linux/net/ipv4/ip_output.c

1549 lines
38 KiB
C
Raw Normal View History

/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* The Internet Protocol (IP) output module.
*
* Authors: Ross Biro
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
* Donald Becker, <becker@super.org>
* Alan Cox, <Alan.Cox@linux.org>
* Richard Underwood
* Stefan Becker, <stefanb@yello.ping.de>
* Jorge Cwik, <jorge@laser.satlink.net>
* Arnt Gulbrandsen, <agulbra@nvg.unit.no>
* Hirokazu Takahashi, <taka@valinux.co.jp>
*
* See ip_input.c for original log
*
* Fixes:
* Alan Cox : Missing nonblock feature in ip_build_xmit.
* Mike Kilburn : htons() missing in ip_build_xmit.
* Bradford Johnson: Fix faulty handling of some frames when
* no route is found.
* Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
* (in case if packet not accepted by
* output firewall rules)
* Mike McLagan : Routing by source
* Alexey Kuznetsov: use new route cache
* Andi Kleen: Fix broken PMTU recovery and remove
* some redundant tests.
* Vitaly E. Lavrov : Transparent proxy revived after year coma.
* Andi Kleen : Replace ip_reply with ip_send_reply.
* Andi Kleen : Split fast and slow ip_build_xmit path
* for decreased register pressure on x86
* and more readibility.
* Marc Boucher : When call_out_firewall returns FW_QUEUE,
* silently drop skb instead of failing with -EPERM.
* Detlev Wengorz : Copy protocol for fragments.
* Hirokazu Takahashi: HW checksumming for outgoing UDP
* datagrams.
* Hirokazu Takahashi: sendfile() on UDP works now.
*/
#include <asm/uaccess.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/highmem.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/in.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/proc_fs.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <net/snmp.h>
#include <net/ip.h>
#include <net/protocol.h>
#include <net/route.h>
#include <net/xfrm.h>
#include <linux/skbuff.h>
#include <net/sock.h>
#include <net/arp.h>
#include <net/icmp.h>
#include <net/checksum.h>
#include <net/inetpeer.h>
#include <linux/igmp.h>
#include <linux/netfilter_ipv4.h>
#include <linux/netfilter_bridge.h>
#include <linux/mroute.h>
#include <linux/netlink.h>
#include <linux/tcp.h>
int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
EXPORT_SYMBOL(sysctl_ip_default_ttl);
/* Generate a checksum for an outgoing IP datagram. */
__inline__ void ip_send_check(struct iphdr *iph)
{
iph->check = 0;
iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
}
EXPORT_SYMBOL(ip_send_check);
int __ip_local_out(struct sk_buff *skb)
{
struct iphdr *iph = ip_hdr(skb);
iph->tot_len = htons(skb->len);
ip_send_check(iph);
return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, skb, NULL,
skb_dst(skb)->dev, dst_output);
}
int ip_local_out(struct sk_buff *skb)
{
int err;
err = __ip_local_out(skb);
if (likely(err == 1))
err = dst_output(skb);
return err;
}
EXPORT_SYMBOL_GPL(ip_local_out);
static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
{
int ttl = inet->uc_ttl;
if (ttl < 0)
ttl = ip4_dst_hoplimit(dst);
return ttl;
}
/*
* Add an ip header to a skbuff and send it out.
*
*/
int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
__be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
{
struct inet_sock *inet = inet_sk(sk);
struct rtable *rt = skb_rtable(skb);
struct iphdr *iph;
/* Build the IP header. */
skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
skb_reset_network_header(skb);
iph = ip_hdr(skb);
iph->version = 4;
iph->ihl = 5;
iph->tos = inet->tos;
if (ip_dont_fragment(sk, &rt->dst))
iph->frag_off = htons(IP_DF);
else
iph->frag_off = 0;
iph->ttl = ip_select_ttl(inet, &rt->dst);
iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
iph->saddr = saddr;
iph->protocol = sk->sk_protocol;
ip_select_ident(iph, &rt->dst, sk);
if (opt && opt->opt.optlen) {
iph->ihl += opt->opt.optlen>>2;
ip_options_build(skb, &opt->opt, daddr, rt, 0);
}
skb->priority = sk->sk_priority;
skb->mark = sk->sk_mark;
/* Send it out. */
return ip_local_out(skb);
}
EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
static inline int ip_finish_output2(struct sk_buff *skb)
{
struct dst_entry *dst = skb_dst(skb);
struct rtable *rt = (struct rtable *)dst;
struct net_device *dev = dst->dev;
unsigned int hh_len = LL_RESERVED_SPACE(dev);
struct neighbour *neigh;
u32 nexthop;
if (rt->rt_type == RTN_MULTICAST) {
IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
} else if (rt->rt_type == RTN_BROADCAST)
IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
/* Be paranoid, rather than too clever. */
if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
struct sk_buff *skb2;
skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
if (skb2 == NULL) {
kfree_skb(skb);
return -ENOMEM;
}
if (skb->sk)
skb_set_owner_w(skb2, skb->sk);
consume_skb(skb);
skb = skb2;
}
rcu_read_lock_bh();
nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
if (unlikely(!neigh))
neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
if (!IS_ERR(neigh)) {
int res = dst_neigh_output(dst, neigh, skb);
rcu_read_unlock_bh();
return res;
}
rcu_read_unlock_bh();
net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
__func__);
kfree_skb(skb);
return -EINVAL;
}
static inline int ip_skb_dst_mtu(struct sk_buff *skb)
{
struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
skb_dst(skb)->dev->mtu : dst_mtu(skb_dst(skb));
}
static int ip_finish_output(struct sk_buff *skb)
{
#if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
/* Policy lookup after SNAT yielded a new policy */
if (skb_dst(skb)->xfrm != NULL) {
IPCB(skb)->flags |= IPSKB_REROUTED;
return dst_output(skb);
}
#endif
if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
return ip_fragment(skb, ip_finish_output2);
else
return ip_finish_output2(skb);
}
int ip_mc_output(struct sk_buff *skb)
{
struct sock *sk = skb->sk;
struct rtable *rt = skb_rtable(skb);
struct net_device *dev = rt->dst.dev;
/*
* If the indicated interface is up and running, send the packet.
*/
IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
skb->dev = dev;
skb->protocol = htons(ETH_P_IP);
/*
* Multicasts are looped back for other local users
*/
if (rt->rt_flags&RTCF_MULTICAST) {
if (sk_mc_loop(sk)
#ifdef CONFIG_IP_MROUTE
/* Small optimization: do not loopback not local frames,
which returned after forwarding; they will be dropped
by ip_mr_input in any case.
Note, that local frames are looped back to be delivered
to local recipients.
This check is duplicated in ip_mr_input at the moment.
*/
&&
((rt->rt_flags & RTCF_LOCAL) ||
!(IPCB(skb)->flags & IPSKB_FORWARDED))
#endif
) {
struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
if (newskb)
NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
newskb, NULL, newskb->dev,
dev_loopback_xmit);
}
/* Multicasts with ttl 0 must not go beyond the host */
if (ip_hdr(skb)->ttl == 0) {
kfree_skb(skb);
return 0;
}
}
if (rt->rt_flags&RTCF_BROADCAST) {
struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
if (newskb)
NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, newskb,
NULL, newskb->dev, dev_loopback_xmit);
}
return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL,
skb->dev, ip_finish_output,
!(IPCB(skb)->flags & IPSKB_REROUTED));
}
int ip_output(struct sk_buff *skb)
{
struct net_device *dev = skb_dst(skb)->dev;
IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
skb->dev = dev;
skb->protocol = htons(ETH_P_IP);
return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL, dev,
ip_finish_output,
!(IPCB(skb)->flags & IPSKB_REROUTED));
}
/*
* copy saddr and daddr, possibly using 64bit load/stores
* Equivalent to :
* iph->saddr = fl4->saddr;
* iph->daddr = fl4->daddr;
*/
static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
{
BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
memcpy(&iph->saddr, &fl4->saddr,
sizeof(fl4->saddr) + sizeof(fl4->daddr));
}
int ip_queue_xmit(struct sk_buff *skb, struct flowi *fl)
{
struct sock *sk = skb->sk;
struct inet_sock *inet = inet_sk(sk);
struct ip_options_rcu *inet_opt;
struct flowi4 *fl4;
struct rtable *rt;
struct iphdr *iph;
int res;
/* Skip all of this if the packet is already routed,
* f.e. by something like SCTP.
*/
rcu_read_lock();
inet_opt = rcu_dereference(inet->inet_opt);
fl4 = &fl->u.ip4;
rt = skb_rtable(skb);
if (rt != NULL)
goto packet_routed;
/* Make sure we can route this packet. */
rt = (struct rtable *)__sk_dst_check(sk, 0);
if (rt == NULL) {
__be32 daddr;
/* Use correct destination address if we have options. */
daddr = inet->inet_daddr;
if (inet_opt && inet_opt->opt.srr)
daddr = inet_opt->opt.faddr;
/* If this fails, retransmit mechanism of transport layer will
* keep trying until route appears or the connection times
* itself out.
*/
rt = ip_route_output_ports(sock_net(sk), fl4, sk,
daddr, inet->inet_saddr,
inet->inet_dport,
inet->inet_sport,
sk->sk_protocol,
RT_CONN_FLAGS(sk),
sk->sk_bound_dev_if);
if (IS_ERR(rt))
goto no_route;
sk_setup_caps(sk, &rt->dst);
}
skb_dst_set_noref(skb, &rt->dst);
packet_routed:
if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
goto no_route;
/* OK, we know where to send it, allocate and build IP header. */
skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
skb_reset_network_header(skb);
iph = ip_hdr(skb);
*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
if (ip_dont_fragment(sk, &rt->dst) && !skb->local_df)
iph->frag_off = htons(IP_DF);
else
iph->frag_off = 0;
iph->ttl = ip_select_ttl(inet, &rt->dst);
iph->protocol = sk->sk_protocol;
ip_copy_addrs(iph, fl4);
/* Transport layer set skb->h.foo itself. */
if (inet_opt && inet_opt->opt.optlen) {
iph->ihl += inet_opt->opt.optlen >> 2;
ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
}
ip_select_ident_more(iph, &rt->dst, sk,
(skb_shinfo(skb)->gso_segs ?: 1) - 1);
skb->priority = sk->sk_priority;
skb->mark = sk->sk_mark;
res = ip_local_out(skb);
rcu_read_unlock();
return res;
no_route:
rcu_read_unlock();
IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
kfree_skb(skb);
return -EHOSTUNREACH;
}
EXPORT_SYMBOL(ip_queue_xmit);
static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
{
to->pkt_type = from->pkt_type;
to->priority = from->priority;
to->protocol = from->protocol;
skb_dst_drop(to);
skb_dst_copy(to, from);
to->dev = from->dev;
to->mark = from->mark;
/* Copy the flags to each fragment. */
IPCB(to)->flags = IPCB(from)->flags;
#ifdef CONFIG_NET_SCHED
to->tc_index = from->tc_index;
#endif
nf_copy(to, from);
#if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
to->nf_trace = from->nf_trace;
#endif
#if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
to->ipvs_property = from->ipvs_property;
#endif
skb_copy_secmark(to, from);
}
/*
* This IP datagram is too large to be sent in one piece. Break it up into
* smaller pieces (each of size equal to IP header plus
* a block of the data of the original IP data part) that will yet fit in a
* single device frame, and queue such a frame for sending.
*/
int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
{
struct iphdr *iph;
int ptr;
struct net_device *dev;
struct sk_buff *skb2;
unsigned int mtu, hlen, left, len, ll_rs;
int offset;
__be16 not_last_frag;
struct rtable *rt = skb_rtable(skb);
int err = 0;
dev = rt->dst.dev;
/*
* Point into the IP datagram header.
*/
iph = ip_hdr(skb);
if (unlikely(((iph->frag_off & htons(IP_DF)) && !skb->local_df) ||
(IPCB(skb)->frag_max_size &&
IPCB(skb)->frag_max_size > dst_mtu(&rt->dst)))) {
IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
htonl(ip_skb_dst_mtu(skb)));
kfree_skb(skb);
return -EMSGSIZE;
}
/*
* Setup starting values.
*/
hlen = iph->ihl * 4;
mtu = dst_mtu(&rt->dst) - hlen; /* Size of data space */
#ifdef CONFIG_BRIDGE_NETFILTER
if (skb->nf_bridge)
mtu -= nf_bridge_mtu_reduction(skb);
#endif
IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
/* When frag_list is given, use it. First, check its validity:
* some transformers could create wrong frag_list or break existing
* one, it is not prohibited. In this case fall back to copying.
*
* LATER: this step can be merged to real generation of fragments,
* we can switch to copy when see the first bad fragment.
*/
if (skb_has_frag_list(skb)) {
struct sk_buff *frag, *frag2;
int first_len = skb_pagelen(skb);
if (first_len - hlen > mtu ||
((first_len - hlen) & 7) ||
ip_is_fragment(iph) ||
skb_cloned(skb))
goto slow_path;
skb_walk_frags(skb, frag) {
/* Correct geometry. */
if (frag->len > mtu ||
((frag->len & 7) && frag->next) ||
skb_headroom(frag) < hlen)
goto slow_path_clean;
/* Partially cloned skb? */
if (skb_shared(frag))
goto slow_path_clean;
BUG_ON(frag->sk);
if (skb->sk) {
frag->sk = skb->sk;
frag->destructor = sock_wfree;
}
skb->truesize -= frag->truesize;
}
/* Everything is OK. Generate! */
err = 0;
offset = 0;
frag = skb_shinfo(skb)->frag_list;
skb_frag_list_init(skb);
skb->data_len = first_len - skb_headlen(skb);
skb->len = first_len;
iph->tot_len = htons(first_len);
iph->frag_off = htons(IP_MF);
ip_send_check(iph);
for (;;) {
/* Prepare header of the next frame,
* before previous one went down. */
if (frag) {
frag->ip_summed = CHECKSUM_NONE;
skb_reset_transport_header(frag);
__skb_push(frag, hlen);
skb_reset_network_header(frag);
memcpy(skb_network_header(frag), iph, hlen);
iph = ip_hdr(frag);
iph->tot_len = htons(frag->len);
ip_copy_metadata(frag, skb);
if (offset == 0)
ip_options_fragment(frag);
offset += skb->len - hlen;
iph->frag_off = htons(offset>>3);
if (frag->next != NULL)
iph->frag_off |= htons(IP_MF);
/* Ready, complete checksum */
ip_send_check(iph);
}
err = output(skb);
[IPV6]: SNMPv2 "ipv6IfStatsOutFragCreates" counter error When I tested linux kernel 2.6.71.7 about statistics "ipv6IfStatsOutFragCreates", and found that it couldn't increase correctly. The criteria is RFC 2465: ipv6IfStatsOutFragCreates OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of output datagram fragments that have been generated as a result of fragmentation at this output interface." ::= { ipv6IfStatsEntry 15 } I think there are two issues in Linux kernel. 1st: RFC2465 specifies the counter is "The number of output datagram fragments...". I think increasing this counter after output a fragment successfully is better. And it should not be increased even though a fragment is created but failed to output. 2nd: If we send a big ICMP/ICMPv6 echo request to a host, and receive ICMP/ICMPv6 echo reply consisted of some fragments. As we know that in Linux kernel first fragmentation occurs in ICMP layer(maybe saying transport layer is better), but this is not the "real" fragmentation,just do some "pre-fragment" -- allocate space for date, and form a frag_list, etc. The "real" fragmentation happens in IP layer -- set offset and MF flag and so on. So I think in "fast path" for ip_fragment/ip6_fragment, if we send a fragment which "pre-fragment" by upper layer we should also increase "ipv6IfStatsOutFragCreates". Signed-off-by: Wei Dong <weid@nanjing-fnst.com> Acked-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-08-02 20:41:21 +00:00
if (!err)
IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
if (err || !frag)
break;
skb = frag;
frag = skb->next;
skb->next = NULL;
}
if (err == 0) {
IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
return 0;
}
while (frag) {
skb = frag->next;
kfree_skb(frag);
frag = skb;
}
IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
return err;
slow_path_clean:
skb_walk_frags(skb, frag2) {
if (frag2 == frag)
break;
frag2->sk = NULL;
frag2->destructor = NULL;
skb->truesize += frag2->truesize;
}
}
slow_path:
/* for offloaded checksums cleanup checksum before fragmentation */
if ((skb->ip_summed == CHECKSUM_PARTIAL) && skb_checksum_help(skb))
goto fail;
left = skb->len - hlen; /* Space per frame */
ptr = hlen; /* Where to start from */
/* for bridged IP traffic encapsulated inside f.e. a vlan header,
* we need to make room for the encapsulating header
*/
ll_rs = LL_RESERVED_SPACE_EXTRA(rt->dst.dev, nf_bridge_pad(skb));
/*
* Fragment the datagram.
*/
offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
not_last_frag = iph->frag_off & htons(IP_MF);
/*
* Keep copying data until we run out.
*/
while (left > 0) {
len = left;
/* IF: it doesn't fit, use 'mtu' - the data space left */
if (len > mtu)
len = mtu;
/* IF: we are not sending up to and including the packet end
then align the next start on an eight byte boundary */
if (len < left) {
len &= ~7;
}
/*
* Allocate buffer.
*/
if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
err = -ENOMEM;
goto fail;
}
/*
* Set up data on packet
*/
ip_copy_metadata(skb2, skb);
skb_reserve(skb2, ll_rs);
skb_put(skb2, len + hlen);
skb_reset_network_header(skb2);
skb2->transport_header = skb2->network_header + hlen;
/*
* Charge the memory for the fragment to any owner
* it might possess
*/
if (skb->sk)
skb_set_owner_w(skb2, skb->sk);
/*
* Copy the packet header into the new buffer.
*/
skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
/*
* Copy a block of the IP datagram.
*/
if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
BUG();
left -= len;
/*
* Fill in the new header fields.
*/
iph = ip_hdr(skb2);
iph->frag_off = htons((offset >> 3));
/* ANK: dirty, but effective trick. Upgrade options only if
* the segment to be fragmented was THE FIRST (otherwise,
* options are already fixed) and make it ONCE
* on the initial skb, so that all the following fragments
* will inherit fixed options.
*/
if (offset == 0)
ip_options_fragment(skb);
/*
* Added AC : If we are fragmenting a fragment that's not the
* last fragment then keep MF on each bit
*/
if (left > 0 || not_last_frag)
iph->frag_off |= htons(IP_MF);
ptr += len;
offset += len;
/*
* Put this fragment into the sending queue.
*/
iph->tot_len = htons(len + hlen);
ip_send_check(iph);
err = output(skb2);
if (err)
goto fail;
[IPV6]: SNMPv2 "ipv6IfStatsOutFragCreates" counter error When I tested linux kernel 2.6.71.7 about statistics "ipv6IfStatsOutFragCreates", and found that it couldn't increase correctly. The criteria is RFC 2465: ipv6IfStatsOutFragCreates OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of output datagram fragments that have been generated as a result of fragmentation at this output interface." ::= { ipv6IfStatsEntry 15 } I think there are two issues in Linux kernel. 1st: RFC2465 specifies the counter is "The number of output datagram fragments...". I think increasing this counter after output a fragment successfully is better. And it should not be increased even though a fragment is created but failed to output. 2nd: If we send a big ICMP/ICMPv6 echo request to a host, and receive ICMP/ICMPv6 echo reply consisted of some fragments. As we know that in Linux kernel first fragmentation occurs in ICMP layer(maybe saying transport layer is better), but this is not the "real" fragmentation,just do some "pre-fragment" -- allocate space for date, and form a frag_list, etc. The "real" fragmentation happens in IP layer -- set offset and MF flag and so on. So I think in "fast path" for ip_fragment/ip6_fragment, if we send a fragment which "pre-fragment" by upper layer we should also increase "ipv6IfStatsOutFragCreates". Signed-off-by: Wei Dong <weid@nanjing-fnst.com> Acked-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-08-02 20:41:21 +00:00
IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
}
consume_skb(skb);
IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
return err;
fail:
kfree_skb(skb);
IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
return err;
}
EXPORT_SYMBOL(ip_fragment);
int
ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
{
struct iovec *iov = from;
if (skb->ip_summed == CHECKSUM_PARTIAL) {
if (memcpy_fromiovecend(to, iov, offset, len) < 0)
return -EFAULT;
} else {
__wsum csum = 0;
if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
return -EFAULT;
skb->csum = csum_block_add(skb->csum, csum, odd);
}
return 0;
}
EXPORT_SYMBOL(ip_generic_getfrag);
static inline __wsum
csum_page(struct page *page, int offset, int copy)
{
char *kaddr;
__wsum csum;
kaddr = kmap(page);
csum = csum_partial(kaddr + offset, copy, 0);
kunmap(page);
return csum;
}
static inline int ip_ufo_append_data(struct sock *sk,
struct sk_buff_head *queue,
[IPv4/IPv6]: UFO Scatter-gather approach Attached is kernel patch for UDP Fragmentation Offload (UFO) feature. 1. This patch incorporate the review comments by Jeff Garzik. 2. Renamed USO as UFO (UDP Fragmentation Offload) 3. udp sendfile support with UFO This patches uses scatter-gather feature of skb to generate large UDP datagram. Below is a "how-to" on changes required in network device driver to use the UFO interface. UDP Fragmentation Offload (UFO) Interface: ------------------------------------------- UFO is a feature wherein the Linux kernel network stack will offload the IP fragmentation functionality of large UDP datagram to hardware. This will reduce the overhead of stack in fragmenting the large UDP datagram to MTU sized packets 1) Drivers indicate their capability of UFO using dev->features |= NETIF_F_UFO | NETIF_F_HW_CSUM | NETIF_F_SG NETIF_F_HW_CSUM is required for UFO over ipv6. 2) UFO packet will be submitted for transmission using driver xmit routine. UFO packet will have a non-zero value for "skb_shinfo(skb)->ufo_size" skb_shinfo(skb)->ufo_size will indicate the length of data part in each IP fragment going out of the adapter after IP fragmentation by hardware. skb->data will contain MAC/IP/UDP header and skb_shinfo(skb)->frags[] contains the data payload. The skb->ip_summed will be set to CHECKSUM_HW indicating that hardware has to do checksum calculation. Hardware should compute the UDP checksum of complete datagram and also ip header checksum of each fragmented IP packet. For IPV6 the UFO provides the fragment identification-id in skb_shinfo(skb)->ip6_frag_id. The adapter should use this ID for generating IPv6 fragments. Signed-off-by: Ananda Raju <ananda.raju@neterion.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (forwarded) Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-10-18 22:46:41 +00:00
int getfrag(void *from, char *to, int offset, int len,
int odd, struct sk_buff *skb),
void *from, int length, int hh_len, int fragheaderlen,
int transhdrlen, int maxfraglen, unsigned int flags)
[IPv4/IPv6]: UFO Scatter-gather approach Attached is kernel patch for UDP Fragmentation Offload (UFO) feature. 1. This patch incorporate the review comments by Jeff Garzik. 2. Renamed USO as UFO (UDP Fragmentation Offload) 3. udp sendfile support with UFO This patches uses scatter-gather feature of skb to generate large UDP datagram. Below is a "how-to" on changes required in network device driver to use the UFO interface. UDP Fragmentation Offload (UFO) Interface: ------------------------------------------- UFO is a feature wherein the Linux kernel network stack will offload the IP fragmentation functionality of large UDP datagram to hardware. This will reduce the overhead of stack in fragmenting the large UDP datagram to MTU sized packets 1) Drivers indicate their capability of UFO using dev->features |= NETIF_F_UFO | NETIF_F_HW_CSUM | NETIF_F_SG NETIF_F_HW_CSUM is required for UFO over ipv6. 2) UFO packet will be submitted for transmission using driver xmit routine. UFO packet will have a non-zero value for "skb_shinfo(skb)->ufo_size" skb_shinfo(skb)->ufo_size will indicate the length of data part in each IP fragment going out of the adapter after IP fragmentation by hardware. skb->data will contain MAC/IP/UDP header and skb_shinfo(skb)->frags[] contains the data payload. The skb->ip_summed will be set to CHECKSUM_HW indicating that hardware has to do checksum calculation. Hardware should compute the UDP checksum of complete datagram and also ip header checksum of each fragmented IP packet. For IPV6 the UFO provides the fragment identification-id in skb_shinfo(skb)->ip6_frag_id. The adapter should use this ID for generating IPv6 fragments. Signed-off-by: Ananda Raju <ananda.raju@neterion.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (forwarded) Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-10-18 22:46:41 +00:00
{
struct sk_buff *skb;
int err;
/* There is support for UDP fragmentation offload by network
* device, so create one single skb packet containing complete
* udp datagram
*/
if ((skb = skb_peek_tail(queue)) == NULL) {
[IPv4/IPv6]: UFO Scatter-gather approach Attached is kernel patch for UDP Fragmentation Offload (UFO) feature. 1. This patch incorporate the review comments by Jeff Garzik. 2. Renamed USO as UFO (UDP Fragmentation Offload) 3. udp sendfile support with UFO This patches uses scatter-gather feature of skb to generate large UDP datagram. Below is a "how-to" on changes required in network device driver to use the UFO interface. UDP Fragmentation Offload (UFO) Interface: ------------------------------------------- UFO is a feature wherein the Linux kernel network stack will offload the IP fragmentation functionality of large UDP datagram to hardware. This will reduce the overhead of stack in fragmenting the large UDP datagram to MTU sized packets 1) Drivers indicate their capability of UFO using dev->features |= NETIF_F_UFO | NETIF_F_HW_CSUM | NETIF_F_SG NETIF_F_HW_CSUM is required for UFO over ipv6. 2) UFO packet will be submitted for transmission using driver xmit routine. UFO packet will have a non-zero value for "skb_shinfo(skb)->ufo_size" skb_shinfo(skb)->ufo_size will indicate the length of data part in each IP fragment going out of the adapter after IP fragmentation by hardware. skb->data will contain MAC/IP/UDP header and skb_shinfo(skb)->frags[] contains the data payload. The skb->ip_summed will be set to CHECKSUM_HW indicating that hardware has to do checksum calculation. Hardware should compute the UDP checksum of complete datagram and also ip header checksum of each fragmented IP packet. For IPV6 the UFO provides the fragment identification-id in skb_shinfo(skb)->ip6_frag_id. The adapter should use this ID for generating IPv6 fragments. Signed-off-by: Ananda Raju <ananda.raju@neterion.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (forwarded) Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-10-18 22:46:41 +00:00
skb = sock_alloc_send_skb(sk,
hh_len + fragheaderlen + transhdrlen + 20,
(flags & MSG_DONTWAIT), &err);
if (skb == NULL)
return err;
/* reserve space for Hardware header */
skb_reserve(skb, hh_len);
/* create space for UDP/IP header */
skb_put(skb, fragheaderlen + transhdrlen);
[IPv4/IPv6]: UFO Scatter-gather approach Attached is kernel patch for UDP Fragmentation Offload (UFO) feature. 1. This patch incorporate the review comments by Jeff Garzik. 2. Renamed USO as UFO (UDP Fragmentation Offload) 3. udp sendfile support with UFO This patches uses scatter-gather feature of skb to generate large UDP datagram. Below is a "how-to" on changes required in network device driver to use the UFO interface. UDP Fragmentation Offload (UFO) Interface: ------------------------------------------- UFO is a feature wherein the Linux kernel network stack will offload the IP fragmentation functionality of large UDP datagram to hardware. This will reduce the overhead of stack in fragmenting the large UDP datagram to MTU sized packets 1) Drivers indicate their capability of UFO using dev->features |= NETIF_F_UFO | NETIF_F_HW_CSUM | NETIF_F_SG NETIF_F_HW_CSUM is required for UFO over ipv6. 2) UFO packet will be submitted for transmission using driver xmit routine. UFO packet will have a non-zero value for "skb_shinfo(skb)->ufo_size" skb_shinfo(skb)->ufo_size will indicate the length of data part in each IP fragment going out of the adapter after IP fragmentation by hardware. skb->data will contain MAC/IP/UDP header and skb_shinfo(skb)->frags[] contains the data payload. The skb->ip_summed will be set to CHECKSUM_HW indicating that hardware has to do checksum calculation. Hardware should compute the UDP checksum of complete datagram and also ip header checksum of each fragmented IP packet. For IPV6 the UFO provides the fragment identification-id in skb_shinfo(skb)->ip6_frag_id. The adapter should use this ID for generating IPv6 fragments. Signed-off-by: Ananda Raju <ananda.raju@neterion.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (forwarded) Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-10-18 22:46:41 +00:00
/* initialize network header pointer */
skb_reset_network_header(skb);
[IPv4/IPv6]: UFO Scatter-gather approach Attached is kernel patch for UDP Fragmentation Offload (UFO) feature. 1. This patch incorporate the review comments by Jeff Garzik. 2. Renamed USO as UFO (UDP Fragmentation Offload) 3. udp sendfile support with UFO This patches uses scatter-gather feature of skb to generate large UDP datagram. Below is a "how-to" on changes required in network device driver to use the UFO interface. UDP Fragmentation Offload (UFO) Interface: ------------------------------------------- UFO is a feature wherein the Linux kernel network stack will offload the IP fragmentation functionality of large UDP datagram to hardware. This will reduce the overhead of stack in fragmenting the large UDP datagram to MTU sized packets 1) Drivers indicate their capability of UFO using dev->features |= NETIF_F_UFO | NETIF_F_HW_CSUM | NETIF_F_SG NETIF_F_HW_CSUM is required for UFO over ipv6. 2) UFO packet will be submitted for transmission using driver xmit routine. UFO packet will have a non-zero value for "skb_shinfo(skb)->ufo_size" skb_shinfo(skb)->ufo_size will indicate the length of data part in each IP fragment going out of the adapter after IP fragmentation by hardware. skb->data will contain MAC/IP/UDP header and skb_shinfo(skb)->frags[] contains the data payload. The skb->ip_summed will be set to CHECKSUM_HW indicating that hardware has to do checksum calculation. Hardware should compute the UDP checksum of complete datagram and also ip header checksum of each fragmented IP packet. For IPV6 the UFO provides the fragment identification-id in skb_shinfo(skb)->ip6_frag_id. The adapter should use this ID for generating IPv6 fragments. Signed-off-by: Ananda Raju <ananda.raju@neterion.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (forwarded) Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-10-18 22:46:41 +00:00
/* initialize protocol header pointer */
skb->transport_header = skb->network_header + fragheaderlen;
[IPv4/IPv6]: UFO Scatter-gather approach Attached is kernel patch for UDP Fragmentation Offload (UFO) feature. 1. This patch incorporate the review comments by Jeff Garzik. 2. Renamed USO as UFO (UDP Fragmentation Offload) 3. udp sendfile support with UFO This patches uses scatter-gather feature of skb to generate large UDP datagram. Below is a "how-to" on changes required in network device driver to use the UFO interface. UDP Fragmentation Offload (UFO) Interface: ------------------------------------------- UFO is a feature wherein the Linux kernel network stack will offload the IP fragmentation functionality of large UDP datagram to hardware. This will reduce the overhead of stack in fragmenting the large UDP datagram to MTU sized packets 1) Drivers indicate their capability of UFO using dev->features |= NETIF_F_UFO | NETIF_F_HW_CSUM | NETIF_F_SG NETIF_F_HW_CSUM is required for UFO over ipv6. 2) UFO packet will be submitted for transmission using driver xmit routine. UFO packet will have a non-zero value for "skb_shinfo(skb)->ufo_size" skb_shinfo(skb)->ufo_size will indicate the length of data part in each IP fragment going out of the adapter after IP fragmentation by hardware. skb->data will contain MAC/IP/UDP header and skb_shinfo(skb)->frags[] contains the data payload. The skb->ip_summed will be set to CHECKSUM_HW indicating that hardware has to do checksum calculation. Hardware should compute the UDP checksum of complete datagram and also ip header checksum of each fragmented IP packet. For IPV6 the UFO provides the fragment identification-id in skb_shinfo(skb)->ip6_frag_id. The adapter should use this ID for generating IPv6 fragments. Signed-off-by: Ananda Raju <ananda.raju@neterion.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (forwarded) Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-10-18 22:46:41 +00:00
skb->ip_summed = CHECKSUM_PARTIAL;
[IPv4/IPv6]: UFO Scatter-gather approach Attached is kernel patch for UDP Fragmentation Offload (UFO) feature. 1. This patch incorporate the review comments by Jeff Garzik. 2. Renamed USO as UFO (UDP Fragmentation Offload) 3. udp sendfile support with UFO This patches uses scatter-gather feature of skb to generate large UDP datagram. Below is a "how-to" on changes required in network device driver to use the UFO interface. UDP Fragmentation Offload (UFO) Interface: ------------------------------------------- UFO is a feature wherein the Linux kernel network stack will offload the IP fragmentation functionality of large UDP datagram to hardware. This will reduce the overhead of stack in fragmenting the large UDP datagram to MTU sized packets 1) Drivers indicate their capability of UFO using dev->features |= NETIF_F_UFO | NETIF_F_HW_CSUM | NETIF_F_SG NETIF_F_HW_CSUM is required for UFO over ipv6. 2) UFO packet will be submitted for transmission using driver xmit routine. UFO packet will have a non-zero value for "skb_shinfo(skb)->ufo_size" skb_shinfo(skb)->ufo_size will indicate the length of data part in each IP fragment going out of the adapter after IP fragmentation by hardware. skb->data will contain MAC/IP/UDP header and skb_shinfo(skb)->frags[] contains the data payload. The skb->ip_summed will be set to CHECKSUM_HW indicating that hardware has to do checksum calculation. Hardware should compute the UDP checksum of complete datagram and also ip header checksum of each fragmented IP packet. For IPV6 the UFO provides the fragment identification-id in skb_shinfo(skb)->ip6_frag_id. The adapter should use this ID for generating IPv6 fragments. Signed-off-by: Ananda Raju <ananda.raju@neterion.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (forwarded) Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-10-18 22:46:41 +00:00
skb->csum = 0;
/* specify the length of each IP datagram fragment */
skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
[IPV6]: Added GSO support for TCPv6 This patch adds GSO support for IPv6 and TCPv6. This is based on a patch by Ananda Raju <Ananda.Raju@neterion.com>. His original description is: This patch enables TSO over IPv6. Currently Linux network stacks restricts TSO over IPv6 by clearing of the NETIF_F_TSO bit from "dev->features". This patch will remove this restriction. This patch will introduce a new flag NETIF_F_TSO6 which will be used to check whether device supports TSO over IPv6. If device support TSO over IPv6 then we don't clear of NETIF_F_TSO and which will make the TCP layer to create TSO packets. Any device supporting TSO over IPv6 will set NETIF_F_TSO6 flag in "dev->features" along with NETIF_F_TSO. In case when user disables TSO using ethtool, NETIF_F_TSO will get cleared from "dev->features". So even if we have NETIF_F_TSO6 we don't get TSO packets created by TCP layer. SKB_GSO_TCPV4 renamed to SKB_GSO_TCP to make it generic GSO packet. SKB_GSO_UDPV4 renamed to SKB_GSO_UDP as UFO is not a IPv4 feature. UFO is supported over IPv6 also The following table shows there is significant improvement in throughput with normal frames and CPU usage for both normal and jumbo. -------------------------------------------------- | | 1500 | 9600 | | ------------------|-------------------| | | thru CPU | thru CPU | -------------------------------------------------- | TSO OFF | 2.00 5.5% id | 5.66 20.0% id | -------------------------------------------------- | TSO ON | 2.63 78.0 id | 5.67 39.0% id | -------------------------------------------------- Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-06-30 20:37:03 +00:00
skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
__skb_queue_tail(queue, skb);
[IPv4/IPv6]: UFO Scatter-gather approach Attached is kernel patch for UDP Fragmentation Offload (UFO) feature. 1. This patch incorporate the review comments by Jeff Garzik. 2. Renamed USO as UFO (UDP Fragmentation Offload) 3. udp sendfile support with UFO This patches uses scatter-gather feature of skb to generate large UDP datagram. Below is a "how-to" on changes required in network device driver to use the UFO interface. UDP Fragmentation Offload (UFO) Interface: ------------------------------------------- UFO is a feature wherein the Linux kernel network stack will offload the IP fragmentation functionality of large UDP datagram to hardware. This will reduce the overhead of stack in fragmenting the large UDP datagram to MTU sized packets 1) Drivers indicate their capability of UFO using dev->features |= NETIF_F_UFO | NETIF_F_HW_CSUM | NETIF_F_SG NETIF_F_HW_CSUM is required for UFO over ipv6. 2) UFO packet will be submitted for transmission using driver xmit routine. UFO packet will have a non-zero value for "skb_shinfo(skb)->ufo_size" skb_shinfo(skb)->ufo_size will indicate the length of data part in each IP fragment going out of the adapter after IP fragmentation by hardware. skb->data will contain MAC/IP/UDP header and skb_shinfo(skb)->frags[] contains the data payload. The skb->ip_summed will be set to CHECKSUM_HW indicating that hardware has to do checksum calculation. Hardware should compute the UDP checksum of complete datagram and also ip header checksum of each fragmented IP packet. For IPV6 the UFO provides the fragment identification-id in skb_shinfo(skb)->ip6_frag_id. The adapter should use this ID for generating IPv6 fragments. Signed-off-by: Ananda Raju <ananda.raju@neterion.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (forwarded) Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-10-18 22:46:41 +00:00
}
return skb_append_datato_frags(sk, skb, getfrag, from,
(length - transhdrlen));
[IPv4/IPv6]: UFO Scatter-gather approach Attached is kernel patch for UDP Fragmentation Offload (UFO) feature. 1. This patch incorporate the review comments by Jeff Garzik. 2. Renamed USO as UFO (UDP Fragmentation Offload) 3. udp sendfile support with UFO This patches uses scatter-gather feature of skb to generate large UDP datagram. Below is a "how-to" on changes required in network device driver to use the UFO interface. UDP Fragmentation Offload (UFO) Interface: ------------------------------------------- UFO is a feature wherein the Linux kernel network stack will offload the IP fragmentation functionality of large UDP datagram to hardware. This will reduce the overhead of stack in fragmenting the large UDP datagram to MTU sized packets 1) Drivers indicate their capability of UFO using dev->features |= NETIF_F_UFO | NETIF_F_HW_CSUM | NETIF_F_SG NETIF_F_HW_CSUM is required for UFO over ipv6. 2) UFO packet will be submitted for transmission using driver xmit routine. UFO packet will have a non-zero value for "skb_shinfo(skb)->ufo_size" skb_shinfo(skb)->ufo_size will indicate the length of data part in each IP fragment going out of the adapter after IP fragmentation by hardware. skb->data will contain MAC/IP/UDP header and skb_shinfo(skb)->frags[] contains the data payload. The skb->ip_summed will be set to CHECKSUM_HW indicating that hardware has to do checksum calculation. Hardware should compute the UDP checksum of complete datagram and also ip header checksum of each fragmented IP packet. For IPV6 the UFO provides the fragment identification-id in skb_shinfo(skb)->ip6_frag_id. The adapter should use this ID for generating IPv6 fragments. Signed-off-by: Ananda Raju <ananda.raju@neterion.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (forwarded) Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-10-18 22:46:41 +00:00
}
static int __ip_append_data(struct sock *sk,
struct flowi4 *fl4,
struct sk_buff_head *queue,
struct inet_cork *cork,
net: use a per task frag allocator We currently use a per socket order-0 page cache for tcp_sendmsg() operations. This page is used to build fragments for skbs. Its done to increase probability of coalescing small write() into single segments in skbs still in write queue (not yet sent) But it wastes a lot of memory for applications handling many mostly idle sockets, since each socket holds one page in sk->sk_sndmsg_page Its also quite inefficient to build TSO 64KB packets, because we need about 16 pages per skb on arches where PAGE_SIZE = 4096, so we hit page allocator more than wanted. This patch adds a per task frag allocator and uses bigger pages, if available. An automatic fallback is done in case of memory pressure. (up to 32768 bytes per frag, thats order-3 pages on x86) This increases TCP stream performance by 20% on loopback device, but also benefits on other network devices, since 8x less frags are mapped on transmit and unmapped on tx completion. Alexander Duyck mentioned a probable performance win on systems with IOMMU enabled. Its possible some SG enabled hardware cant cope with bigger fragments, but their ndo_start_xmit() should already handle this, splitting a fragment in sub fragments, since some arches have PAGE_SIZE=65536 Successfully tested on various ethernet devices. (ixgbe, igb, bnx2x, tg3, mellanox mlx4) Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Vijay Subramanian <subramanian.vijay@gmail.com> Cc: Alexander Duyck <alexander.h.duyck@intel.com> Tested-by: Vijay Subramanian <subramanian.vijay@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-09-23 23:04:42 +00:00
struct page_frag *pfrag,
int getfrag(void *from, char *to, int offset,
int len, int odd, struct sk_buff *skb),
void *from, int length, int transhdrlen,
unsigned int flags)
{
struct inet_sock *inet = inet_sk(sk);
struct sk_buff *skb;
struct ip_options *opt = cork->opt;
int hh_len;
int exthdrlen;
int mtu;
int copy;
int err;
int offset = 0;
unsigned int maxfraglen, fragheaderlen;
int csummode = CHECKSUM_NONE;
struct rtable *rt = (struct rtable *)cork->dst;
skb = skb_peek_tail(queue);
exthdrlen = !skb ? rt->dst.header_len : 0;
mtu = cork->fragsize;
hh_len = LL_RESERVED_SPACE(rt->dst.dev);
fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
if (cork->length + length > 0xFFFF - fragheaderlen) {
ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
mtu-exthdrlen);
return -EMSGSIZE;
}
/*
* transhdrlen > 0 means that this is the first fragment and we wish
* it won't be fragmented in the future.
*/
if (transhdrlen &&
length + fragheaderlen <= mtu &&
rt->dst.dev->features & NETIF_F_V4_CSUM &&
!exthdrlen)
csummode = CHECKSUM_PARTIAL;
cork->length += length;
if (((length > mtu) || (skb && skb_is_gso(skb))) &&
(sk->sk_protocol == IPPROTO_UDP) &&
(rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len) {
err = ip_ufo_append_data(sk, queue, getfrag, from, length,
hh_len, fragheaderlen, transhdrlen,
maxfraglen, flags);
if (err)
[IPv4/IPv6]: UFO Scatter-gather approach Attached is kernel patch for UDP Fragmentation Offload (UFO) feature. 1. This patch incorporate the review comments by Jeff Garzik. 2. Renamed USO as UFO (UDP Fragmentation Offload) 3. udp sendfile support with UFO This patches uses scatter-gather feature of skb to generate large UDP datagram. Below is a "how-to" on changes required in network device driver to use the UFO interface. UDP Fragmentation Offload (UFO) Interface: ------------------------------------------- UFO is a feature wherein the Linux kernel network stack will offload the IP fragmentation functionality of large UDP datagram to hardware. This will reduce the overhead of stack in fragmenting the large UDP datagram to MTU sized packets 1) Drivers indicate their capability of UFO using dev->features |= NETIF_F_UFO | NETIF_F_HW_CSUM | NETIF_F_SG NETIF_F_HW_CSUM is required for UFO over ipv6. 2) UFO packet will be submitted for transmission using driver xmit routine. UFO packet will have a non-zero value for "skb_shinfo(skb)->ufo_size" skb_shinfo(skb)->ufo_size will indicate the length of data part in each IP fragment going out of the adapter after IP fragmentation by hardware. skb->data will contain MAC/IP/UDP header and skb_shinfo(skb)->frags[] contains the data payload. The skb->ip_summed will be set to CHECKSUM_HW indicating that hardware has to do checksum calculation. Hardware should compute the UDP checksum of complete datagram and also ip header checksum of each fragmented IP packet. For IPV6 the UFO provides the fragment identification-id in skb_shinfo(skb)->ip6_frag_id. The adapter should use this ID for generating IPv6 fragments. Signed-off-by: Ananda Raju <ananda.raju@neterion.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (forwarded) Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-10-18 22:46:41 +00:00
goto error;
return 0;
}
/* So, what's going on in the loop below?
*
* We use calculated fragment length to generate chained skb,
* each of segments is IP fragment ready for sending to network after
* adding appropriate IP header.
*/
if (!skb)
goto alloc_new_skb;
while (length > 0) {
/* Check if the remaining data fits into current packet. */
copy = mtu - skb->len;
if (copy < length)
copy = maxfraglen - skb->len;
if (copy <= 0) {
char *data;
unsigned int datalen;
unsigned int fraglen;
unsigned int fraggap;
unsigned int alloclen;
struct sk_buff *skb_prev;
alloc_new_skb:
skb_prev = skb;
if (skb_prev)
fraggap = skb_prev->len - maxfraglen;
else
fraggap = 0;
/*
* If remaining data exceeds the mtu,
* we know we need more fragment(s).
*/
datalen = length + fraggap;
if (datalen > mtu - fragheaderlen)
datalen = maxfraglen - fragheaderlen;
fraglen = datalen + fragheaderlen;
if ((flags & MSG_MORE) &&
!(rt->dst.dev->features&NETIF_F_SG))
alloclen = mtu;
else
alloclen = fraglen;
alloclen += exthdrlen;
/* The last fragment gets additional space at tail.
* Note, with MSG_MORE we overallocate on fragments,
* because we have no idea what fragment will be
* the last.
*/
if (datalen == length + fraggap)
alloclen += rt->dst.trailer_len;
if (transhdrlen) {
skb = sock_alloc_send_skb(sk,
alloclen + hh_len + 15,
(flags & MSG_DONTWAIT), &err);
} else {
skb = NULL;
if (atomic_read(&sk->sk_wmem_alloc) <=
2 * sk->sk_sndbuf)
skb = sock_wmalloc(sk,
alloclen + hh_len + 15, 1,
sk->sk_allocation);
if (unlikely(skb == NULL))
err = -ENOBUFS;
else
/* only the initial fragment is
time stamped */
cork->tx_flags = 0;
}
if (skb == NULL)
goto error;
/*
* Fill in the control structures
*/
skb->ip_summed = csummode;
skb->csum = 0;
skb_reserve(skb, hh_len);
skb_shinfo(skb)->tx_flags = cork->tx_flags;
/*
* Find where to start putting bytes.
*/
data = skb_put(skb, fraglen + exthdrlen);
skb_set_network_header(skb, exthdrlen);
skb->transport_header = (skb->network_header +
fragheaderlen);
data += fragheaderlen + exthdrlen;
if (fraggap) {
skb->csum = skb_copy_and_csum_bits(
skb_prev, maxfraglen,
data + transhdrlen, fraggap, 0);
skb_prev->csum = csum_sub(skb_prev->csum,
skb->csum);
data += fraggap;
pskb_trim_unique(skb_prev, maxfraglen);
}
copy = datalen - transhdrlen - fraggap;
if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
err = -EFAULT;
kfree_skb(skb);
goto error;
}
offset += copy;
length -= datalen - fraggap;
transhdrlen = 0;
exthdrlen = 0;
csummode = CHECKSUM_NONE;
/*
* Put the packet on the pending queue.
*/
__skb_queue_tail(queue, skb);
continue;
}
if (copy > length)
copy = length;
if (!(rt->dst.dev->features&NETIF_F_SG)) {
unsigned int off;
off = skb->len;
if (getfrag(from, skb_put(skb, copy),
offset, copy, off, skb) < 0) {
__skb_trim(skb, off);
err = -EFAULT;
goto error;
}
} else {
int i = skb_shinfo(skb)->nr_frags;
net: use a per task frag allocator We currently use a per socket order-0 page cache for tcp_sendmsg() operations. This page is used to build fragments for skbs. Its done to increase probability of coalescing small write() into single segments in skbs still in write queue (not yet sent) But it wastes a lot of memory for applications handling many mostly idle sockets, since each socket holds one page in sk->sk_sndmsg_page Its also quite inefficient to build TSO 64KB packets, because we need about 16 pages per skb on arches where PAGE_SIZE = 4096, so we hit page allocator more than wanted. This patch adds a per task frag allocator and uses bigger pages, if available. An automatic fallback is done in case of memory pressure. (up to 32768 bytes per frag, thats order-3 pages on x86) This increases TCP stream performance by 20% on loopback device, but also benefits on other network devices, since 8x less frags are mapped on transmit and unmapped on tx completion. Alexander Duyck mentioned a probable performance win on systems with IOMMU enabled. Its possible some SG enabled hardware cant cope with bigger fragments, but their ndo_start_xmit() should already handle this, splitting a fragment in sub fragments, since some arches have PAGE_SIZE=65536 Successfully tested on various ethernet devices. (ixgbe, igb, bnx2x, tg3, mellanox mlx4) Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Vijay Subramanian <subramanian.vijay@gmail.com> Cc: Alexander Duyck <alexander.h.duyck@intel.com> Tested-by: Vijay Subramanian <subramanian.vijay@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-09-23 23:04:42 +00:00
err = -ENOMEM;
if (!sk_page_frag_refill(sk, pfrag))
goto error;
net: use a per task frag allocator We currently use a per socket order-0 page cache for tcp_sendmsg() operations. This page is used to build fragments for skbs. Its done to increase probability of coalescing small write() into single segments in skbs still in write queue (not yet sent) But it wastes a lot of memory for applications handling many mostly idle sockets, since each socket holds one page in sk->sk_sndmsg_page Its also quite inefficient to build TSO 64KB packets, because we need about 16 pages per skb on arches where PAGE_SIZE = 4096, so we hit page allocator more than wanted. This patch adds a per task frag allocator and uses bigger pages, if available. An automatic fallback is done in case of memory pressure. (up to 32768 bytes per frag, thats order-3 pages on x86) This increases TCP stream performance by 20% on loopback device, but also benefits on other network devices, since 8x less frags are mapped on transmit and unmapped on tx completion. Alexander Duyck mentioned a probable performance win on systems with IOMMU enabled. Its possible some SG enabled hardware cant cope with bigger fragments, but their ndo_start_xmit() should already handle this, splitting a fragment in sub fragments, since some arches have PAGE_SIZE=65536 Successfully tested on various ethernet devices. (ixgbe, igb, bnx2x, tg3, mellanox mlx4) Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Vijay Subramanian <subramanian.vijay@gmail.com> Cc: Alexander Duyck <alexander.h.duyck@intel.com> Tested-by: Vijay Subramanian <subramanian.vijay@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-09-23 23:04:42 +00:00
if (!skb_can_coalesce(skb, i, pfrag->page,
pfrag->offset)) {
err = -EMSGSIZE;
if (i == MAX_SKB_FRAGS)
goto error;
__skb_fill_page_desc(skb, i, pfrag->page,
pfrag->offset, 0);
skb_shinfo(skb)->nr_frags = ++i;
get_page(pfrag->page);
}
net: use a per task frag allocator We currently use a per socket order-0 page cache for tcp_sendmsg() operations. This page is used to build fragments for skbs. Its done to increase probability of coalescing small write() into single segments in skbs still in write queue (not yet sent) But it wastes a lot of memory for applications handling many mostly idle sockets, since each socket holds one page in sk->sk_sndmsg_page Its also quite inefficient to build TSO 64KB packets, because we need about 16 pages per skb on arches where PAGE_SIZE = 4096, so we hit page allocator more than wanted. This patch adds a per task frag allocator and uses bigger pages, if available. An automatic fallback is done in case of memory pressure. (up to 32768 bytes per frag, thats order-3 pages on x86) This increases TCP stream performance by 20% on loopback device, but also benefits on other network devices, since 8x less frags are mapped on transmit and unmapped on tx completion. Alexander Duyck mentioned a probable performance win on systems with IOMMU enabled. Its possible some SG enabled hardware cant cope with bigger fragments, but their ndo_start_xmit() should already handle this, splitting a fragment in sub fragments, since some arches have PAGE_SIZE=65536 Successfully tested on various ethernet devices. (ixgbe, igb, bnx2x, tg3, mellanox mlx4) Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Vijay Subramanian <subramanian.vijay@gmail.com> Cc: Alexander Duyck <alexander.h.duyck@intel.com> Tested-by: Vijay Subramanian <subramanian.vijay@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-09-23 23:04:42 +00:00
copy = min_t(int, copy, pfrag->size - pfrag->offset);
if (getfrag(from,
page_address(pfrag->page) + pfrag->offset,
offset, copy, skb->len, skb) < 0)
goto error_efault;
pfrag->offset += copy;
skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
skb->len += copy;
skb->data_len += copy;
skb->truesize += copy;
atomic_add(copy, &sk->sk_wmem_alloc);
}
offset += copy;
length -= copy;
}
return 0;
net: use a per task frag allocator We currently use a per socket order-0 page cache for tcp_sendmsg() operations. This page is used to build fragments for skbs. Its done to increase probability of coalescing small write() into single segments in skbs still in write queue (not yet sent) But it wastes a lot of memory for applications handling many mostly idle sockets, since each socket holds one page in sk->sk_sndmsg_page Its also quite inefficient to build TSO 64KB packets, because we need about 16 pages per skb on arches where PAGE_SIZE = 4096, so we hit page allocator more than wanted. This patch adds a per task frag allocator and uses bigger pages, if available. An automatic fallback is done in case of memory pressure. (up to 32768 bytes per frag, thats order-3 pages on x86) This increases TCP stream performance by 20% on loopback device, but also benefits on other network devices, since 8x less frags are mapped on transmit and unmapped on tx completion. Alexander Duyck mentioned a probable performance win on systems with IOMMU enabled. Its possible some SG enabled hardware cant cope with bigger fragments, but their ndo_start_xmit() should already handle this, splitting a fragment in sub fragments, since some arches have PAGE_SIZE=65536 Successfully tested on various ethernet devices. (ixgbe, igb, bnx2x, tg3, mellanox mlx4) Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Vijay Subramanian <subramanian.vijay@gmail.com> Cc: Alexander Duyck <alexander.h.duyck@intel.com> Tested-by: Vijay Subramanian <subramanian.vijay@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-09-23 23:04:42 +00:00
error_efault:
err = -EFAULT;
error:
cork->length -= length;
IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
return err;
}
static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
struct ipcm_cookie *ipc, struct rtable **rtp)
{
struct inet_sock *inet = inet_sk(sk);
struct ip_options_rcu *opt;
struct rtable *rt;
/*
* setup for corking.
*/
opt = ipc->opt;
if (opt) {
if (cork->opt == NULL) {
cork->opt = kmalloc(sizeof(struct ip_options) + 40,
sk->sk_allocation);
if (unlikely(cork->opt == NULL))
return -ENOBUFS;
}
memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
cork->flags |= IPCORK_OPT;
cork->addr = ipc->addr;
}
rt = *rtp;
if (unlikely(!rt))
return -EFAULT;
/*
* We steal reference to this route, caller should not release it
*/
*rtp = NULL;
cork->fragsize = inet->pmtudisc == IP_PMTUDISC_PROBE ?
rt->dst.dev->mtu : dst_mtu(&rt->dst);
cork->dst = &rt->dst;
cork->length = 0;
cork->tx_flags = ipc->tx_flags;
return 0;
}
/*
* ip_append_data() and ip_append_page() can make one large IP datagram
* from many pieces of data. Each pieces will be holded on the socket
* until ip_push_pending_frames() is called. Each piece can be a page
* or non-page data.
*
* Not only UDP, other transport protocols - e.g. raw sockets - can use
* this interface potentially.
*
* LATER: length must be adjusted by pad at tail, when it is required.
*/
int ip_append_data(struct sock *sk, struct flowi4 *fl4,
int getfrag(void *from, char *to, int offset, int len,
int odd, struct sk_buff *skb),
void *from, int length, int transhdrlen,
struct ipcm_cookie *ipc, struct rtable **rtp,
unsigned int flags)
{
struct inet_sock *inet = inet_sk(sk);
int err;
if (flags&MSG_PROBE)
return 0;
if (skb_queue_empty(&sk->sk_write_queue)) {
err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
if (err)
return err;
} else {
transhdrlen = 0;
}
net: use a per task frag allocator We currently use a per socket order-0 page cache for tcp_sendmsg() operations. This page is used to build fragments for skbs. Its done to increase probability of coalescing small write() into single segments in skbs still in write queue (not yet sent) But it wastes a lot of memory for applications handling many mostly idle sockets, since each socket holds one page in sk->sk_sndmsg_page Its also quite inefficient to build TSO 64KB packets, because we need about 16 pages per skb on arches where PAGE_SIZE = 4096, so we hit page allocator more than wanted. This patch adds a per task frag allocator and uses bigger pages, if available. An automatic fallback is done in case of memory pressure. (up to 32768 bytes per frag, thats order-3 pages on x86) This increases TCP stream performance by 20% on loopback device, but also benefits on other network devices, since 8x less frags are mapped on transmit and unmapped on tx completion. Alexander Duyck mentioned a probable performance win on systems with IOMMU enabled. Its possible some SG enabled hardware cant cope with bigger fragments, but their ndo_start_xmit() should already handle this, splitting a fragment in sub fragments, since some arches have PAGE_SIZE=65536 Successfully tested on various ethernet devices. (ixgbe, igb, bnx2x, tg3, mellanox mlx4) Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Vijay Subramanian <subramanian.vijay@gmail.com> Cc: Alexander Duyck <alexander.h.duyck@intel.com> Tested-by: Vijay Subramanian <subramanian.vijay@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-09-23 23:04:42 +00:00
return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
sk_page_frag(sk), getfrag,
from, length, transhdrlen, flags);
}
ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
int offset, size_t size, int flags)
{
struct inet_sock *inet = inet_sk(sk);
struct sk_buff *skb;
struct rtable *rt;
struct ip_options *opt = NULL;
struct inet_cork *cork;
int hh_len;
int mtu;
int len;
int err;
unsigned int maxfraglen, fragheaderlen, fraggap;
if (inet->hdrincl)
return -EPERM;
if (flags&MSG_PROBE)
return 0;
if (skb_queue_empty(&sk->sk_write_queue))
return -EINVAL;
cork = &inet->cork.base;
rt = (struct rtable *)cork->dst;
if (cork->flags & IPCORK_OPT)
opt = cork->opt;
if (!(rt->dst.dev->features&NETIF_F_SG))
return -EOPNOTSUPP;
hh_len = LL_RESERVED_SPACE(rt->dst.dev);
mtu = cork->fragsize;
fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
if (cork->length + size > 0xFFFF - fragheaderlen) {
ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, mtu);
return -EMSGSIZE;
}
if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
return -EINVAL;
cork->length += size;
if ((size + skb->len > mtu) &&
(sk->sk_protocol == IPPROTO_UDP) &&
(rt->dst.dev->features & NETIF_F_UFO)) {
skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
[IPV6]: Added GSO support for TCPv6 This patch adds GSO support for IPv6 and TCPv6. This is based on a patch by Ananda Raju <Ananda.Raju@neterion.com>. His original description is: This patch enables TSO over IPv6. Currently Linux network stacks restricts TSO over IPv6 by clearing of the NETIF_F_TSO bit from "dev->features". This patch will remove this restriction. This patch will introduce a new flag NETIF_F_TSO6 which will be used to check whether device supports TSO over IPv6. If device support TSO over IPv6 then we don't clear of NETIF_F_TSO and which will make the TCP layer to create TSO packets. Any device supporting TSO over IPv6 will set NETIF_F_TSO6 flag in "dev->features" along with NETIF_F_TSO. In case when user disables TSO using ethtool, NETIF_F_TSO will get cleared from "dev->features". So even if we have NETIF_F_TSO6 we don't get TSO packets created by TCP layer. SKB_GSO_TCPV4 renamed to SKB_GSO_TCP to make it generic GSO packet. SKB_GSO_UDPV4 renamed to SKB_GSO_UDP as UFO is not a IPv4 feature. UFO is supported over IPv6 also The following table shows there is significant improvement in throughput with normal frames and CPU usage for both normal and jumbo. -------------------------------------------------- | | 1500 | 9600 | | ------------------|-------------------| | | thru CPU | thru CPU | -------------------------------------------------- | TSO OFF | 2.00 5.5% id | 5.66 20.0% id | -------------------------------------------------- | TSO ON | 2.63 78.0 id | 5.67 39.0% id | -------------------------------------------------- Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-06-30 20:37:03 +00:00
skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
}
[IPv4/IPv6]: UFO Scatter-gather approach Attached is kernel patch for UDP Fragmentation Offload (UFO) feature. 1. This patch incorporate the review comments by Jeff Garzik. 2. Renamed USO as UFO (UDP Fragmentation Offload) 3. udp sendfile support with UFO This patches uses scatter-gather feature of skb to generate large UDP datagram. Below is a "how-to" on changes required in network device driver to use the UFO interface. UDP Fragmentation Offload (UFO) Interface: ------------------------------------------- UFO is a feature wherein the Linux kernel network stack will offload the IP fragmentation functionality of large UDP datagram to hardware. This will reduce the overhead of stack in fragmenting the large UDP datagram to MTU sized packets 1) Drivers indicate their capability of UFO using dev->features |= NETIF_F_UFO | NETIF_F_HW_CSUM | NETIF_F_SG NETIF_F_HW_CSUM is required for UFO over ipv6. 2) UFO packet will be submitted for transmission using driver xmit routine. UFO packet will have a non-zero value for "skb_shinfo(skb)->ufo_size" skb_shinfo(skb)->ufo_size will indicate the length of data part in each IP fragment going out of the adapter after IP fragmentation by hardware. skb->data will contain MAC/IP/UDP header and skb_shinfo(skb)->frags[] contains the data payload. The skb->ip_summed will be set to CHECKSUM_HW indicating that hardware has to do checksum calculation. Hardware should compute the UDP checksum of complete datagram and also ip header checksum of each fragmented IP packet. For IPV6 the UFO provides the fragment identification-id in skb_shinfo(skb)->ip6_frag_id. The adapter should use this ID for generating IPv6 fragments. Signed-off-by: Ananda Raju <ananda.raju@neterion.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (forwarded) Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-10-18 22:46:41 +00:00
while (size > 0) {
int i;
if (skb_is_gso(skb))
[IPv4/IPv6]: UFO Scatter-gather approach Attached is kernel patch for UDP Fragmentation Offload (UFO) feature. 1. This patch incorporate the review comments by Jeff Garzik. 2. Renamed USO as UFO (UDP Fragmentation Offload) 3. udp sendfile support with UFO This patches uses scatter-gather feature of skb to generate large UDP datagram. Below is a "how-to" on changes required in network device driver to use the UFO interface. UDP Fragmentation Offload (UFO) Interface: ------------------------------------------- UFO is a feature wherein the Linux kernel network stack will offload the IP fragmentation functionality of large UDP datagram to hardware. This will reduce the overhead of stack in fragmenting the large UDP datagram to MTU sized packets 1) Drivers indicate their capability of UFO using dev->features |= NETIF_F_UFO | NETIF_F_HW_CSUM | NETIF_F_SG NETIF_F_HW_CSUM is required for UFO over ipv6. 2) UFO packet will be submitted for transmission using driver xmit routine. UFO packet will have a non-zero value for "skb_shinfo(skb)->ufo_size" skb_shinfo(skb)->ufo_size will indicate the length of data part in each IP fragment going out of the adapter after IP fragmentation by hardware. skb->data will contain MAC/IP/UDP header and skb_shinfo(skb)->frags[] contains the data payload. The skb->ip_summed will be set to CHECKSUM_HW indicating that hardware has to do checksum calculation. Hardware should compute the UDP checksum of complete datagram and also ip header checksum of each fragmented IP packet. For IPV6 the UFO provides the fragment identification-id in skb_shinfo(skb)->ip6_frag_id. The adapter should use this ID for generating IPv6 fragments. Signed-off-by: Ananda Raju <ananda.raju@neterion.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (forwarded) Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-10-18 22:46:41 +00:00
len = size;
else {
/* Check if the remaining data fits into current packet. */
len = mtu - skb->len;
if (len < size)
len = maxfraglen - skb->len;
}
if (len <= 0) {
struct sk_buff *skb_prev;
int alloclen;
skb_prev = skb;
fraggap = skb_prev->len - maxfraglen;
alloclen = fragheaderlen + hh_len + fraggap + 15;
skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
if (unlikely(!skb)) {
err = -ENOBUFS;
goto error;
}
/*
* Fill in the control structures
*/
skb->ip_summed = CHECKSUM_NONE;
skb->csum = 0;
skb_reserve(skb, hh_len);
/*
* Find where to start putting bytes.
*/
skb_put(skb, fragheaderlen + fraggap);
skb_reset_network_header(skb);
skb->transport_header = (skb->network_header +
fragheaderlen);
if (fraggap) {
skb->csum = skb_copy_and_csum_bits(skb_prev,
maxfraglen,
skb_transport_header(skb),
fraggap, 0);
skb_prev->csum = csum_sub(skb_prev->csum,
skb->csum);
pskb_trim_unique(skb_prev, maxfraglen);
}
/*
* Put the packet on the pending queue.
*/
__skb_queue_tail(&sk->sk_write_queue, skb);
continue;
}
i = skb_shinfo(skb)->nr_frags;
if (len > size)
len = size;
if (skb_can_coalesce(skb, i, page, offset)) {
skb_frag_size_add(&skb_shinfo(skb)->frags[i-1], len);
} else if (i < MAX_SKB_FRAGS) {
get_page(page);
skb_fill_page_desc(skb, i, page, offset, len);
} else {
err = -EMSGSIZE;
goto error;
}
if (skb->ip_summed == CHECKSUM_NONE) {
__wsum csum;
csum = csum_page(page, offset, len);
skb->csum = csum_block_add(skb->csum, csum, skb->len);
}
skb->len += len;
skb->data_len += len;
skb->truesize += len;
atomic_add(len, &sk->sk_wmem_alloc);
offset += len;
size -= len;
}
return 0;
error:
cork->length -= size;
IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
return err;
}
static void ip_cork_release(struct inet_cork *cork)
{
cork->flags &= ~IPCORK_OPT;
kfree(cork->opt);
cork->opt = NULL;
dst_release(cork->dst);
cork->dst = NULL;
}
/*
* Combined all pending IP fragments on the socket as one IP datagram
* and push them out.
*/
struct sk_buff *__ip_make_skb(struct sock *sk,
struct flowi4 *fl4,
struct sk_buff_head *queue,
struct inet_cork *cork)
{
struct sk_buff *skb, *tmp_skb;
struct sk_buff **tail_skb;
struct inet_sock *inet = inet_sk(sk);
struct net *net = sock_net(sk);
struct ip_options *opt = NULL;
struct rtable *rt = (struct rtable *)cork->dst;
struct iphdr *iph;
__be16 df = 0;
__u8 ttl;
if ((skb = __skb_dequeue(queue)) == NULL)
goto out;
tail_skb = &(skb_shinfo(skb)->frag_list);
/* move skb->data to ip header from ext header */
if (skb->data < skb_network_header(skb))
__skb_pull(skb, skb_network_offset(skb));
while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
__skb_pull(tmp_skb, skb_network_header_len(skb));
*tail_skb = tmp_skb;
tail_skb = &(tmp_skb->next);
skb->len += tmp_skb->len;
skb->data_len += tmp_skb->len;
skb->truesize += tmp_skb->truesize;
tmp_skb->destructor = NULL;
tmp_skb->sk = NULL;
}
/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
* to fragment the frame generated here. No matter, what transforms
* how transforms change size of the packet, it will come out.
*/
if (inet->pmtudisc < IP_PMTUDISC_DO)
skb->local_df = 1;
/* DF bit is set when we want to see DF on outgoing frames.
* If local_df is set too, we still allow to fragment this frame
* locally. */
if (inet->pmtudisc >= IP_PMTUDISC_DO ||
(skb->len <= dst_mtu(&rt->dst) &&
ip_dont_fragment(sk, &rt->dst)))
df = htons(IP_DF);
if (cork->flags & IPCORK_OPT)
opt = cork->opt;
if (rt->rt_type == RTN_MULTICAST)
ttl = inet->mc_ttl;
else
ttl = ip_select_ttl(inet, &rt->dst);
iph = (struct iphdr *)skb->data;
iph->version = 4;
iph->ihl = 5;
iph->tos = inet->tos;
iph->frag_off = df;
iph->ttl = ttl;
iph->protocol = sk->sk_protocol;
ip_copy_addrs(iph, fl4);
ip_select_ident(iph, &rt->dst, sk);
if (opt) {
iph->ihl += opt->optlen>>2;
ip_options_build(skb, opt, cork->addr, rt, 0);
}
skb->priority = sk->sk_priority;
skb->mark = sk->sk_mark;
/*
* Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
* on dst refcount
*/
cork->dst = NULL;
skb_dst_set(skb, &rt->dst);
if (iph->protocol == IPPROTO_ICMP)
icmp_out_count(net, ((struct icmphdr *)
skb_transport_header(skb))->type);
ip_cork_release(cork);
out:
return skb;
}
int ip_send_skb(struct net *net, struct sk_buff *skb)
{
int err;
err = ip_local_out(skb);
if (err) {
if (err > 0)
err = net_xmit_errno(err);
if (err)
IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
}
return err;
}
int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
{
struct sk_buff *skb;
skb = ip_finish_skb(sk, fl4);
if (!skb)
return 0;
/* Netfilter gets whole the not fragmented skb. */
return ip_send_skb(sock_net(sk), skb);
}
/*
* Throw away all pending data on the socket.
*/
static void __ip_flush_pending_frames(struct sock *sk,
struct sk_buff_head *queue,
struct inet_cork *cork)
{
struct sk_buff *skb;
while ((skb = __skb_dequeue_tail(queue)) != NULL)
kfree_skb(skb);
ip_cork_release(cork);
}
void ip_flush_pending_frames(struct sock *sk)
{
__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
}
struct sk_buff *ip_make_skb(struct sock *sk,
struct flowi4 *fl4,
int getfrag(void *from, char *to, int offset,
int len, int odd, struct sk_buff *skb),
void *from, int length, int transhdrlen,
struct ipcm_cookie *ipc, struct rtable **rtp,
unsigned int flags)
{
struct inet_cork cork;
struct sk_buff_head queue;
int err;
if (flags & MSG_PROBE)
return NULL;
__skb_queue_head_init(&queue);
cork.flags = 0;
cork.addr = 0;
cork.opt = NULL;
err = ip_setup_cork(sk, &cork, ipc, rtp);
if (err)
return ERR_PTR(err);
net: use a per task frag allocator We currently use a per socket order-0 page cache for tcp_sendmsg() operations. This page is used to build fragments for skbs. Its done to increase probability of coalescing small write() into single segments in skbs still in write queue (not yet sent) But it wastes a lot of memory for applications handling many mostly idle sockets, since each socket holds one page in sk->sk_sndmsg_page Its also quite inefficient to build TSO 64KB packets, because we need about 16 pages per skb on arches where PAGE_SIZE = 4096, so we hit page allocator more than wanted. This patch adds a per task frag allocator and uses bigger pages, if available. An automatic fallback is done in case of memory pressure. (up to 32768 bytes per frag, thats order-3 pages on x86) This increases TCP stream performance by 20% on loopback device, but also benefits on other network devices, since 8x less frags are mapped on transmit and unmapped on tx completion. Alexander Duyck mentioned a probable performance win on systems with IOMMU enabled. Its possible some SG enabled hardware cant cope with bigger fragments, but their ndo_start_xmit() should already handle this, splitting a fragment in sub fragments, since some arches have PAGE_SIZE=65536 Successfully tested on various ethernet devices. (ixgbe, igb, bnx2x, tg3, mellanox mlx4) Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Vijay Subramanian <subramanian.vijay@gmail.com> Cc: Alexander Duyck <alexander.h.duyck@intel.com> Tested-by: Vijay Subramanian <subramanian.vijay@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-09-23 23:04:42 +00:00
err = __ip_append_data(sk, fl4, &queue, &cork,
&current->task_frag, getfrag,
from, length, transhdrlen, flags);
if (err) {
__ip_flush_pending_frames(sk, &queue, &cork);
return ERR_PTR(err);
}
return __ip_make_skb(sk, fl4, &queue, &cork);
}
/*
* Fetch data from kernel space and fill in checksum if needed.
*/
static int ip_reply_glue_bits(void *dptr, char *to, int offset,
int len, int odd, struct sk_buff *skb)
{
__wsum csum;
csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
skb->csum = csum_block_add(skb->csum, csum, odd);
return 0;
}
/*
* Generic function to send a packet as reply to another packet.
* Used to send some TCP resets/acks so far.
*
* Use a fake percpu inet socket to avoid false sharing and contention.
*/
static DEFINE_PER_CPU(struct inet_sock, unicast_sock) = {
.sk = {
.__sk_common = {
.skc_refcnt = ATOMIC_INIT(1),
},
.sk_wmem_alloc = ATOMIC_INIT(1),
.sk_allocation = GFP_ATOMIC,
.sk_flags = (1UL << SOCK_USE_WRITE_QUEUE),
},
.pmtudisc = IP_PMTUDISC_WANT,
.uc_ttl = -1,
};
void ip_send_unicast_reply(struct net *net, struct sk_buff *skb, __be32 daddr,
__be32 saddr, const struct ip_reply_arg *arg,
unsigned int len)
{
struct ip_options_data replyopts;
struct ipcm_cookie ipc;
struct flowi4 fl4;
struct rtable *rt = skb_rtable(skb);
struct sk_buff *nskb;
struct sock *sk;
struct inet_sock *inet;
if (ip_options_echo(&replyopts.opt.opt, skb))
return;
ipc.addr = daddr;
ipc.opt = NULL;
ipc.tx_flags = 0;
if (replyopts.opt.opt.optlen) {
ipc.opt = &replyopts.opt;
if (replyopts.opt.opt.srr)
daddr = replyopts.opt.opt.faddr;
}
flowi4_init_output(&fl4, arg->bound_dev_if, 0,
RT_TOS(arg->tos),
RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
ip_reply_arg_flowi_flags(arg),
daddr, saddr,
tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
rt = ip_route_output_key(net, &fl4);
if (IS_ERR(rt))
return;
inet = &get_cpu_var(unicast_sock);
inet->tos = arg->tos;
sk = &inet->sk;
sk->sk_priority = skb->priority;
sk->sk_protocol = ip_hdr(skb)->protocol;
sk->sk_bound_dev_if = arg->bound_dev_if;
sock_net_set(sk, net);
__skb_queue_head_init(&sk->sk_write_queue);
sk->sk_sndbuf = sysctl_wmem_default;
ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
&ipc, &rt, MSG_DONTWAIT);
nskb = skb_peek(&sk->sk_write_queue);
if (nskb) {
if (arg->csumoffset >= 0)
*((__sum16 *)skb_transport_header(nskb) +
arg->csumoffset) = csum_fold(csum_add(nskb->csum,
arg->csum));
nskb->ip_summed = CHECKSUM_NONE;
skb_orphan(nskb);
skb_set_queue_mapping(nskb, skb_get_queue_mapping(skb));
ip_push_pending_frames(sk, &fl4);
}
put_cpu_var(unicast_sock);
ip_rt_put(rt);
}
void __init ip_init(void)
{
ip_rt_init();
inet_initpeers();
#if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
igmp_mc_proc_init();
#endif
}