIFOENTRY_PTYPE_RND | (crt->ivsize << NFIFOENTRY_DLEN_SHIFT);
append_load_imm_u32(desc, geniv, LDST_CLASS_IND_CCB |
LDST_SRCDST_WORD_INFO_FIFO | LDST_IMM);
append_cmd(desc, CMD_LOAD | DISABLE_AUTO_INFO_FIFO);
append_move(desc, MOVE_WAITCOMP |
MOVE_SRC_INFIFO |
MOVE_DEST_CLASS1CTX |
(crt->ivsize << MOVE_LEN_SHIFT) |
(ctx1_iv_off << MOVE_OFFSET_SHIFT));
append_cmd(desc, CMD_LOAD | ENABLE_AUTO_INFO_FIFO);
/* Copy generated IV to memory */
append_seq_store(desc, crt->ivsize,
LDST_SRCDST_BYTE_CONTEXT | LDST_CLASS_1_CCB |
(ctx1_iv_off << LDST_OFFSET_SHIFT));
/* Load Counter into CONTEXT1 reg */
if (is_rfc3686)
append_load_imm_be32(desc, 1, LDST_IMM | LDST_CLASS_1_CCB |
LDST_SRCDST_BYTE_CONTEXT |
((ctx1_iv_off + CTR_RFC3686_IV_SIZE) <<
LDST_OFFSET_SHIFT));
if (ctx1_iv_off)
append_jump(desc, JUMP_JSL | JUMP_TEST_ALL | JUMP_COND_NCP |
(1 << JUMP_OFFSET_SHIFT));
/* Load operation */
append_operation(desc, ctx->class1_alg_type |
OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT);
/* Perform operation */
ablkcipher_append_src_dst(desc);
ctx->sh_desc_givenc_dma = dma_map_single(jrdev, desc,
desc_bytes(desc),
DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, ctx->sh_desc_givenc_dma)) {
dev_err(jrdev, "unable to map shared descriptor\n");
return -ENOMEM;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR,
"ablkcipher givenc shdesc@" __stringify(__LINE__) ": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc,
desc_bytes(desc), 1);
#endif
return ret;
}
static int xts_ablkcipher_setkey(struct crypto_ablkcipher *ablkcipher,
const u8 *key, unsigned int keylen)
{
struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
struct device *jrdev = ctx->jrdev;
u32 *key_jump_cmd, *desc;
__be64 sector_size = cpu_to_be64(512);
if (keylen != 2 * AES_MIN_KEY_SIZE && keylen != 2 * AES_MAX_KEY_SIZE) {
crypto_ablkcipher_set_flags(ablkcipher,
CRYPTO_TFM_RES_BAD_KEY_LEN);
dev_err(jrdev, "key size mismatch\n");
return -EINVAL;
}
memcpy(ctx->key, key, keylen);
ctx->key_dma = dma_map_single(jrdev, ctx->key, keylen, DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, ctx->key_dma)) {
dev_err(jrdev, "unable to map key i/o memory\n");
return -ENOMEM;
}
ctx->enckeylen = keylen;
/* xts_ablkcipher_encrypt shared descriptor */
desc = ctx->sh_desc_enc;
init_sh_desc(desc, HDR_SHARE_SERIAL | HDR_SAVECTX);
/* Skip if already shared */
key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
JUMP_COND_SHRD);
/* Load class1 keys only */
append_key_as_imm(desc, (void *)ctx->key, ctx->enckeylen,
ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG);
/* Load sector size with index 40 bytes (0x28) */
append_cmd(desc, CMD_LOAD | IMMEDIATE | LDST_SRCDST_BYTE_CONTEXT |
LDST_CLASS_1_CCB | (0x28 << LDST_OFFSET_SHIFT) | 8);
append_data(desc, (void *)&sector_size, 8);
set_jump_tgt_here(desc, key_jump_cmd);
/*
* create sequence for loading the sector index
* Upper 8B of IV - will be used as sector index
* Lower 8B of IV - will be discarded
*/
append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_BYTE_CONTEXT |
LDST_CLASS_1_CCB | (0x20 << LDST_OFFSET_SHIFT) | 8);
append_seq_fifo_load(desc, 8, FIFOLD_CLASS_SKIP);
/* Load operation */
append_operation(desc, ctx->class1_alg_type | OP_ALG_AS_INITFINAL |
OP_ALG_ENCRYPT);
/* Perform operation */
ablkcipher_append_src_dst(desc);
ctx->sh_desc_enc_dma = dma_map_single(jrdev, desc, desc_bytes(desc),
DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, ctx->sh_desc_enc_dma)) {
dev_err(jrdev, "unable to map shared descriptor\n");
return -ENOMEM;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR,
"xts ablkcipher enc shdesc@" __stringify(__LINE__) ": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
#endif
/* xts_ablkcipher_decrypt shared descriptor */
desc = ctx->sh_desc_dec;
init_sh_desc(desc, HDR_SHARE_SERIAL | HDR_SAVECTX);
/* Skip if already shared */
key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
JUMP_COND_SHRD);
/* Load class1 key only */
append_key_as_imm(desc, (void *)ctx->key, ctx->enckeylen,
ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG);
/* Load sector size with index 40 bytes (0x28) */
append_cmd(desc, CMD_LOAD | IMMEDIATE | LDST_SRCDST_BYTE_CONTEXT |
LDST_CLASS_1_CCB | (0x28 << LDST_OFFSET_SHIFT) | 8);
append_data(desc, (void *)&sector_size, 8);
set_jump_tgt_here(desc, key_jump_cmd);
/*
* create sequence for loading the sector index
* Upper 8B of IV - will be used as sector index
* Lower 8B of IV - will be discarded
*/
append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_BYTE_CONTEXT |
LDST_CLASS_1_CCB | (0x20 << LDST_OFFSET_SHIFT) | 8);
append_seq_fifo_load(desc, 8, FIFOLD_CLASS_SKIP);
/* Load operation */
append_dec_op1(desc, ctx->class1_alg_type);
/* Perform operation */
ablkcipher_append_src_dst(desc);
ctx->sh_desc_dec_dma = dma_map_single(jrdev, desc, desc_bytes(desc),
DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, ctx->sh_desc_dec_dma)) {
dma_unmap_single(jrdev, ctx->sh_desc_enc_dma,
desc_bytes(ctx->sh_desc_enc), DMA_TO_DEVICE);
dev_err(jrdev, "unable to map shared descriptor\n");
return -ENOMEM;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR,
"xts ablkcipher dec shdesc@" __stringify(__LINE__) ": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
#endif
return 0;
}
/*
* aead_edesc - s/w-extended aead descriptor
* @src_nents: number of segments in input scatterlist
* @dst_nents: number of segments in output scatterlist
* @sec4_sg_bytes: length of dma mapped sec4_sg space
* @sec4_sg_dma: bus physical mapped address of h/w link table
* @sec4_sg: pointer to h/w link table
* @hw_desc: the h/w job descriptor followed by any referenced link tables
*/
struct aead_edesc {
int src_nents;
int dst_nents;
int sec4_sg_bytes;
dma_addr_t sec4_sg_dma;
struct sec4_sg_entry *sec4_sg;
u32 hw_desc[];
};
/*
* ablkcipher_edesc - s/w-extended ablkcipher descriptor
* @src_nents: number of segments in input scatterlist
* @dst_nents: number of segments in output scatterlist
* @iv_dma: dma address of iv for checking continuity and link table
* @sec4_sg_bytes: length of dma mapped sec4_sg space
* @sec4_sg_dma: bus physical mapped address of h/w link table
* @sec4_sg: pointer to h/w link table
* @hw_desc: the h/w job descriptor followed by any referenced link tables
*/
struct ablkcipher_edesc {
int src_nents;
int dst_nents;
dma_addr_t iv_dma;
int sec4_sg_bytes;
dma_addr_t sec4_sg_dma;
struct sec4_sg_entry *sec4_sg;
u32 hw_desc[0];
};
static void caam_unmap(struct device *dev, struct scatterlist *src,
struct scatterlist *dst, int src_nents,
int dst_nents,
dma_addr_t iv_dma, int ivsize, dma_addr_t sec4_sg_dma,
int sec4_sg_bytes)
{
if (dst != src) {
dma_unmap_sg(dev, src, src_nents ? : 1, DMA_TO_DEVICE);
dma_unmap_sg(dev, dst, dst_nents ? : 1, DMA_FROM_DEVICE);
} else {
dma_unmap_sg(dev, src, src_nents ? : 1, DMA_BIDIRECTIONAL);
}
if (iv_dma)
dma_unmap_single(dev, iv_dma, ivsize, DMA_TO_DEVICE);
if (sec4_sg_bytes)
dma_unmap_single(dev, sec4_sg_dma, sec4_sg_bytes,
DMA_TO_DEVICE);
}
static void aead_unmap(struct device *dev,
struct aead_edesc *edesc,
struct aead_request *req)
{
caam_unmap(dev, req->src, req->dst,
edesc->src_nents, edesc->dst_nents, 0, 0,
edesc->sec4_sg_dma, edesc->sec4_sg_bytes);
}
static void ablkcipher_unmap(struct device *dev,
struct ablkcipher_edesc *edesc,
struct ablkcipher_request *req)
{
struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
caam_unmap(dev, req->src, req->dst,
edesc->src_nents, edesc->dst_nents,
edesc->iv_dma, ivsize,
edesc->sec4_sg_dma, edesc->sec4_sg_bytes);
}
static void aead_encrypt_done(struct device *jrdev, u32 *desc, u32 err,
void *context)
{
struct aead_request *req = context;
struct aead_edesc *edesc;
#ifdef DEBUG
dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
#endif
edesc = container_of(desc, struct aead_edesc, hw_desc[0]);
if (err)
caam_jr_strstatus(jrdev, err);
aead_unmap(jrdev, edesc, req);
kfree(edesc);
aead_request_complete(req, err);
}
static void aead_decrypt_done(struct device *jrdev, u32 *desc, u32 err,
void *context)
{
struct aead_request *req = context;
struct aead_edesc *edesc;
#ifdef DEBUG
dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
#endif
edesc = container_of(desc, struct aead_edesc, hw_desc[0]);
if (err)
caam_jr_strstatus(jrdev, err);
aead_unmap(jrdev, edesc, req);
/*
* verify hw auth check passed else return -EBADMSG
*/
if ((err & JRSTA_CCBERR_ERRID_MASK) == JRSTA_CCBERR_ERRID_ICVCHK)
err = -EBADMSG;
kfree(edesc);
aead_request_complete(req, err);
}
static void ablkcipher_encrypt_done(struct device *jrdev, u32 *desc, u32 err,
void *context)
{
struct ablkcipher_request *req = context;
struct ablkcipher_edesc *edesc;
#ifdef DEBUG
struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
#endif
edesc = container_of(desc, struct ablkcipher_edesc, hw_desc[0]);
if (err)
caam_jr_strstatus(jrdev, err);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "dstiv @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->info,
edesc->src_nents > 1 ? 100 : ivsize, 1);
dbg_dump_sg(KERN_ERR, "dst @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->dst,
edesc->dst_nents > 1 ? 100 : req->nbytes, 1);
#endif
ablkcipher_unmap(jrdev, edesc, req);
kfree(edesc);
ablkcipher_request_complete(req, err);
}
static void ablkcipher_decrypt_done(struct device *jrdev, u32 *desc, u32 err,
void *context)
{
struct ablkcipher_request *req = context;
struct ablkcipher_edesc *edesc;
#ifdef DEBUG
struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
#endif
edesc = container_of(desc, struct ablkcipher_edesc, hw_desc[0]);
if (err)
caam_jr_strstatus(jrdev, err);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "dstiv @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->info,
ivsize, 1);
dbg_dump_sg(KERN_ERR, "dst @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->dst,
edesc->dst_nents > 1 ? 100 : req->nbytes, 1);
#endif
ablkcipher_unmap(jrdev, edesc, req);
kfree(edesc);
ablkcipher_request_complete(req, err);
}
/*
* Fill in aead job descriptor
*/
static void init_aead_job(struct aead_request *req,
struct aead_edesc *edesc,
bool all_contig, bool encrypt)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
int authsize = ctx->authsize;
u32 *desc = edesc->hw_desc;
u32 out_options, in_options;
dma_addr_t dst_dma, src_dma;
int len, sec4_sg_index = 0;
dma_addr_t ptr;
u32 *sh_desc;
sh_desc = encrypt ? ctx->sh_desc_enc : ctx->sh_desc_dec;
ptr = encrypt ? ctx->sh_desc_enc_dma : ctx->sh_desc_dec_dma;
len = desc_len(sh_desc);
init_job_desc_shared(desc, ptr, len, HDR_SHARE_DEFER | HDR_REVERSE);
if (all_contig) {
src_dma = sg_dma_address(req->src);
in_options = 0;
} else {
src_dma = edesc->sec4_sg_dma;
sec4_sg_index += edesc->src_nents;
in_options = LDST_SGF;
}
append_seq_in_ptr(desc, src_dma, req->assoclen + req->cryptlen,
in_options);
dst_dma = src_dma;
out_options = in_options;
if (unlikely(req->src != req->dst)) {
if (!edesc->dst_nents) {
dst_dma = sg_dma_address(req->dst);
} else {
dst_dma = edesc->sec4_sg_dma +
sec4_sg_index *
sizeof(struct sec4_sg_entry);
out_options = LDST_SGF;
}
}
if (encrypt)
append_seq_out_ptr(desc, dst_dma,
req->assoclen + req->cryptlen + authsize,
out_options);
else
append_seq_out_ptr(desc, dst_dma,
req->assoclen + req->cryptlen - authsize,
out_options);
/* REG3 = assoclen */
append_math_add_imm_u32(desc, REG3, ZERO, IMM, req->assoclen);
}
static void init_gcm_job(struct aead_request *req,
struct aead_edesc *edesc,
bool all_contig, bool encrypt)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
unsigned int ivsize = crypto_aead_ivsize(aead);
u32 *desc = edesc->hw_desc;
bool generic_gcm = (ivsize == 12);
unsigned int last;
init_aead_job(req, edesc, all_contig, encrypt);
/* BUG This should not be specific to generic GCM. */
last = 0;
if (encrypt && generic_gcm && !(req->assoclen + req->cryptlen))
last = FIFOLD_TYPE_LAST1;
/* Read GCM IV */
append_cmd(desc, CMD_FIFO_LOAD | FIFOLD_CLASS_CLASS1 | IMMEDIATE |
FIFOLD_TYPE_IV | FIFOLD_TYPE_FLUSH1 | 12 | last);
/* Append Salt */
if (!generic_gcm)
append_data(desc, ctx->key + ctx->enckeylen, 4);
/* Append IV */
append_data(desc, req->iv, ivsize);
/* End of blank commands */
}
static void init_authenc_job(struct aead_request *req,
struct aead_edesc *edesc,
bool all_contig, bool encrypt)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_aead_alg *alg = container_of(crypto_aead_alg(aead),
struct caam_aead_alg, aead);
unsigned int ivsize = crypto_aead_ivsize(aead);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
const bool ctr_mode = ((ctx->class1_alg_type & OP_ALG_AAI_MASK) ==
OP_ALG_AAI_CTR_MOD128);
const bool is_rfc3686 = alg->caam.rfc3686;
u32 *desc = edesc->hw_desc;
u32 ivoffset = 0;
/*
* AES-CTR needs to load IV in CONTEXT1 reg
* at an offset of 128bits (16bytes)
* CONTEXT1[255:128] = IV
*/
if (ctr_mode)
ivoffset = 16;
/*
* RFC3686 specific:
* CONTEXT1[255:128] = {NONCE, IV, COUNTER}
*/
if (is_rfc3686)
ivoffset = 16 + CTR_RFC3686_NONCE_SIZE;
init_aead_job(req, edesc, all_contig, encrypt);
if (ivsize && ((is_rfc3686 && encrypt) || !alg->caam.geniv))
append_load_as_imm(desc, req->iv, ivsize,
LDST_CLASS_1_CCB |
LDST_SRCDST_BYTE_CONTEXT |
(ivoffset << LDST_OFFSET_SHIFT));
}
/*
* Fill in ablkcipher job descriptor
*/
static void init_ablkcipher_job(u32 *sh_desc, dma_addr_t ptr,
struct ablkcipher_edesc *edesc,
struct ablkcipher_request *req,
bool iv_contig)
{
struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
u32 *desc = edesc->hw_desc;
u32 out_options = 0, in_options;
dma_addr_t dst_dma, src_dma;
int len, sec4_sg_index = 0;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "presciv@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->info,
ivsize, 1);
printk(KERN_ERR "asked=%d, nbytes%d\n", (int)edesc->src_nents ? 100 : req->nbytes, req->nbytes);
dbg_dump_sg(KERN_ERR, "src @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->src,
edesc->src_nents ? 100 : req->nbytes, 1);
#endif
len = desc_len(sh_desc);
init_job_desc_shared(desc, ptr, len, HDR_SHARE_DEFER | HDR_REVERSE);
if (iv_contig) {
src_dma = edesc->iv_dma;
in_options = 0;
} else {
src_dma = edesc->sec4_sg_dma;
sec4_sg_index += edesc->src_nents + 1;
in_options = LDST_SGF;
}
append_seq_in_ptr(desc, src_dma, req->nbytes + ivsize, in_options);
if (likely(req->src == req->dst)) {
if (!edesc->src_nents && iv_contig) {
dst_dma = sg_dma_address(req->src);
} else {
dst_dma = edesc->sec4_sg_dma +
sizeof(struct sec4_sg_entry);
out_options = LDST_SGF;
}
} else {
if (!edesc->dst_nents) {
dst_dma = sg_dma_address(req->dst);
} else {
dst_dma = edesc->sec4_sg_dma +
sec4_sg_index * sizeof(struct sec4_sg_entry);
out_options = LDST_SGF;
}
}
append_seq_out_ptr(desc, dst_dma, req->nbytes, out_options);
}
/*
* Fill in ablkcipher givencrypt job descriptor
*/
static void init_ablkcipher_giv_job(u32 *sh_desc, dma_addr_t ptr,
struct ablkcipher_edesc *edesc,
struct ablkcipher_request *req,
bool iv_contig)
{
struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
u32 *desc = edesc->hw_desc;
u32 out_options, in_options;
dma_addr_t dst_dma, src_dma;
int len, sec4_sg_index = 0;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "presciv@" __stringify(__LINE__) ": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->info,
ivsize, 1);
dbg_dump_sg(KERN_ERR, "src @" __stringify(__LINE__) ": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->src,
edesc->src_nents ? 100 : req->nbytes, 1);
#endif
len = desc_len(sh_desc);
init_job_desc_shared(desc, ptr, len, HDR_SHARE_DEFER | HDR_REVERSE);
if (!edesc->src_nents) {
src_dma = sg_dma_address(req->src);
in_options = 0;
} else {
src_dma = edesc->sec4_sg_dma;
sec4_sg_index += edesc->src_nents;
in_options = LDST_SGF;
}
append_seq_in_ptr(desc, src_dma, req->nbytes, in_options);
if (iv_contig) {
dst_dma = edesc->iv_dma;
out_options = 0;
} else {
dst_dma = edesc->sec4_sg_dma +
sec4_sg_index * sizeof(struct sec4_sg_entry);
out_options = LDST_SGF;
}
append_seq_out_ptr(desc, dst_dma, req->nbytes + ivsize, out_options);
}
/*
* allocate and map the aead extended descriptor
*/
static struct aead_edesc *aead_edesc_alloc(struct aead_request *req,
int desc_bytes, bool *all_contig_ptr,
bool encrypt)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
int src_nents, dst_nents = 0;
struct aead_edesc *edesc;
int sgc;
bool all_contig = true;
int sec4_sg_index, sec4_sg_len = 0, sec4_sg_bytes;
crypto: caam - fix aead sglen for case 'dst != src' For aead case when source and destination buffers are different, there is an incorrect assumption that the source length includes the ICV length. Fix this, since it leads to an oops when using sg_count() to find the number of nents in the scatterlist: Unable to handle kernel paging request for data at address 0x00000004 Faulting instruction address: 0xf91f7634 Oops: Kernel access of bad area, sig: 11 [#1] SMP NR_CPUS=8 P4080 DS Modules linked in: caamalg(+) caam_jr caam CPU: 1 PID: 1053 Comm: cryptomgr_test Not tainted 3.11.0 #16 task: eeb24ab0 ti: eeafa000 task.ti: eeafa000 NIP: f91f7634 LR: f91f7f24 CTR: f91f7ef0 REGS: eeafbbc0 TRAP: 0300 Not tainted (3.11.0) MSR: 00029002 <CE,EE,ME> CR: 44044044 XER: 00000000 DEAR: 00000004, ESR: 00000000 GPR00: f91f7f24 eeafbc70 eeb24ab0 00000002 ee8e0900 ee8e0800 00000024 c45c4462 GPR08: 00000010 00000000 00000014 0c0e4000 24044044 00000000 00000000 c0691590 GPR16: eeab0000 eeb23000 00000000 00000000 00000000 00000001 00000001 eeafbcc8 GPR24: 000000d1 00000010 ee2d5000 ee49ea10 ee49ea10 ee46f640 ee46f640 c0691590 NIP [f91f7634] aead_edesc_alloc.constprop.14+0x144/0x780 [caamalg] LR [f91f7f24] aead_encrypt+0x34/0x288 [caamalg] Call Trace: [eeafbc70] [a1004000] 0xa1004000 (unreliable) [eeafbcc0] [f91f7f24] aead_encrypt+0x34/0x288 [caamalg] [eeafbcf0] [c020d77c] __test_aead+0x3ec/0xe20 [eeafbe20] [c020f35c] test_aead+0x6c/0xe0 [eeafbe40] [c020f420] alg_test_aead+0x50/0xd0 [eeafbe60] [c020e5e4] alg_test+0x114/0x2e0 [eeafbee0] [c020bd1c] cryptomgr_test+0x4c/0x60 [eeafbef0] [c0047058] kthread+0xa8/0xb0 [eeafbf40] [c000eb0c] ret_from_kernel_thread+0x5c/0x64 Instruction dump: 69084321 7d080034 5508d97e 69080001 0f080000 81290024 552807fe 0f080000 3a600001 5529003a 2f8a0000 40dd0028 <80e90004> 3ab50001 8109000c 70e30002 ---[ end trace b3c3e23925c7484e ]--- While here, add a tcrypt mode for making it easy to test authenc (needed for triggering case above). Signed-off-by: Horia Geanta <horia.geanta@freescale.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-11-28 13:11:16 +00:00
unsigned int authsize = ctx->authsize;
crypto: caam - fix aead sglen for case 'dst != src' For aead case when source and destination buffers are different, there is an incorrect assumption that the source length includes the ICV length. Fix this, since it leads to an oops when using sg_count() to find the number of nents in the scatterlist: Unable to handle kernel paging request for data at address 0x00000004 Faulting instruction address: 0xf91f7634 Oops: Kernel access of bad area, sig: 11 [#1] SMP NR_CPUS=8 P4080 DS Modules linked in: caamalg(+) caam_jr caam CPU: 1 PID: 1053 Comm: cryptomgr_test Not tainted 3.11.0 #16 task: eeb24ab0 ti: eeafa000 task.ti: eeafa000 NIP: f91f7634 LR: f91f7f24 CTR: f91f7ef0 REGS: eeafbbc0 TRAP: 0300 Not tainted (3.11.0) MSR: 00029002 <CE,EE,ME> CR: 44044044 XER: 00000000 DEAR: 00000004, ESR: 00000000 GPR00: f91f7f24 eeafbc70 eeb24ab0 00000002 ee8e0900 ee8e0800 00000024 c45c4462 GPR08: 00000010 00000000 00000014 0c0e4000 24044044 00000000 00000000 c0691590 GPR16: eeab0000 eeb23000 00000000 00000000 00000000 00000001 00000001 eeafbcc8 GPR24: 000000d1 00000010 ee2d5000 ee49ea10 ee49ea10 ee46f640 ee46f640 c0691590 NIP [f91f7634] aead_edesc_alloc.constprop.14+0x144/0x780 [caamalg] LR [f91f7f24] aead_encrypt+0x34/0x288 [caamalg] Call Trace: [eeafbc70] [a1004000] 0xa1004000 (unreliable) [eeafbcc0] [f91f7f24] aead_encrypt+0x34/0x288 [caamalg] [eeafbcf0] [c020d77c] __test_aead+0x3ec/0xe20 [eeafbe20] [c020f35c] test_aead+0x6c/0xe0 [eeafbe40] [c020f420] alg_test_aead+0x50/0xd0 [eeafbe60] [c020e5e4] alg_test+0x114/0x2e0 [eeafbee0] [c020bd1c] cryptomgr_test+0x4c/0x60 [eeafbef0] [c0047058] kthread+0xa8/0xb0 [eeafbf40] [c000eb0c] ret_from_kernel_thread+0x5c/0x64 Instruction dump: 69084321 7d080034 5508d97e 69080001 0f080000 81290024 552807fe 0f080000 3a600001 5529003a 2f8a0000 40dd0028 <80e90004> 3ab50001 8109000c 70e30002 ---[ end trace b3c3e23925c7484e ]--- While here, add a tcrypt mode for making it easy to test authenc (needed for triggering case above). Signed-off-by: Horia Geanta <horia.geanta@freescale.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-11-28 13:11:16 +00:00
if (unlikely(req->dst != req->src)) {
src_nents = sg_count(req->src, req->assoclen + req->cryptlen);
crypto: caam - fix aead sglen for case 'dst != src' For aead case when source and destination buffers are different, there is an incorrect assumption that the source length includes the ICV length. Fix this, since it leads to an oops when using sg_count() to find the number of nents in the scatterlist: Unable to handle kernel paging request for data at address 0x00000004 Faulting instruction address: 0xf91f7634 Oops: Kernel access of bad area, sig: 11 [#1] SMP NR_CPUS=8 P4080 DS Modules linked in: caamalg(+) caam_jr caam CPU: 1 PID: 1053 Comm: cryptomgr_test Not tainted 3.11.0 #16 task: eeb24ab0 ti: eeafa000 task.ti: eeafa000 NIP: f91f7634 LR: f91f7f24 CTR: f91f7ef0 REGS: eeafbbc0 TRAP: 0300 Not tainted (3.11.0) MSR: 00029002 <CE,EE,ME> CR: 44044044 XER: 00000000 DEAR: 00000004, ESR: 00000000 GPR00: f91f7f24 eeafbc70 eeb24ab0 00000002 ee8e0900 ee8e0800 00000024 c45c4462 GPR08: 00000010 00000000 00000014 0c0e4000 24044044 00000000 00000000 c0691590 GPR16: eeab0000 eeb23000 00000000 00000000 00000000 00000001 00000001 eeafbcc8 GPR24: 000000d1 00000010 ee2d5000 ee49ea10 ee49ea10 ee46f640 ee46f640 c0691590 NIP [f91f7634] aead_edesc_alloc.constprop.14+0x144/0x780 [caamalg] LR [f91f7f24] aead_encrypt+0x34/0x288 [caamalg] Call Trace: [eeafbc70] [a1004000] 0xa1004000 (unreliable) [eeafbcc0] [f91f7f24] aead_encrypt+0x34/0x288 [caamalg] [eeafbcf0] [c020d77c] __test_aead+0x3ec/0xe20 [eeafbe20] [c020f35c] test_aead+0x6c/0xe0 [eeafbe40] [c020f420] alg_test_aead+0x50/0xd0 [eeafbe60] [c020e5e4] alg_test+0x114/0x2e0 [eeafbee0] [c020bd1c] cryptomgr_test+0x4c/0x60 [eeafbef0] [c0047058] kthread+0xa8/0xb0 [eeafbf40] [c000eb0c] ret_from_kernel_thread+0x5c/0x64 Instruction dump: 69084321 7d080034 5508d97e 69080001 0f080000 81290024 552807fe 0f080000 3a600001 5529003a 2f8a0000 40dd0028 <80e90004> 3ab50001 8109000c 70e30002 ---[ end trace b3c3e23925c7484e ]--- While here, add a tcrypt mode for making it easy to test authenc (needed for triggering case above). Signed-off-by: Horia Geanta <horia.geanta@freescale.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-11-28 13:11:16 +00:00
dst_nents = sg_count(req->dst,
req->assoclen + req->cryptlen +
(encrypt ? authsize : (-authsize)));
crypto: caam - fix aead sglen for case 'dst != src' For aead case when source and destination buffers are different, there is an incorrect assumption that the source length includes the ICV length. Fix this, since it leads to an oops when using sg_count() to find the number of nents in the scatterlist: Unable to handle kernel paging request for data at address 0x00000004 Faulting instruction address: 0xf91f7634 Oops: Kernel access of bad area, sig: 11 [#1] SMP NR_CPUS=8 P4080 DS Modules linked in: caamalg(+) caam_jr caam CPU: 1 PID: 1053 Comm: cryptomgr_test Not tainted 3.11.0 #16 task: eeb24ab0 ti: eeafa000 task.ti: eeafa000 NIP: f91f7634 LR: f91f7f24 CTR: f91f7ef0 REGS: eeafbbc0 TRAP: 0300 Not tainted (3.11.0) MSR: 00029002 <CE,EE,ME> CR: 44044044 XER: 00000000 DEAR: 00000004, ESR: 00000000 GPR00: f91f7f24 eeafbc70 eeb24ab0 00000002 ee8e0900 ee8e0800 00000024 c45c4462 GPR08: 00000010 00000000 00000014 0c0e4000 24044044 00000000 00000000 c0691590 GPR16: eeab0000 eeb23000 00000000 00000000 00000000 00000001 00000001 eeafbcc8 GPR24: 000000d1 00000010 ee2d5000 ee49ea10 ee49ea10 ee46f640 ee46f640 c0691590 NIP [f91f7634] aead_edesc_alloc.constprop.14+0x144/0x780 [caamalg] LR [f91f7f24] aead_encrypt+0x34/0x288 [caamalg] Call Trace: [eeafbc70] [a1004000] 0xa1004000 (unreliable) [eeafbcc0] [f91f7f24] aead_encrypt+0x34/0x288 [caamalg] [eeafbcf0] [c020d77c] __test_aead+0x3ec/0xe20 [eeafbe20] [c020f35c] test_aead+0x6c/0xe0 [eeafbe40] [c020f420] alg_test_aead+0x50/0xd0 [eeafbe60] [c020e5e4] alg_test+0x114/0x2e0 [eeafbee0] [c020bd1c] cryptomgr_test+0x4c/0x60 [eeafbef0] [c0047058] kthread+0xa8/0xb0 [eeafbf40] [c000eb0c] ret_from_kernel_thread+0x5c/0x64 Instruction dump: 69084321 7d080034 5508d97e 69080001 0f080000 81290024 552807fe 0f080000 3a600001 5529003a 2f8a0000 40dd0028 <80e90004> 3ab50001 8109000c 70e30002 ---[ end trace b3c3e23925c7484e ]--- While here, add a tcrypt mode for making it easy to test authenc (needed for triggering case above). Signed-off-by: Horia Geanta <horia.geanta@freescale.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-11-28 13:11:16 +00:00
} else {
src_nents = sg_count(req->src,
req->assoclen + req->cryptlen +
(encrypt ? authsize : 0));
}
/* Check if data are contiguous. */
all_contig = !src_nents;
if (!all_contig)
sec4_sg_len = src_nents;
sec4_sg_len += dst_nents;
sec4_sg_bytes = sec4_sg_len * sizeof(struct sec4_sg_entry);
/* allocate space for base edesc and hw desc commands, link tables */
edesc = kzalloc(sizeof(*edesc) + desc_bytes + sec4_sg_bytes,
GFP_DMA | flags);
if (!edesc) {
dev_err(jrdev, "could not allocate extended descriptor\n");
return ERR_PTR(-ENOMEM);
}
if (likely(req->src == req->dst)) {
sgc = dma_map_sg(jrdev, req->src, src_nents ? : 1,
DMA_BIDIRECTIONAL);
if (unlikely(!sgc)) {
dev_err(jrdev, "unable to map source\n");
kfree(edesc);
return ERR_PTR(-ENOMEM);
}
} else {
sgc = dma_map_sg(jrdev, req->src, src_nents ? : 1,
DMA_TO_DEVICE);
if (unlikely(!sgc)) {
dev_err(jrdev, "unable to map source\n");
kfree(edesc);
return ERR_PTR(-ENOMEM);
}
sgc = dma_map_sg(jrdev, req->dst, dst_nents ? : 1,
DMA_FROM_DEVICE);
if (unlikely(!sgc)) {
dev_err(jrdev, "unable to map destination\n");
dma_unmap_sg(jrdev, req->src, src_nents ? : 1,
DMA_TO_DEVICE);
kfree(edesc);
return ERR_PTR(-ENOMEM);
}
}
edesc->src_nents = src_nents;
edesc->dst_nents = dst_nents;
edesc->sec4_sg = (void *)edesc + sizeof(struct aead_edesc) +
desc_bytes;
*all_contig_ptr = all_contig;
sec4_sg_index = 0;
if (!all_contig) {
sg_to_sec4_sg_last(req->src, src_nents,
edesc->sec4_sg + sec4_sg_index, 0);
sec4_sg_index += src_nents;
}
if (dst_nents) {
sg_to_sec4_sg_last(req->dst, dst_nents,
edesc->sec4_sg + sec4_sg_index, 0);
}
if (!sec4_sg_bytes)
return edesc;
edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
sec4_sg_bytes, DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
dev_err(jrdev, "unable to map S/G table\n");
aead_unmap(jrdev, edesc, req);
kfree(edesc);
return ERR_PTR(-ENOMEM);
}
edesc->sec4_sg_bytes = sec4_sg_bytes;
return edesc;
}
static int gcm_encrypt(struct aead_request *req)
{
struct aead_edesc *edesc;
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
bool all_contig;
u32 *desc;
int ret = 0;
/* allocate extended descriptor */
edesc = aead_edesc_alloc(req, GCM_DESC_JOB_IO_LEN, &all_contig, true);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
/* Create and submit job descriptor */
init_gcm_job(req, edesc, all_contig, true);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "aead jobdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc,
desc_bytes(edesc->hw_desc), 1);
#endif
desc = edesc->hw_desc;
ret = caam_jr_enqueue(jrdev, desc, aead_encrypt_done, req);
if (!ret) {
ret = -EINPROGRESS;
} else {
aead_unmap(jrdev, edesc, req);
kfree(edesc);
}
return ret;
}
static int ipsec_gcm_encrypt(struct aead_request *req)
{
if (req->assoclen < 8)
return -EINVAL;
return gcm_encrypt(req);
}
static int aead_encrypt(struct aead_request *req)
{
struct aead_edesc *edesc;
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
bool all_contig;
u32 *desc;
int ret = 0;
/* allocate extended descriptor */
edesc = aead_edesc_alloc(req, AUTHENC_DESC_JOB_IO_LEN,
&all_contig, true);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
/* Create and submit job descriptor */
init_authenc_job(req, edesc, all_contig, true);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "aead jobdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc,
desc_bytes(edesc->hw_desc), 1);
#endif
desc = edesc->hw_desc;
ret = caam_jr_enqueue(jrdev, desc, aead_encrypt_done, req);
if (!ret) {
ret = -EINPROGRESS;
} else {
aead_unmap(jrdev, edesc, req);
kfree(edesc);
}
return ret;
}
static int gcm_decrypt(struct aead_request *req)
{
struct aead_edesc *edesc;
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
bool all_contig;
u32 *desc;
int ret = 0;
/* allocate extended descriptor */
edesc = aead_edesc_alloc(req, GCM_DESC_JOB_IO_LEN, &all_contig, false);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
/* Create and submit job descriptor*/
init_gcm_job(req, edesc, all_contig, false);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "aead jobdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc,
desc_bytes(edesc->hw_desc), 1);
#endif
desc = edesc->hw_desc;
ret = caam_jr_enqueue(jrdev, desc, aead_decrypt_done, req);
if (!ret) {
ret = -EINPROGRESS;
} else {
aead_unmap(jrdev, edesc, req);
kfree(edesc);
}
return ret;
}
static int ipsec_gcm_decrypt(struct aead_request *req)
{
if (req->assoclen < 8)
return -EINVAL;
return gcm_decrypt(req);
}
static int aead_decrypt(struct aead_request *req)
{
struct aead_edesc *edesc;
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
bool all_contig;
u32 *desc;
int ret = 0;
#ifdef DEBUG
dbg_dump_sg(KERN_ERR, "dec src@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->src,
req->assoclen + req->cryptlen, 1);
#endif
/* allocate extended descriptor */
edesc = aead_edesc_alloc(req, AUTHENC_DESC_JOB_IO_LEN,
&all_contig, false);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
/* Create and submit job descriptor*/
init_authenc_job(req, edesc, all_contig, false);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "aead jobdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc,
desc_bytes(edesc->hw_desc), 1);
#endif
desc = edesc->hw_desc;
ret = caam_jr_enqueue(jrdev, desc, aead_decrypt_done, req);
if (!ret) {
ret = -EINPROGRESS;
} else {
aead_unmap(jrdev, edesc, req);
kfree(edesc);
}
return ret;
}
/*
* allocate and map the ablkcipher extended descriptor for ablkcipher
*/
static struct ablkcipher_edesc *ablkcipher_edesc_alloc(struct ablkcipher_request
*req, int desc_bytes,
bool *iv_contig_out)
{
struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
struct device *jrdev = ctx->jrdev;
gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
CRYPTO_TFM_REQ_MAY_SLEEP)) ?
GFP_KERNEL : GFP_ATOMIC;
int src_nents, dst_nents = 0, sec4_sg_bytes;
struct ablkcipher_edesc *edesc;
dma_addr_t iv_dma = 0;
bool iv_contig = false;
int sgc;
int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
int sec4_sg_index;
src_nents = sg_count(req->src, req->nbytes);
if (req->dst != req->src)
dst_nents = sg_count(req->dst, req->nbytes);
if (likely(req->src == req->dst)) {
sgc = dma_map_sg(jrdev, req->src, src_nents ? : 1,
DMA_BIDIRECTIONAL);
if (unlikely(!sgc)) {
dev_err(jrdev, "unable to map source\n");
return ERR_PTR(-ENOMEM);
}
} else {
sgc = dma_map_sg(jrdev, req->src, src_nents ? : 1,
DMA_TO_DEVICE);
if (unlikely(!sgc)) {
dev_err(jrdev, "unable to map source\n");
return ERR_PTR(-ENOMEM);
}
sgc = dma_map_sg(jrdev, req->dst, dst_nents ? : 1,
DMA_FROM_DEVICE);
if (unlikely(!sgc)) {
dev_err(jrdev, "unable to map destination\n");
dma_unmap_sg(jrdev, req->src, src_nents ? : 1,
DMA_TO_DEVICE);
return ERR_PTR(-ENOMEM);
}
}
iv_dma = dma_map_single(jrdev, req->info, ivsize, DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, iv_dma)) {
dev_err(jrdev, "unable to map IV\n");
caam_unmap(jrdev, req->src, req->dst, src_nents, dst_nents, 0,
0, 0, 0);
return ERR_PTR(-ENOMEM);
}
/*
* Check if iv can be contiguous with source and destination.
* If so, include it. If not, create scatterlist.
*/
if (!src_nents && iv_dma + ivsize == sg_dma_address(req->src))
iv_contig = true;
else
src_nents = src_nents ? : 1;
sec4_sg_bytes = ((iv_contig ? 0 : 1) + src_nents + dst_nents) *
sizeof(struct sec4_sg_entry);
/* allocate space for base edesc and hw desc commands, link tables */
edesc = kzalloc(sizeof(*edesc) + desc_bytes + sec4_sg_bytes,
GFP_DMA | flags);
if (!edesc) {
dev_err(jrdev, "could not allocate extended descriptor\n");
caam_unmap(jrdev, req->src, req->dst, src_nents, dst_nents,
iv_dma, ivsize, 0, 0);
return ERR_PTR(-ENOMEM);
}
edesc->src_nents = src_nents;
edesc->dst_nents = dst_nents;
edesc->sec4_sg_bytes = sec4_sg_bytes;
edesc->sec4_sg = (void *)edesc + sizeof(struct ablkcipher_edesc) +
desc_bytes;
sec4_sg_index = 0;
if (!iv_contig) {
dma_to_sec4_sg_one(edesc->sec4_sg, iv_dma, ivsize, 0);
sg_to_sec4_sg_last(req->src, src_nents,
edesc->sec4_sg + 1, 0);
sec4_sg_index += 1 + src_nents;
}
if (dst_nents) {
sg_to_sec4_sg_last(req->dst, dst_nents,
edesc->sec4_sg + sec4_sg_index, 0);
}
edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
sec4_sg_bytes, DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
dev_err(jrdev, "unable to map S/G table\n");
caam_unmap(jrdev, req->src, req->dst, src_nents, dst_nents,
iv_dma, ivsize, 0, 0);
kfree(edesc);
return ERR_PTR(-ENOMEM);
}
edesc->iv_dma = iv_dma;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ablkcipher sec4_sg@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, edesc->sec4_sg,
sec4_sg_bytes, 1);
#endif
*iv_contig_out = iv_contig;
return edesc;
}
static int ablkcipher_encrypt(struct ablkcipher_request *req)
{
struct ablkcipher_edesc *edesc;
struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
struct device *jrdev = ctx->jrdev;
bool iv_contig;
u32 *desc;
int ret = 0;
/* allocate extended descriptor */
edesc = ablkcipher_edesc_alloc(req, DESC_JOB_IO_LEN *
CAAM_CMD_SZ, &iv_contig);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
/* Create and submit job descriptor*/
init_ablkcipher_job(ctx->sh_desc_enc,
ctx->sh_desc_enc_dma, edesc, req, iv_contig);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ablkcipher jobdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc,
desc_bytes(edesc->hw_desc), 1);
#endif
desc = edesc->hw_desc;
ret = caam_jr_enqueue(jrdev, desc, ablkcipher_encrypt_done, req);
if (!ret) {
ret = -EINPROGRESS;
} else {
ablkcipher_unmap(jrdev, edesc, req);
kfree(edesc);
}
return ret;
}
static int ablkcipher_decrypt(struct ablkcipher_request *req)
{
struct ablkcipher_edesc *edesc;
struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
struct device *jrdev = ctx->jrdev;
bool iv_contig;
u32 *desc;
int ret = 0;
/* allocate extended descriptor */
edesc = ablkcipher_edesc_alloc(req, DESC_JOB_IO_LEN *
CAAM_CMD_SZ, &iv_contig);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
/* Create and submit job descriptor*/
init_ablkcipher_job(ctx->sh_desc_dec,
ctx->sh_desc_dec_dma, edesc, req, iv_contig);
desc = edesc->hw_desc;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ablkcipher jobdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc,
desc_bytes(edesc->hw_desc), 1);
#endif
ret = caam_jr_enqueue(jrdev, desc, ablkcipher_decrypt_done, req);
if (!ret) {
ret = -EINPROGRESS;
} else {
ablkcipher_unmap(jrdev, edesc, req);
kfree(edesc);
}
return ret;
}
/*
* allocate and map the ablkcipher extended descriptor
* for ablkcipher givencrypt
*/
static struct ablkcipher_edesc *ablkcipher_giv_edesc_alloc(
struct skcipher_givcrypt_request *greq,
int desc_bytes,
bool *iv_contig_out)
{
struct ablkcipher_request *req = &greq->creq;
struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
struct device *jrdev = ctx->jrdev;
gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
CRYPTO_TFM_REQ_MAY_SLEEP)) ?
GFP_KERNEL : GFP_ATOMIC;
int src_nents, dst_nents = 0, sec4_sg_bytes;
struct ablkcipher_edesc *edesc;
dma_addr_t iv_dma = 0;
bool iv_contig = false;
int sgc;
int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
int sec4_sg_index;
src_nents = sg_count(req->src, req->nbytes);
if (unlikely(req->dst != req->src))
dst_nents = sg_count(req->dst, req->nbytes);
if (likely(req->src == req->dst)) {
sgc = dma_map_sg(jrdev, req->src, src_nents ? : 1,
DMA_BIDIRECTIONAL);
if (unlikely(!sgc)) {
dev_err(jrdev, "unable to map source\n");
return ERR_PTR(-ENOMEM);
}
} else {
sgc = dma_map_sg(jrdev, req->src, src_nents ? : 1,
DMA_TO_DEVICE);
if (unlikely(!sgc)) {
dev_err(jrdev, "unable to map source\n");
return ERR_PTR(-ENOMEM);
}
sgc = dma_map_sg(jrdev, req->dst, dst_nents ? : 1,
DMA_FROM_DEVICE);
if (unlikely(!sgc)) {
dev_err(jrdev, "unable to map destination\n");
dma_unmap_sg(jrdev, req->src, src_nents ? : 1,
DMA_TO_DEVICE);
return ERR_PTR(-ENOMEM);
}
}
/*
* Check if iv can be contiguous with source and destination.
* If so, include it. If not, create scatterlist.
*/
iv_dma = dma_map_single(jrdev, greq->giv, ivsize, DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, iv_dma)) {
dev_err(jrdev, "unable to map IV\n");
caam_unmap(jrdev, req->src, req->dst, src_nents, dst_nents, 0,
0, 0, 0);
return ERR_PTR(-ENOMEM);
}
if (!dst_nents && iv_dma + ivsize == sg_dma_address(req->dst))
iv_contig = true;
else
dst_nents = dst_nents ? : 1;
sec4_sg_bytes = ((iv_contig ? 0 : 1) + src_nents + dst_nents) *
sizeof(struct sec4_sg_entry);
/* allocate space for base edesc and hw desc commands, link tables */
edesc = kzalloc(sizeof(*edesc) + desc_bytes + sec4_sg_bytes,
GFP_DMA | flags);
if (!edesc) {
dev_err(jrdev, "could not allocate extended descriptor\n");
caam_unmap(jrdev, req->src, req->dst, src_nents, dst_nents,
iv_dma, ivsize, 0, 0);
return ERR_PTR(-ENOMEM);
}
edesc->src_nents = src_nents;
edesc->dst_nents = dst_nents;
edesc->sec4_sg_bytes = sec4_sg_bytes;
edesc->sec4_sg = (void *)edesc + sizeof(struct ablkcipher_edesc) +
desc_bytes;
sec4_sg_index = 0;
if (src_nents) {
sg_to_sec4_sg_last(req->src, src_nents, edesc->sec4_sg, 0);
sec4_sg_index += src_nents;
}
if (!iv_contig) {
dma_to_sec4_sg_one(edesc->sec4_sg + sec4_sg_index,
iv_dma, ivsize, 0);
sec4_sg_index += 1;
sg_to_sec4_sg_last(req->dst, dst_nents,
edesc->sec4_sg + sec4_sg_index, 0);
}
edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
sec4_sg_bytes, DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
dev_err(jrdev, "unable to map S/G table\n");
caam_unmap(jrdev, req->src, req->dst, src_nents, dst_nents,
iv_dma, ivsize, 0, 0);
kfree(edesc);
return ERR_PTR(-ENOMEM);
}
edesc->iv_dma = iv_dma;
#ifdef DEBUG
print_hex_dump(KERN_ERR,
"ablkcipher sec4_sg@" __stringify(__LINE__) ": ",
DUMP_PREFIX_ADDRESS, 16, 4, edesc->sec4_sg,
sec4_sg_bytes, 1);
#endif
*iv_contig_out = iv_contig;
return edesc;
}
static int ablkcipher_givencrypt(struct skcipher_givcrypt_request *creq)
{
struct ablkcipher_request *req = &creq->creq;
struct ablkcipher_edesc *edesc;
struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
struct device *jrdev = ctx->jrdev;
bool iv_contig;
u32 *desc;
int ret = 0;
/* allocate extended descriptor */
edesc = ablkcipher_giv_edesc_alloc(creq, DESC_JOB_IO_LEN *
CAAM_CMD_SZ, &iv_contig);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
/* Create and submit job descriptor*/
init_ablkcipher_giv_job(ctx->sh_desc_givenc, ctx->sh_desc_givenc_dma,
edesc, req, iv_contig);
#ifdef DEBUG
print_hex_dump(KERN_ERR,
"ablkcipher jobdesc@" __stringify(__LINE__) ": ",
DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc,
desc_bytes(edesc->hw_desc), 1);
#endif
desc = edesc->hw_desc;
ret = caam_jr_enqueue(jrdev, desc, ablkcipher_encrypt_done, req);
if (!ret) {
ret = -EINPROGRESS;
} else {
ablkcipher_unmap(jrdev, edesc, req);
kfree(edesc);
}
return ret;
}
#define template_aead template_u.aead
#define template_ablkcipher template_u.ablkcipher
struct caam_alg_template {
char name[CRYPTO_MAX_ALG_NAME];
char driver_name[CRYPTO_MAX_ALG_NAME];
unsigned int blocksize;
u32 type;
union {
struct ablkcipher_alg ablkcipher;
} template_u;
u32 class1_alg_type;
u32 class2_alg_type;
u32 alg_op;
};
static struct caam_alg_template driver_algs[] = {
/* ablkcipher descriptor */
{
.name = "cbc(aes)",
.driver_name = "cbc-aes-caam",
.blocksize = AES_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_GIVCIPHER,
.template_ablkcipher = {
.setkey = ablkcipher_setkey,
.encrypt = ablkcipher_encrypt,
.decrypt = ablkcipher_decrypt,
.givencrypt = ablkcipher_givencrypt,
.geniv = "<built-in>",
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
},
{
.name = "cbc(des3_ede)",
.driver_name = "cbc-3des-caam",
.blocksize = DES3_EDE_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_GIVCIPHER,
.template_ablkcipher = {
.setkey = ablkcipher_setkey,
.encrypt = ablkcipher_encrypt,
.decrypt = ablkcipher_decrypt,
.givencrypt = ablkcipher_givencrypt,
.geniv = "<built-in>",
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.ivsize = DES3_EDE_BLOCK_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
},
{
.name = "cbc(des)",
.driver_name = "cbc-des-caam",
.blocksize = DES_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_GIVCIPHER,
.template_ablkcipher = {
.setkey = ablkcipher_setkey,
.encrypt = ablkcipher_encrypt,
.decrypt = ablkcipher_decrypt,
.givencrypt = ablkcipher_givencrypt,
.geniv = "<built-in>",
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
},
{
.name = "ctr(aes)",
.driver_name = "ctr-aes-caam",
.blocksize = 1,
.type = CRYPTO_ALG_TYPE_ABLKCIPHER,
.template_ablkcipher = {
.setkey = ablkcipher_setkey,
.encrypt = ablkcipher_encrypt,
.decrypt = ablkcipher_decrypt,
.geniv = "chainiv",
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128,
},
{
.name = "rfc3686(ctr(aes))",
.driver_name = "rfc3686-ctr-aes-caam",
.blocksize = 1,
.type = CRYPTO_ALG_TYPE_GIVCIPHER,
.template_ablkcipher = {
.setkey = ablkcipher_setkey,
.encrypt = ablkcipher_encrypt,
.decrypt = ablkcipher_decrypt,
.givencrypt = ablkcipher_givencrypt,
.geniv = "<built-in>",
.min_keysize = AES_MIN_KEY_SIZE +
CTR_RFC3686_NONCE_SIZE,
.max_keysize = AES_MAX_KEY_SIZE +
CTR_RFC3686_NONCE_SIZE,
.ivsize = CTR_RFC3686_IV_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128,
},
{
.name = "xts(aes)",
.driver_name = "xts-aes-caam",
.blocksize = AES_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_ABLKCIPHER,
.template_ablkcipher = {
.setkey = xts_ablkcipher_setkey,
.encrypt = ablkcipher_encrypt,
.decrypt = ablkcipher_decrypt,
.geniv = "eseqiv",
.min_keysize = 2 * AES_MIN_KEY_SIZE,
.max_keysize = 2 * AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_XTS,
},
};
static struct caam_aead_alg driver_aeads[] = {
{
.aead = {
.base = {
.cra_name = "rfc4106(gcm(aes))",
.cra_driver_name = "rfc4106-gcm-aes-caam",
.cra_blocksize = 1,
},
.setkey = rfc4106_setkey,
.setauthsize = rfc4106_setauthsize,
.encrypt = ipsec_gcm_encrypt,
.decrypt = ipsec_gcm_decrypt,
.ivsize = 8,
.maxauthsize = AES_BLOCK_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM,
},
},
{
.aead = {
.base = {
.cra_name = "rfc4543(gcm(aes))",
.cra_driver_name = "rfc4543-gcm-aes-caam",
.cra_blocksize = 1,
},
.setkey = rfc4543_setkey,
.setauthsize = rfc4543_setauthsize,
.encrypt = ipsec_gcm_encrypt,
.decrypt = ipsec_gcm_decrypt,
.ivsize = 8,
.maxauthsize = AES_BLOCK_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM,
},
},
/* Galois Counter Mode */
{
.aead = {
.base = {
.cra_name = "gcm(aes)",
.cra_driver_name = "gcm-aes-caam",
.cra_blocksize = 1,
},
.setkey = gcm_setkey,
.setauthsize = gcm_setauthsize,
.encrypt = gcm_encrypt,
.decrypt = gcm_decrypt,
.ivsize = 12,
.maxauthsize = AES_BLOCK_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM,
},
},
/* single-pass ipsec_esp descriptor */
{
.aead = {
.base = {
.cra_name = "authenc(hmac(md5),"
"ecb(cipher_null))",
.cra_driver_name = "authenc-hmac-md5-"
"ecb-cipher_null-caam",
.cra_blocksize = NULL_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = NULL_IV_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha1),"
"ecb(cipher_null))",
.cra_driver_name = "authenc-hmac-sha1-"
"ecb-cipher_null-caam",
.cra_blocksize = NULL_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = NULL_IV_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha224),"
"ecb(cipher_null))",
.cra_driver_name = "authenc-hmac-sha224-"
"ecb-cipher_null-caam",
.cra_blocksize = NULL_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = NULL_IV_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha256),"
"ecb(cipher_null))",
.cra_driver_name = "authenc-hmac-sha256-"
"ecb-cipher_null-caam",
.cra_blocksize = NULL_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = NULL_IV_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha384),"
"ecb(cipher_null))",
.cra_driver_name = "authenc-hmac-sha384-"
"ecb-cipher_null-caam",
.cra_blocksize = NULL_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = NULL_IV_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha512),"
"ecb(cipher_null))",
.cra_driver_name = "authenc-hmac-sha512-"
"ecb-cipher_null-caam",
.cra_blocksize = NULL_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = NULL_IV_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(md5),cbc(aes))",
.cra_driver_name = "authenc-hmac-md5-"
"cbc-aes-caam",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(md5),"
"cbc(aes)))",
.cra_driver_name = "echainiv-authenc-hmac-md5-"
"cbc-aes-caam",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha1),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha1-"
"cbc-aes-caam",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha1),"
"cbc(aes)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha1-cbc-aes-caam",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha224),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha224-"
"cbc-aes-caam",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha224),"
"cbc(aes)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha224-cbc-aes-caam",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha256),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha256-"
"cbc-aes-caam",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha256),"
"cbc(aes)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha256-cbc-aes-caam",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha384),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha384-"
"cbc-aes-caam",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha384),"
"cbc(aes)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha384-cbc-aes-caam",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha512),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha512-"
"cbc-aes-caam",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha512),"
"cbc(aes)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha512-cbc-aes-caam",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(md5),cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-md5-"
"cbc-des3_ede-caam",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC,
}
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(md5),"
"cbc(des3_ede)))",
.cra_driver_name = "echainiv-authenc-hmac-md5-"
"cbc-des3_ede-caam",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha1),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha1-"
"cbc-des3_ede-caam",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha1),"
"cbc(des3_ede)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha1-"
"cbc-des3_ede-caam",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha224),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha224-"
"cbc-des3_ede-caam",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha224),"
"cbc(des3_ede)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha224-"
"cbc-des3_ede-caam",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha256),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha256-"
"cbc-des3_ede-caam",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha256),"
"cbc(des3_ede)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha256-"
"cbc-des3_ede-caam",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha384),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha384-"
"cbc-des3_ede-caam",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha384),"
"cbc(des3_ede)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha384-"
"cbc-des3_ede-caam",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha512),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha512-"
"cbc-des3_ede-caam",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha512),"
"cbc(des3_ede)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha512-"
"cbc-des3_ede-caam",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(md5),cbc(des))",
.cra_driver_name = "authenc-hmac-md5-"
"cbc-des-caam",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(md5),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-hmac-md5-"
"cbc-des-caam",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha1),cbc(des))",
.cra_driver_name = "authenc-hmac-sha1-"
"cbc-des-caam",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha1),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha1-cbc-des-caam",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha224),cbc(des))",
.cra_driver_name = "authenc-hmac-sha224-"
"cbc-des-caam",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha224),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha224-cbc-des-caam",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha256),cbc(des))",
.cra_driver_name = "authenc-hmac-sha256-"
"cbc-des-caam",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha256),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha256-cbc-des-caam",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha384),cbc(des))",
.cra_driver_name = "authenc-hmac-sha384-"
"cbc-des-caam",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha384),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha384-cbc-des-caam",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha512),cbc(des))",
.cra_driver_name = "authenc-hmac-sha512-"
"cbc-des-caam",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha512),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha512-cbc-des-caam",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(md5),"
"rfc3686(ctr(aes)))",
.cra_driver_name = "authenc-hmac-md5-"
"rfc3686-ctr-aes-caam",
.cra_blocksize = 1,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC,
.rfc3686 = true,
},
},
{
.aead = {
.base = {
.cra_name = "seqiv(authenc("
"hmac(md5),rfc3686(ctr(aes))))",
.cra_driver_name = "seqiv-authenc-hmac-md5-"
"rfc3686-ctr-aes-caam",
.cra_blocksize = 1,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC,
.rfc3686 = true,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha1),"
"rfc3686(ctr(aes)))",
.cra_driver_name = "authenc-hmac-sha1-"
"rfc3686-ctr-aes-caam",
.cra_blocksize = 1,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
.rfc3686 = true,
},
},
{
.aead = {
.base = {
.cra_name = "seqiv(authenc("
"hmac(sha1),rfc3686(ctr(aes))))",
.cra_driver_name = "seqiv-authenc-hmac-sha1-"
"rfc3686-ctr-aes-caam",
.cra_blocksize = 1,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
.rfc3686 = true,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha224),"
"rfc3686(ctr(aes)))",
.cra_driver_name = "authenc-hmac-sha224-"
"rfc3686-ctr-aes-caam",
.cra_blocksize = 1,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC,
.rfc3686 = true,
},
},
{
.aead = {
.base = {
.cra_name = "seqiv(authenc("
"hmac(sha224),rfc3686(ctr(aes))))",
.cra_driver_name = "seqiv-authenc-hmac-sha224-"
"rfc3686-ctr-aes-caam",
.cra_blocksize = 1,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC,
.rfc3686 = true,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha256),"
"rfc3686(ctr(aes)))",
.cra_driver_name = "authenc-hmac-sha256-"
"rfc3686-ctr-aes-caam",
.cra_blocksize = 1,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
.rfc3686 = true,
},
},
{
.aead = {
.base = {
.cra_name = "seqiv(authenc(hmac(sha256),"
"rfc3686(ctr(aes))))",
.cra_driver_name = "seqiv-authenc-hmac-sha256-"
"rfc3686-ctr-aes-caam",
.cra_blocksize = 1,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
.rfc3686 = true,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha384),"
"rfc3686(ctr(aes)))",
.cra_driver_name = "authenc-hmac-sha384-"
"rfc3686-ctr-aes-caam",
.cra_blocksize = 1,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC,
.rfc3686 = true,
},
},
{
.aead = {
.base = {
.cra_name = "seqiv(authenc(hmac(sha384),"
"rfc3686(ctr(aes))))",
.cra_driver_name = "seqiv-authenc-hmac-sha384-"
"rfc3686-ctr-aes-caam",
.cra_blocksize = 1,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC,
.rfc3686 = true,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha512),"
"rfc3686(ctr(aes)))",
.cra_driver_name = "authenc-hmac-sha512-"
"rfc3686-ctr-aes-caam",
.cra_blocksize = 1,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
.rfc3686 = true,
},
},
{
.aead = {
.base = {
.cra_name = "seqiv(authenc(hmac(sha512),"
"rfc3686(ctr(aes))))",
.cra_driver_name = "seqiv-authenc-hmac-sha512-"
"rfc3686-ctr-aes-caam",
.cra_blocksize = 1,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
.rfc3686 = true,
.geniv = true,
},
},
};
struct caam_crypto_alg {
struct crypto_alg crypto_alg;
struct list_head entry;
struct caam_alg_entry caam;
};
static int caam_init_common(struct caam_ctx *ctx, struct caam_alg_entry *caam)
{
ctx->jrdev = caam_jr_alloc();
if (IS_ERR(ctx->jrdev)) {
pr_err("Job Ring Device allocation for transform failed\n");
return PTR_ERR(ctx->jrdev);
}
/* copy descriptor header template value */
ctx->class1_alg_type = OP_TYPE_CLASS1_ALG | caam->class1_alg_type;
ctx->class2_alg_type = OP_TYPE_CLASS2_ALG | caam->class2_alg_type;
ctx->alg_op = OP_TYPE_CLASS2_ALG | caam->alg_op;
return 0;
}
static int caam_cra_init(struct crypto_tfm *tfm)
{
struct crypto_alg *alg = tfm->__crt_alg;
struct caam_crypto_alg *caam_alg =
container_of(alg, struct caam_crypto_alg, crypto_alg);
struct caam_ctx *ctx = crypto_tfm_ctx(tfm);
return caam_init_common(ctx, &caam_alg->caam);
}
static int caam_aead_init(struct crypto_aead *tfm)
{
struct aead_alg *alg = crypto_aead_alg(tfm);
struct caam_aead_alg *caam_alg =
container_of(alg, struct caam_aead_alg, aead);
struct caam_ctx *ctx = crypto_aead_ctx(tfm);
return caam_init_common(ctx, &caam_alg->caam);
}
static void caam_exit_common(struct caam_ctx *ctx)
{
if (ctx->sh_desc_enc_dma &&
!dma_mapping_error(ctx->jrdev, ctx->sh_desc_enc_dma))
dma_unmap_single(ctx->jrdev, ctx->sh_desc_enc_dma,
desc_bytes(ctx->sh_desc_enc), DMA_TO_DEVICE);
if (ctx->sh_desc_dec_dma &&
!dma_mapping_error(ctx->jrdev, ctx->sh_desc_dec_dma))
dma_unmap_single(ctx->jrdev, ctx->sh_desc_dec_dma,
desc_bytes(ctx->sh_desc_dec), DMA_TO_DEVICE);
if (ctx->sh_desc_givenc_dma &&
!dma_mapping_error(ctx->jrdev, ctx->sh_desc_givenc_dma))
dma_unmap_single(ctx->jrdev, ctx->sh_desc_givenc_dma,
desc_bytes(ctx->sh_desc_givenc),
DMA_TO_DEVICE);
if (ctx->key_dma &&
!dma_mapping_error(ctx->jrdev, ctx->key_dma))
dma_unmap_single(ctx->jrdev, ctx->key_dma,
ctx->enckeylen + ctx->split_key_pad_len,
DMA_TO_DEVICE);
caam_jr_free(ctx->jrdev);
}
static void caam_cra_exit(struct crypto_tfm *tfm)
{
caam_exit_common(crypto_tfm_ctx(tfm));
}
static void caam_aead_exit(struct crypto_aead *tfm)
{
caam_exit_common(crypto_aead_ctx(tfm));
}
static void __exit caam_algapi_exit(void)
{
struct caam_crypto_alg *t_alg, *n;
int i;
for (i = 0; i < ARRAY_SIZE(driver_aeads); i++) {
struct caam_aead_alg *t_alg = driver_aeads + i;
if (t_alg->registered)
crypto_unregister_aead(&t_alg->aead);
}
if (!alg_list.next)
return;
list_for_each_entry_safe(t_alg, n, &alg_list, entry) {
crypto_unregister_alg(&t_alg->crypto_alg);
list_del(&t_alg->entry);
kfree(t_alg);
}
}
static struct caam_crypto_alg *caam_alg_alloc(struct caam_alg_template
*template)
{
struct caam_crypto_alg *t_alg;
struct crypto_alg *alg;
t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL);
if (!t_alg) {
pr_err("failed to allocate t_alg\n");
return ERR_PTR(-ENOMEM);
}
alg = &t_alg->crypto_alg;
snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", template->name);
snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
template->driver_name);
alg->cra_module = THIS_MODULE;
alg->cra_init = caam_cra_init;
alg->cra_exit = caam_cra_exit;
alg->cra_priority = CAAM_CRA_PRIORITY;
alg->cra_blocksize = template->blocksize;
alg->cra_alignmask = 0;
alg->cra_ctxsize = sizeof(struct caam_ctx);
alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
template->type;
switch (template->type) {
case CRYPTO_ALG_TYPE_GIVCIPHER:
alg->cra_type = &crypto_givcipher_type;
alg->cra_ablkcipher = template->template_ablkcipher;
break;
case CRYPTO_ALG_TYPE_ABLKCIPHER:
alg->cra_type = &crypto_ablkcipher_type;
alg->cra_ablkcipher = template->template_ablkcipher;
break;
}
t_alg->caam.class1_alg_type = template->class1_alg_type;
t_alg->caam.class2_alg_type = template->class2_alg_type;
t_alg->caam.alg_op = template->alg_op;
return t_alg;
}
static void caam_aead_alg_init(struct caam_aead_alg *t_alg)
{
struct aead_alg *alg = &t_alg->aead;
alg->base.cra_module = THIS_MODULE;
alg->base.cra_priority = CAAM_CRA_PRIORITY;
alg->base.cra_ctxsize = sizeof(struct caam_ctx);
alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
alg->init = caam_aead_init;
alg->exit = caam_aead_exit;
}
static int __init caam_algapi_init(void)
{
struct device_node *dev_node;
struct platform_device *pdev;
struct device *ctrldev;
struct caam_drv_private *priv;
int i = 0, err = 0;
u32 cha_vid, cha_inst, des_inst, aes_inst, md_inst;
unsigned int md_limit = SHA512_DIGEST_SIZE;
bool registered = false;
dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
if (!dev_node) {
dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0");
if (!dev_node)
return -ENODEV;
}
pdev = of_find_device_by_node(dev_node);
if (!pdev) {
of_node_put(dev_node);
return -ENODEV;
}
ctrldev = &pdev->dev;
priv = dev_get_drvdata(ctrldev);
of_node_put(dev_node);
/*
* If priv is NULL, it's probably because the caam driver wasn't
* properly initialized (e.g. RNG4 init failed). Thus, bail out here.
*/
if (!priv)
return -ENODEV;
INIT_LIST_HEAD(&alg_list);
/*
* Register crypto algorithms the device supports.
* First, detect presence and attributes of DES, AES, and MD blocks.
*/
cha_vid = rd_reg32(&priv->ctrl->perfmon.cha_id_ls);
cha_inst = rd_reg32(&priv->ctrl->perfmon.cha_num_ls);
des_inst = (cha_inst & CHA_ID_LS_DES_MASK) >> CHA_ID_LS_DES_SHIFT;
aes_inst = (cha_inst & CHA_ID_LS_AES_MASK) >> CHA_ID_LS_AES_SHIFT;
md_inst = (cha_inst & CHA_ID_LS_MD_MASK) >> CHA_ID_LS_MD_SHIFT;
/* If MD is present, limit digest size based on LP256 */
if (md_inst && ((cha_vid & CHA_ID_LS_MD_MASK) == CHA_ID_LS_MD_LP256))
md_limit = SHA256_DIGEST_SIZE;
for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
struct caam_crypto_alg *t_alg;
struct caam_alg_template *alg = driver_algs + i;
u32 alg_sel = alg->class1_alg_type & OP_ALG_ALGSEL_MASK;
/* Skip DES algorithms if not supported by device */
if (!des_inst &&
((alg_sel == OP_ALG_ALGSEL_3DES) ||
(alg_sel == OP_ALG_ALGSEL_DES)))
continue;
/* Skip AES algorithms if not supported by device */
if (!aes_inst && (alg_sel == OP_ALG_ALGSEL_AES))
continue;
t_alg = caam_alg_alloc(alg);
if (IS_ERR(t_alg)) {
err = PTR_ERR(t_alg);
pr_warn("%s alg allocation failed\n", alg->driver_name);
continue;
}
err = crypto_register_alg(&t_alg->crypto_alg);
if (err) {
pr_warn("%s alg registration failed\n",
t_alg->crypto_alg.cra_driver_name);
kfree(t_alg);
continue;
}
list_add_tail(&t_alg->entry, &alg_list);
registered = true;
}
for (i = 0; i < ARRAY_SIZE(driver_aeads); i++) {
struct caam_aead_alg *t_alg = driver_aeads + i;
u32 c1_alg_sel = t_alg->caam.class1_alg_type &
OP_ALG_ALGSEL_MASK;
u32 c2_alg_sel = t_alg->caam.class2_alg_type &
OP_ALG_ALGSEL_MASK;
u32 alg_aai = t_alg->caam.class1_alg_type & OP_ALG_AAI_MASK;
/* Skip DES algorithms if not supported by device */
if (!des_inst &&
((c1_alg_sel == OP_ALG_ALGSEL_3DES) ||
(c1_alg_sel == OP_ALG_ALGSEL_DES)))
continue;
/* Skip AES algorithms if not supported by device */
if (!aes_inst && (c1_alg_sel == OP_ALG_ALGSEL_AES))
continue;
/*
* Check support for AES algorithms not available
* on LP devices.
*/
if ((cha_vid & CHA_ID_LS_AES_MASK) == CHA_ID_LS_AES_LP)
if (alg_aai == OP_ALG_AAI_GCM)
continue;
/*
* Skip algorithms requiring message digests
* if MD or MD size is not supported by device.
*/
if (c2_alg_sel &&
(!md_inst || (t_alg->aead.maxauthsize > md_limit)))
continue;
caam_aead_alg_init(t_alg);
err = crypto_register_aead(&t_alg->aead);
if (err) {
pr_warn("%s alg registration failed\n",
t_alg->aead.base.cra_driver_name);
continue;
}
t_alg->registered = true;
registered = true;
}
if (registered)
pr_info("caam algorithms registered in /proc/crypto\n");
return err;
}
module_init(caam_algapi_init);
module_exit(caam_algapi_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("FSL CAAM support for crypto API");
MODULE_AUTHOR("Freescale Semiconductor - NMG/STC");