linux/arch/x86/entry/common.c

425 lines
11 KiB
C
Raw Normal View History

/*
* common.c - C code for kernel entry and exit
* Copyright (c) 2015 Andrew Lutomirski
* GPL v2
*
* Based on asm and ptrace code by many authors. The code here originated
* in ptrace.c and signal.c.
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/sched/task_stack.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/errno.h>
#include <linux/ptrace.h>
#include <linux/tracehook.h>
#include <linux/audit.h>
#include <linux/seccomp.h>
#include <linux/signal.h>
#include <linux/export.h>
#include <linux/context_tracking.h>
#include <linux/user-return-notifier.h>
#include <linux/nospec.h>
#include <linux/uprobes.h>
#include <linux/livepatch.h>
x86/syscalls: Check address limit on user-mode return Ensure the address limit is a user-mode segment before returning to user-mode. Otherwise a process can corrupt kernel-mode memory and elevate privileges [1]. The set_fs function sets the TIF_SETFS flag to force a slow path on return. In the slow path, the address limit is checked to be USER_DS if needed. The addr_limit_user_check function is added as a cross-architecture function to check the address limit. [1] https://bugs.chromium.org/p/project-zero/issues/detail?id=990 Signed-off-by: Thomas Garnier <thgarnie@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Mark Rutland <mark.rutland@arm.com> Cc: kernel-hardening@lists.openwall.com Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: David Howells <dhowells@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Miroslav Benes <mbenes@suse.cz> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Pratyush Anand <panand@redhat.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Petr Mladek <pmladek@suse.com> Cc: Rik van Riel <riel@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: linux-arm-kernel@lists.infradead.org Cc: Will Drewry <wad@chromium.org> Cc: linux-api@vger.kernel.org Cc: Oleg Nesterov <oleg@redhat.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Paolo Bonzini <pbonzini@redhat.com> Link: http://lkml.kernel.org/r/20170615011203.144108-1-thgarnie@google.com
2017-06-15 01:12:01 +00:00
#include <linux/syscalls.h>
#include <asm/desc.h>
#include <asm/traps.h>
#include <asm/vdso.h>
#include <linux/uaccess.h>
#include <asm/cpufeature.h>
#define CREATE_TRACE_POINTS
#include <trace/events/syscalls.h>
x86/entry: Add enter_from_user_mode() and use it in syscalls Changing the x86 context tracking hooks is dangerous because there are no good checks that we track our context correctly. Add a helper to check that we're actually in CONTEXT_USER when we enter from user mode and wire it up for syscall entries. Subsequent patches will wire this up for all non-NMI entries as well. NMIs are their own special beast and cannot currently switch overall context tracking state. Instead, they have their own special RCU hooks. This is a tiny speedup if !CONFIG_CONTEXT_TRACKING (removes a branch) and a tiny slowdown if CONFIG_CONTEXT_TRACING (adds a layer of indirection). Eventually, we should fix up the core context tracking code to supply a function that does what we want (and can be much simpler than user_exit), which will enable us to get rid of the extra call. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Denys Vlasenko <vda.linux@googlemail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: paulmck@linux.vnet.ibm.com Link: http://lkml.kernel.org/r/853b42420066ec3fb856779cdc223a6dcb5d355b.1435952415.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-03 19:44:25 +00:00
#ifdef CONFIG_CONTEXT_TRACKING
/* Called on entry from user mode with IRQs off. */
__visible inline void enter_from_user_mode(void)
x86/entry: Add enter_from_user_mode() and use it in syscalls Changing the x86 context tracking hooks is dangerous because there are no good checks that we track our context correctly. Add a helper to check that we're actually in CONTEXT_USER when we enter from user mode and wire it up for syscall entries. Subsequent patches will wire this up for all non-NMI entries as well. NMIs are their own special beast and cannot currently switch overall context tracking state. Instead, they have their own special RCU hooks. This is a tiny speedup if !CONFIG_CONTEXT_TRACKING (removes a branch) and a tiny slowdown if CONFIG_CONTEXT_TRACING (adds a layer of indirection). Eventually, we should fix up the core context tracking code to supply a function that does what we want (and can be much simpler than user_exit), which will enable us to get rid of the extra call. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Denys Vlasenko <vda.linux@googlemail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: paulmck@linux.vnet.ibm.com Link: http://lkml.kernel.org/r/853b42420066ec3fb856779cdc223a6dcb5d355b.1435952415.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-03 19:44:25 +00:00
{
CT_WARN_ON(ct_state() != CONTEXT_USER);
x86/entry: Avoid interrupt flag save and restore Thanks to all the work that was done by Andy Lutomirski and others, enter_from_user_mode() and prepare_exit_to_usermode() are now called only with interrupts disabled. Let's provide them a version of user_enter()/user_exit() that skips saving and restoring the interrupt flag. On an AMD-based machine I tested this patch on, with force-enabled context tracking, the speed-up in system calls was 90 clock cycles or 6%, measured with the following simple benchmark: #include <sys/signal.h> #include <time.h> #include <unistd.h> #include <stdio.h> unsigned long rdtsc() { unsigned long result; asm volatile("rdtsc; shl $32, %%rdx; mov %%eax, %%eax\n" "or %%rdx, %%rax" : "=a" (result) : : "rdx"); return result; } int main() { unsigned long tsc1, tsc2; int pid = getpid(); int i; tsc1 = rdtsc(); for (i = 0; i < 100000000; i++) kill(pid, SIGWINCH); tsc2 = rdtsc(); printf("%ld\n", tsc2 - tsc1); } Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Andy Lutomirski <luto@kernel.org> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: kvm@vger.kernel.org Link: http://lkml.kernel.org/r/1466434712-31440-2-git-send-email-pbonzini@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-20 14:58:29 +00:00
user_exit_irqoff();
x86/entry: Add enter_from_user_mode() and use it in syscalls Changing the x86 context tracking hooks is dangerous because there are no good checks that we track our context correctly. Add a helper to check that we're actually in CONTEXT_USER when we enter from user mode and wire it up for syscall entries. Subsequent patches will wire this up for all non-NMI entries as well. NMIs are their own special beast and cannot currently switch overall context tracking state. Instead, they have their own special RCU hooks. This is a tiny speedup if !CONFIG_CONTEXT_TRACKING (removes a branch) and a tiny slowdown if CONFIG_CONTEXT_TRACING (adds a layer of indirection). Eventually, we should fix up the core context tracking code to supply a function that does what we want (and can be much simpler than user_exit), which will enable us to get rid of the extra call. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Denys Vlasenko <vda.linux@googlemail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: paulmck@linux.vnet.ibm.com Link: http://lkml.kernel.org/r/853b42420066ec3fb856779cdc223a6dcb5d355b.1435952415.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-03 19:44:25 +00:00
}
#else
static inline void enter_from_user_mode(void) {}
x86/entry: Add enter_from_user_mode() and use it in syscalls Changing the x86 context tracking hooks is dangerous because there are no good checks that we track our context correctly. Add a helper to check that we're actually in CONTEXT_USER when we enter from user mode and wire it up for syscall entries. Subsequent patches will wire this up for all non-NMI entries as well. NMIs are their own special beast and cannot currently switch overall context tracking state. Instead, they have their own special RCU hooks. This is a tiny speedup if !CONFIG_CONTEXT_TRACKING (removes a branch) and a tiny slowdown if CONFIG_CONTEXT_TRACING (adds a layer of indirection). Eventually, we should fix up the core context tracking code to supply a function that does what we want (and can be much simpler than user_exit), which will enable us to get rid of the extra call. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Denys Vlasenko <vda.linux@googlemail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: paulmck@linux.vnet.ibm.com Link: http://lkml.kernel.org/r/853b42420066ec3fb856779cdc223a6dcb5d355b.1435952415.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-03 19:44:25 +00:00
#endif
static void do_audit_syscall_entry(struct pt_regs *regs, u32 arch)
{
#ifdef CONFIG_X86_64
if (arch == AUDIT_ARCH_X86_64) {
audit_syscall_entry(regs->orig_ax, regs->di,
regs->si, regs->dx, regs->r10);
} else
#endif
{
audit_syscall_entry(regs->orig_ax, regs->bx,
regs->cx, regs->dx, regs->si);
}
}
/*
* Returns the syscall nr to run (which should match regs->orig_ax) or -1
* to skip the syscall.
*/
static long syscall_trace_enter(struct pt_regs *regs)
{
u32 arch = in_ia32_syscall() ? AUDIT_ARCH_I386 : AUDIT_ARCH_X86_64;
struct thread_info *ti = current_thread_info();
unsigned long ret = 0;
bool emulated = false;
u32 work;
if (IS_ENABLED(CONFIG_DEBUG_ENTRY))
BUG_ON(regs != task_pt_regs(current));
locking/atomics: COCCINELLE/treewide: Convert trivial ACCESS_ONCE() patterns to READ_ONCE()/WRITE_ONCE() Please do not apply this to mainline directly, instead please re-run the coccinelle script shown below and apply its output. For several reasons, it is desirable to use {READ,WRITE}_ONCE() in preference to ACCESS_ONCE(), and new code is expected to use one of the former. So far, there's been no reason to change most existing uses of ACCESS_ONCE(), as these aren't harmful, and changing them results in churn. However, for some features, the read/write distinction is critical to correct operation. To distinguish these cases, separate read/write accessors must be used. This patch migrates (most) remaining ACCESS_ONCE() instances to {READ,WRITE}_ONCE(), using the following coccinelle script: ---- // Convert trivial ACCESS_ONCE() uses to equivalent READ_ONCE() and // WRITE_ONCE() // $ make coccicheck COCCI=/home/mark/once.cocci SPFLAGS="--include-headers" MODE=patch virtual patch @ depends on patch @ expression E1, E2; @@ - ACCESS_ONCE(E1) = E2 + WRITE_ONCE(E1, E2) @ depends on patch @ expression E; @@ - ACCESS_ONCE(E) + READ_ONCE(E) ---- Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: davem@davemloft.net Cc: linux-arch@vger.kernel.org Cc: mpe@ellerman.id.au Cc: shuah@kernel.org Cc: snitzer@redhat.com Cc: thor.thayer@linux.intel.com Cc: tj@kernel.org Cc: viro@zeniv.linux.org.uk Cc: will.deacon@arm.com Link: http://lkml.kernel.org/r/1508792849-3115-19-git-send-email-paulmck@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-23 21:07:29 +00:00
work = READ_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY;
if (unlikely(work & _TIF_SYSCALL_EMU))
emulated = true;
if ((emulated || (work & _TIF_SYSCALL_TRACE)) &&
tracehook_report_syscall_entry(regs))
return -1L;
if (emulated)
return -1L;
#ifdef CONFIG_SECCOMP
/*
* Do seccomp after ptrace, to catch any tracer changes.
*/
if (work & _TIF_SECCOMP) {
struct seccomp_data sd;
sd.arch = arch;
sd.nr = regs->orig_ax;
sd.instruction_pointer = regs->ip;
#ifdef CONFIG_X86_64
if (arch == AUDIT_ARCH_X86_64) {
sd.args[0] = regs->di;
sd.args[1] = regs->si;
sd.args[2] = regs->dx;
sd.args[3] = regs->r10;
sd.args[4] = regs->r8;
sd.args[5] = regs->r9;
} else
#endif
{
sd.args[0] = regs->bx;
sd.args[1] = regs->cx;
sd.args[2] = regs->dx;
sd.args[3] = regs->si;
sd.args[4] = regs->di;
sd.args[5] = regs->bp;
}
ret = __secure_computing(&sd);
if (ret == -1)
return ret;
}
#endif
if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
trace_sys_enter(regs, regs->orig_ax);
do_audit_syscall_entry(regs, arch);
return ret ?: regs->orig_ax;
}
#define EXIT_TO_USERMODE_LOOP_FLAGS \
(_TIF_SIGPENDING | _TIF_NOTIFY_RESUME | _TIF_UPROBE | \
_TIF_NEED_RESCHED | _TIF_USER_RETURN_NOTIFY | _TIF_PATCH_PENDING)
static void exit_to_usermode_loop(struct pt_regs *regs, u32 cached_flags)
{
x86/entry: Add new, comprehensible entry and exit handlers written in C The current x86 entry and exit code, written in a mixture of assembly and C code, is incomprehensible due to being open-coded in a lot of places without coherent documentation. It appears to work primary by luck and duct tape: i.e. obvious runtime failures were fixed on-demand, without re-thinking the design. Due to those reasons our confidence level in that code is low, and it is very difficult to incrementally improve. Add new code written in C, in preparation for simply deleting the old entry code. prepare_exit_to_usermode() is a new function that will handle all slow path exits to user mode. It is called with IRQs disabled and it leaves us in a state in which it is safe to immediately return to user mode. IRQs must not be re-enabled at any point after prepare_exit_to_usermode() returns and user mode is actually entered. (We can, of course, fail to enter user mode and treat that failure as a fresh entry to kernel mode.) All callers of do_notify_resume() will be migrated to call prepare_exit_to_usermode() instead; prepare_exit_to_usermode() needs to do everything that do_notify_resume() does today, but it also takes care of scheduling and context tracking. Unlike do_notify_resume(), it does not need to be called in a loop. syscall_return_slowpath() is exactly what it sounds like: it will be called on any syscall exit slow path. It will replace syscall_trace_leave() and it calls prepare_exit_to_usermode() on the way out. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Denys Vlasenko <vda.linux@googlemail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: paulmck@linux.vnet.ibm.com Link: http://lkml.kernel.org/r/c57c8b87661a4152801d7d3786eac2d1a2f209dd.1435952415.git.luto@kernel.org [ Improved the changelog a bit. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-03 19:44:26 +00:00
/*
* In order to return to user mode, we need to have IRQs off with
* none of EXIT_TO_USERMODE_LOOP_FLAGS set. Several of these flags
x86/entry: Add new, comprehensible entry and exit handlers written in C The current x86 entry and exit code, written in a mixture of assembly and C code, is incomprehensible due to being open-coded in a lot of places without coherent documentation. It appears to work primary by luck and duct tape: i.e. obvious runtime failures were fixed on-demand, without re-thinking the design. Due to those reasons our confidence level in that code is low, and it is very difficult to incrementally improve. Add new code written in C, in preparation for simply deleting the old entry code. prepare_exit_to_usermode() is a new function that will handle all slow path exits to user mode. It is called with IRQs disabled and it leaves us in a state in which it is safe to immediately return to user mode. IRQs must not be re-enabled at any point after prepare_exit_to_usermode() returns and user mode is actually entered. (We can, of course, fail to enter user mode and treat that failure as a fresh entry to kernel mode.) All callers of do_notify_resume() will be migrated to call prepare_exit_to_usermode() instead; prepare_exit_to_usermode() needs to do everything that do_notify_resume() does today, but it also takes care of scheduling and context tracking. Unlike do_notify_resume(), it does not need to be called in a loop. syscall_return_slowpath() is exactly what it sounds like: it will be called on any syscall exit slow path. It will replace syscall_trace_leave() and it calls prepare_exit_to_usermode() on the way out. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Denys Vlasenko <vda.linux@googlemail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: paulmck@linux.vnet.ibm.com Link: http://lkml.kernel.org/r/c57c8b87661a4152801d7d3786eac2d1a2f209dd.1435952415.git.luto@kernel.org [ Improved the changelog a bit. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-03 19:44:26 +00:00
* can be set at any time on preemptable kernels if we have IRQs on,
* so we need to loop. Disabling preemption wouldn't help: doing the
* work to clear some of the flags can sleep.
*/
while (true) {
/* We have work to do. */
local_irq_enable();
if (cached_flags & _TIF_NEED_RESCHED)
schedule();
if (cached_flags & _TIF_UPROBE)
uprobe_notify_resume(regs);
livepatch: send a fake signal to all blocking tasks Live patching consistency model is of LEAVE_PATCHED_SET and SWITCH_THREAD. This means that all tasks in the system have to be marked one by one as safe to call a new patched function. Safe means when a task is not (sleeping) in a set of patched functions. That is, no patched function is on the task's stack. Another clearly safe place is the boundary between kernel and userspace. The patching waits for all tasks to get outside of the patched set or to cross the boundary. The transition is completed afterwards. The problem is that a task can block the transition for quite a long time, if not forever. It could sleep in a set of patched functions, for example. Luckily we can force the task to leave the set by sending it a fake signal, that is a signal with no data in signal pending structures (no handler, no sign of proper signal delivered). Suspend/freezer use this to freeze the tasks as well. The task gets TIF_SIGPENDING set and is woken up (if it has been sleeping in the kernel before) or kicked by rescheduling IPI (if it was running on other CPU). This causes the task to go to kernel/userspace boundary where the signal would be handled and the task would be marked as safe in terms of live patching. There are tasks which are not affected by this technique though. The fake signal is not sent to kthreads. They should be handled differently. They can be woken up so they leave the patched set and their TIF_PATCH_PENDING can be cleared thanks to stack checking. For the sake of completeness, if the task is in TASK_RUNNING state but not currently running on some CPU it doesn't get the IPI, but it would eventually handle the signal anyway. Second, if the task runs in the kernel (in TASK_RUNNING state) it gets the IPI, but the signal is not handled on return from the interrupt. It would be handled on return to the userspace in the future when the fake signal is sent again. Stack checking deals with these cases in a better way. If the task was sleeping in a syscall it would be woken by our fake signal, it would check if TIF_SIGPENDING is set (by calling signal_pending() predicate) and return ERESTART* or EINTR. Syscalls with ERESTART* return values are restarted in case of the fake signal (see do_signal()). EINTR is propagated back to the userspace program. This could disturb the program, but... * each process dealing with signals should react accordingly to EINTR return values. * syscalls returning EINTR happen to be quite common situation in the system even if no fake signal is sent. * freezer sends the fake signal and does not deal with EINTR anyhow. Thus EINTR values are returned when the system is resumed. The very safe marking is done in architectures' "entry" on syscall and interrupt/exception exit paths, and in a stack checking functions of livepatch. TIF_PATCH_PENDING is cleared and the next recalc_sigpending() drops TIF_SIGPENDING. In connection with this, also call klp_update_patch_state() before do_signal(), so that recalc_sigpending() in dequeue_signal() can clear TIF_PATCH_PENDING immediately and thus prevent a double call of do_signal(). Note that the fake signal is not sent to stopped/traced tasks. Such task prevents the patching to finish till it continues again (is not traced anymore). Last, sending the fake signal is not automatic. It is done only when admin requests it by writing 1 to signal sysfs attribute in livepatch sysfs directory. Signed-off-by: Miroslav Benes <mbenes@suse.cz> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: linuxppc-dev@lists.ozlabs.org Cc: x86@kernel.org Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-11-15 13:50:13 +00:00
if (cached_flags & _TIF_PATCH_PENDING)
klp_update_patch_state(current);
x86/entry: Add new, comprehensible entry and exit handlers written in C The current x86 entry and exit code, written in a mixture of assembly and C code, is incomprehensible due to being open-coded in a lot of places without coherent documentation. It appears to work primary by luck and duct tape: i.e. obvious runtime failures were fixed on-demand, without re-thinking the design. Due to those reasons our confidence level in that code is low, and it is very difficult to incrementally improve. Add new code written in C, in preparation for simply deleting the old entry code. prepare_exit_to_usermode() is a new function that will handle all slow path exits to user mode. It is called with IRQs disabled and it leaves us in a state in which it is safe to immediately return to user mode. IRQs must not be re-enabled at any point after prepare_exit_to_usermode() returns and user mode is actually entered. (We can, of course, fail to enter user mode and treat that failure as a fresh entry to kernel mode.) All callers of do_notify_resume() will be migrated to call prepare_exit_to_usermode() instead; prepare_exit_to_usermode() needs to do everything that do_notify_resume() does today, but it also takes care of scheduling and context tracking. Unlike do_notify_resume(), it does not need to be called in a loop. syscall_return_slowpath() is exactly what it sounds like: it will be called on any syscall exit slow path. It will replace syscall_trace_leave() and it calls prepare_exit_to_usermode() on the way out. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Denys Vlasenko <vda.linux@googlemail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: paulmck@linux.vnet.ibm.com Link: http://lkml.kernel.org/r/c57c8b87661a4152801d7d3786eac2d1a2f209dd.1435952415.git.luto@kernel.org [ Improved the changelog a bit. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-03 19:44:26 +00:00
/* deal with pending signal delivery */
if (cached_flags & _TIF_SIGPENDING)
do_signal(regs);
if (cached_flags & _TIF_NOTIFY_RESUME) {
clear_thread_flag(TIF_NOTIFY_RESUME);
tracehook_notify_resume(regs);
}
if (cached_flags & _TIF_USER_RETURN_NOTIFY)
fire_user_return_notifiers();
/* Disable IRQs and retry */
local_irq_disable();
cached_flags = READ_ONCE(current_thread_info()->flags);
if (!(cached_flags & EXIT_TO_USERMODE_LOOP_FLAGS))
break;
x86/entry: Add new, comprehensible entry and exit handlers written in C The current x86 entry and exit code, written in a mixture of assembly and C code, is incomprehensible due to being open-coded in a lot of places without coherent documentation. It appears to work primary by luck and duct tape: i.e. obvious runtime failures were fixed on-demand, without re-thinking the design. Due to those reasons our confidence level in that code is low, and it is very difficult to incrementally improve. Add new code written in C, in preparation for simply deleting the old entry code. prepare_exit_to_usermode() is a new function that will handle all slow path exits to user mode. It is called with IRQs disabled and it leaves us in a state in which it is safe to immediately return to user mode. IRQs must not be re-enabled at any point after prepare_exit_to_usermode() returns and user mode is actually entered. (We can, of course, fail to enter user mode and treat that failure as a fresh entry to kernel mode.) All callers of do_notify_resume() will be migrated to call prepare_exit_to_usermode() instead; prepare_exit_to_usermode() needs to do everything that do_notify_resume() does today, but it also takes care of scheduling and context tracking. Unlike do_notify_resume(), it does not need to be called in a loop. syscall_return_slowpath() is exactly what it sounds like: it will be called on any syscall exit slow path. It will replace syscall_trace_leave() and it calls prepare_exit_to_usermode() on the way out. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Denys Vlasenko <vda.linux@googlemail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: paulmck@linux.vnet.ibm.com Link: http://lkml.kernel.org/r/c57c8b87661a4152801d7d3786eac2d1a2f209dd.1435952415.git.luto@kernel.org [ Improved the changelog a bit. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-03 19:44:26 +00:00
}
}
/* Called with IRQs disabled. */
__visible inline void prepare_exit_to_usermode(struct pt_regs *regs)
{
struct thread_info *ti = current_thread_info();
u32 cached_flags;
x86/syscalls: Check address limit on user-mode return Ensure the address limit is a user-mode segment before returning to user-mode. Otherwise a process can corrupt kernel-mode memory and elevate privileges [1]. The set_fs function sets the TIF_SETFS flag to force a slow path on return. In the slow path, the address limit is checked to be USER_DS if needed. The addr_limit_user_check function is added as a cross-architecture function to check the address limit. [1] https://bugs.chromium.org/p/project-zero/issues/detail?id=990 Signed-off-by: Thomas Garnier <thgarnie@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Mark Rutland <mark.rutland@arm.com> Cc: kernel-hardening@lists.openwall.com Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: David Howells <dhowells@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Miroslav Benes <mbenes@suse.cz> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Pratyush Anand <panand@redhat.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Petr Mladek <pmladek@suse.com> Cc: Rik van Riel <riel@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: linux-arm-kernel@lists.infradead.org Cc: Will Drewry <wad@chromium.org> Cc: linux-api@vger.kernel.org Cc: Oleg Nesterov <oleg@redhat.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Paolo Bonzini <pbonzini@redhat.com> Link: http://lkml.kernel.org/r/20170615011203.144108-1-thgarnie@google.com
2017-06-15 01:12:01 +00:00
addr_limit_user_check();
lockdep_assert_irqs_disabled();
lockdep_sys_exit();
cached_flags = READ_ONCE(ti->flags);
if (unlikely(cached_flags & EXIT_TO_USERMODE_LOOP_FLAGS))
exit_to_usermode_loop(regs, cached_flags);
x86/entry: Add new, comprehensible entry and exit handlers written in C The current x86 entry and exit code, written in a mixture of assembly and C code, is incomprehensible due to being open-coded in a lot of places without coherent documentation. It appears to work primary by luck and duct tape: i.e. obvious runtime failures were fixed on-demand, without re-thinking the design. Due to those reasons our confidence level in that code is low, and it is very difficult to incrementally improve. Add new code written in C, in preparation for simply deleting the old entry code. prepare_exit_to_usermode() is a new function that will handle all slow path exits to user mode. It is called with IRQs disabled and it leaves us in a state in which it is safe to immediately return to user mode. IRQs must not be re-enabled at any point after prepare_exit_to_usermode() returns and user mode is actually entered. (We can, of course, fail to enter user mode and treat that failure as a fresh entry to kernel mode.) All callers of do_notify_resume() will be migrated to call prepare_exit_to_usermode() instead; prepare_exit_to_usermode() needs to do everything that do_notify_resume() does today, but it also takes care of scheduling and context tracking. Unlike do_notify_resume(), it does not need to be called in a loop. syscall_return_slowpath() is exactly what it sounds like: it will be called on any syscall exit slow path. It will replace syscall_trace_leave() and it calls prepare_exit_to_usermode() on the way out. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Denys Vlasenko <vda.linux@googlemail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: paulmck@linux.vnet.ibm.com Link: http://lkml.kernel.org/r/c57c8b87661a4152801d7d3786eac2d1a2f209dd.1435952415.git.luto@kernel.org [ Improved the changelog a bit. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-03 19:44:26 +00:00
#ifdef CONFIG_COMPAT
/*
* Compat syscalls set TS_COMPAT. Make sure we clear it before
* returning to user mode. We need to clear it *after* signal
* handling, because syscall restart has a fixup for compat
* syscalls. The fixup is exercised by the ptrace_syscall_32
* selftest.
*
* We also need to clear TS_REGS_POKED_I386: the 32-bit tracer
* special case only applies after poking regs and before the
* very next return to user mode.
*/
ti->status &= ~(TS_COMPAT|TS_I386_REGS_POKED);
#endif
x86/entry: Avoid interrupt flag save and restore Thanks to all the work that was done by Andy Lutomirski and others, enter_from_user_mode() and prepare_exit_to_usermode() are now called only with interrupts disabled. Let's provide them a version of user_enter()/user_exit() that skips saving and restoring the interrupt flag. On an AMD-based machine I tested this patch on, with force-enabled context tracking, the speed-up in system calls was 90 clock cycles or 6%, measured with the following simple benchmark: #include <sys/signal.h> #include <time.h> #include <unistd.h> #include <stdio.h> unsigned long rdtsc() { unsigned long result; asm volatile("rdtsc; shl $32, %%rdx; mov %%eax, %%eax\n" "or %%rdx, %%rax" : "=a" (result) : : "rdx"); return result; } int main() { unsigned long tsc1, tsc2; int pid = getpid(); int i; tsc1 = rdtsc(); for (i = 0; i < 100000000; i++) kill(pid, SIGWINCH); tsc2 = rdtsc(); printf("%ld\n", tsc2 - tsc1); } Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Andy Lutomirski <luto@kernel.org> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: kvm@vger.kernel.org Link: http://lkml.kernel.org/r/1466434712-31440-2-git-send-email-pbonzini@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-20 14:58:29 +00:00
user_enter_irqoff();
x86/entry: Add new, comprehensible entry and exit handlers written in C The current x86 entry and exit code, written in a mixture of assembly and C code, is incomprehensible due to being open-coded in a lot of places without coherent documentation. It appears to work primary by luck and duct tape: i.e. obvious runtime failures were fixed on-demand, without re-thinking the design. Due to those reasons our confidence level in that code is low, and it is very difficult to incrementally improve. Add new code written in C, in preparation for simply deleting the old entry code. prepare_exit_to_usermode() is a new function that will handle all slow path exits to user mode. It is called with IRQs disabled and it leaves us in a state in which it is safe to immediately return to user mode. IRQs must not be re-enabled at any point after prepare_exit_to_usermode() returns and user mode is actually entered. (We can, of course, fail to enter user mode and treat that failure as a fresh entry to kernel mode.) All callers of do_notify_resume() will be migrated to call prepare_exit_to_usermode() instead; prepare_exit_to_usermode() needs to do everything that do_notify_resume() does today, but it also takes care of scheduling and context tracking. Unlike do_notify_resume(), it does not need to be called in a loop. syscall_return_slowpath() is exactly what it sounds like: it will be called on any syscall exit slow path. It will replace syscall_trace_leave() and it calls prepare_exit_to_usermode() on the way out. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Denys Vlasenko <vda.linux@googlemail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: paulmck@linux.vnet.ibm.com Link: http://lkml.kernel.org/r/c57c8b87661a4152801d7d3786eac2d1a2f209dd.1435952415.git.luto@kernel.org [ Improved the changelog a bit. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-03 19:44:26 +00:00
}
#define SYSCALL_EXIT_WORK_FLAGS \
(_TIF_SYSCALL_TRACE | _TIF_SYSCALL_AUDIT | \
_TIF_SINGLESTEP | _TIF_SYSCALL_TRACEPOINT)
static void syscall_slow_exit_work(struct pt_regs *regs, u32 cached_flags)
{
bool step;
audit_syscall_exit(regs);
if (cached_flags & _TIF_SYSCALL_TRACEPOINT)
trace_sys_exit(regs, regs->ax);
/*
* If TIF_SYSCALL_EMU is set, we only get here because of
* TIF_SINGLESTEP (i.e. this is PTRACE_SYSEMU_SINGLESTEP).
* We already reported this syscall instruction in
* syscall_trace_enter().
*/
step = unlikely(
(cached_flags & (_TIF_SINGLESTEP | _TIF_SYSCALL_EMU))
== _TIF_SINGLESTEP);
if (step || cached_flags & _TIF_SYSCALL_TRACE)
tracehook_report_syscall_exit(regs, step);
}
x86/entry: Add new, comprehensible entry and exit handlers written in C The current x86 entry and exit code, written in a mixture of assembly and C code, is incomprehensible due to being open-coded in a lot of places without coherent documentation. It appears to work primary by luck and duct tape: i.e. obvious runtime failures were fixed on-demand, without re-thinking the design. Due to those reasons our confidence level in that code is low, and it is very difficult to incrementally improve. Add new code written in C, in preparation for simply deleting the old entry code. prepare_exit_to_usermode() is a new function that will handle all slow path exits to user mode. It is called with IRQs disabled and it leaves us in a state in which it is safe to immediately return to user mode. IRQs must not be re-enabled at any point after prepare_exit_to_usermode() returns and user mode is actually entered. (We can, of course, fail to enter user mode and treat that failure as a fresh entry to kernel mode.) All callers of do_notify_resume() will be migrated to call prepare_exit_to_usermode() instead; prepare_exit_to_usermode() needs to do everything that do_notify_resume() does today, but it also takes care of scheduling and context tracking. Unlike do_notify_resume(), it does not need to be called in a loop. syscall_return_slowpath() is exactly what it sounds like: it will be called on any syscall exit slow path. It will replace syscall_trace_leave() and it calls prepare_exit_to_usermode() on the way out. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Denys Vlasenko <vda.linux@googlemail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: paulmck@linux.vnet.ibm.com Link: http://lkml.kernel.org/r/c57c8b87661a4152801d7d3786eac2d1a2f209dd.1435952415.git.luto@kernel.org [ Improved the changelog a bit. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-03 19:44:26 +00:00
/*
* Called with IRQs on and fully valid regs. Returns with IRQs off in a
* state such that we can immediately switch to user mode.
*/
__visible inline void syscall_return_slowpath(struct pt_regs *regs)
x86/entry: Add new, comprehensible entry and exit handlers written in C The current x86 entry and exit code, written in a mixture of assembly and C code, is incomprehensible due to being open-coded in a lot of places without coherent documentation. It appears to work primary by luck and duct tape: i.e. obvious runtime failures were fixed on-demand, without re-thinking the design. Due to those reasons our confidence level in that code is low, and it is very difficult to incrementally improve. Add new code written in C, in preparation for simply deleting the old entry code. prepare_exit_to_usermode() is a new function that will handle all slow path exits to user mode. It is called with IRQs disabled and it leaves us in a state in which it is safe to immediately return to user mode. IRQs must not be re-enabled at any point after prepare_exit_to_usermode() returns and user mode is actually entered. (We can, of course, fail to enter user mode and treat that failure as a fresh entry to kernel mode.) All callers of do_notify_resume() will be migrated to call prepare_exit_to_usermode() instead; prepare_exit_to_usermode() needs to do everything that do_notify_resume() does today, but it also takes care of scheduling and context tracking. Unlike do_notify_resume(), it does not need to be called in a loop. syscall_return_slowpath() is exactly what it sounds like: it will be called on any syscall exit slow path. It will replace syscall_trace_leave() and it calls prepare_exit_to_usermode() on the way out. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Denys Vlasenko <vda.linux@googlemail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: paulmck@linux.vnet.ibm.com Link: http://lkml.kernel.org/r/c57c8b87661a4152801d7d3786eac2d1a2f209dd.1435952415.git.luto@kernel.org [ Improved the changelog a bit. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-03 19:44:26 +00:00
{
struct thread_info *ti = current_thread_info();
x86/entry: Add new, comprehensible entry and exit handlers written in C The current x86 entry and exit code, written in a mixture of assembly and C code, is incomprehensible due to being open-coded in a lot of places without coherent documentation. It appears to work primary by luck and duct tape: i.e. obvious runtime failures were fixed on-demand, without re-thinking the design. Due to those reasons our confidence level in that code is low, and it is very difficult to incrementally improve. Add new code written in C, in preparation for simply deleting the old entry code. prepare_exit_to_usermode() is a new function that will handle all slow path exits to user mode. It is called with IRQs disabled and it leaves us in a state in which it is safe to immediately return to user mode. IRQs must not be re-enabled at any point after prepare_exit_to_usermode() returns and user mode is actually entered. (We can, of course, fail to enter user mode and treat that failure as a fresh entry to kernel mode.) All callers of do_notify_resume() will be migrated to call prepare_exit_to_usermode() instead; prepare_exit_to_usermode() needs to do everything that do_notify_resume() does today, but it also takes care of scheduling and context tracking. Unlike do_notify_resume(), it does not need to be called in a loop. syscall_return_slowpath() is exactly what it sounds like: it will be called on any syscall exit slow path. It will replace syscall_trace_leave() and it calls prepare_exit_to_usermode() on the way out. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Denys Vlasenko <vda.linux@googlemail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: paulmck@linux.vnet.ibm.com Link: http://lkml.kernel.org/r/c57c8b87661a4152801d7d3786eac2d1a2f209dd.1435952415.git.luto@kernel.org [ Improved the changelog a bit. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-03 19:44:26 +00:00
u32 cached_flags = READ_ONCE(ti->flags);
CT_WARN_ON(ct_state() != CONTEXT_KERNEL);
if (IS_ENABLED(CONFIG_PROVE_LOCKING) &&
WARN(irqs_disabled(), "syscall %ld left IRQs disabled", regs->orig_ax))
x86/entry: Add new, comprehensible entry and exit handlers written in C The current x86 entry and exit code, written in a mixture of assembly and C code, is incomprehensible due to being open-coded in a lot of places without coherent documentation. It appears to work primary by luck and duct tape: i.e. obvious runtime failures were fixed on-demand, without re-thinking the design. Due to those reasons our confidence level in that code is low, and it is very difficult to incrementally improve. Add new code written in C, in preparation for simply deleting the old entry code. prepare_exit_to_usermode() is a new function that will handle all slow path exits to user mode. It is called with IRQs disabled and it leaves us in a state in which it is safe to immediately return to user mode. IRQs must not be re-enabled at any point after prepare_exit_to_usermode() returns and user mode is actually entered. (We can, of course, fail to enter user mode and treat that failure as a fresh entry to kernel mode.) All callers of do_notify_resume() will be migrated to call prepare_exit_to_usermode() instead; prepare_exit_to_usermode() needs to do everything that do_notify_resume() does today, but it also takes care of scheduling and context tracking. Unlike do_notify_resume(), it does not need to be called in a loop. syscall_return_slowpath() is exactly what it sounds like: it will be called on any syscall exit slow path. It will replace syscall_trace_leave() and it calls prepare_exit_to_usermode() on the way out. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Denys Vlasenko <vda.linux@googlemail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: paulmck@linux.vnet.ibm.com Link: http://lkml.kernel.org/r/c57c8b87661a4152801d7d3786eac2d1a2f209dd.1435952415.git.luto@kernel.org [ Improved the changelog a bit. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-03 19:44:26 +00:00
local_irq_enable();
/*
* First do one-time work. If these work items are enabled, we
* want to run them exactly once per syscall exit with IRQs on.
*/
if (unlikely(cached_flags & SYSCALL_EXIT_WORK_FLAGS))
syscall_slow_exit_work(regs, cached_flags);
x86/entry: Add new, comprehensible entry and exit handlers written in C The current x86 entry and exit code, written in a mixture of assembly and C code, is incomprehensible due to being open-coded in a lot of places without coherent documentation. It appears to work primary by luck and duct tape: i.e. obvious runtime failures were fixed on-demand, without re-thinking the design. Due to those reasons our confidence level in that code is low, and it is very difficult to incrementally improve. Add new code written in C, in preparation for simply deleting the old entry code. prepare_exit_to_usermode() is a new function that will handle all slow path exits to user mode. It is called with IRQs disabled and it leaves us in a state in which it is safe to immediately return to user mode. IRQs must not be re-enabled at any point after prepare_exit_to_usermode() returns and user mode is actually entered. (We can, of course, fail to enter user mode and treat that failure as a fresh entry to kernel mode.) All callers of do_notify_resume() will be migrated to call prepare_exit_to_usermode() instead; prepare_exit_to_usermode() needs to do everything that do_notify_resume() does today, but it also takes care of scheduling and context tracking. Unlike do_notify_resume(), it does not need to be called in a loop. syscall_return_slowpath() is exactly what it sounds like: it will be called on any syscall exit slow path. It will replace syscall_trace_leave() and it calls prepare_exit_to_usermode() on the way out. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Denys Vlasenko <vda.linux@googlemail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: paulmck@linux.vnet.ibm.com Link: http://lkml.kernel.org/r/c57c8b87661a4152801d7d3786eac2d1a2f209dd.1435952415.git.luto@kernel.org [ Improved the changelog a bit. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-03 19:44:26 +00:00
local_irq_disable();
prepare_exit_to_usermode(regs);
}
#ifdef CONFIG_X86_64
__visible void do_syscall_64(struct pt_regs *regs)
{
struct thread_info *ti = current_thread_info();
unsigned long nr = regs->orig_ax;
enter_from_user_mode();
local_irq_enable();
if (READ_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY)
nr = syscall_trace_enter(regs);
/*
* NB: Native and x32 syscalls are dispatched from the same
* table. The only functional difference is the x32 bit in
* regs->orig_ax, which changes the behavior of some syscalls.
*/
if (likely((nr & __SYSCALL_MASK) < NR_syscalls)) {
nr = array_index_nospec(nr & __SYSCALL_MASK, NR_syscalls);
regs->ax = sys_call_table[nr](
regs->di, regs->si, regs->dx,
regs->r10, regs->r8, regs->r9);
}
syscall_return_slowpath(regs);
}
#endif
#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
/*
* Does a 32-bit syscall. Called with IRQs on in CONTEXT_KERNEL. Does
* all entry and exit work and returns with IRQs off. This function is
* extremely hot in workloads that use it, and it's usually called from
* do_fast_syscall_32, so forcibly inline it to improve performance.
*/
static __always_inline void do_syscall_32_irqs_on(struct pt_regs *regs)
{
struct thread_info *ti = current_thread_info();
unsigned int nr = (unsigned int)regs->orig_ax;
#ifdef CONFIG_IA32_EMULATION
ti->status |= TS_COMPAT;
#endif
if (READ_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY) {
/*
* Subtlety here: if ptrace pokes something larger than
* 2^32-1 into orig_ax, this truncates it. This may or
* may not be necessary, but it matches the old asm
* behavior.
*/
nr = syscall_trace_enter(regs);
}
if (likely(nr < IA32_NR_syscalls)) {
nr = array_index_nospec(nr, IA32_NR_syscalls);
/*
* It's possible that a 32-bit syscall implementation
* takes a 64-bit parameter but nonetheless assumes that
* the high bits are zero. Make sure we zero-extend all
* of the args.
*/
regs->ax = ia32_sys_call_table[nr](
(unsigned int)regs->bx, (unsigned int)regs->cx,
(unsigned int)regs->dx, (unsigned int)regs->si,
(unsigned int)regs->di, (unsigned int)regs->bp);
}
syscall_return_slowpath(regs);
}
/* Handles int $0x80 */
__visible void do_int80_syscall_32(struct pt_regs *regs)
{
enter_from_user_mode();
local_irq_enable();
do_syscall_32_irqs_on(regs);
}
/* Returns 0 to return using IRET or 1 to return using SYSEXIT/SYSRETL. */
__visible long do_fast_syscall_32(struct pt_regs *regs)
{
/*
* Called using the internal vDSO SYSENTER/SYSCALL32 calling
* convention. Adjust regs so it looks like we entered using int80.
*/
unsigned long landing_pad = (unsigned long)current->mm->context.vdso +
vdso_image_32.sym_int80_landing_pad;
/*
* SYSENTER loses EIP, and even SYSCALL32 needs us to skip forward
* so that 'regs->ip -= 2' lands back on an int $0x80 instruction.
* Fix it up.
*/
regs->ip = landing_pad;
enter_from_user_mode();
local_irq_enable();
/* Fetch EBP from where the vDSO stashed it. */
if (
#ifdef CONFIG_X86_64
/*
* Micro-optimization: the pointer we're following is explicitly
* 32 bits, so it can't be out of range.
*/
__get_user(*(u32 *)&regs->bp,
(u32 __user __force *)(unsigned long)(u32)regs->sp)
#else
get_user(*(u32 *)&regs->bp,
(u32 __user __force *)(unsigned long)(u32)regs->sp)
#endif
) {
/* User code screwed up. */
local_irq_disable();
regs->ax = -EFAULT;
prepare_exit_to_usermode(regs);
return 0; /* Keep it simple: use IRET. */
}
/* Now this is just like a normal syscall. */
do_syscall_32_irqs_on(regs);
#ifdef CONFIG_X86_64
/*
* Opportunistic SYSRETL: if possible, try to return using SYSRETL.
* SYSRETL is available on all 64-bit CPUs, so we don't need to
* bother with SYSEXIT.
*
* Unlike 64-bit opportunistic SYSRET, we can't check that CX == IP,
* because the ECX fixup above will ensure that this is essentially
* never the case.
*/
return regs->cs == __USER32_CS && regs->ss == __USER_DS &&
regs->ip == landing_pad &&
(regs->flags & (X86_EFLAGS_RF | X86_EFLAGS_TF)) == 0;
#else
/*
* Opportunistic SYSEXIT: if possible, try to return using SYSEXIT.
*
* Unlike 64-bit opportunistic SYSRET, we can't check that CX == IP,
* because the ECX fixup above will ensure that this is essentially
* never the case.
*
* We don't allow syscalls at all from VM86 mode, but we still
* need to check VM, because we might be returning from sys_vm86.
*/
return static_cpu_has(X86_FEATURE_SEP) &&
regs->cs == __USER_CS && regs->ss == __USER_DS &&
regs->ip == landing_pad &&
(regs->flags & (X86_EFLAGS_RF | X86_EFLAGS_TF | X86_EFLAGS_VM)) == 0;
#endif
}
#endif