linux/arch/x86/kernel/irqinit.c

202 lines
5.2 KiB
C
Raw Normal View History

#include <linux/linkage.h>
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/ioport.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/random.h>
#include <linux/kprobes.h>
#include <linux/init.h>
#include <linux/kernel_stat.h>
#include <linux/device.h>
#include <linux/bitops.h>
#include <linux/acpi.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/atomic.h>
#include <asm/timer.h>
#include <asm/hw_irq.h>
#include <asm/pgtable.h>
#include <asm/desc.h>
#include <asm/apic.h>
#include <asm/setup.h>
#include <asm/i8259.h>
#include <asm/traps.h>
#include <asm/prom.h>
/*
* ISA PIC or low IO-APIC triggered (INTA-cycle or APIC) interrupts:
* (these are usually mapped to vectors 0x30-0x3f)
*/
/*
* The IO-APIC gives us many more interrupt sources. Most of these
* are unused but an SMP system is supposed to have enough memory ...
* sometimes (mostly wrt. hw bugs) we get corrupted vectors all
* across the spectrum, so we really want to be prepared to get all
* of these. Plus, more powerful systems might have more than 64
* IO-APIC registers.
*
* (these are usually mapped into the 0x30-0xff vector range)
*/
/*
* IRQ2 is cascade interrupt to second interrupt controller
*/
static struct irqaction irq2 = {
.handler = no_action,
.name = "cascade",
.flags = IRQF_NO_THREAD,
};
DEFINE_PER_CPU(vector_irq_t, vector_irq) = {
[0 ... NR_VECTORS - 1] = VECTOR_UNUSED,
};
int vector_used_by_percpu_irq(unsigned int vector)
{
int cpu;
for_each_online_cpu(cpu) {
if (!IS_ERR_OR_NULL(per_cpu(vector_irq, cpu)[vector]))
return 1;
}
return 0;
}
void __init init_ISA_irqs(void)
{
struct irq_chip *chip = legacy_pic->chip;
int i;
#if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC)
init_bsp_APIC();
#endif
legacy_pic->init(0);
for (i = 0; i < nr_legacy_irqs(); i++)
x86/irq: Fix XT-PIC-XT-PIC in /proc/interrupts Fix duplicate XT-PIC seen in /proc/interrupts on x86 systems that make use of 8259A Programmable Interrupt Controllers. Specifically convert output like this: CPU0 0: 76573 XT-PIC-XT-PIC timer 1: 11 XT-PIC-XT-PIC i8042 2: 0 XT-PIC-XT-PIC cascade 4: 8 XT-PIC-XT-PIC serial 6: 3 XT-PIC-XT-PIC floppy 7: 0 XT-PIC-XT-PIC parport0 8: 1 XT-PIC-XT-PIC rtc0 10: 448 XT-PIC-XT-PIC fddi0 12: 23 XT-PIC-XT-PIC eth0 14: 2464 XT-PIC-XT-PIC ide0 NMI: 0 Non-maskable interrupts ERR: 0 to one like this: CPU0 0: 122033 XT-PIC timer 1: 11 XT-PIC i8042 2: 0 XT-PIC cascade 4: 8 XT-PIC serial 6: 3 XT-PIC floppy 7: 0 XT-PIC parport0 8: 1 XT-PIC rtc0 10: 145 XT-PIC fddi0 12: 31 XT-PIC eth0 14: 2245 XT-PIC ide0 NMI: 0 Non-maskable interrupts ERR: 0 that is one like we used to have from ~2.2 till it was changed sometime. The rationale is there is no value in this duplicate information, it merely clutters output and looks ugly. We only have one handler for 8259A interrupts so there is no need to give it a name separate from the name already given to irq_chip. We could define meaningful names for handlers based on bits in the ELCR register on systems that have it or the value of the LTIM bit we use in ICW1 otherwise (hardcoded to 0 though with MCA support gone), to tell edge-triggered and level-triggered inputs apart. While that information does not affect 8259A interrupt handlers it could help people determine which lines are shareable and which are not. That is material for a separate change though. Any tools that parse /proc/interrupts are supposed not to be affected since it was many years we used the format this change converts back to. Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/alpine.LFD.2.11.1410260147190.21390@eddie.linux-mips.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-10-26 16:06:28 +00:00
irq_set_chip_and_handler(i, chip, handle_level_irq);
}
void __init init_IRQ(void)
{
int i;
/*
* On cpu 0, Assign ISA_IRQ_VECTOR(irq) to IRQ 0..15.
* If these IRQ's are handled by legacy interrupt-controllers like PIC,
* then this configuration will likely be static after the boot. If
* these IRQ's are handled by more mordern controllers like IO-APIC,
* then this vector space can be freed and re-used dynamically as the
* irq's migrate etc.
*/
for (i = 0; i < nr_legacy_irqs(); i++)
per_cpu(vector_irq, 0)[ISA_IRQ_VECTOR(i)] = irq_to_desc(i);
x86_init.irqs.intr_init();
}
static void __init smp_intr_init(void)
{
#ifdef CONFIG_SMP
/*
* The reschedule interrupt is a CPU-to-CPU reschedule-helper
* IPI, driven by wakeup.
*/
alloc_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt);
/* IPI for generic function call */
alloc_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt);
/* IPI for generic single function call */
alloc_intr_gate(CALL_FUNCTION_SINGLE_VECTOR,
call_function_single_interrupt);
/* Low priority IPI to cleanup after moving an irq */
set_intr_gate(IRQ_MOVE_CLEANUP_VECTOR, irq_move_cleanup_interrupt);
set_bit(IRQ_MOVE_CLEANUP_VECTOR, used_vectors);
x86: fix panic with interrupts off (needed for MCE) For some time each panic() called with interrupts disabled triggered the !irqs_disabled() WARN_ON in smp_call_function(), producing ugly backtraces and confusing users. This is a common situation with machine checks for example which tend to call panic with interrupts disabled, but will also hit in other situations e.g. panic during early boot. In fact it means that panic cannot be called in many circumstances, which would be bad. This all started with the new fancy queued smp_call_function, which is then used by the shutdown path to shut down the other CPUs. On closer examination it turned out that the fancy RCU smp_call_function() does lots of things not suitable in a panic situation anyways, like allocating memory and relying on complex system state. I originally tried to patch this over by checking for panic there, but it was quite complicated and the original patch was also not very popular. This also didn't fix some of the underlying complexity problems. The new code in post 2.6.29 tries to patch around this by checking for oops_in_progress, but that is not enough to make this fully safe and I don't think that's a real solution because panic has to be reliable. So instead use an own vector to reboot. This makes the reboot code extremly straight forward, which is definitely a big plus in a panic situation where it is important to avoid relying on too much kernel state. The new simple code is also safe to be called from interupts off region because it is very very simple. There can be situations where it is important that panic is reliable. For example on a fatal machine check the panic is needed to get the system up again and running as quickly as possible. So it's important that panic is reliable and all function it calls simple. This is why I came up with this simple vector scheme. It's very hard to beat in simplicity. Vectors are not particularly precious anymore since all big systems are using per CPU vectors. Another possibility would have been to use an NMI similar to kdump, but there is still the problem that NMIs don't work reliably on some systems due to BIOS issues. NMIs would have been able to stop CPUs running with interrupts off too. In the sake of universal reliability I opted for using a non NMI vector for now. I put the reboot vector into the highest priority bucket of the APIC vectors and moved the 64bit UV_BAU message down instead into the next lower priority. [ Impact: bug fix, fixes an old regression ] Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2009-05-27 19:56:52 +00:00
/* IPI used for rebooting/stopping */
alloc_intr_gate(REBOOT_VECTOR, reboot_interrupt);
#endif /* CONFIG_SMP */
}
static void __init apic_intr_init(void)
{
smp_intr_init();
#ifdef CONFIG_X86_THERMAL_VECTOR
alloc_intr_gate(THERMAL_APIC_VECTOR, thermal_interrupt);
#endif
#ifdef CONFIG_X86_MCE_THRESHOLD
alloc_intr_gate(THRESHOLD_APIC_VECTOR, threshold_interrupt);
#endif
#ifdef CONFIG_X86_MCE_AMD
alloc_intr_gate(DEFERRED_ERROR_VECTOR, deferred_error_interrupt);
#endif
#ifdef CONFIG_X86_LOCAL_APIC
/* self generated IPI for local APIC timer */
alloc_intr_gate(LOCAL_TIMER_VECTOR, apic_timer_interrupt);
/* IPI for X86 platform specific use */
alloc_intr_gate(X86_PLATFORM_IPI_VECTOR, x86_platform_ipi);
#ifdef CONFIG_HAVE_KVM
/* IPI for KVM to deliver posted interrupt */
alloc_intr_gate(POSTED_INTR_VECTOR, kvm_posted_intr_ipi);
/* IPI for KVM to deliver interrupt to wake up tasks */
alloc_intr_gate(POSTED_INTR_WAKEUP_VECTOR, kvm_posted_intr_wakeup_ipi);
#endif
/* IPI vectors for APIC spurious and error interrupts */
alloc_intr_gate(SPURIOUS_APIC_VECTOR, spurious_interrupt);
alloc_intr_gate(ERROR_APIC_VECTOR, error_interrupt);
/* IRQ work interrupts: */
# ifdef CONFIG_IRQ_WORK
alloc_intr_gate(IRQ_WORK_VECTOR, irq_work_interrupt);
# endif
#endif
}
void __init native_init_IRQ(void)
{
int i;
/* Execute any quirks before the call gates are initialised: */
x86_init.irqs.pre_vector_init();
x86: use used_vectors in init_IRQ() Impact: fix crash with many devices I found this crash: [ 552.616646] general protection fault: 0403 [#1] SMP [ 552.620013] last sysfs file: /sys/devices/pci0000:00/0000:00:02.0/usb1/1-1/1-1:1.0/host13/target13:0:0/13:0:0:0/block/sr0/size [ 552.620013] CPU 0 [ 552.620013] Modules linked in: [ 552.620013] Pid: 0, comm: swapper Not tainted 2.6.30-rc1-tip-01931-g8fcafd8-dirty #28 Sun Fire X4440 [ 552.620013] RIP: 0010:[<ffffffff8023bada>] [<ffffffff8023bada>] default_idle+0x7d/0xda [ 552.620013] RSP: 0018:ffffffff81345e68 EFLAGS: 00010246 [ 552.620013] RAX: 0000000000000000 RBX: ffffffff8133d870 RCX: ffffc20000000000 [ 552.620013] RDX: 00000000001d0620 RSI: ffffffff8023bad8 RDI: ffffffff802a3169 [ 552.620013] RBP: ffffffff81345e98 R08: 0000000000000000 R09: ffffffff812244a0 [ 552.620013] R10: ffffffff81345dc8 R11: 7ebe1b6fa0bcac50 R12: 4ec4ec4ec4ec4ec5 [ 552.620013] R13: ffffffff813a54d0 R14: ffffffff813a7a40 R15: 0000000000000000 [ 552.620013] FS: 00000000006d1880(0000) GS:ffffc20000000000(0000) knlGS:0000000000000000 [ 552.620013] CS: 0010 DS: 0018 ES: 0018 CR0: 000000008005003b [ 552.620013] CR2: 00007fec9d936a50 CR3: 000000007d1a9000 CR4: 00000000000006e0 [ 552.620013] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 552.620013] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 [ 552.620013] Process swapper (pid: 0, threadinfo ffffffff81344000,task ffffffff812244a0) [ 552.620013] Stack: [ 552.620013] 0000000000000000 ffffc20000000000 00000000001d0620 7ebe1b6fa0bcac50 [ 552.620013] ffffffff8133d870 4ec4ec4ec4ec4ec5 ffffffff81345ec8 ffffffff8023bd84 [ 552.620013] 4ec4ec4ec4ec4ec5 ffffffff813a54d0 7ebe1b6fa0bcac50 ffffffff8133d870 [ 552.620013] Call Trace: [ 552.620013] [<ffffffff8023bd84>] c1e_idle+0x109/0x124 [ 552.620013] [<ffffffff8023314b>] cpu_idle+0xb8/0x101 [ 552.620013] [<ffffffff80c16d6a>] rest_init+0x7e/0x94 [ 552.620013] [<ffffffff81357efc>] start_kernel+0x3dc/0x3fd [ 552.620013] [<ffffffff813572a9>] x86_64_start_reservations+0xb9/0xd4 [ 552.620013] [<ffffffff813573b2>] x86_64_start_kernel+0xee/0x109 [ 552.620013] Code: 48 8b 04 25 f8 b4 00 00 83 a0 3c e0 ff ff fb 0f ae f0 65 48 8b 04 25 f8 b4 00 00 f6 80 38 e0 ff ff 08 75 09 e8 71 76 06 00 fb f4 <eb> 06 e8 68 76 06 00 fb 65 48 8b 04 25 f8 b4 00 00 83 88 3c e0 [ 552.620013] RIP [<ffffffff8023bada>] default_idle+0x7d/0xda [ 552.620013] RSP <ffffffff81345e68> [ 552.828646] ---[ end trace 4cbfc5c01382af7f ]--- Joerg Roedel said "The 0403 error code means that there was an external interrupt with vector 0x80. Yinghai, my theory is that the kernel on this machine has no 32bit emulation compiled in, right? In this case the selector points to a zero entry which may cause the #gpf right after the hlt. But I have no idea where the external int 0x80 comes from" it turns out that we could use 0x80 for external device on 64-bit when 32-bit emulation is disabled. But we forgot to set the gate for it. try to set gate for it by checking used_vectors. Also move apic_intr_init() early to avoid setting that gate two times. Signed-off-by: Yinghai Lu <yinghai@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Joerg Roedel <joerg.roedel@amd.com> LKML-Reference: <49E62DFD.6010904@kernel.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-15 18:57:01 +00:00
apic_intr_init();
/*
* Cover the whole vector space, no vector can escape
* us. (some of these will be overridden and become
* 'special' SMP interrupts)
*/
i = FIRST_EXTERNAL_VECTOR;
#ifndef CONFIG_X86_LOCAL_APIC
#define first_system_vector NR_VECTORS
#endif
for_each_clear_bit_from(i, used_vectors, first_system_vector) {
x86: use used_vectors in init_IRQ() Impact: fix crash with many devices I found this crash: [ 552.616646] general protection fault: 0403 [#1] SMP [ 552.620013] last sysfs file: /sys/devices/pci0000:00/0000:00:02.0/usb1/1-1/1-1:1.0/host13/target13:0:0/13:0:0:0/block/sr0/size [ 552.620013] CPU 0 [ 552.620013] Modules linked in: [ 552.620013] Pid: 0, comm: swapper Not tainted 2.6.30-rc1-tip-01931-g8fcafd8-dirty #28 Sun Fire X4440 [ 552.620013] RIP: 0010:[<ffffffff8023bada>] [<ffffffff8023bada>] default_idle+0x7d/0xda [ 552.620013] RSP: 0018:ffffffff81345e68 EFLAGS: 00010246 [ 552.620013] RAX: 0000000000000000 RBX: ffffffff8133d870 RCX: ffffc20000000000 [ 552.620013] RDX: 00000000001d0620 RSI: ffffffff8023bad8 RDI: ffffffff802a3169 [ 552.620013] RBP: ffffffff81345e98 R08: 0000000000000000 R09: ffffffff812244a0 [ 552.620013] R10: ffffffff81345dc8 R11: 7ebe1b6fa0bcac50 R12: 4ec4ec4ec4ec4ec5 [ 552.620013] R13: ffffffff813a54d0 R14: ffffffff813a7a40 R15: 0000000000000000 [ 552.620013] FS: 00000000006d1880(0000) GS:ffffc20000000000(0000) knlGS:0000000000000000 [ 552.620013] CS: 0010 DS: 0018 ES: 0018 CR0: 000000008005003b [ 552.620013] CR2: 00007fec9d936a50 CR3: 000000007d1a9000 CR4: 00000000000006e0 [ 552.620013] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 552.620013] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 [ 552.620013] Process swapper (pid: 0, threadinfo ffffffff81344000,task ffffffff812244a0) [ 552.620013] Stack: [ 552.620013] 0000000000000000 ffffc20000000000 00000000001d0620 7ebe1b6fa0bcac50 [ 552.620013] ffffffff8133d870 4ec4ec4ec4ec4ec5 ffffffff81345ec8 ffffffff8023bd84 [ 552.620013] 4ec4ec4ec4ec4ec5 ffffffff813a54d0 7ebe1b6fa0bcac50 ffffffff8133d870 [ 552.620013] Call Trace: [ 552.620013] [<ffffffff8023bd84>] c1e_idle+0x109/0x124 [ 552.620013] [<ffffffff8023314b>] cpu_idle+0xb8/0x101 [ 552.620013] [<ffffffff80c16d6a>] rest_init+0x7e/0x94 [ 552.620013] [<ffffffff81357efc>] start_kernel+0x3dc/0x3fd [ 552.620013] [<ffffffff813572a9>] x86_64_start_reservations+0xb9/0xd4 [ 552.620013] [<ffffffff813573b2>] x86_64_start_kernel+0xee/0x109 [ 552.620013] Code: 48 8b 04 25 f8 b4 00 00 83 a0 3c e0 ff ff fb 0f ae f0 65 48 8b 04 25 f8 b4 00 00 f6 80 38 e0 ff ff 08 75 09 e8 71 76 06 00 fb f4 <eb> 06 e8 68 76 06 00 fb 65 48 8b 04 25 f8 b4 00 00 83 88 3c e0 [ 552.620013] RIP [<ffffffff8023bada>] default_idle+0x7d/0xda [ 552.620013] RSP <ffffffff81345e68> [ 552.828646] ---[ end trace 4cbfc5c01382af7f ]--- Joerg Roedel said "The 0403 error code means that there was an external interrupt with vector 0x80. Yinghai, my theory is that the kernel on this machine has no 32bit emulation compiled in, right? In this case the selector points to a zero entry which may cause the #gpf right after the hlt. But I have no idea where the external int 0x80 comes from" it turns out that we could use 0x80 for external device on 64-bit when 32-bit emulation is disabled. But we forgot to set the gate for it. try to set gate for it by checking used_vectors. Also move apic_intr_init() early to avoid setting that gate two times. Signed-off-by: Yinghai Lu <yinghai@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Joerg Roedel <joerg.roedel@amd.com> LKML-Reference: <49E62DFD.6010904@kernel.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-15 18:57:01 +00:00
/* IA32_SYSCALL_VECTOR could be used in trap_init already. */
x86/asm/entry/irq: Simplify interrupt dispatch table (IDT) layout Interrupt entry points are handled with the following code, each 32-byte code block contains seven entry points: ... [push][jump 22] // 4 bytes [push][jump 18] // 4 bytes [push][jump 14] // 4 bytes [push][jump 10] // 4 bytes [push][jump 6] // 4 bytes [push][jump 2] // 4 bytes [push][jump common_interrupt][padding] // 8 bytes [push][jump] [push][jump] [push][jump] [push][jump] [push][jump] [push][jump] [push][jump common_interrupt][padding] [padding_2] common_interrupt: And there is a table which holds pointers to every entry point, IOW: to every push. In cold cache, two jumps are still costlier than one, even though we get the benefit of them residing in the same cacheline. This change replaces short jumps with near ones to 'common_interrupt', and pads every push+jump pair to 8 bytes. This way, each interrupt takes only one jump. This change replaces ".p2align CONFIG_X86_L1_CACHE_SHIFT" before dispatch table with ".align 8" - we do not need anything stronger than that. The table of entry addresses (the interrupt[] array) is no longer necessary, the address of entries can be easily calculated as (irq_entries_start + i*8). text data bss dec hex filename 12546 0 0 12546 3102 entry_64.o.before 11626 0 0 11626 2d6a entry_64.o The size decrease is because 1656 bytes of .init.rodata are gone. That's initdata, though. The resident size does go up a bit. Run-tested (32 and 64 bits). Acked-and-Tested-by: Borislav Petkov <bp@suse.de> Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com> Cc: Alexei Starovoitov <ast@plumgrid.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Will Drewry <wad@chromium.org> Link: http://lkml.kernel.org/r/1428090553-7283-1-git-send-email-dvlasenk@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-04-03 19:49:13 +00:00
set_intr_gate(i, irq_entries_start +
8 * (i - FIRST_EXTERNAL_VECTOR));
}
#ifdef CONFIG_X86_LOCAL_APIC
for_each_clear_bit_from(i, used_vectors, NR_VECTORS)
set_intr_gate(i, spurious_interrupt);
#endif
if (!acpi_ioapic && !of_ioapic && nr_legacy_irqs())
setup_irq(2, &irq2);
#ifdef CONFIG_X86_32
irq_ctx_init(smp_processor_id());
#endif
}