linux/drivers/gpu/drm/radeon/ci_dpm.c

5264 lines
156 KiB
C
Raw Normal View History

/*
* Copyright 2013 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "drmP.h"
#include "radeon.h"
#include "cikd.h"
#include "r600_dpm.h"
#include "ci_dpm.h"
#include "atom.h"
#include <linux/seq_file.h>
#define MC_CG_ARB_FREQ_F0 0x0a
#define MC_CG_ARB_FREQ_F1 0x0b
#define MC_CG_ARB_FREQ_F2 0x0c
#define MC_CG_ARB_FREQ_F3 0x0d
#define SMC_RAM_END 0x40000
#define VOLTAGE_SCALE 4
#define VOLTAGE_VID_OFFSET_SCALE1 625
#define VOLTAGE_VID_OFFSET_SCALE2 100
static const struct ci_pt_defaults defaults_bonaire_xt =
{
1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
{ 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61 },
{ 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 }
};
static const struct ci_pt_defaults defaults_bonaire_pro =
{
1, 0xF, 0xFD, 0x19, 5, 45, 0, 0x65062,
{ 0x8C, 0x23F, 0x244, 0xA6, 0x83, 0x85, 0x86, 0x86, 0x83, 0xDB, 0xDB, 0xDA, 0x67, 0x60, 0x5F },
{ 0x187, 0x193, 0x193, 0x1C7, 0x1D1, 0x1D1, 0x210, 0x219, 0x219, 0x266, 0x26C, 0x26C, 0x2C9, 0x2CB, 0x2CB }
};
static const struct ci_pt_defaults defaults_saturn_xt =
{
1, 0xF, 0xFD, 0x19, 5, 55, 0, 0x70000,
{ 0x8C, 0x247, 0x249, 0xA6, 0x80, 0x81, 0x8B, 0x89, 0x86, 0xC9, 0xCA, 0xC9, 0x4D, 0x4D, 0x4D },
{ 0x187, 0x187, 0x187, 0x1C7, 0x1C7, 0x1C7, 0x210, 0x210, 0x210, 0x266, 0x266, 0x266, 0x2C9, 0x2C9, 0x2C9 }
};
static const struct ci_pt_defaults defaults_saturn_pro =
{
1, 0xF, 0xFD, 0x19, 5, 55, 0, 0x30000,
{ 0x96, 0x21D, 0x23B, 0xA1, 0x85, 0x87, 0x83, 0x84, 0x81, 0xE6, 0xE6, 0xE6, 0x71, 0x6A, 0x6A },
{ 0x193, 0x19E, 0x19E, 0x1D2, 0x1DC, 0x1DC, 0x21A, 0x223, 0x223, 0x26E, 0x27E, 0x274, 0x2CF, 0x2D2, 0x2D2 }
};
static const struct ci_pt_config_reg didt_config_ci[] =
{
{ 0x10, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x10, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x10, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x10, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x11, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x11, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x11, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x11, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x12, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x12, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x12, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x12, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x2, 0x00003fff, 0, 0x4, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x2, 0x03ff0000, 16, 0x80, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x2, 0x78000000, 27, 0x3, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x1, 0x0000ffff, 0, 0x3FFF, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x1, 0xffff0000, 16, 0x3FFF, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x0, 0x00000001, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x30, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x30, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x30, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x30, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x31, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x31, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x31, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x31, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x32, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x32, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x32, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x32, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x22, 0x00003fff, 0, 0x4, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x22, 0x03ff0000, 16, 0x80, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x22, 0x78000000, 27, 0x3, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x21, 0x0000ffff, 0, 0x3FFF, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x21, 0xffff0000, 16, 0x3FFF, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x20, 0x00000001, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x50, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x50, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x50, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x50, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x51, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x51, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x51, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x51, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x52, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x52, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x52, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x52, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x42, 0x00003fff, 0, 0x4, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x42, 0x03ff0000, 16, 0x80, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x42, 0x78000000, 27, 0x3, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x41, 0x0000ffff, 0, 0x3FFF, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x41, 0xffff0000, 16, 0x3FFF, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x40, 0x00000001, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x70, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x70, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x70, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x70, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x71, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x71, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x71, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x71, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x72, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x72, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x72, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x72, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x62, 0x00003fff, 0, 0x4, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x62, 0x03ff0000, 16, 0x80, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x62, 0x78000000, 27, 0x3, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x61, 0x0000ffff, 0, 0x3FFF, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x61, 0xffff0000, 16, 0x3FFF, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x60, 0x00000001, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0xFFFFFFFF }
};
extern u8 rv770_get_memory_module_index(struct radeon_device *rdev);
extern void btc_get_max_clock_from_voltage_dependency_table(struct radeon_clock_voltage_dependency_table *table,
u32 *max_clock);
extern int ni_copy_and_switch_arb_sets(struct radeon_device *rdev,
u32 arb_freq_src, u32 arb_freq_dest);
extern u8 si_get_ddr3_mclk_frequency_ratio(u32 memory_clock);
extern u8 si_get_mclk_frequency_ratio(u32 memory_clock, bool strobe_mode);
extern void si_trim_voltage_table_to_fit_state_table(struct radeon_device *rdev,
u32 max_voltage_steps,
struct atom_voltage_table *voltage_table);
extern void cik_enter_rlc_safe_mode(struct radeon_device *rdev);
extern void cik_exit_rlc_safe_mode(struct radeon_device *rdev);
extern void cik_update_cg(struct radeon_device *rdev,
u32 block, bool enable);
static int ci_get_std_voltage_value_sidd(struct radeon_device *rdev,
struct atom_voltage_table_entry *voltage_table,
u16 *std_voltage_hi_sidd, u16 *std_voltage_lo_sidd);
static int ci_set_power_limit(struct radeon_device *rdev, u32 n);
static int ci_set_overdrive_target_tdp(struct radeon_device *rdev,
u32 target_tdp);
static int ci_update_uvd_dpm(struct radeon_device *rdev, bool gate);
static struct ci_power_info *ci_get_pi(struct radeon_device *rdev)
{
struct ci_power_info *pi = rdev->pm.dpm.priv;
return pi;
}
static struct ci_ps *ci_get_ps(struct radeon_ps *rps)
{
struct ci_ps *ps = rps->ps_priv;
return ps;
}
static void ci_initialize_powertune_defaults(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
switch (rdev->pdev->device) {
case 0x6650:
case 0x6658:
case 0x665C:
default:
pi->powertune_defaults = &defaults_bonaire_xt;
break;
case 0x6651:
case 0x665D:
pi->powertune_defaults = &defaults_bonaire_pro;
break;
case 0x6640:
pi->powertune_defaults = &defaults_saturn_xt;
break;
case 0x6641:
pi->powertune_defaults = &defaults_saturn_pro;
break;
}
pi->dte_tj_offset = 0;
pi->caps_power_containment = true;
pi->caps_cac = false;
pi->caps_sq_ramping = false;
pi->caps_db_ramping = false;
pi->caps_td_ramping = false;
pi->caps_tcp_ramping = false;
if (pi->caps_power_containment) {
pi->caps_cac = true;
pi->enable_bapm_feature = true;
pi->enable_tdc_limit_feature = true;
pi->enable_pkg_pwr_tracking_feature = true;
}
}
static u8 ci_convert_to_vid(u16 vddc)
{
return (6200 - (vddc * VOLTAGE_SCALE)) / 25;
}
static int ci_populate_bapm_vddc_vid_sidd(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u8 *hi_vid = pi->smc_powertune_table.BapmVddCVidHiSidd;
u8 *lo_vid = pi->smc_powertune_table.BapmVddCVidLoSidd;
u8 *hi2_vid = pi->smc_powertune_table.BapmVddCVidHiSidd2;
u32 i;
if (rdev->pm.dpm.dyn_state.cac_leakage_table.entries == NULL)
return -EINVAL;
if (rdev->pm.dpm.dyn_state.cac_leakage_table.count > 8)
return -EINVAL;
if (rdev->pm.dpm.dyn_state.cac_leakage_table.count !=
rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.count)
return -EINVAL;
for (i = 0; i < rdev->pm.dpm.dyn_state.cac_leakage_table.count; i++) {
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_EVV) {
lo_vid[i] = ci_convert_to_vid(rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc1);
hi_vid[i] = ci_convert_to_vid(rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc2);
hi2_vid[i] = ci_convert_to_vid(rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc3);
} else {
lo_vid[i] = ci_convert_to_vid(rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc);
hi_vid[i] = ci_convert_to_vid((u16)rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].leakage);
}
}
return 0;
}
static int ci_populate_vddc_vid(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u8 *vid = pi->smc_powertune_table.VddCVid;
u32 i;
if (pi->vddc_voltage_table.count > 8)
return -EINVAL;
for (i = 0; i < pi->vddc_voltage_table.count; i++)
vid[i] = ci_convert_to_vid(pi->vddc_voltage_table.entries[i].value);
return 0;
}
static int ci_populate_svi_load_line(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
const struct ci_pt_defaults *pt_defaults = pi->powertune_defaults;
pi->smc_powertune_table.SviLoadLineEn = pt_defaults->svi_load_line_en;
pi->smc_powertune_table.SviLoadLineVddC = pt_defaults->svi_load_line_vddc;
pi->smc_powertune_table.SviLoadLineTrimVddC = 3;
pi->smc_powertune_table.SviLoadLineOffsetVddC = 0;
return 0;
}
static int ci_populate_tdc_limit(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
const struct ci_pt_defaults *pt_defaults = pi->powertune_defaults;
u16 tdc_limit;
tdc_limit = rdev->pm.dpm.dyn_state.cac_tdp_table->tdc * 256;
pi->smc_powertune_table.TDC_VDDC_PkgLimit = cpu_to_be16(tdc_limit);
pi->smc_powertune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
pt_defaults->tdc_vddc_throttle_release_limit_perc;
pi->smc_powertune_table.TDC_MAWt = pt_defaults->tdc_mawt;
return 0;
}
static int ci_populate_dw8(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
const struct ci_pt_defaults *pt_defaults = pi->powertune_defaults;
int ret;
ret = ci_read_smc_sram_dword(rdev,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU7_Firmware_Header, PmFuseTable) +
offsetof(SMU7_Discrete_PmFuses, TdcWaterfallCtl),
(u32 *)&pi->smc_powertune_table.TdcWaterfallCtl,
pi->sram_end);
if (ret)
return -EINVAL;
else
pi->smc_powertune_table.TdcWaterfallCtl = pt_defaults->tdc_waterfall_ctl;
return 0;
}
static int ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u8 *hi_vid = pi->smc_powertune_table.BapmVddCVidHiSidd;
u8 *lo_vid = pi->smc_powertune_table.BapmVddCVidLoSidd;
int i, min, max;
min = max = hi_vid[0];
for (i = 0; i < 8; i++) {
if (0 != hi_vid[i]) {
if (min > hi_vid[i])
min = hi_vid[i];
if (max < hi_vid[i])
max = hi_vid[i];
}
if (0 != lo_vid[i]) {
if (min > lo_vid[i])
min = lo_vid[i];
if (max < lo_vid[i])
max = lo_vid[i];
}
}
if ((min == 0) || (max == 0))
return -EINVAL;
pi->smc_powertune_table.GnbLPMLMaxVid = (u8)max;
pi->smc_powertune_table.GnbLPMLMinVid = (u8)min;
return 0;
}
static int ci_populate_bapm_vddc_base_leakage_sidd(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u16 hi_sidd = pi->smc_powertune_table.BapmVddCBaseLeakageHiSidd;
u16 lo_sidd = pi->smc_powertune_table.BapmVddCBaseLeakageLoSidd;
struct radeon_cac_tdp_table *cac_tdp_table =
rdev->pm.dpm.dyn_state.cac_tdp_table;
hi_sidd = cac_tdp_table->high_cac_leakage / 100 * 256;
lo_sidd = cac_tdp_table->low_cac_leakage / 100 * 256;
pi->smc_powertune_table.BapmVddCBaseLeakageHiSidd = cpu_to_be16(hi_sidd);
pi->smc_powertune_table.BapmVddCBaseLeakageLoSidd = cpu_to_be16(lo_sidd);
return 0;
}
static int ci_populate_bapm_parameters_in_dpm_table(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
const struct ci_pt_defaults *pt_defaults = pi->powertune_defaults;
SMU7_Discrete_DpmTable *dpm_table = &pi->smc_state_table;
struct radeon_cac_tdp_table *cac_tdp_table =
rdev->pm.dpm.dyn_state.cac_tdp_table;
struct radeon_ppm_table *ppm = rdev->pm.dpm.dyn_state.ppm_table;
int i, j, k;
const u16 *def1;
const u16 *def2;
dpm_table->DefaultTdp = cac_tdp_table->tdp * 256;
dpm_table->TargetTdp = cac_tdp_table->configurable_tdp * 256;
dpm_table->DTETjOffset = (u8)pi->dte_tj_offset;
dpm_table->GpuTjMax =
(u8)(pi->thermal_temp_setting.temperature_high / 1000);
dpm_table->GpuTjHyst = 8;
dpm_table->DTEAmbientTempBase = pt_defaults->dte_ambient_temp_base;
if (ppm) {
dpm_table->PPM_PkgPwrLimit = cpu_to_be16((u16)ppm->dgpu_tdp * 256 / 1000);
dpm_table->PPM_TemperatureLimit = cpu_to_be16((u16)ppm->tj_max * 256);
} else {
dpm_table->PPM_PkgPwrLimit = cpu_to_be16(0);
dpm_table->PPM_TemperatureLimit = cpu_to_be16(0);
}
dpm_table->BAPM_TEMP_GRADIENT = cpu_to_be32(pt_defaults->bapm_temp_gradient);
def1 = pt_defaults->bapmti_r;
def2 = pt_defaults->bapmti_rc;
for (i = 0; i < SMU7_DTE_ITERATIONS; i++) {
for (j = 0; j < SMU7_DTE_SOURCES; j++) {
for (k = 0; k < SMU7_DTE_SINKS; k++) {
dpm_table->BAPMTI_R[i][j][k] = cpu_to_be16(*def1);
dpm_table->BAPMTI_RC[i][j][k] = cpu_to_be16(*def2);
def1++;
def2++;
}
}
}
return 0;
}
static int ci_populate_pm_base(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u32 pm_fuse_table_offset;
int ret;
if (pi->caps_power_containment) {
ret = ci_read_smc_sram_dword(rdev,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU7_Firmware_Header, PmFuseTable),
&pm_fuse_table_offset, pi->sram_end);
if (ret)
return ret;
ret = ci_populate_bapm_vddc_vid_sidd(rdev);
if (ret)
return ret;
ret = ci_populate_vddc_vid(rdev);
if (ret)
return ret;
ret = ci_populate_svi_load_line(rdev);
if (ret)
return ret;
ret = ci_populate_tdc_limit(rdev);
if (ret)
return ret;
ret = ci_populate_dw8(rdev);
if (ret)
return ret;
ret = ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(rdev);
if (ret)
return ret;
ret = ci_populate_bapm_vddc_base_leakage_sidd(rdev);
if (ret)
return ret;
ret = ci_copy_bytes_to_smc(rdev, pm_fuse_table_offset,
(u8 *)&pi->smc_powertune_table,
sizeof(SMU7_Discrete_PmFuses), pi->sram_end);
if (ret)
return ret;
}
return 0;
}
static void ci_do_enable_didt(struct radeon_device *rdev, const bool enable)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u32 data;
if (pi->caps_sq_ramping) {
data = RREG32_DIDT(DIDT_SQ_CTRL0);
if (enable)
data |= DIDT_CTRL_EN;
else
data &= ~DIDT_CTRL_EN;
WREG32_DIDT(DIDT_SQ_CTRL0, data);
}
if (pi->caps_db_ramping) {
data = RREG32_DIDT(DIDT_DB_CTRL0);
if (enable)
data |= DIDT_CTRL_EN;
else
data &= ~DIDT_CTRL_EN;
WREG32_DIDT(DIDT_DB_CTRL0, data);
}
if (pi->caps_td_ramping) {
data = RREG32_DIDT(DIDT_TD_CTRL0);
if (enable)
data |= DIDT_CTRL_EN;
else
data &= ~DIDT_CTRL_EN;
WREG32_DIDT(DIDT_TD_CTRL0, data);
}
if (pi->caps_tcp_ramping) {
data = RREG32_DIDT(DIDT_TCP_CTRL0);
if (enable)
data |= DIDT_CTRL_EN;
else
data &= ~DIDT_CTRL_EN;
WREG32_DIDT(DIDT_TCP_CTRL0, data);
}
}
static int ci_program_pt_config_registers(struct radeon_device *rdev,
const struct ci_pt_config_reg *cac_config_regs)
{
const struct ci_pt_config_reg *config_regs = cac_config_regs;
u32 data;
u32 cache = 0;
if (config_regs == NULL)
return -EINVAL;
while (config_regs->offset != 0xFFFFFFFF) {
if (config_regs->type == CISLANDS_CONFIGREG_CACHE) {
cache |= ((config_regs->value << config_regs->shift) & config_regs->mask);
} else {
switch (config_regs->type) {
case CISLANDS_CONFIGREG_SMC_IND:
data = RREG32_SMC(config_regs->offset);
break;
case CISLANDS_CONFIGREG_DIDT_IND:
data = RREG32_DIDT(config_regs->offset);
break;
default:
data = RREG32(config_regs->offset << 2);
break;
}
data &= ~config_regs->mask;
data |= ((config_regs->value << config_regs->shift) & config_regs->mask);
data |= cache;
switch (config_regs->type) {
case CISLANDS_CONFIGREG_SMC_IND:
WREG32_SMC(config_regs->offset, data);
break;
case CISLANDS_CONFIGREG_DIDT_IND:
WREG32_DIDT(config_regs->offset, data);
break;
default:
WREG32(config_regs->offset << 2, data);
break;
}
cache = 0;
}
config_regs++;
}
return 0;
}
static int ci_enable_didt(struct radeon_device *rdev, bool enable)
{
struct ci_power_info *pi = ci_get_pi(rdev);
int ret;
if (pi->caps_sq_ramping || pi->caps_db_ramping ||
pi->caps_td_ramping || pi->caps_tcp_ramping) {
cik_enter_rlc_safe_mode(rdev);
if (enable) {
ret = ci_program_pt_config_registers(rdev, didt_config_ci);
if (ret) {
cik_exit_rlc_safe_mode(rdev);
return ret;
}
}
ci_do_enable_didt(rdev, enable);
cik_exit_rlc_safe_mode(rdev);
}
return 0;
}
static int ci_enable_power_containment(struct radeon_device *rdev, bool enable)
{
struct ci_power_info *pi = ci_get_pi(rdev);
PPSMC_Result smc_result;
int ret = 0;
if (enable) {
pi->power_containment_features = 0;
if (pi->caps_power_containment) {
if (pi->enable_bapm_feature) {
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_EnableDTE);
if (smc_result != PPSMC_Result_OK)
ret = -EINVAL;
else
pi->power_containment_features |= POWERCONTAINMENT_FEATURE_BAPM;
}
if (pi->enable_tdc_limit_feature) {
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_TDCLimitEnable);
if (smc_result != PPSMC_Result_OK)
ret = -EINVAL;
else
pi->power_containment_features |= POWERCONTAINMENT_FEATURE_TDCLimit;
}
if (pi->enable_pkg_pwr_tracking_feature) {
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_PkgPwrLimitEnable);
if (smc_result != PPSMC_Result_OK) {
ret = -EINVAL;
} else {
struct radeon_cac_tdp_table *cac_tdp_table =
rdev->pm.dpm.dyn_state.cac_tdp_table;
u32 default_pwr_limit =
(u32)(cac_tdp_table->maximum_power_delivery_limit * 256);
pi->power_containment_features |= POWERCONTAINMENT_FEATURE_PkgPwrLimit;
ci_set_power_limit(rdev, default_pwr_limit);
}
}
}
} else {
if (pi->caps_power_containment && pi->power_containment_features) {
if (pi->power_containment_features & POWERCONTAINMENT_FEATURE_TDCLimit)
ci_send_msg_to_smc(rdev, PPSMC_MSG_TDCLimitDisable);
if (pi->power_containment_features & POWERCONTAINMENT_FEATURE_BAPM)
ci_send_msg_to_smc(rdev, PPSMC_MSG_DisableDTE);
if (pi->power_containment_features & POWERCONTAINMENT_FEATURE_PkgPwrLimit)
ci_send_msg_to_smc(rdev, PPSMC_MSG_PkgPwrLimitDisable);
pi->power_containment_features = 0;
}
}
return ret;
}
static int ci_enable_smc_cac(struct radeon_device *rdev, bool enable)
{
struct ci_power_info *pi = ci_get_pi(rdev);
PPSMC_Result smc_result;
int ret = 0;
if (pi->caps_cac) {
if (enable) {
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_EnableCac);
if (smc_result != PPSMC_Result_OK) {
ret = -EINVAL;
pi->cac_enabled = false;
} else {
pi->cac_enabled = true;
}
} else if (pi->cac_enabled) {
ci_send_msg_to_smc(rdev, PPSMC_MSG_DisableCac);
pi->cac_enabled = false;
}
}
return ret;
}
static int ci_power_control_set_level(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct radeon_cac_tdp_table *cac_tdp_table =
rdev->pm.dpm.dyn_state.cac_tdp_table;
s32 adjust_percent;
s32 target_tdp;
int ret = 0;
bool adjust_polarity = false; /* ??? */
if (pi->caps_power_containment &&
(pi->power_containment_features & POWERCONTAINMENT_FEATURE_BAPM)) {
adjust_percent = adjust_polarity ?
rdev->pm.dpm.tdp_adjustment : (-1 * rdev->pm.dpm.tdp_adjustment);
target_tdp = ((100 + adjust_percent) *
(s32)cac_tdp_table->configurable_tdp) / 100;
target_tdp *= 256;
ret = ci_set_overdrive_target_tdp(rdev, (u32)target_tdp);
}
return ret;
}
void ci_dpm_powergate_uvd(struct radeon_device *rdev, bool gate)
{
struct ci_power_info *pi = ci_get_pi(rdev);
if (pi->uvd_power_gated == gate)
return;
pi->uvd_power_gated = gate;
ci_update_uvd_dpm(rdev, gate);
}
bool ci_dpm_vblank_too_short(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u32 vblank_time = r600_dpm_get_vblank_time(rdev);
u32 switch_limit = pi->mem_gddr5 ? 450 : 300;
if (vblank_time < switch_limit)
return true;
else
return false;
}
static void ci_apply_state_adjust_rules(struct radeon_device *rdev,
struct radeon_ps *rps)
{
struct ci_ps *ps = ci_get_ps(rps);
struct ci_power_info *pi = ci_get_pi(rdev);
struct radeon_clock_and_voltage_limits *max_limits;
bool disable_mclk_switching;
u32 sclk, mclk;
u32 max_sclk_vddc, max_mclk_vddci, max_mclk_vddc;
int i;
if ((rdev->pm.dpm.new_active_crtc_count > 1) ||
ci_dpm_vblank_too_short(rdev))
disable_mclk_switching = true;
else
disable_mclk_switching = false;
if ((rps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) == ATOM_PPLIB_CLASSIFICATION_UI_BATTERY)
pi->battery_state = true;
else
pi->battery_state = false;
if (rdev->pm.dpm.ac_power)
max_limits = &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
else
max_limits = &rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc;
if (rdev->pm.dpm.ac_power == false) {
for (i = 0; i < ps->performance_level_count; i++) {
if (ps->performance_levels[i].mclk > max_limits->mclk)
ps->performance_levels[i].mclk = max_limits->mclk;
if (ps->performance_levels[i].sclk > max_limits->sclk)
ps->performance_levels[i].sclk = max_limits->sclk;
}
}
/* limit clocks to max supported clocks based on voltage dependency tables */
btc_get_max_clock_from_voltage_dependency_table(&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk,
&max_sclk_vddc);
btc_get_max_clock_from_voltage_dependency_table(&rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk,
&max_mclk_vddci);
btc_get_max_clock_from_voltage_dependency_table(&rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk,
&max_mclk_vddc);
for (i = 0; i < ps->performance_level_count; i++) {
if (max_sclk_vddc) {
if (ps->performance_levels[i].sclk > max_sclk_vddc)
ps->performance_levels[i].sclk = max_sclk_vddc;
}
if (max_mclk_vddci) {
if (ps->performance_levels[i].mclk > max_mclk_vddci)
ps->performance_levels[i].mclk = max_mclk_vddci;
}
if (max_mclk_vddc) {
if (ps->performance_levels[i].mclk > max_mclk_vddc)
ps->performance_levels[i].mclk = max_mclk_vddc;
}
}
/* XXX validate the min clocks required for display */
if (disable_mclk_switching) {
mclk = ps->performance_levels[ps->performance_level_count - 1].mclk;
sclk = ps->performance_levels[0].sclk;
} else {
mclk = ps->performance_levels[0].mclk;
sclk = ps->performance_levels[0].sclk;
}
ps->performance_levels[0].sclk = sclk;
ps->performance_levels[0].mclk = mclk;
if (ps->performance_levels[1].sclk < ps->performance_levels[0].sclk)
ps->performance_levels[1].sclk = ps->performance_levels[0].sclk;
if (disable_mclk_switching) {
if (ps->performance_levels[0].mclk < ps->performance_levels[1].mclk)
ps->performance_levels[0].mclk = ps->performance_levels[1].mclk;
} else {
if (ps->performance_levels[1].mclk < ps->performance_levels[0].mclk)
ps->performance_levels[1].mclk = ps->performance_levels[0].mclk;
}
}
static int ci_set_thermal_temperature_range(struct radeon_device *rdev,
int min_temp, int max_temp)
{
int low_temp = 0 * 1000;
int high_temp = 255 * 1000;
u32 tmp;
if (low_temp < min_temp)
low_temp = min_temp;
if (high_temp > max_temp)
high_temp = max_temp;
if (high_temp < low_temp) {
DRM_ERROR("invalid thermal range: %d - %d\n", low_temp, high_temp);
return -EINVAL;
}
tmp = RREG32_SMC(CG_THERMAL_INT);
tmp &= ~(CI_DIG_THERM_INTH_MASK | CI_DIG_THERM_INTL_MASK);
tmp |= CI_DIG_THERM_INTH(high_temp / 1000) |
CI_DIG_THERM_INTL(low_temp / 1000);
WREG32_SMC(CG_THERMAL_INT, tmp);
#if 0
/* XXX: need to figure out how to handle this properly */
tmp = RREG32_SMC(CG_THERMAL_CTRL);
tmp &= DIG_THERM_DPM_MASK;
tmp |= DIG_THERM_DPM(high_temp / 1000);
WREG32_SMC(CG_THERMAL_CTRL, tmp);
#endif
return 0;
}
#if 0
static int ci_read_smc_soft_register(struct radeon_device *rdev,
u16 reg_offset, u32 *value)
{
struct ci_power_info *pi = ci_get_pi(rdev);
return ci_read_smc_sram_dword(rdev,
pi->soft_regs_start + reg_offset,
value, pi->sram_end);
}
#endif
static int ci_write_smc_soft_register(struct radeon_device *rdev,
u16 reg_offset, u32 value)
{
struct ci_power_info *pi = ci_get_pi(rdev);
return ci_write_smc_sram_dword(rdev,
pi->soft_regs_start + reg_offset,
value, pi->sram_end);
}
static void ci_init_fps_limits(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
SMU7_Discrete_DpmTable *table = &pi->smc_state_table;
if (pi->caps_fps) {
u16 tmp;
tmp = 45;
table->FpsHighT = cpu_to_be16(tmp);
tmp = 30;
table->FpsLowT = cpu_to_be16(tmp);
}
}
static int ci_update_sclk_t(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
int ret = 0;
u32 low_sclk_interrupt_t = 0;
if (pi->caps_sclk_throttle_low_notification) {
low_sclk_interrupt_t = cpu_to_be32(pi->low_sclk_interrupt_t);
ret = ci_copy_bytes_to_smc(rdev,
pi->dpm_table_start +
offsetof(SMU7_Discrete_DpmTable, LowSclkInterruptT),
(u8 *)&low_sclk_interrupt_t,
sizeof(u32), pi->sram_end);
}
return ret;
}
static void ci_get_leakage_voltages(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u16 leakage_id, virtual_voltage_id;
u16 vddc, vddci;
int i;
pi->vddc_leakage.count = 0;
pi->vddci_leakage.count = 0;
if (radeon_atom_get_leakage_id_from_vbios(rdev, &leakage_id) == 0) {
for (i = 0; i < CISLANDS_MAX_LEAKAGE_COUNT; i++) {
virtual_voltage_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
if (radeon_atom_get_leakage_vddc_based_on_leakage_params(rdev, &vddc, &vddci,
virtual_voltage_id,
leakage_id) == 0) {
if (vddc != 0 && vddc != virtual_voltage_id) {
pi->vddc_leakage.actual_voltage[pi->vddc_leakage.count] = vddc;
pi->vddc_leakage.leakage_id[pi->vddc_leakage.count] = virtual_voltage_id;
pi->vddc_leakage.count++;
}
if (vddci != 0 && vddci != virtual_voltage_id) {
pi->vddci_leakage.actual_voltage[pi->vddci_leakage.count] = vddci;
pi->vddci_leakage.leakage_id[pi->vddci_leakage.count] = virtual_voltage_id;
pi->vddci_leakage.count++;
}
}
}
}
}
static void ci_set_dpm_event_sources(struct radeon_device *rdev, u32 sources)
{
struct ci_power_info *pi = ci_get_pi(rdev);
bool want_thermal_protection;
enum radeon_dpm_event_src dpm_event_src;
u32 tmp;
switch (sources) {
case 0:
default:
want_thermal_protection = false;
break;
case (1 << RADEON_DPM_AUTO_THROTTLE_SRC_THERMAL):
want_thermal_protection = true;
dpm_event_src = RADEON_DPM_EVENT_SRC_DIGITAL;
break;
case (1 << RADEON_DPM_AUTO_THROTTLE_SRC_EXTERNAL):
want_thermal_protection = true;
dpm_event_src = RADEON_DPM_EVENT_SRC_EXTERNAL;
break;
case ((1 << RADEON_DPM_AUTO_THROTTLE_SRC_EXTERNAL) |
(1 << RADEON_DPM_AUTO_THROTTLE_SRC_THERMAL)):
want_thermal_protection = true;
dpm_event_src = RADEON_DPM_EVENT_SRC_DIGIAL_OR_EXTERNAL;
break;
}
if (want_thermal_protection) {
#if 0
/* XXX: need to figure out how to handle this properly */
tmp = RREG32_SMC(CG_THERMAL_CTRL);
tmp &= DPM_EVENT_SRC_MASK;
tmp |= DPM_EVENT_SRC(dpm_event_src);
WREG32_SMC(CG_THERMAL_CTRL, tmp);
#endif
tmp = RREG32_SMC(GENERAL_PWRMGT);
if (pi->thermal_protection)
tmp &= ~THERMAL_PROTECTION_DIS;
else
tmp |= THERMAL_PROTECTION_DIS;
WREG32_SMC(GENERAL_PWRMGT, tmp);
} else {
tmp = RREG32_SMC(GENERAL_PWRMGT);
tmp |= THERMAL_PROTECTION_DIS;
WREG32_SMC(GENERAL_PWRMGT, tmp);
}
}
static void ci_enable_auto_throttle_source(struct radeon_device *rdev,
enum radeon_dpm_auto_throttle_src source,
bool enable)
{
struct ci_power_info *pi = ci_get_pi(rdev);
if (enable) {
if (!(pi->active_auto_throttle_sources & (1 << source))) {
pi->active_auto_throttle_sources |= 1 << source;
ci_set_dpm_event_sources(rdev, pi->active_auto_throttle_sources);
}
} else {
if (pi->active_auto_throttle_sources & (1 << source)) {
pi->active_auto_throttle_sources &= ~(1 << source);
ci_set_dpm_event_sources(rdev, pi->active_auto_throttle_sources);
}
}
}
static void ci_enable_vr_hot_gpio_interrupt(struct radeon_device *rdev)
{
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_REGULATOR_HOT)
ci_send_msg_to_smc(rdev, PPSMC_MSG_EnableVRHotGPIOInterrupt);
}
static int ci_unfreeze_sclk_mclk_dpm(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
PPSMC_Result smc_result;
if (!pi->need_update_smu7_dpm_table)
return 0;
if ((!pi->sclk_dpm_key_disabled) &&
(pi->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK))) {
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_SCLKDPM_UnfreezeLevel);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
if ((!pi->mclk_dpm_key_disabled) &&
(pi->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_MCLKDPM_UnfreezeLevel);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
pi->need_update_smu7_dpm_table = 0;
return 0;
}
static int ci_enable_sclk_mclk_dpm(struct radeon_device *rdev, bool enable)
{
struct ci_power_info *pi = ci_get_pi(rdev);
PPSMC_Result smc_result;
if (enable) {
if (!pi->sclk_dpm_key_disabled) {
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_DPM_Enable);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
if (!pi->mclk_dpm_key_disabled) {
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_MCLKDPM_Enable);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
WREG32_P(MC_SEQ_CNTL_3, CAC_EN, ~CAC_EN);
WREG32_SMC(LCAC_MC0_CNTL, 0x05);
WREG32_SMC(LCAC_MC1_CNTL, 0x05);
WREG32_SMC(LCAC_CPL_CNTL, 0x100005);
udelay(10);
WREG32_SMC(LCAC_MC0_CNTL, 0x400005);
WREG32_SMC(LCAC_MC1_CNTL, 0x400005);
WREG32_SMC(LCAC_CPL_CNTL, 0x500005);
}
} else {
if (!pi->sclk_dpm_key_disabled) {
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_DPM_Disable);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
if (!pi->mclk_dpm_key_disabled) {
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_MCLKDPM_Disable);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
}
return 0;
}
static int ci_start_dpm(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
PPSMC_Result smc_result;
int ret;
u32 tmp;
tmp = RREG32_SMC(GENERAL_PWRMGT);
tmp |= GLOBAL_PWRMGT_EN;
WREG32_SMC(GENERAL_PWRMGT, tmp);
tmp = RREG32_SMC(SCLK_PWRMGT_CNTL);
tmp |= DYNAMIC_PM_EN;
WREG32_SMC(SCLK_PWRMGT_CNTL, tmp);
ci_write_smc_soft_register(rdev, offsetof(SMU7_SoftRegisters, VoltageChangeTimeout), 0x1000);
WREG32_P(BIF_LNCNT_RESET, 0, ~RESET_LNCNT_EN);
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_Voltage_Cntl_Enable);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
ret = ci_enable_sclk_mclk_dpm(rdev, true);
if (ret)
return ret;
if (!pi->pcie_dpm_key_disabled) {
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_PCIeDPM_Enable);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
return 0;
}
static int ci_freeze_sclk_mclk_dpm(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
PPSMC_Result smc_result;
if (!pi->need_update_smu7_dpm_table)
return 0;
if ((!pi->sclk_dpm_key_disabled) &&
(pi->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK))) {
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_SCLKDPM_FreezeLevel);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
if ((!pi->mclk_dpm_key_disabled) &&
(pi->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_MCLKDPM_FreezeLevel);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
return 0;
}
static int ci_stop_dpm(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
PPSMC_Result smc_result;
int ret;
u32 tmp;
tmp = RREG32_SMC(GENERAL_PWRMGT);
tmp &= ~GLOBAL_PWRMGT_EN;
WREG32_SMC(GENERAL_PWRMGT, tmp);
tmp = RREG32(SCLK_PWRMGT_CNTL);
tmp &= ~DYNAMIC_PM_EN;
WREG32_SMC(SCLK_PWRMGT_CNTL, tmp);
if (!pi->pcie_dpm_key_disabled) {
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_PCIeDPM_Disable);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
ret = ci_enable_sclk_mclk_dpm(rdev, false);
if (ret)
return ret;
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_Voltage_Cntl_Disable);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
return 0;
}
static void ci_enable_sclk_control(struct radeon_device *rdev, bool enable)
{
u32 tmp = RREG32_SMC(SCLK_PWRMGT_CNTL);
if (enable)
tmp &= ~SCLK_PWRMGT_OFF;
else
tmp |= SCLK_PWRMGT_OFF;
WREG32_SMC(SCLK_PWRMGT_CNTL, tmp);
}
#if 0
static int ci_notify_hw_of_power_source(struct radeon_device *rdev,
bool ac_power)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct radeon_cac_tdp_table *cac_tdp_table =
rdev->pm.dpm.dyn_state.cac_tdp_table;
u32 power_limit;
if (ac_power)
power_limit = (u32)(cac_tdp_table->maximum_power_delivery_limit * 256);
else
power_limit = (u32)(cac_tdp_table->battery_power_limit * 256);
ci_set_power_limit(rdev, power_limit);
if (pi->caps_automatic_dc_transition) {
if (ac_power)
ci_send_msg_to_smc(rdev, PPSMC_MSG_RunningOnAC);
else
ci_send_msg_to_smc(rdev, PPSMC_MSG_Remove_DC_Clamp);
}
return 0;
}
#endif
static PPSMC_Result ci_send_msg_to_smc_with_parameter(struct radeon_device *rdev,
PPSMC_Msg msg, u32 parameter)
{
WREG32(SMC_MSG_ARG_0, parameter);
return ci_send_msg_to_smc(rdev, msg);
}
static PPSMC_Result ci_send_msg_to_smc_return_parameter(struct radeon_device *rdev,
PPSMC_Msg msg, u32 *parameter)
{
PPSMC_Result smc_result;
smc_result = ci_send_msg_to_smc(rdev, msg);
if ((smc_result == PPSMC_Result_OK) && parameter)
*parameter = RREG32(SMC_MSG_ARG_0);
return smc_result;
}
static int ci_dpm_force_state_sclk(struct radeon_device *rdev, u32 n)
{
struct ci_power_info *pi = ci_get_pi(rdev);
if (!pi->sclk_dpm_key_disabled) {
PPSMC_Result smc_result =
ci_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_DPM_ForceState, n);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
return 0;
}
static int ci_dpm_force_state_mclk(struct radeon_device *rdev, u32 n)
{
struct ci_power_info *pi = ci_get_pi(rdev);
if (!pi->mclk_dpm_key_disabled) {
PPSMC_Result smc_result =
ci_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_MCLKDPM_ForceState, n);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
return 0;
}
static int ci_dpm_force_state_pcie(struct radeon_device *rdev, u32 n)
{
struct ci_power_info *pi = ci_get_pi(rdev);
if (!pi->pcie_dpm_key_disabled) {
PPSMC_Result smc_result =
ci_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_PCIeDPM_ForceLevel, n);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
return 0;
}
static int ci_set_power_limit(struct radeon_device *rdev, u32 n)
{
struct ci_power_info *pi = ci_get_pi(rdev);
if (pi->power_containment_features & POWERCONTAINMENT_FEATURE_PkgPwrLimit) {
PPSMC_Result smc_result =
ci_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_PkgPwrSetLimit, n);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
return 0;
}
static int ci_set_overdrive_target_tdp(struct radeon_device *rdev,
u32 target_tdp)
{
PPSMC_Result smc_result =
ci_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_OverDriveSetTargetTdp, target_tdp);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
return 0;
}
static int ci_set_boot_state(struct radeon_device *rdev)
{
return ci_enable_sclk_mclk_dpm(rdev, false);
}
static u32 ci_get_average_sclk_freq(struct radeon_device *rdev)
{
u32 sclk_freq;
PPSMC_Result smc_result =
ci_send_msg_to_smc_return_parameter(rdev,
PPSMC_MSG_API_GetSclkFrequency,
&sclk_freq);
if (smc_result != PPSMC_Result_OK)
sclk_freq = 0;
return sclk_freq;
}
static u32 ci_get_average_mclk_freq(struct radeon_device *rdev)
{
u32 mclk_freq;
PPSMC_Result smc_result =
ci_send_msg_to_smc_return_parameter(rdev,
PPSMC_MSG_API_GetMclkFrequency,
&mclk_freq);
if (smc_result != PPSMC_Result_OK)
mclk_freq = 0;
return mclk_freq;
}
static void ci_dpm_start_smc(struct radeon_device *rdev)
{
int i;
ci_program_jump_on_start(rdev);
ci_start_smc_clock(rdev);
ci_start_smc(rdev);
for (i = 0; i < rdev->usec_timeout; i++) {
if (RREG32_SMC(FIRMWARE_FLAGS) & INTERRUPTS_ENABLED)
break;
}
}
static void ci_dpm_stop_smc(struct radeon_device *rdev)
{
ci_reset_smc(rdev);
ci_stop_smc_clock(rdev);
}
static int ci_process_firmware_header(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u32 tmp;
int ret;
ret = ci_read_smc_sram_dword(rdev,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU7_Firmware_Header, DpmTable),
&tmp, pi->sram_end);
if (ret)
return ret;
pi->dpm_table_start = tmp;
ret = ci_read_smc_sram_dword(rdev,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU7_Firmware_Header, SoftRegisters),
&tmp, pi->sram_end);
if (ret)
return ret;
pi->soft_regs_start = tmp;
ret = ci_read_smc_sram_dword(rdev,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU7_Firmware_Header, mcRegisterTable),
&tmp, pi->sram_end);
if (ret)
return ret;
pi->mc_reg_table_start = tmp;
ret = ci_read_smc_sram_dword(rdev,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU7_Firmware_Header, FanTable),
&tmp, pi->sram_end);
if (ret)
return ret;
pi->fan_table_start = tmp;
ret = ci_read_smc_sram_dword(rdev,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU7_Firmware_Header, mcArbDramTimingTable),
&tmp, pi->sram_end);
if (ret)
return ret;
pi->arb_table_start = tmp;
return 0;
}
static void ci_read_clock_registers(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
pi->clock_registers.cg_spll_func_cntl =
RREG32_SMC(CG_SPLL_FUNC_CNTL);
pi->clock_registers.cg_spll_func_cntl_2 =
RREG32_SMC(CG_SPLL_FUNC_CNTL_2);
pi->clock_registers.cg_spll_func_cntl_3 =
RREG32_SMC(CG_SPLL_FUNC_CNTL_3);
pi->clock_registers.cg_spll_func_cntl_4 =
RREG32_SMC(CG_SPLL_FUNC_CNTL_4);
pi->clock_registers.cg_spll_spread_spectrum =
RREG32_SMC(CG_SPLL_SPREAD_SPECTRUM);
pi->clock_registers.cg_spll_spread_spectrum_2 =
RREG32_SMC(CG_SPLL_SPREAD_SPECTRUM_2);
pi->clock_registers.dll_cntl = RREG32(DLL_CNTL);
pi->clock_registers.mclk_pwrmgt_cntl = RREG32(MCLK_PWRMGT_CNTL);
pi->clock_registers.mpll_ad_func_cntl = RREG32(MPLL_AD_FUNC_CNTL);
pi->clock_registers.mpll_dq_func_cntl = RREG32(MPLL_DQ_FUNC_CNTL);
pi->clock_registers.mpll_func_cntl = RREG32(MPLL_FUNC_CNTL);
pi->clock_registers.mpll_func_cntl_1 = RREG32(MPLL_FUNC_CNTL_1);
pi->clock_registers.mpll_func_cntl_2 = RREG32(MPLL_FUNC_CNTL_2);
pi->clock_registers.mpll_ss1 = RREG32(MPLL_SS1);
pi->clock_registers.mpll_ss2 = RREG32(MPLL_SS2);
}
static void ci_init_sclk_t(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
pi->low_sclk_interrupt_t = 0;
}
static void ci_enable_thermal_protection(struct radeon_device *rdev,
bool enable)
{
u32 tmp = RREG32_SMC(GENERAL_PWRMGT);
if (enable)
tmp &= ~THERMAL_PROTECTION_DIS;
else
tmp |= THERMAL_PROTECTION_DIS;
WREG32_SMC(GENERAL_PWRMGT, tmp);
}
static void ci_enable_acpi_power_management(struct radeon_device *rdev)
{
u32 tmp = RREG32_SMC(GENERAL_PWRMGT);
tmp |= STATIC_PM_EN;
WREG32_SMC(GENERAL_PWRMGT, tmp);
}
#if 0
static int ci_enter_ulp_state(struct radeon_device *rdev)
{
WREG32(SMC_MESSAGE_0, PPSMC_MSG_SwitchToMinimumPower);
udelay(25000);
return 0;
}
static int ci_exit_ulp_state(struct radeon_device *rdev)
{
int i;
WREG32(SMC_MESSAGE_0, PPSMC_MSG_ResumeFromMinimumPower);
udelay(7000);
for (i = 0; i < rdev->usec_timeout; i++) {
if (RREG32(SMC_RESP_0) == 1)
break;
udelay(1000);
}
return 0;
}
#endif
static int ci_notify_smc_display_change(struct radeon_device *rdev,
bool has_display)
{
PPSMC_Msg msg = has_display ? PPSMC_MSG_HasDisplay : PPSMC_MSG_NoDisplay;
return (ci_send_msg_to_smc(rdev, msg) == PPSMC_Result_OK) ? 0 : -EINVAL;
}
static int ci_enable_ds_master_switch(struct radeon_device *rdev,
bool enable)
{
struct ci_power_info *pi = ci_get_pi(rdev);
if (enable) {
if (pi->caps_sclk_ds) {
if (ci_send_msg_to_smc(rdev, PPSMC_MSG_MASTER_DeepSleep_ON) != PPSMC_Result_OK)
return -EINVAL;
} else {
if (ci_send_msg_to_smc(rdev, PPSMC_MSG_MASTER_DeepSleep_OFF) != PPSMC_Result_OK)
return -EINVAL;
}
} else {
if (pi->caps_sclk_ds) {
if (ci_send_msg_to_smc(rdev, PPSMC_MSG_MASTER_DeepSleep_OFF) != PPSMC_Result_OK)
return -EINVAL;
}
}
return 0;
}
static void ci_program_display_gap(struct radeon_device *rdev)
{
u32 tmp = RREG32_SMC(CG_DISPLAY_GAP_CNTL);
u32 pre_vbi_time_in_us;
u32 frame_time_in_us;
u32 ref_clock = rdev->clock.spll.reference_freq;
u32 refresh_rate = r600_dpm_get_vrefresh(rdev);
u32 vblank_time = r600_dpm_get_vblank_time(rdev);
tmp &= ~DISP_GAP_MASK;
if (rdev->pm.dpm.new_active_crtc_count > 0)
tmp |= DISP_GAP(R600_PM_DISPLAY_GAP_VBLANK_OR_WM);
else
tmp |= DISP_GAP(R600_PM_DISPLAY_GAP_IGNORE);
WREG32_SMC(CG_DISPLAY_GAP_CNTL, tmp);
if (refresh_rate == 0)
refresh_rate = 60;
if (vblank_time == 0xffffffff)
vblank_time = 500;
frame_time_in_us = 1000000 / refresh_rate;
pre_vbi_time_in_us =
frame_time_in_us - 200 - vblank_time;
tmp = pre_vbi_time_in_us * (ref_clock / 100);
WREG32_SMC(CG_DISPLAY_GAP_CNTL2, tmp);
ci_write_smc_soft_register(rdev, offsetof(SMU7_SoftRegisters, PreVBlankGap), 0x64);
ci_write_smc_soft_register(rdev, offsetof(SMU7_SoftRegisters, VBlankTimeout), (frame_time_in_us - pre_vbi_time_in_us));
ci_notify_smc_display_change(rdev, (rdev->pm.dpm.new_active_crtc_count == 1));
}
static void ci_enable_spread_spectrum(struct radeon_device *rdev, bool enable)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u32 tmp;
if (enable) {
if (pi->caps_sclk_ss_support) {
tmp = RREG32_SMC(GENERAL_PWRMGT);
tmp |= DYN_SPREAD_SPECTRUM_EN;
WREG32_SMC(GENERAL_PWRMGT, tmp);
}
} else {
tmp = RREG32_SMC(CG_SPLL_SPREAD_SPECTRUM);
tmp &= ~SSEN;
WREG32_SMC(CG_SPLL_SPREAD_SPECTRUM, tmp);
tmp = RREG32_SMC(GENERAL_PWRMGT);
tmp &= ~DYN_SPREAD_SPECTRUM_EN;
WREG32_SMC(GENERAL_PWRMGT, tmp);
}
}
static void ci_program_sstp(struct radeon_device *rdev)
{
WREG32_SMC(CG_SSP, (SSTU(R600_SSTU_DFLT) | SST(R600_SST_DFLT)));
}
static void ci_enable_display_gap(struct radeon_device *rdev)
{
u32 tmp = RREG32_SMC(CG_DISPLAY_GAP_CNTL);
tmp &= ~(DISP_GAP_MASK | DISP_GAP_MCHG_MASK);
tmp |= (DISP_GAP(R600_PM_DISPLAY_GAP_IGNORE) |
DISP_GAP_MCHG(R600_PM_DISPLAY_GAP_VBLANK));
WREG32_SMC(CG_DISPLAY_GAP_CNTL, tmp);
}
static void ci_program_vc(struct radeon_device *rdev)
{
u32 tmp;
tmp = RREG32_SMC(SCLK_PWRMGT_CNTL);
tmp &= ~(RESET_SCLK_CNT | RESET_BUSY_CNT);
WREG32_SMC(SCLK_PWRMGT_CNTL, tmp);
WREG32_SMC(CG_FTV_0, CISLANDS_VRC_DFLT0);
WREG32_SMC(CG_FTV_1, CISLANDS_VRC_DFLT1);
WREG32_SMC(CG_FTV_2, CISLANDS_VRC_DFLT2);
WREG32_SMC(CG_FTV_3, CISLANDS_VRC_DFLT3);
WREG32_SMC(CG_FTV_4, CISLANDS_VRC_DFLT4);
WREG32_SMC(CG_FTV_5, CISLANDS_VRC_DFLT5);
WREG32_SMC(CG_FTV_6, CISLANDS_VRC_DFLT6);
WREG32_SMC(CG_FTV_7, CISLANDS_VRC_DFLT7);
}
static void ci_clear_vc(struct radeon_device *rdev)
{
u32 tmp;
tmp = RREG32_SMC(SCLK_PWRMGT_CNTL);
tmp |= (RESET_SCLK_CNT | RESET_BUSY_CNT);
WREG32_SMC(SCLK_PWRMGT_CNTL, tmp);
WREG32_SMC(CG_FTV_0, 0);
WREG32_SMC(CG_FTV_1, 0);
WREG32_SMC(CG_FTV_2, 0);
WREG32_SMC(CG_FTV_3, 0);
WREG32_SMC(CG_FTV_4, 0);
WREG32_SMC(CG_FTV_5, 0);
WREG32_SMC(CG_FTV_6, 0);
WREG32_SMC(CG_FTV_7, 0);
}
static int ci_upload_firmware(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
int i, ret;
for (i = 0; i < rdev->usec_timeout; i++) {
if (RREG32_SMC(RCU_UC_EVENTS) & BOOT_SEQ_DONE)
break;
}
WREG32_SMC(SMC_SYSCON_MISC_CNTL, 1);
ci_stop_smc_clock(rdev);
ci_reset_smc(rdev);
ret = ci_load_smc_ucode(rdev, pi->sram_end);
return ret;
}
static int ci_get_svi2_voltage_table(struct radeon_device *rdev,
struct radeon_clock_voltage_dependency_table *voltage_dependency_table,
struct atom_voltage_table *voltage_table)
{
u32 i;
if (voltage_dependency_table == NULL)
return -EINVAL;
voltage_table->mask_low = 0;
voltage_table->phase_delay = 0;
voltage_table->count = voltage_dependency_table->count;
for (i = 0; i < voltage_table->count; i++) {
voltage_table->entries[i].value = voltage_dependency_table->entries[i].v;
voltage_table->entries[i].smio_low = 0;
}
return 0;
}
static int ci_construct_voltage_tables(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
int ret;
if (pi->voltage_control == CISLANDS_VOLTAGE_CONTROL_BY_GPIO) {
ret = radeon_atom_get_voltage_table(rdev, VOLTAGE_TYPE_VDDC,
VOLTAGE_OBJ_GPIO_LUT,
&pi->vddc_voltage_table);
if (ret)
return ret;
} else if (pi->voltage_control == CISLANDS_VOLTAGE_CONTROL_BY_SVID2) {
ret = ci_get_svi2_voltage_table(rdev,
&rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk,
&pi->vddc_voltage_table);
if (ret)
return ret;
}
if (pi->vddc_voltage_table.count > SMU7_MAX_LEVELS_VDDC)
si_trim_voltage_table_to_fit_state_table(rdev, SMU7_MAX_LEVELS_VDDC,
&pi->vddc_voltage_table);
if (pi->vddci_control == CISLANDS_VOLTAGE_CONTROL_BY_GPIO) {
ret = radeon_atom_get_voltage_table(rdev, VOLTAGE_TYPE_VDDCI,
VOLTAGE_OBJ_GPIO_LUT,
&pi->vddci_voltage_table);
if (ret)
return ret;
} else if (pi->vddci_control == CISLANDS_VOLTAGE_CONTROL_BY_SVID2) {
ret = ci_get_svi2_voltage_table(rdev,
&rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk,
&pi->vddci_voltage_table);
if (ret)
return ret;
}
if (pi->vddci_voltage_table.count > SMU7_MAX_LEVELS_VDDCI)
si_trim_voltage_table_to_fit_state_table(rdev, SMU7_MAX_LEVELS_VDDCI,
&pi->vddci_voltage_table);
if (pi->mvdd_control == CISLANDS_VOLTAGE_CONTROL_BY_GPIO) {
ret = radeon_atom_get_voltage_table(rdev, VOLTAGE_TYPE_MVDDC,
VOLTAGE_OBJ_GPIO_LUT,
&pi->mvdd_voltage_table);
if (ret)
return ret;
} else if (pi->mvdd_control == CISLANDS_VOLTAGE_CONTROL_BY_SVID2) {
ret = ci_get_svi2_voltage_table(rdev,
&rdev->pm.dpm.dyn_state.mvdd_dependency_on_mclk,
&pi->mvdd_voltage_table);
if (ret)
return ret;
}
if (pi->mvdd_voltage_table.count > SMU7_MAX_LEVELS_MVDD)
si_trim_voltage_table_to_fit_state_table(rdev, SMU7_MAX_LEVELS_MVDD,
&pi->mvdd_voltage_table);
return 0;
}
static void ci_populate_smc_voltage_table(struct radeon_device *rdev,
struct atom_voltage_table_entry *voltage_table,
SMU7_Discrete_VoltageLevel *smc_voltage_table)
{
int ret;
ret = ci_get_std_voltage_value_sidd(rdev, voltage_table,
&smc_voltage_table->StdVoltageHiSidd,
&smc_voltage_table->StdVoltageLoSidd);
if (ret) {
smc_voltage_table->StdVoltageHiSidd = voltage_table->value * VOLTAGE_SCALE;
smc_voltage_table->StdVoltageLoSidd = voltage_table->value * VOLTAGE_SCALE;
}
smc_voltage_table->Voltage = cpu_to_be16(voltage_table->value * VOLTAGE_SCALE);
smc_voltage_table->StdVoltageHiSidd =
cpu_to_be16(smc_voltage_table->StdVoltageHiSidd);
smc_voltage_table->StdVoltageLoSidd =
cpu_to_be16(smc_voltage_table->StdVoltageLoSidd);
}
static int ci_populate_smc_vddc_table(struct radeon_device *rdev,
SMU7_Discrete_DpmTable *table)
{
struct ci_power_info *pi = ci_get_pi(rdev);
unsigned int count;
table->VddcLevelCount = pi->vddc_voltage_table.count;
for (count = 0; count < table->VddcLevelCount; count++) {
ci_populate_smc_voltage_table(rdev,
&pi->vddc_voltage_table.entries[count],
&table->VddcLevel[count]);
if (pi->voltage_control == CISLANDS_VOLTAGE_CONTROL_BY_GPIO)
table->VddcLevel[count].Smio |=
pi->vddc_voltage_table.entries[count].smio_low;
else
table->VddcLevel[count].Smio = 0;
}
table->VddcLevelCount = cpu_to_be32(table->VddcLevelCount);
return 0;
}
static int ci_populate_smc_vddci_table(struct radeon_device *rdev,
SMU7_Discrete_DpmTable *table)
{
unsigned int count;
struct ci_power_info *pi = ci_get_pi(rdev);
table->VddciLevelCount = pi->vddci_voltage_table.count;
for (count = 0; count < table->VddciLevelCount; count++) {
ci_populate_smc_voltage_table(rdev,
&pi->vddci_voltage_table.entries[count],
&table->VddciLevel[count]);
if (pi->vddci_control == CISLANDS_VOLTAGE_CONTROL_BY_GPIO)
table->VddciLevel[count].Smio |=
pi->vddci_voltage_table.entries[count].smio_low;
else
table->VddciLevel[count].Smio = 0;
}
table->VddciLevelCount = cpu_to_be32(table->VddciLevelCount);
return 0;
}
static int ci_populate_smc_mvdd_table(struct radeon_device *rdev,
SMU7_Discrete_DpmTable *table)
{
struct ci_power_info *pi = ci_get_pi(rdev);
unsigned int count;
table->MvddLevelCount = pi->mvdd_voltage_table.count;
for (count = 0; count < table->MvddLevelCount; count++) {
ci_populate_smc_voltage_table(rdev,
&pi->mvdd_voltage_table.entries[count],
&table->MvddLevel[count]);
if (pi->mvdd_control == CISLANDS_VOLTAGE_CONTROL_BY_GPIO)
table->MvddLevel[count].Smio |=
pi->mvdd_voltage_table.entries[count].smio_low;
else
table->MvddLevel[count].Smio = 0;
}
table->MvddLevelCount = cpu_to_be32(table->MvddLevelCount);
return 0;
}
static int ci_populate_smc_voltage_tables(struct radeon_device *rdev,
SMU7_Discrete_DpmTable *table)
{
int ret;
ret = ci_populate_smc_vddc_table(rdev, table);
if (ret)
return ret;
ret = ci_populate_smc_vddci_table(rdev, table);
if (ret)
return ret;
ret = ci_populate_smc_mvdd_table(rdev, table);
if (ret)
return ret;
return 0;
}
static int ci_populate_mvdd_value(struct radeon_device *rdev, u32 mclk,
SMU7_Discrete_VoltageLevel *voltage)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u32 i = 0;
if (pi->mvdd_control != CISLANDS_VOLTAGE_CONTROL_NONE) {
for (i = 0; i < rdev->pm.dpm.dyn_state.mvdd_dependency_on_mclk.count; i++) {
if (mclk <= rdev->pm.dpm.dyn_state.mvdd_dependency_on_mclk.entries[i].clk) {
voltage->Voltage = pi->mvdd_voltage_table.entries[i].value;
break;
}
}
if (i >= rdev->pm.dpm.dyn_state.mvdd_dependency_on_mclk.count)
return -EINVAL;
}
return -EINVAL;
}
static int ci_get_std_voltage_value_sidd(struct radeon_device *rdev,
struct atom_voltage_table_entry *voltage_table,
u16 *std_voltage_hi_sidd, u16 *std_voltage_lo_sidd)
{
u16 v_index, idx;
bool voltage_found = false;
*std_voltage_hi_sidd = voltage_table->value * VOLTAGE_SCALE;
*std_voltage_lo_sidd = voltage_table->value * VOLTAGE_SCALE;
if (rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries == NULL)
return -EINVAL;
if (rdev->pm.dpm.dyn_state.cac_leakage_table.entries) {
for (v_index = 0; (u32)v_index < rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.count; v_index++) {
if (voltage_table->value ==
rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries[v_index].v) {
voltage_found = true;
if ((u32)v_index < rdev->pm.dpm.dyn_state.cac_leakage_table.count)
idx = v_index;
else
idx = rdev->pm.dpm.dyn_state.cac_leakage_table.count - 1;
*std_voltage_lo_sidd =
rdev->pm.dpm.dyn_state.cac_leakage_table.entries[idx].vddc * VOLTAGE_SCALE;
*std_voltage_hi_sidd =
rdev->pm.dpm.dyn_state.cac_leakage_table.entries[idx].leakage * VOLTAGE_SCALE;
break;
}
}
if (!voltage_found) {
for (v_index = 0; (u32)v_index < rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.count; v_index++) {
if (voltage_table->value <=
rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries[v_index].v) {
voltage_found = true;
if ((u32)v_index < rdev->pm.dpm.dyn_state.cac_leakage_table.count)
idx = v_index;
else
idx = rdev->pm.dpm.dyn_state.cac_leakage_table.count - 1;
*std_voltage_lo_sidd =
rdev->pm.dpm.dyn_state.cac_leakage_table.entries[idx].vddc * VOLTAGE_SCALE;
*std_voltage_hi_sidd =
rdev->pm.dpm.dyn_state.cac_leakage_table.entries[idx].leakage * VOLTAGE_SCALE;
break;
}
}
}
}
return 0;
}
static void ci_populate_phase_value_based_on_sclk(struct radeon_device *rdev,
const struct radeon_phase_shedding_limits_table *limits,
u32 sclk,
u32 *phase_shedding)
{
unsigned int i;
*phase_shedding = 1;
for (i = 0; i < limits->count; i++) {
if (sclk < limits->entries[i].sclk) {
*phase_shedding = i;
break;
}
}
}
static void ci_populate_phase_value_based_on_mclk(struct radeon_device *rdev,
const struct radeon_phase_shedding_limits_table *limits,
u32 mclk,
u32 *phase_shedding)
{
unsigned int i;
*phase_shedding = 1;
for (i = 0; i < limits->count; i++) {
if (mclk < limits->entries[i].mclk) {
*phase_shedding = i;
break;
}
}
}
static int ci_init_arb_table_index(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u32 tmp;
int ret;
ret = ci_read_smc_sram_dword(rdev, pi->arb_table_start,
&tmp, pi->sram_end);
if (ret)
return ret;
tmp &= 0x00FFFFFF;
tmp |= MC_CG_ARB_FREQ_F1 << 24;
return ci_write_smc_sram_dword(rdev, pi->arb_table_start,
tmp, pi->sram_end);
}
static int ci_get_dependency_volt_by_clk(struct radeon_device *rdev,
struct radeon_clock_voltage_dependency_table *allowed_clock_voltage_table,
u32 clock, u32 *voltage)
{
u32 i = 0;
if (allowed_clock_voltage_table->count == 0)
return -EINVAL;
for (i = 0; i < allowed_clock_voltage_table->count; i++) {
if (allowed_clock_voltage_table->entries[i].clk >= clock) {
*voltage = allowed_clock_voltage_table->entries[i].v;
return 0;
}
}
*voltage = allowed_clock_voltage_table->entries[i-1].v;
return 0;
}
static u8 ci_get_sleep_divider_id_from_clock(struct radeon_device *rdev,
u32 sclk, u32 min_sclk_in_sr)
{
u32 i;
u32 tmp;
u32 min = (min_sclk_in_sr > CISLAND_MINIMUM_ENGINE_CLOCK) ?
min_sclk_in_sr : CISLAND_MINIMUM_ENGINE_CLOCK;
if (sclk < min)
return 0;
for (i = CISLAND_MAX_DEEPSLEEP_DIVIDER_ID; ; i--) {
tmp = sclk / (1 << i);
if (tmp >= min || i == 0)
break;
}
return (u8)i;
}
static int ci_initial_switch_from_arb_f0_to_f1(struct radeon_device *rdev)
{
return ni_copy_and_switch_arb_sets(rdev, MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
}
static int ci_reset_to_default(struct radeon_device *rdev)
{
return (ci_send_msg_to_smc(rdev, PPSMC_MSG_ResetToDefaults) == PPSMC_Result_OK) ?
0 : -EINVAL;
}
static int ci_force_switch_to_arb_f0(struct radeon_device *rdev)
{
u32 tmp;
tmp = (RREG32_SMC(SMC_SCRATCH9) & 0x0000ff00) >> 8;
if (tmp == MC_CG_ARB_FREQ_F0)
return 0;
return ni_copy_and_switch_arb_sets(rdev, tmp, MC_CG_ARB_FREQ_F0);
}
static int ci_populate_memory_timing_parameters(struct radeon_device *rdev,
u32 sclk,
u32 mclk,
SMU7_Discrete_MCArbDramTimingTableEntry *arb_regs)
{
u32 dram_timing;
u32 dram_timing2;
u32 burst_time;
radeon_atom_set_engine_dram_timings(rdev, sclk, mclk);
dram_timing = RREG32(MC_ARB_DRAM_TIMING);
dram_timing2 = RREG32(MC_ARB_DRAM_TIMING2);
burst_time = RREG32(MC_ARB_BURST_TIME) & STATE0_MASK;
arb_regs->McArbDramTiming = cpu_to_be32(dram_timing);
arb_regs->McArbDramTiming2 = cpu_to_be32(dram_timing2);
arb_regs->McArbBurstTime = (u8)burst_time;
return 0;
}
static int ci_do_program_memory_timing_parameters(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
SMU7_Discrete_MCArbDramTimingTable arb_regs;
u32 i, j;
int ret = 0;
memset(&arb_regs, 0, sizeof(SMU7_Discrete_MCArbDramTimingTable));
for (i = 0; i < pi->dpm_table.sclk_table.count; i++) {
for (j = 0; j < pi->dpm_table.mclk_table.count; j++) {
ret = ci_populate_memory_timing_parameters(rdev,
pi->dpm_table.sclk_table.dpm_levels[i].value,
pi->dpm_table.mclk_table.dpm_levels[j].value,
&arb_regs.entries[i][j]);
if (ret)
break;
}
}
if (ret == 0)
ret = ci_copy_bytes_to_smc(rdev,
pi->arb_table_start,
(u8 *)&arb_regs,
sizeof(SMU7_Discrete_MCArbDramTimingTable),
pi->sram_end);
return ret;
}
static int ci_program_memory_timing_parameters(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
if (pi->need_update_smu7_dpm_table == 0)
return 0;
return ci_do_program_memory_timing_parameters(rdev);
}
static void ci_populate_smc_initial_state(struct radeon_device *rdev,
struct radeon_ps *radeon_boot_state)
{
struct ci_ps *boot_state = ci_get_ps(radeon_boot_state);
struct ci_power_info *pi = ci_get_pi(rdev);
u32 level = 0;
for (level = 0; level < rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.count; level++) {
if (rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries[level].clk >=
boot_state->performance_levels[0].sclk) {
pi->smc_state_table.GraphicsBootLevel = level;
break;
}
}
for (level = 0; level < rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk.count; level++) {
if (rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk.entries[level].clk >=
boot_state->performance_levels[0].mclk) {
pi->smc_state_table.MemoryBootLevel = level;
break;
}
}
}
static u32 ci_get_dpm_level_enable_mask_value(struct ci_single_dpm_table *dpm_table)
{
u32 i;
u32 mask_value = 0;
for (i = dpm_table->count; i > 0; i--) {
mask_value = mask_value << 1;
if (dpm_table->dpm_levels[i-1].enabled)
mask_value |= 0x1;
else
mask_value &= 0xFFFFFFFE;
}
return mask_value;
}
static void ci_populate_smc_link_level(struct radeon_device *rdev,
SMU7_Discrete_DpmTable *table)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct ci_dpm_table *dpm_table = &pi->dpm_table;
u32 i;
for (i = 0; i < dpm_table->pcie_speed_table.count; i++) {
table->LinkLevel[i].PcieGenSpeed =
(u8)dpm_table->pcie_speed_table.dpm_levels[i].value;
table->LinkLevel[i].PcieLaneCount =
r600_encode_pci_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
table->LinkLevel[i].EnabledForActivity = 1;
table->LinkLevel[i].DownT = cpu_to_be32(5);
table->LinkLevel[i].UpT = cpu_to_be32(30);
}
pi->smc_state_table.LinkLevelCount = (u8)dpm_table->pcie_speed_table.count;
pi->dpm_level_enable_mask.pcie_dpm_enable_mask =
ci_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
}
static int ci_populate_smc_uvd_level(struct radeon_device *rdev,
SMU7_Discrete_DpmTable *table)
{
u32 count;
struct atom_clock_dividers dividers;
int ret = -EINVAL;
table->UvdLevelCount =
rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.count;
for (count = 0; count < table->UvdLevelCount; count++) {
table->UvdLevel[count].VclkFrequency =
rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[count].vclk;
table->UvdLevel[count].DclkFrequency =
rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[count].dclk;
table->UvdLevel[count].MinVddc =
rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[count].v * VOLTAGE_SCALE;
table->UvdLevel[count].MinVddcPhases = 1;
ret = radeon_atom_get_clock_dividers(rdev,
COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
table->UvdLevel[count].VclkFrequency, false, &dividers);
if (ret)
return ret;
table->UvdLevel[count].VclkDivider = (u8)dividers.post_divider;
ret = radeon_atom_get_clock_dividers(rdev,
COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
table->UvdLevel[count].DclkFrequency, false, &dividers);
if (ret)
return ret;
table->UvdLevel[count].DclkDivider = (u8)dividers.post_divider;
table->UvdLevel[count].VclkFrequency = cpu_to_be32(table->UvdLevel[count].VclkFrequency);
table->UvdLevel[count].DclkFrequency = cpu_to_be32(table->UvdLevel[count].DclkFrequency);
table->UvdLevel[count].MinVddc = cpu_to_be16(table->UvdLevel[count].MinVddc);
}
return ret;
}
static int ci_populate_smc_vce_level(struct radeon_device *rdev,
SMU7_Discrete_DpmTable *table)
{
u32 count;
struct atom_clock_dividers dividers;
int ret = -EINVAL;
table->VceLevelCount =
rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.count;
for (count = 0; count < table->VceLevelCount; count++) {
table->VceLevel[count].Frequency =
rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[count].evclk;
table->VceLevel[count].MinVoltage =
(u16)rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[count].v * VOLTAGE_SCALE;
table->VceLevel[count].MinPhases = 1;
ret = radeon_atom_get_clock_dividers(rdev,
COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
table->VceLevel[count].Frequency, false, &dividers);
if (ret)
return ret;
table->VceLevel[count].Divider = (u8)dividers.post_divider;
table->VceLevel[count].Frequency = cpu_to_be32(table->VceLevel[count].Frequency);
table->VceLevel[count].MinVoltage = cpu_to_be16(table->VceLevel[count].MinVoltage);
}
return ret;
}
static int ci_populate_smc_acp_level(struct radeon_device *rdev,
SMU7_Discrete_DpmTable *table)
{
u32 count;
struct atom_clock_dividers dividers;
int ret = -EINVAL;
table->AcpLevelCount = (u8)
(rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.count);
for (count = 0; count < table->AcpLevelCount; count++) {
table->AcpLevel[count].Frequency =
rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries[count].clk;
table->AcpLevel[count].MinVoltage =
rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries[count].v;
table->AcpLevel[count].MinPhases = 1;
ret = radeon_atom_get_clock_dividers(rdev,
COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
table->AcpLevel[count].Frequency, false, &dividers);
if (ret)
return ret;
table->AcpLevel[count].Divider = (u8)dividers.post_divider;
table->AcpLevel[count].Frequency = cpu_to_be32(table->AcpLevel[count].Frequency);
table->AcpLevel[count].MinVoltage = cpu_to_be16(table->AcpLevel[count].MinVoltage);
}
return ret;
}
static int ci_populate_smc_samu_level(struct radeon_device *rdev,
SMU7_Discrete_DpmTable *table)
{
u32 count;
struct atom_clock_dividers dividers;
int ret = -EINVAL;
table->SamuLevelCount =
rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.count;
for (count = 0; count < table->SamuLevelCount; count++) {
table->SamuLevel[count].Frequency =
rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries[count].clk;
table->SamuLevel[count].MinVoltage =
rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries[count].v * VOLTAGE_SCALE;
table->SamuLevel[count].MinPhases = 1;
ret = radeon_atom_get_clock_dividers(rdev,
COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
table->SamuLevel[count].Frequency, false, &dividers);
if (ret)
return ret;
table->SamuLevel[count].Divider = (u8)dividers.post_divider;
table->SamuLevel[count].Frequency = cpu_to_be32(table->SamuLevel[count].Frequency);
table->SamuLevel[count].MinVoltage = cpu_to_be16(table->SamuLevel[count].MinVoltage);
}
return ret;
}
static int ci_calculate_mclk_params(struct radeon_device *rdev,
u32 memory_clock,
SMU7_Discrete_MemoryLevel *mclk,
bool strobe_mode,
bool dll_state_on)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u32 dll_cntl = pi->clock_registers.dll_cntl;
u32 mclk_pwrmgt_cntl = pi->clock_registers.mclk_pwrmgt_cntl;
u32 mpll_ad_func_cntl = pi->clock_registers.mpll_ad_func_cntl;
u32 mpll_dq_func_cntl = pi->clock_registers.mpll_dq_func_cntl;
u32 mpll_func_cntl = pi->clock_registers.mpll_func_cntl;
u32 mpll_func_cntl_1 = pi->clock_registers.mpll_func_cntl_1;
u32 mpll_func_cntl_2 = pi->clock_registers.mpll_func_cntl_2;
u32 mpll_ss1 = pi->clock_registers.mpll_ss1;
u32 mpll_ss2 = pi->clock_registers.mpll_ss2;
struct atom_mpll_param mpll_param;
int ret;
ret = radeon_atom_get_memory_pll_dividers(rdev, memory_clock, strobe_mode, &mpll_param);
if (ret)
return ret;
mpll_func_cntl &= ~BWCTRL_MASK;
mpll_func_cntl |= BWCTRL(mpll_param.bwcntl);
mpll_func_cntl_1 &= ~(CLKF_MASK | CLKFRAC_MASK | VCO_MODE_MASK);
mpll_func_cntl_1 |= CLKF(mpll_param.clkf) |
CLKFRAC(mpll_param.clkfrac) | VCO_MODE(mpll_param.vco_mode);
mpll_ad_func_cntl &= ~YCLK_POST_DIV_MASK;
mpll_ad_func_cntl |= YCLK_POST_DIV(mpll_param.post_div);
if (pi->mem_gddr5) {
mpll_dq_func_cntl &= ~(YCLK_SEL_MASK | YCLK_POST_DIV_MASK);
mpll_dq_func_cntl |= YCLK_SEL(mpll_param.yclk_sel) |
YCLK_POST_DIV(mpll_param.post_div);
}
if (pi->caps_mclk_ss_support) {
struct radeon_atom_ss ss;
u32 freq_nom;
u32 tmp;
u32 reference_clock = rdev->clock.mpll.reference_freq;
if (pi->mem_gddr5)
freq_nom = memory_clock * 4;
else
freq_nom = memory_clock * 2;
tmp = (freq_nom / reference_clock);
tmp = tmp * tmp;
if (radeon_atombios_get_asic_ss_info(rdev, &ss,
ASIC_INTERNAL_MEMORY_SS, freq_nom)) {
u32 clks = reference_clock * 5 / ss.rate;
u32 clkv = (u32)((((131 * ss.percentage * ss.rate) / 100) * tmp) / freq_nom);
mpll_ss1 &= ~CLKV_MASK;
mpll_ss1 |= CLKV(clkv);
mpll_ss2 &= ~CLKS_MASK;
mpll_ss2 |= CLKS(clks);
}
}
mclk_pwrmgt_cntl &= ~DLL_SPEED_MASK;
mclk_pwrmgt_cntl |= DLL_SPEED(mpll_param.dll_speed);
if (dll_state_on)
mclk_pwrmgt_cntl |= MRDCK0_PDNB | MRDCK1_PDNB;
else
mclk_pwrmgt_cntl &= ~(MRDCK0_PDNB | MRDCK1_PDNB);
mclk->MclkFrequency = memory_clock;
mclk->MpllFuncCntl = mpll_func_cntl;
mclk->MpllFuncCntl_1 = mpll_func_cntl_1;
mclk->MpllFuncCntl_2 = mpll_func_cntl_2;
mclk->MpllAdFuncCntl = mpll_ad_func_cntl;
mclk->MpllDqFuncCntl = mpll_dq_func_cntl;
mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl;
mclk->DllCntl = dll_cntl;
mclk->MpllSs1 = mpll_ss1;
mclk->MpllSs2 = mpll_ss2;
return 0;
}
static int ci_populate_single_memory_level(struct radeon_device *rdev,
u32 memory_clock,
SMU7_Discrete_MemoryLevel *memory_level)
{
struct ci_power_info *pi = ci_get_pi(rdev);
int ret;
bool dll_state_on;
if (rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk.entries) {
ret = ci_get_dependency_volt_by_clk(rdev,
&rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk,
memory_clock, &memory_level->MinVddc);
if (ret)
return ret;
}
if (rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk.entries) {
ret = ci_get_dependency_volt_by_clk(rdev,
&rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk,
memory_clock, &memory_level->MinVddci);
if (ret)
return ret;
}
if (rdev->pm.dpm.dyn_state.mvdd_dependency_on_mclk.entries) {
ret = ci_get_dependency_volt_by_clk(rdev,
&rdev->pm.dpm.dyn_state.mvdd_dependency_on_mclk,
memory_clock, &memory_level->MinMvdd);
if (ret)
return ret;
}
memory_level->MinVddcPhases = 1;
if (pi->vddc_phase_shed_control)
ci_populate_phase_value_based_on_mclk(rdev,
&rdev->pm.dpm.dyn_state.phase_shedding_limits_table,
memory_clock,
&memory_level->MinVddcPhases);
memory_level->EnabledForThrottle = 1;
memory_level->EnabledForActivity = 1;
memory_level->UpH = 0;
memory_level->DownH = 100;
memory_level->VoltageDownH = 0;
memory_level->ActivityLevel = (u16)pi->mclk_activity_target;
memory_level->StutterEnable = false;
memory_level->StrobeEnable = false;
memory_level->EdcReadEnable = false;
memory_level->EdcWriteEnable = false;
memory_level->RttEnable = false;
memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
if (pi->mclk_stutter_mode_threshold &&
(memory_clock <= pi->mclk_stutter_mode_threshold) &&
(pi->uvd_enabled == false) &&
(RREG32(DPG_PIPE_STUTTER_CONTROL) & STUTTER_ENABLE) &&
(rdev->pm.dpm.new_active_crtc_count <= 2))
memory_level->StutterEnable = true;
if (pi->mclk_strobe_mode_threshold &&
(memory_clock <= pi->mclk_strobe_mode_threshold))
memory_level->StrobeEnable = 1;
if (pi->mem_gddr5) {
memory_level->StrobeRatio =
si_get_mclk_frequency_ratio(memory_clock, memory_level->StrobeEnable);
if (pi->mclk_edc_enable_threshold &&
(memory_clock > pi->mclk_edc_enable_threshold))
memory_level->EdcReadEnable = true;
if (pi->mclk_edc_wr_enable_threshold &&
(memory_clock > pi->mclk_edc_wr_enable_threshold))
memory_level->EdcWriteEnable = true;
if (memory_level->StrobeEnable) {
if (si_get_mclk_frequency_ratio(memory_clock, true) >=
((RREG32(MC_SEQ_MISC7) >> 16) & 0xf))
dll_state_on = ((RREG32(MC_SEQ_MISC5) >> 1) & 0x1) ? true : false;
else
dll_state_on = ((RREG32(MC_SEQ_MISC6) >> 1) & 0x1) ? true : false;
} else {
dll_state_on = pi->dll_default_on;
}
} else {
memory_level->StrobeRatio = si_get_ddr3_mclk_frequency_ratio(memory_clock);
dll_state_on = ((RREG32(MC_SEQ_MISC5) >> 1) & 0x1) ? true : false;
}
ret = ci_calculate_mclk_params(rdev, memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);
if (ret)
return ret;
memory_level->MinVddc = cpu_to_be32(memory_level->MinVddc * VOLTAGE_SCALE);
memory_level->MinVddcPhases = cpu_to_be32(memory_level->MinVddcPhases);
memory_level->MinVddci = cpu_to_be32(memory_level->MinVddci * VOLTAGE_SCALE);
memory_level->MinMvdd = cpu_to_be32(memory_level->MinMvdd * VOLTAGE_SCALE);
memory_level->MclkFrequency = cpu_to_be32(memory_level->MclkFrequency);
memory_level->ActivityLevel = cpu_to_be16(memory_level->ActivityLevel);
memory_level->MpllFuncCntl = cpu_to_be32(memory_level->MpllFuncCntl);
memory_level->MpllFuncCntl_1 = cpu_to_be32(memory_level->MpllFuncCntl_1);
memory_level->MpllFuncCntl_2 = cpu_to_be32(memory_level->MpllFuncCntl_2);
memory_level->MpllAdFuncCntl = cpu_to_be32(memory_level->MpllAdFuncCntl);
memory_level->MpllDqFuncCntl = cpu_to_be32(memory_level->MpllDqFuncCntl);
memory_level->MclkPwrmgtCntl = cpu_to_be32(memory_level->MclkPwrmgtCntl);
memory_level->DllCntl = cpu_to_be32(memory_level->DllCntl);
memory_level->MpllSs1 = cpu_to_be32(memory_level->MpllSs1);
memory_level->MpllSs2 = cpu_to_be32(memory_level->MpllSs2);
return 0;
}
static int ci_populate_smc_acpi_level(struct radeon_device *rdev,
SMU7_Discrete_DpmTable *table)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct atom_clock_dividers dividers;
SMU7_Discrete_VoltageLevel voltage_level;
u32 spll_func_cntl = pi->clock_registers.cg_spll_func_cntl;
u32 spll_func_cntl_2 = pi->clock_registers.cg_spll_func_cntl_2;
u32 dll_cntl = pi->clock_registers.dll_cntl;
u32 mclk_pwrmgt_cntl = pi->clock_registers.mclk_pwrmgt_cntl;
int ret;
table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
if (pi->acpi_vddc)
table->ACPILevel.MinVddc = cpu_to_be32(pi->acpi_vddc * VOLTAGE_SCALE);
else
table->ACPILevel.MinVddc = cpu_to_be32(pi->min_vddc_in_pp_table * VOLTAGE_SCALE);
table->ACPILevel.MinVddcPhases = pi->vddc_phase_shed_control ? 0 : 1;
table->ACPILevel.SclkFrequency = rdev->clock.spll.reference_freq;
ret = radeon_atom_get_clock_dividers(rdev,
COMPUTE_GPUCLK_INPUT_FLAG_SCLK,
table->ACPILevel.SclkFrequency, false, &dividers);
if (ret)
return ret;
table->ACPILevel.SclkDid = (u8)dividers.post_divider;
table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
table->ACPILevel.DeepSleepDivId = 0;
spll_func_cntl &= ~SPLL_PWRON;
spll_func_cntl |= SPLL_RESET;
spll_func_cntl_2 &= ~SCLK_MUX_SEL_MASK;
spll_func_cntl_2 |= SCLK_MUX_SEL(4);
table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
table->ACPILevel.CgSpllFuncCntl3 = pi->clock_registers.cg_spll_func_cntl_3;
table->ACPILevel.CgSpllFuncCntl4 = pi->clock_registers.cg_spll_func_cntl_4;
table->ACPILevel.SpllSpreadSpectrum = pi->clock_registers.cg_spll_spread_spectrum;
table->ACPILevel.SpllSpreadSpectrum2 = pi->clock_registers.cg_spll_spread_spectrum_2;
table->ACPILevel.CcPwrDynRm = 0;
table->ACPILevel.CcPwrDynRm1 = 0;
table->ACPILevel.Flags = cpu_to_be32(table->ACPILevel.Flags);
table->ACPILevel.MinVddcPhases = cpu_to_be32(table->ACPILevel.MinVddcPhases);
table->ACPILevel.SclkFrequency = cpu_to_be32(table->ACPILevel.SclkFrequency);
table->ACPILevel.CgSpllFuncCntl = cpu_to_be32(table->ACPILevel.CgSpllFuncCntl);
table->ACPILevel.CgSpllFuncCntl2 = cpu_to_be32(table->ACPILevel.CgSpllFuncCntl2);
table->ACPILevel.CgSpllFuncCntl3 = cpu_to_be32(table->ACPILevel.CgSpllFuncCntl3);
table->ACPILevel.CgSpllFuncCntl4 = cpu_to_be32(table->ACPILevel.CgSpllFuncCntl4);
table->ACPILevel.SpllSpreadSpectrum = cpu_to_be32(table->ACPILevel.SpllSpreadSpectrum);
table->ACPILevel.SpllSpreadSpectrum2 = cpu_to_be32(table->ACPILevel.SpllSpreadSpectrum2);
table->ACPILevel.CcPwrDynRm = cpu_to_be32(table->ACPILevel.CcPwrDynRm);
table->ACPILevel.CcPwrDynRm1 = cpu_to_be32(table->ACPILevel.CcPwrDynRm1);
table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc;
table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;
if (pi->vddci_control != CISLANDS_VOLTAGE_CONTROL_NONE) {
if (pi->acpi_vddci)
table->MemoryACPILevel.MinVddci =
cpu_to_be32(pi->acpi_vddci * VOLTAGE_SCALE);
else
table->MemoryACPILevel.MinVddci =
cpu_to_be32(pi->min_vddci_in_pp_table * VOLTAGE_SCALE);
}
if (ci_populate_mvdd_value(rdev, 0, &voltage_level))
table->MemoryACPILevel.MinMvdd = 0;
else
table->MemoryACPILevel.MinMvdd =
cpu_to_be32(voltage_level.Voltage * VOLTAGE_SCALE);
mclk_pwrmgt_cntl |= MRDCK0_RESET | MRDCK1_RESET;
mclk_pwrmgt_cntl &= ~(MRDCK0_PDNB | MRDCK1_PDNB);
dll_cntl &= ~(MRDCK0_BYPASS | MRDCK1_BYPASS);
table->MemoryACPILevel.DllCntl = cpu_to_be32(dll_cntl);
table->MemoryACPILevel.MclkPwrmgtCntl = cpu_to_be32(mclk_pwrmgt_cntl);
table->MemoryACPILevel.MpllAdFuncCntl =
cpu_to_be32(pi->clock_registers.mpll_ad_func_cntl);
table->MemoryACPILevel.MpllDqFuncCntl =
cpu_to_be32(pi->clock_registers.mpll_dq_func_cntl);
table->MemoryACPILevel.MpllFuncCntl =
cpu_to_be32(pi->clock_registers.mpll_func_cntl);
table->MemoryACPILevel.MpllFuncCntl_1 =
cpu_to_be32(pi->clock_registers.mpll_func_cntl_1);
table->MemoryACPILevel.MpllFuncCntl_2 =
cpu_to_be32(pi->clock_registers.mpll_func_cntl_2);
table->MemoryACPILevel.MpllSs1 = cpu_to_be32(pi->clock_registers.mpll_ss1);
table->MemoryACPILevel.MpllSs2 = cpu_to_be32(pi->clock_registers.mpll_ss2);
table->MemoryACPILevel.EnabledForThrottle = 0;
table->MemoryACPILevel.EnabledForActivity = 0;
table->MemoryACPILevel.UpH = 0;
table->MemoryACPILevel.DownH = 100;
table->MemoryACPILevel.VoltageDownH = 0;
table->MemoryACPILevel.ActivityLevel =
cpu_to_be16((u16)pi->mclk_activity_target);
table->MemoryACPILevel.StutterEnable = false;
table->MemoryACPILevel.StrobeEnable = false;
table->MemoryACPILevel.EdcReadEnable = false;
table->MemoryACPILevel.EdcWriteEnable = false;
table->MemoryACPILevel.RttEnable = false;
return 0;
}
static int ci_enable_ulv(struct radeon_device *rdev, bool enable)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct ci_ulv_parm *ulv = &pi->ulv;
if (ulv->supported) {
if (enable)
return (ci_send_msg_to_smc(rdev, PPSMC_MSG_EnableULV) == PPSMC_Result_OK) ?
0 : -EINVAL;
else
return (ci_send_msg_to_smc(rdev, PPSMC_MSG_DisableULV) == PPSMC_Result_OK) ?
0 : -EINVAL;
}
return 0;
}
static int ci_populate_ulv_level(struct radeon_device *rdev,
SMU7_Discrete_Ulv *state)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u16 ulv_voltage = rdev->pm.dpm.backbias_response_time;
state->CcPwrDynRm = 0;
state->CcPwrDynRm1 = 0;
if (ulv_voltage == 0) {
pi->ulv.supported = false;
return 0;
}
if (pi->voltage_control != CISLANDS_VOLTAGE_CONTROL_BY_SVID2) {
if (ulv_voltage > rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries[0].v)
state->VddcOffset = 0;
else
state->VddcOffset =
rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries[0].v - ulv_voltage;
} else {
if (ulv_voltage > rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries[0].v)
state->VddcOffsetVid = 0;
else
state->VddcOffsetVid = (u8)
((rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries[0].v - ulv_voltage) *
VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
}
state->VddcPhase = pi->vddc_phase_shed_control ? 0 : 1;
state->CcPwrDynRm = cpu_to_be32(state->CcPwrDynRm);
state->CcPwrDynRm1 = cpu_to_be32(state->CcPwrDynRm1);
state->VddcOffset = cpu_to_be16(state->VddcOffset);
return 0;
}
static int ci_calculate_sclk_params(struct radeon_device *rdev,
u32 engine_clock,
SMU7_Discrete_GraphicsLevel *sclk)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct atom_clock_dividers dividers;
u32 spll_func_cntl_3 = pi->clock_registers.cg_spll_func_cntl_3;
u32 spll_func_cntl_4 = pi->clock_registers.cg_spll_func_cntl_4;
u32 cg_spll_spread_spectrum = pi->clock_registers.cg_spll_spread_spectrum;
u32 cg_spll_spread_spectrum_2 = pi->clock_registers.cg_spll_spread_spectrum_2;
u32 reference_clock = rdev->clock.spll.reference_freq;
u32 reference_divider;
u32 fbdiv;
int ret;
ret = radeon_atom_get_clock_dividers(rdev,
COMPUTE_GPUCLK_INPUT_FLAG_SCLK,
engine_clock, false, &dividers);
if (ret)
return ret;
reference_divider = 1 + dividers.ref_div;
fbdiv = dividers.fb_div & 0x3FFFFFF;
spll_func_cntl_3 &= ~SPLL_FB_DIV_MASK;
spll_func_cntl_3 |= SPLL_FB_DIV(fbdiv);
spll_func_cntl_3 |= SPLL_DITHEN;
if (pi->caps_sclk_ss_support) {
struct radeon_atom_ss ss;
u32 vco_freq = engine_clock * dividers.post_div;
if (radeon_atombios_get_asic_ss_info(rdev, &ss,
ASIC_INTERNAL_ENGINE_SS, vco_freq)) {
u32 clk_s = reference_clock * 5 / (reference_divider * ss.rate);
u32 clk_v = 4 * ss.percentage * fbdiv / (clk_s * 10000);
cg_spll_spread_spectrum &= ~CLK_S_MASK;
cg_spll_spread_spectrum |= CLK_S(clk_s);
cg_spll_spread_spectrum |= SSEN;
cg_spll_spread_spectrum_2 &= ~CLK_V_MASK;
cg_spll_spread_spectrum_2 |= CLK_V(clk_v);
}
}
sclk->SclkFrequency = engine_clock;
sclk->CgSpllFuncCntl3 = spll_func_cntl_3;
sclk->CgSpllFuncCntl4 = spll_func_cntl_4;
sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum;
sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2;
sclk->SclkDid = (u8)dividers.post_divider;
return 0;
}
static int ci_populate_single_graphic_level(struct radeon_device *rdev,
u32 engine_clock,
u16 sclk_activity_level_t,
SMU7_Discrete_GraphicsLevel *graphic_level)
{
struct ci_power_info *pi = ci_get_pi(rdev);
int ret;
ret = ci_calculate_sclk_params(rdev, engine_clock, graphic_level);
if (ret)
return ret;
ret = ci_get_dependency_volt_by_clk(rdev,
&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk,
engine_clock, &graphic_level->MinVddc);
if (ret)
return ret;
graphic_level->SclkFrequency = engine_clock;
graphic_level->Flags = 0;
graphic_level->MinVddcPhases = 1;
if (pi->vddc_phase_shed_control)
ci_populate_phase_value_based_on_sclk(rdev,
&rdev->pm.dpm.dyn_state.phase_shedding_limits_table,
engine_clock,
&graphic_level->MinVddcPhases);
graphic_level->ActivityLevel = sclk_activity_level_t;
graphic_level->CcPwrDynRm = 0;
graphic_level->CcPwrDynRm1 = 0;
graphic_level->EnabledForActivity = 1;
graphic_level->EnabledForThrottle = 1;
graphic_level->UpH = 0;
graphic_level->DownH = 0;
graphic_level->VoltageDownH = 0;
graphic_level->PowerThrottle = 0;
if (pi->caps_sclk_ds)
graphic_level->DeepSleepDivId = ci_get_sleep_divider_id_from_clock(rdev,
engine_clock,
CISLAND_MINIMUM_ENGINE_CLOCK);
graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
graphic_level->Flags = cpu_to_be32(graphic_level->Flags);
graphic_level->MinVddc = cpu_to_be32(graphic_level->MinVddc * VOLTAGE_SCALE);
graphic_level->MinVddcPhases = cpu_to_be32(graphic_level->MinVddcPhases);
graphic_level->SclkFrequency = cpu_to_be32(graphic_level->SclkFrequency);
graphic_level->ActivityLevel = cpu_to_be16(graphic_level->ActivityLevel);
graphic_level->CgSpllFuncCntl3 = cpu_to_be32(graphic_level->CgSpllFuncCntl3);
graphic_level->CgSpllFuncCntl4 = cpu_to_be32(graphic_level->CgSpllFuncCntl4);
graphic_level->SpllSpreadSpectrum = cpu_to_be32(graphic_level->SpllSpreadSpectrum);
graphic_level->SpllSpreadSpectrum2 = cpu_to_be32(graphic_level->SpllSpreadSpectrum2);
graphic_level->CcPwrDynRm = cpu_to_be32(graphic_level->CcPwrDynRm);
graphic_level->CcPwrDynRm1 = cpu_to_be32(graphic_level->CcPwrDynRm1);
return 0;
}
static int ci_populate_all_graphic_levels(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct ci_dpm_table *dpm_table = &pi->dpm_table;
u32 level_array_address = pi->dpm_table_start +
offsetof(SMU7_Discrete_DpmTable, GraphicsLevel);
u32 level_array_size = sizeof(SMU7_Discrete_GraphicsLevel) *
SMU7_MAX_LEVELS_GRAPHICS;
SMU7_Discrete_GraphicsLevel *levels = pi->smc_state_table.GraphicsLevel;
u32 i, ret;
memset(levels, 0, level_array_size);
for (i = 0; i < dpm_table->sclk_table.count; i++) {
ret = ci_populate_single_graphic_level(rdev,
dpm_table->sclk_table.dpm_levels[i].value,
(u16)pi->activity_target[i],
&pi->smc_state_table.GraphicsLevel[i]);
if (ret)
return ret;
if (i == (dpm_table->sclk_table.count - 1))
pi->smc_state_table.GraphicsLevel[i].DisplayWatermark =
PPSMC_DISPLAY_WATERMARK_HIGH;
}
pi->smc_state_table.GraphicsDpmLevelCount = (u8)dpm_table->sclk_table.count;
pi->dpm_level_enable_mask.sclk_dpm_enable_mask =
ci_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
ret = ci_copy_bytes_to_smc(rdev, level_array_address,
(u8 *)levels, level_array_size,
pi->sram_end);
if (ret)
return ret;
return 0;
}
static int ci_populate_ulv_state(struct radeon_device *rdev,
SMU7_Discrete_Ulv *ulv_level)
{
return ci_populate_ulv_level(rdev, ulv_level);
}
static int ci_populate_all_memory_levels(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct ci_dpm_table *dpm_table = &pi->dpm_table;
u32 level_array_address = pi->dpm_table_start +
offsetof(SMU7_Discrete_DpmTable, MemoryLevel);
u32 level_array_size = sizeof(SMU7_Discrete_MemoryLevel) *
SMU7_MAX_LEVELS_MEMORY;
SMU7_Discrete_MemoryLevel *levels = pi->smc_state_table.MemoryLevel;
u32 i, ret;
memset(levels, 0, level_array_size);
for (i = 0; i < dpm_table->mclk_table.count; i++) {
if (dpm_table->mclk_table.dpm_levels[i].value == 0)
return -EINVAL;
ret = ci_populate_single_memory_level(rdev,
dpm_table->mclk_table.dpm_levels[i].value,
&pi->smc_state_table.MemoryLevel[i]);
if (ret)
return ret;
}
pi->smc_state_table.MemoryLevel[0].ActivityLevel = cpu_to_be16(0x1F);
pi->smc_state_table.MemoryDpmLevelCount = (u8)dpm_table->mclk_table.count;
pi->dpm_level_enable_mask.mclk_dpm_enable_mask =
ci_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
pi->smc_state_table.MemoryLevel[dpm_table->mclk_table.count - 1].DisplayWatermark =
PPSMC_DISPLAY_WATERMARK_HIGH;
ret = ci_copy_bytes_to_smc(rdev, level_array_address,
(u8 *)levels, level_array_size,
pi->sram_end);
if (ret)
return ret;
return 0;
}
static void ci_reset_single_dpm_table(struct radeon_device *rdev,
struct ci_single_dpm_table* dpm_table,
u32 count)
{
u32 i;
dpm_table->count = count;
for (i = 0; i < MAX_REGULAR_DPM_NUMBER; i++)
dpm_table->dpm_levels[i].enabled = false;
}
static void ci_setup_pcie_table_entry(struct ci_single_dpm_table* dpm_table,
u32 index, u32 pcie_gen, u32 pcie_lanes)
{
dpm_table->dpm_levels[index].value = pcie_gen;
dpm_table->dpm_levels[index].param1 = pcie_lanes;
dpm_table->dpm_levels[index].enabled = true;
}
static int ci_setup_default_pcie_tables(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
if (!pi->use_pcie_performance_levels && !pi->use_pcie_powersaving_levels)
return -EINVAL;
if (pi->use_pcie_performance_levels && !pi->use_pcie_powersaving_levels) {
pi->pcie_gen_powersaving = pi->pcie_gen_performance;
pi->pcie_lane_powersaving = pi->pcie_lane_performance;
} else if (!pi->use_pcie_performance_levels && pi->use_pcie_powersaving_levels) {
pi->pcie_gen_performance = pi->pcie_gen_powersaving;
pi->pcie_lane_performance = pi->pcie_lane_powersaving;
}
ci_reset_single_dpm_table(rdev,
&pi->dpm_table.pcie_speed_table,
SMU7_MAX_LEVELS_LINK);
ci_setup_pcie_table_entry(&pi->dpm_table.pcie_speed_table, 0,
pi->pcie_gen_powersaving.min,
pi->pcie_lane_powersaving.min);
ci_setup_pcie_table_entry(&pi->dpm_table.pcie_speed_table, 1,
pi->pcie_gen_performance.min,
pi->pcie_lane_performance.min);
ci_setup_pcie_table_entry(&pi->dpm_table.pcie_speed_table, 2,
pi->pcie_gen_powersaving.min,
pi->pcie_lane_powersaving.max);
ci_setup_pcie_table_entry(&pi->dpm_table.pcie_speed_table, 3,
pi->pcie_gen_performance.min,
pi->pcie_lane_performance.max);
ci_setup_pcie_table_entry(&pi->dpm_table.pcie_speed_table, 4,
pi->pcie_gen_powersaving.max,
pi->pcie_lane_powersaving.max);
ci_setup_pcie_table_entry(&pi->dpm_table.pcie_speed_table, 5,
pi->pcie_gen_performance.max,
pi->pcie_lane_performance.max);
pi->dpm_table.pcie_speed_table.count = 6;
return 0;
}
static int ci_setup_default_dpm_tables(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct radeon_clock_voltage_dependency_table *allowed_sclk_vddc_table =
&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
struct radeon_clock_voltage_dependency_table *allowed_mclk_table =
&rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk;
struct radeon_cac_leakage_table *std_voltage_table =
&rdev->pm.dpm.dyn_state.cac_leakage_table;
u32 i;
if (allowed_sclk_vddc_table == NULL)
return -EINVAL;
if (allowed_sclk_vddc_table->count < 1)
return -EINVAL;
if (allowed_mclk_table == NULL)
return -EINVAL;
if (allowed_mclk_table->count < 1)
return -EINVAL;
memset(&pi->dpm_table, 0, sizeof(struct ci_dpm_table));
ci_reset_single_dpm_table(rdev,
&pi->dpm_table.sclk_table,
SMU7_MAX_LEVELS_GRAPHICS);
ci_reset_single_dpm_table(rdev,
&pi->dpm_table.mclk_table,
SMU7_MAX_LEVELS_MEMORY);
ci_reset_single_dpm_table(rdev,
&pi->dpm_table.vddc_table,
SMU7_MAX_LEVELS_VDDC);
ci_reset_single_dpm_table(rdev,
&pi->dpm_table.vddci_table,
SMU7_MAX_LEVELS_VDDCI);
ci_reset_single_dpm_table(rdev,
&pi->dpm_table.mvdd_table,
SMU7_MAX_LEVELS_MVDD);
pi->dpm_table.sclk_table.count = 0;
for (i = 0; i < allowed_sclk_vddc_table->count; i++) {
if ((i == 0) ||
(pi->dpm_table.sclk_table.dpm_levels[pi->dpm_table.sclk_table.count-1].value !=
allowed_sclk_vddc_table->entries[i].clk)) {
pi->dpm_table.sclk_table.dpm_levels[pi->dpm_table.sclk_table.count].value =
allowed_sclk_vddc_table->entries[i].clk;
pi->dpm_table.sclk_table.dpm_levels[pi->dpm_table.sclk_table.count].enabled = true;
pi->dpm_table.sclk_table.count++;
}
}
pi->dpm_table.mclk_table.count = 0;
for (i = 0; i < allowed_mclk_table->count; i++) {
if ((i==0) ||
(pi->dpm_table.mclk_table.dpm_levels[pi->dpm_table.mclk_table.count-1].value !=
allowed_mclk_table->entries[i].clk)) {
pi->dpm_table.mclk_table.dpm_levels[pi->dpm_table.mclk_table.count].value =
allowed_mclk_table->entries[i].clk;
pi->dpm_table.mclk_table.dpm_levels[pi->dpm_table.mclk_table.count].enabled = true;
pi->dpm_table.mclk_table.count++;
}
}
for (i = 0; i < allowed_sclk_vddc_table->count; i++) {
pi->dpm_table.vddc_table.dpm_levels[i].value =
allowed_sclk_vddc_table->entries[i].v;
pi->dpm_table.vddc_table.dpm_levels[i].param1 =
std_voltage_table->entries[i].leakage;
pi->dpm_table.vddc_table.dpm_levels[i].enabled = true;
}
pi->dpm_table.vddc_table.count = allowed_sclk_vddc_table->count;
allowed_mclk_table = &rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk;
if (allowed_mclk_table) {
for (i = 0; i < allowed_mclk_table->count; i++) {
pi->dpm_table.vddci_table.dpm_levels[i].value =
allowed_mclk_table->entries[i].v;
pi->dpm_table.vddci_table.dpm_levels[i].enabled = true;
}
pi->dpm_table.vddci_table.count = allowed_mclk_table->count;
}
allowed_mclk_table = &rdev->pm.dpm.dyn_state.mvdd_dependency_on_mclk;
if (allowed_mclk_table) {
for (i = 0; i < allowed_mclk_table->count; i++) {
pi->dpm_table.mvdd_table.dpm_levels[i].value =
allowed_mclk_table->entries[i].v;
pi->dpm_table.mvdd_table.dpm_levels[i].enabled = true;
}
pi->dpm_table.mvdd_table.count = allowed_mclk_table->count;
}
ci_setup_default_pcie_tables(rdev);
return 0;
}
static int ci_find_boot_level(struct ci_single_dpm_table *table,
u32 value, u32 *boot_level)
{
u32 i;
int ret = -EINVAL;
for(i = 0; i < table->count; i++) {
if (value == table->dpm_levels[i].value) {
*boot_level = i;
ret = 0;
}
}
return ret;
}
static int ci_init_smc_table(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct ci_ulv_parm *ulv = &pi->ulv;
struct radeon_ps *radeon_boot_state = rdev->pm.dpm.boot_ps;
SMU7_Discrete_DpmTable *table = &pi->smc_state_table;
int ret;
ret = ci_setup_default_dpm_tables(rdev);
if (ret)
return ret;
if (pi->voltage_control != CISLANDS_VOLTAGE_CONTROL_NONE)
ci_populate_smc_voltage_tables(rdev, table);
ci_init_fps_limits(rdev);
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_HARDWAREDC)
table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_STEPVDDC)
table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
if (pi->mem_gddr5)
table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
if (ulv->supported) {
ret = ci_populate_ulv_state(rdev, &pi->smc_state_table.Ulv);
if (ret)
return ret;
WREG32_SMC(CG_ULV_PARAMETER, ulv->cg_ulv_parameter);
}
ret = ci_populate_all_graphic_levels(rdev);
if (ret)
return ret;
ret = ci_populate_all_memory_levels(rdev);
if (ret)
return ret;
ci_populate_smc_link_level(rdev, table);
ret = ci_populate_smc_acpi_level(rdev, table);
if (ret)
return ret;
ret = ci_populate_smc_vce_level(rdev, table);
if (ret)
return ret;
ret = ci_populate_smc_acp_level(rdev, table);
if (ret)
return ret;
ret = ci_populate_smc_samu_level(rdev, table);
if (ret)
return ret;
ret = ci_do_program_memory_timing_parameters(rdev);
if (ret)
return ret;
ret = ci_populate_smc_uvd_level(rdev, table);
if (ret)
return ret;
table->UvdBootLevel = 0;
table->VceBootLevel = 0;
table->AcpBootLevel = 0;
table->SamuBootLevel = 0;
table->GraphicsBootLevel = 0;
table->MemoryBootLevel = 0;
ret = ci_find_boot_level(&pi->dpm_table.sclk_table,
pi->vbios_boot_state.sclk_bootup_value,
(u32 *)&pi->smc_state_table.GraphicsBootLevel);
ret = ci_find_boot_level(&pi->dpm_table.mclk_table,
pi->vbios_boot_state.mclk_bootup_value,
(u32 *)&pi->smc_state_table.MemoryBootLevel);
table->BootVddc = pi->vbios_boot_state.vddc_bootup_value;
table->BootVddci = pi->vbios_boot_state.vddci_bootup_value;
table->BootMVdd = pi->vbios_boot_state.mvdd_bootup_value;
ci_populate_smc_initial_state(rdev, radeon_boot_state);
ret = ci_populate_bapm_parameters_in_dpm_table(rdev);
if (ret)
return ret;
table->UVDInterval = 1;
table->VCEInterval = 1;
table->ACPInterval = 1;
table->SAMUInterval = 1;
table->GraphicsVoltageChangeEnable = 1;
table->GraphicsThermThrottleEnable = 1;
table->GraphicsInterval = 1;
table->VoltageInterval = 1;
table->ThermalInterval = 1;
table->TemperatureLimitHigh = (u16)((pi->thermal_temp_setting.temperature_high *
CISLANDS_Q88_FORMAT_CONVERSION_UNIT) / 1000);
table->TemperatureLimitLow = (u16)((pi->thermal_temp_setting.temperature_low *
CISLANDS_Q88_FORMAT_CONVERSION_UNIT) / 1000);
table->MemoryVoltageChangeEnable = 1;
table->MemoryInterval = 1;
table->VoltageResponseTime = 0;
table->VddcVddciDelta = 4000;
table->PhaseResponseTime = 0;
table->MemoryThermThrottleEnable = 1;
table->PCIeBootLinkLevel = 0;
table->PCIeGenInterval = 1;
if (pi->voltage_control == CISLANDS_VOLTAGE_CONTROL_BY_SVID2)
table->SVI2Enable = 1;
else
table->SVI2Enable = 0;
table->ThermGpio = 17;
table->SclkStepSize = 0x4000;
table->SystemFlags = cpu_to_be32(table->SystemFlags);
table->SmioMaskVddcVid = cpu_to_be32(table->SmioMaskVddcVid);
table->SmioMaskVddcPhase = cpu_to_be32(table->SmioMaskVddcPhase);
table->SmioMaskVddciVid = cpu_to_be32(table->SmioMaskVddciVid);
table->SmioMaskMvddVid = cpu_to_be32(table->SmioMaskMvddVid);
table->SclkStepSize = cpu_to_be32(table->SclkStepSize);
table->TemperatureLimitHigh = cpu_to_be16(table->TemperatureLimitHigh);
table->TemperatureLimitLow = cpu_to_be16(table->TemperatureLimitLow);
table->VddcVddciDelta = cpu_to_be16(table->VddcVddciDelta);
table->VoltageResponseTime = cpu_to_be16(table->VoltageResponseTime);
table->PhaseResponseTime = cpu_to_be16(table->PhaseResponseTime);
table->BootVddc = cpu_to_be16(table->BootVddc * VOLTAGE_SCALE);
table->BootVddci = cpu_to_be16(table->BootVddci * VOLTAGE_SCALE);
table->BootMVdd = cpu_to_be16(table->BootMVdd * VOLTAGE_SCALE);
ret = ci_copy_bytes_to_smc(rdev,
pi->dpm_table_start +
offsetof(SMU7_Discrete_DpmTable, SystemFlags),
(u8 *)&table->SystemFlags,
sizeof(SMU7_Discrete_DpmTable) - 3 * sizeof(SMU7_PIDController),
pi->sram_end);
if (ret)
return ret;
return 0;
}
static void ci_trim_single_dpm_states(struct radeon_device *rdev,
struct ci_single_dpm_table *dpm_table,
u32 low_limit, u32 high_limit)
{
u32 i;
for (i = 0; i < dpm_table->count; i++) {
if ((dpm_table->dpm_levels[i].value < low_limit) ||
(dpm_table->dpm_levels[i].value > high_limit))
dpm_table->dpm_levels[i].enabled = false;
else
dpm_table->dpm_levels[i].enabled = true;
}
}
static void ci_trim_pcie_dpm_states(struct radeon_device *rdev,
u32 speed_low, u32 lanes_low,
u32 speed_high, u32 lanes_high)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct ci_single_dpm_table *pcie_table = &pi->dpm_table.pcie_speed_table;
u32 i, j;
for (i = 0; i < pcie_table->count; i++) {
if ((pcie_table->dpm_levels[i].value < speed_low) ||
(pcie_table->dpm_levels[i].param1 < lanes_low) ||
(pcie_table->dpm_levels[i].value > speed_high) ||
(pcie_table->dpm_levels[i].param1 > lanes_high))
pcie_table->dpm_levels[i].enabled = false;
else
pcie_table->dpm_levels[i].enabled = true;
}
for (i = 0; i < pcie_table->count; i++) {
if (pcie_table->dpm_levels[i].enabled) {
for (j = i + 1; j < pcie_table->count; j++) {
if (pcie_table->dpm_levels[j].enabled) {
if ((pcie_table->dpm_levels[i].value == pcie_table->dpm_levels[j].value) &&
(pcie_table->dpm_levels[i].param1 == pcie_table->dpm_levels[j].param1))
pcie_table->dpm_levels[j].enabled = false;
}
}
}
}
}
static int ci_trim_dpm_states(struct radeon_device *rdev,
struct radeon_ps *radeon_state)
{
struct ci_ps *state = ci_get_ps(radeon_state);
struct ci_power_info *pi = ci_get_pi(rdev);
u32 high_limit_count;
if (state->performance_level_count < 1)
return -EINVAL;
if (state->performance_level_count == 1)
high_limit_count = 0;
else
high_limit_count = 1;
ci_trim_single_dpm_states(rdev,
&pi->dpm_table.sclk_table,
state->performance_levels[0].sclk,
state->performance_levels[high_limit_count].sclk);
ci_trim_single_dpm_states(rdev,
&pi->dpm_table.mclk_table,
state->performance_levels[0].mclk,
state->performance_levels[high_limit_count].mclk);
ci_trim_pcie_dpm_states(rdev,
state->performance_levels[0].pcie_gen,
state->performance_levels[0].pcie_lane,
state->performance_levels[high_limit_count].pcie_gen,
state->performance_levels[high_limit_count].pcie_lane);
return 0;
}
static int ci_apply_disp_minimum_voltage_request(struct radeon_device *rdev)
{
struct radeon_clock_voltage_dependency_table *disp_voltage_table =
&rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk;
struct radeon_clock_voltage_dependency_table *vddc_table =
&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
u32 requested_voltage = 0;
u32 i;
if (disp_voltage_table == NULL)
return -EINVAL;
if (!disp_voltage_table->count)
return -EINVAL;
for (i = 0; i < disp_voltage_table->count; i++) {
if (rdev->clock.current_dispclk == disp_voltage_table->entries[i].clk)
requested_voltage = disp_voltage_table->entries[i].v;
}
for (i = 0; i < vddc_table->count; i++) {
if (requested_voltage <= vddc_table->entries[i].v) {
requested_voltage = vddc_table->entries[i].v;
return (ci_send_msg_to_smc_with_parameter(rdev,
PPSMC_MSG_VddC_Request,
requested_voltage * VOLTAGE_SCALE) == PPSMC_Result_OK) ?
0 : -EINVAL;
}
}
return -EINVAL;
}
static int ci_upload_dpm_level_enable_mask(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
PPSMC_Result result;
if (!pi->sclk_dpm_key_disabled) {
if (pi->dpm_level_enable_mask.sclk_dpm_enable_mask) {
result = ci_send_msg_to_smc_with_parameter(rdev,
PPSMC_MSG_SCLKDPM_SetEnabledMask,
pi->dpm_level_enable_mask.sclk_dpm_enable_mask);
if (result != PPSMC_Result_OK)
return -EINVAL;
}
}
if (!pi->mclk_dpm_key_disabled) {
if (pi->dpm_level_enable_mask.mclk_dpm_enable_mask) {
result = ci_send_msg_to_smc_with_parameter(rdev,
PPSMC_MSG_MCLKDPM_SetEnabledMask,
pi->dpm_level_enable_mask.mclk_dpm_enable_mask);
if (result != PPSMC_Result_OK)
return -EINVAL;
}
}
if (!pi->pcie_dpm_key_disabled) {
if (pi->dpm_level_enable_mask.pcie_dpm_enable_mask) {
result = ci_send_msg_to_smc_with_parameter(rdev,
PPSMC_MSG_PCIeDPM_SetEnabledMask,
pi->dpm_level_enable_mask.pcie_dpm_enable_mask);
if (result != PPSMC_Result_OK)
return -EINVAL;
}
}
ci_apply_disp_minimum_voltage_request(rdev);
return 0;
}
static void ci_find_dpm_states_clocks_in_dpm_table(struct radeon_device *rdev,
struct radeon_ps *radeon_state)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct ci_ps *state = ci_get_ps(radeon_state);
struct ci_single_dpm_table *sclk_table = &pi->dpm_table.sclk_table;
u32 sclk = state->performance_levels[state->performance_level_count-1].sclk;
struct ci_single_dpm_table *mclk_table = &pi->dpm_table.mclk_table;
u32 mclk = state->performance_levels[state->performance_level_count-1].mclk;
u32 i;
pi->need_update_smu7_dpm_table = 0;
for (i = 0; i < sclk_table->count; i++) {
if (sclk == sclk_table->dpm_levels[i].value)
break;
}
if (i >= sclk_table->count) {
pi->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
} else {
/* XXX check display min clock requirements */
if (0 != CISLAND_MINIMUM_ENGINE_CLOCK)
pi->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
}
for (i = 0; i < mclk_table->count; i++) {
if (mclk == mclk_table->dpm_levels[i].value)
break;
}
if (i >= mclk_table->count)
pi->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
if (rdev->pm.dpm.current_active_crtc_count !=
rdev->pm.dpm.new_active_crtc_count)
pi->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;
}
static int ci_populate_and_upload_sclk_mclk_dpm_levels(struct radeon_device *rdev,
struct radeon_ps *radeon_state)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct ci_ps *state = ci_get_ps(radeon_state);
u32 sclk = state->performance_levels[state->performance_level_count-1].sclk;
u32 mclk = state->performance_levels[state->performance_level_count-1].mclk;
struct ci_dpm_table *dpm_table = &pi->dpm_table;
int ret;
if (!pi->need_update_smu7_dpm_table)
return 0;
if (pi->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK)
dpm_table->sclk_table.dpm_levels[dpm_table->sclk_table.count-1].value = sclk;
if (pi->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)
dpm_table->mclk_table.dpm_levels[dpm_table->mclk_table.count-1].value = mclk;
if (pi->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK)) {
ret = ci_populate_all_graphic_levels(rdev);
if (ret)
return ret;
}
if (pi->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_MCLK | DPMTABLE_UPDATE_MCLK)) {
ret = ci_populate_all_memory_levels(rdev);
if (ret)
return ret;
}
return 0;
}
static int ci_enable_uvd_dpm(struct radeon_device *rdev, bool enable)
{
struct ci_power_info *pi = ci_get_pi(rdev);
const struct radeon_clock_and_voltage_limits *max_limits;
int i;
if (rdev->pm.dpm.ac_power)
max_limits = &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
else
max_limits = &rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc;
if (enable) {
pi->dpm_level_enable_mask.uvd_dpm_enable_mask = 0;
for (i = rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.count - 1; i >= 0; i--) {
if (rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[i].v <= max_limits->vddc) {
pi->dpm_level_enable_mask.uvd_dpm_enable_mask |= 1 << i;
if (!pi->caps_uvd_dpm)
break;
}
}
ci_send_msg_to_smc_with_parameter(rdev,
PPSMC_MSG_UVDDPM_SetEnabledMask,
pi->dpm_level_enable_mask.uvd_dpm_enable_mask);
if (pi->last_mclk_dpm_enable_mask & 0x1) {
pi->uvd_enabled = true;
pi->dpm_level_enable_mask.mclk_dpm_enable_mask &= 0xFFFFFFFE;
ci_send_msg_to_smc_with_parameter(rdev,
PPSMC_MSG_MCLKDPM_SetEnabledMask,
pi->dpm_level_enable_mask.mclk_dpm_enable_mask);
}
} else {
if (pi->last_mclk_dpm_enable_mask & 0x1) {
pi->uvd_enabled = false;
pi->dpm_level_enable_mask.mclk_dpm_enable_mask |= 1;
ci_send_msg_to_smc_with_parameter(rdev,
PPSMC_MSG_MCLKDPM_SetEnabledMask,
pi->dpm_level_enable_mask.mclk_dpm_enable_mask);
}
}
return (ci_send_msg_to_smc(rdev, enable ?
PPSMC_MSG_UVDDPM_Enable : PPSMC_MSG_UVDDPM_Disable) == PPSMC_Result_OK) ?
0 : -EINVAL;
}
#if 0
static int ci_enable_vce_dpm(struct radeon_device *rdev, bool enable)
{
struct ci_power_info *pi = ci_get_pi(rdev);
const struct radeon_clock_and_voltage_limits *max_limits;
int i;
if (rdev->pm.dpm.ac_power)
max_limits = &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
else
max_limits = &rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc;
if (enable) {
pi->dpm_level_enable_mask.vce_dpm_enable_mask = 0;
for (i = rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.count - 1; i >= 0; i--) {
if (rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[i].v <= max_limits->vddc) {
pi->dpm_level_enable_mask.vce_dpm_enable_mask |= 1 << i;
if (!pi->caps_vce_dpm)
break;
}
}
ci_send_msg_to_smc_with_parameter(rdev,
PPSMC_MSG_VCEDPM_SetEnabledMask,
pi->dpm_level_enable_mask.vce_dpm_enable_mask);
}
return (ci_send_msg_to_smc(rdev, enable ?
PPSMC_MSG_VCEDPM_Enable : PPSMC_MSG_VCEDPM_Disable) == PPSMC_Result_OK) ?
0 : -EINVAL;
}
static int ci_enable_samu_dpm(struct radeon_device *rdev, bool enable)
{
struct ci_power_info *pi = ci_get_pi(rdev);
const struct radeon_clock_and_voltage_limits *max_limits;
int i;
if (rdev->pm.dpm.ac_power)
max_limits = &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
else
max_limits = &rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc;
if (enable) {
pi->dpm_level_enable_mask.samu_dpm_enable_mask = 0;
for (i = rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.count - 1; i >= 0; i--) {
if (rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries[i].v <= max_limits->vddc) {
pi->dpm_level_enable_mask.samu_dpm_enable_mask |= 1 << i;
if (!pi->caps_samu_dpm)
break;
}
}
ci_send_msg_to_smc_with_parameter(rdev,
PPSMC_MSG_SAMUDPM_SetEnabledMask,
pi->dpm_level_enable_mask.samu_dpm_enable_mask);
}
return (ci_send_msg_to_smc(rdev, enable ?
PPSMC_MSG_SAMUDPM_Enable : PPSMC_MSG_SAMUDPM_Disable) == PPSMC_Result_OK) ?
0 : -EINVAL;
}
static int ci_enable_acp_dpm(struct radeon_device *rdev, bool enable)
{
struct ci_power_info *pi = ci_get_pi(rdev);
const struct radeon_clock_and_voltage_limits *max_limits;
int i;
if (rdev->pm.dpm.ac_power)
max_limits = &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
else
max_limits = &rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc;
if (enable) {
pi->dpm_level_enable_mask.acp_dpm_enable_mask = 0;
for (i = rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.count - 1; i >= 0; i--) {
if (rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries[i].v <= max_limits->vddc) {
pi->dpm_level_enable_mask.acp_dpm_enable_mask |= 1 << i;
if (!pi->caps_acp_dpm)
break;
}
}
ci_send_msg_to_smc_with_parameter(rdev,
PPSMC_MSG_ACPDPM_SetEnabledMask,
pi->dpm_level_enable_mask.acp_dpm_enable_mask);
}
return (ci_send_msg_to_smc(rdev, enable ?
PPSMC_MSG_ACPDPM_Enable : PPSMC_MSG_ACPDPM_Disable) == PPSMC_Result_OK) ?
0 : -EINVAL;
}
#endif
static int ci_update_uvd_dpm(struct radeon_device *rdev, bool gate)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u32 tmp;
if (!gate) {
if (pi->caps_uvd_dpm ||
(rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.count <= 0))
pi->smc_state_table.UvdBootLevel = 0;
else
pi->smc_state_table.UvdBootLevel =
rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.count - 1;
tmp = RREG32_SMC(DPM_TABLE_475);
tmp &= ~UvdBootLevel_MASK;
tmp |= UvdBootLevel(pi->smc_state_table.UvdBootLevel);
WREG32_SMC(DPM_TABLE_475, tmp);
}
return ci_enable_uvd_dpm(rdev, !gate);
}
#if 0
static u8 ci_get_vce_boot_level(struct radeon_device *rdev)
{
u8 i;
u32 min_evclk = 30000; /* ??? */
struct radeon_vce_clock_voltage_dependency_table *table =
&rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
for (i = 0; i < table->count; i++) {
if (table->entries[i].evclk >= min_evclk)
return i;
}
return table->count - 1;
}
static int ci_update_vce_dpm(struct radeon_device *rdev,
struct radeon_ps *radeon_new_state,
struct radeon_ps *radeon_current_state)
{
struct ci_power_info *pi = ci_get_pi(rdev);
bool new_vce_clock_non_zero = (radeon_new_state->evclk != 0);
bool old_vce_clock_non_zero = (radeon_current_state->evclk != 0);
int ret = 0;
u32 tmp;
if (new_vce_clock_non_zero != old_vce_clock_non_zero) {
if (new_vce_clock_non_zero) {
pi->smc_state_table.VceBootLevel = ci_get_vce_boot_level(rdev);
tmp = RREG32_SMC(DPM_TABLE_475);
tmp &= ~VceBootLevel_MASK;
tmp |= VceBootLevel(pi->smc_state_table.VceBootLevel);
WREG32_SMC(DPM_TABLE_475, tmp);
ret = ci_enable_vce_dpm(rdev, true);
} else {
ret = ci_enable_vce_dpm(rdev, false);
}
}
return ret;
}
static int ci_update_samu_dpm(struct radeon_device *rdev, bool gate)
{
return ci_enable_samu_dpm(rdev, gate);
}
static int ci_update_acp_dpm(struct radeon_device *rdev, bool gate)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u32 tmp;
if (!gate) {
pi->smc_state_table.AcpBootLevel = 0;
tmp = RREG32_SMC(DPM_TABLE_475);
tmp &= ~AcpBootLevel_MASK;
tmp |= AcpBootLevel(pi->smc_state_table.AcpBootLevel);
WREG32_SMC(DPM_TABLE_475, tmp);
}
return ci_enable_acp_dpm(rdev, !gate);
}
#endif
static int ci_generate_dpm_level_enable_mask(struct radeon_device *rdev,
struct radeon_ps *radeon_state)
{
struct ci_power_info *pi = ci_get_pi(rdev);
int ret;
ret = ci_trim_dpm_states(rdev, radeon_state);
if (ret)
return ret;
pi->dpm_level_enable_mask.sclk_dpm_enable_mask =
ci_get_dpm_level_enable_mask_value(&pi->dpm_table.sclk_table);
pi->dpm_level_enable_mask.mclk_dpm_enable_mask =
ci_get_dpm_level_enable_mask_value(&pi->dpm_table.mclk_table);
pi->last_mclk_dpm_enable_mask =
pi->dpm_level_enable_mask.mclk_dpm_enable_mask;
if (pi->uvd_enabled) {
if (pi->dpm_level_enable_mask.mclk_dpm_enable_mask & 1)
pi->dpm_level_enable_mask.mclk_dpm_enable_mask &= 0xFFFFFFFE;
}
pi->dpm_level_enable_mask.pcie_dpm_enable_mask =
ci_get_dpm_level_enable_mask_value(&pi->dpm_table.pcie_speed_table);
return 0;
}
static u32 ci_get_lowest_enabled_level(struct radeon_device *rdev,
u32 level_mask)
{
u32 level = 0;
while ((level_mask & (1 << level)) == 0)
level++;
return level;
}
int ci_dpm_force_performance_level(struct radeon_device *rdev,
enum radeon_dpm_forced_level level)
{
struct ci_power_info *pi = ci_get_pi(rdev);
PPSMC_Result smc_result;
u32 tmp, levels, i;
int ret;
if (level == RADEON_DPM_FORCED_LEVEL_HIGH) {
if ((!pi->sclk_dpm_key_disabled) &&
pi->dpm_level_enable_mask.sclk_dpm_enable_mask) {
levels = 0;
tmp = pi->dpm_level_enable_mask.sclk_dpm_enable_mask;
while (tmp >>= 1)
levels++;
if (levels) {
ret = ci_dpm_force_state_sclk(rdev, levels);
if (ret)
return ret;
for (i = 0; i < rdev->usec_timeout; i++) {
tmp = (RREG32_SMC(TARGET_AND_CURRENT_PROFILE_INDEX) &
CURR_SCLK_INDEX_MASK) >> CURR_SCLK_INDEX_SHIFT;
if (tmp == levels)
break;
udelay(1);
}
}
}
if ((!pi->mclk_dpm_key_disabled) &&
pi->dpm_level_enable_mask.mclk_dpm_enable_mask) {
levels = 0;
tmp = pi->dpm_level_enable_mask.mclk_dpm_enable_mask;
while (tmp >>= 1)
levels++;
if (levels) {
ret = ci_dpm_force_state_mclk(rdev, levels);
if (ret)
return ret;
for (i = 0; i < rdev->usec_timeout; i++) {
tmp = (RREG32_SMC(TARGET_AND_CURRENT_PROFILE_INDEX) &
CURR_MCLK_INDEX_MASK) >> CURR_MCLK_INDEX_SHIFT;
if (tmp == levels)
break;
udelay(1);
}
}
}
if ((!pi->pcie_dpm_key_disabled) &&
pi->dpm_level_enable_mask.pcie_dpm_enable_mask) {
levels = 0;
tmp = pi->dpm_level_enable_mask.pcie_dpm_enable_mask;
while (tmp >>= 1)
levels++;
if (levels) {
ret = ci_dpm_force_state_pcie(rdev, level);
if (ret)
return ret;
for (i = 0; i < rdev->usec_timeout; i++) {
tmp = (RREG32_SMC(TARGET_AND_CURRENT_PROFILE_INDEX_1) &
CURR_PCIE_INDEX_MASK) >> CURR_PCIE_INDEX_SHIFT;
if (tmp == levels)
break;
udelay(1);
}
}
}
} else if (level == RADEON_DPM_FORCED_LEVEL_LOW) {
if ((!pi->sclk_dpm_key_disabled) &&
pi->dpm_level_enable_mask.sclk_dpm_enable_mask) {
levels = ci_get_lowest_enabled_level(rdev,
pi->dpm_level_enable_mask.sclk_dpm_enable_mask);
ret = ci_dpm_force_state_sclk(rdev, levels);
if (ret)
return ret;
for (i = 0; i < rdev->usec_timeout; i++) {
tmp = (RREG32_SMC(TARGET_AND_CURRENT_PROFILE_INDEX) &
CURR_SCLK_INDEX_MASK) >> CURR_SCLK_INDEX_SHIFT;
if (tmp == levels)
break;
udelay(1);
}
}
if ((!pi->mclk_dpm_key_disabled) &&
pi->dpm_level_enable_mask.mclk_dpm_enable_mask) {
levels = ci_get_lowest_enabled_level(rdev,
pi->dpm_level_enable_mask.mclk_dpm_enable_mask);
ret = ci_dpm_force_state_mclk(rdev, levels);
if (ret)
return ret;
for (i = 0; i < rdev->usec_timeout; i++) {
tmp = (RREG32_SMC(TARGET_AND_CURRENT_PROFILE_INDEX) &
CURR_MCLK_INDEX_MASK) >> CURR_MCLK_INDEX_SHIFT;
if (tmp == levels)
break;
udelay(1);
}
}
if ((!pi->pcie_dpm_key_disabled) &&
pi->dpm_level_enable_mask.pcie_dpm_enable_mask) {
levels = ci_get_lowest_enabled_level(rdev,
pi->dpm_level_enable_mask.pcie_dpm_enable_mask);
ret = ci_dpm_force_state_pcie(rdev, levels);
if (ret)
return ret;
for (i = 0; i < rdev->usec_timeout; i++) {
tmp = (RREG32_SMC(TARGET_AND_CURRENT_PROFILE_INDEX_1) &
CURR_PCIE_INDEX_MASK) >> CURR_PCIE_INDEX_SHIFT;
if (tmp == levels)
break;
udelay(1);
}
}
} else if (level == RADEON_DPM_FORCED_LEVEL_AUTO) {
if (!pi->sclk_dpm_key_disabled) {
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_NoForcedLevel);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
if (!pi->mclk_dpm_key_disabled) {
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_MCLKDPM_NoForcedLevel);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
if (!pi->pcie_dpm_key_disabled) {
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_PCIeDPM_UnForceLevel);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
}
rdev->pm.dpm.forced_level = level;
return 0;
}
static int ci_set_mc_special_registers(struct radeon_device *rdev,
struct ci_mc_reg_table *table)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u8 i, j, k;
u32 temp_reg;
for (i = 0, j = table->last; i < table->last; i++) {
if (j >= SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE)
return -EINVAL;
switch(table->mc_reg_address[i].s1 << 2) {
case MC_SEQ_MISC1:
temp_reg = RREG32(MC_PMG_CMD_EMRS);
table->mc_reg_address[j].s1 = MC_PMG_CMD_EMRS >> 2;
table->mc_reg_address[j].s0 = MC_SEQ_PMG_CMD_EMRS_LP >> 2;
for (k = 0; k < table->num_entries; k++) {
table->mc_reg_table_entry[k].mc_data[j] =
((temp_reg & 0xffff0000)) | ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
}
j++;
if (j >= SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE)
return -EINVAL;
temp_reg = RREG32(MC_PMG_CMD_MRS);
table->mc_reg_address[j].s1 = MC_PMG_CMD_MRS >> 2;
table->mc_reg_address[j].s0 = MC_SEQ_PMG_CMD_MRS_LP >> 2;
for (k = 0; k < table->num_entries; k++) {
table->mc_reg_table_entry[k].mc_data[j] =
(temp_reg & 0xffff0000) | (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
if (!pi->mem_gddr5)
table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
}
j++;
if (j > SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE)
return -EINVAL;
if (!pi->mem_gddr5) {
table->mc_reg_address[j].s1 = MC_PMG_AUTO_CMD >> 2;
table->mc_reg_address[j].s0 = MC_PMG_AUTO_CMD >> 2;
for (k = 0; k < table->num_entries; k++) {
table->mc_reg_table_entry[k].mc_data[j] =
(table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
}
j++;
if (j > SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE)
return -EINVAL;
}
break;
case MC_SEQ_RESERVE_M:
temp_reg = RREG32(MC_PMG_CMD_MRS1);
table->mc_reg_address[j].s1 = MC_PMG_CMD_MRS1 >> 2;
table->mc_reg_address[j].s0 = MC_SEQ_PMG_CMD_MRS1_LP >> 2;
for (k = 0; k < table->num_entries; k++) {
table->mc_reg_table_entry[k].mc_data[j] =
(temp_reg & 0xffff0000) | (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
}
j++;
if (j > SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE)
return -EINVAL;
break;
default:
break;
}
}
table->last = j;
return 0;
}
static bool ci_check_s0_mc_reg_index(u16 in_reg, u16 *out_reg)
{
bool result = true;
switch(in_reg) {
case MC_SEQ_RAS_TIMING >> 2:
*out_reg = MC_SEQ_RAS_TIMING_LP >> 2;
break;
case MC_SEQ_DLL_STBY >> 2:
*out_reg = MC_SEQ_DLL_STBY_LP >> 2;
break;
case MC_SEQ_G5PDX_CMD0 >> 2:
*out_reg = MC_SEQ_G5PDX_CMD0_LP >> 2;
break;
case MC_SEQ_G5PDX_CMD1 >> 2:
*out_reg = MC_SEQ_G5PDX_CMD1_LP >> 2;
break;
case MC_SEQ_G5PDX_CTRL >> 2:
*out_reg = MC_SEQ_G5PDX_CTRL_LP >> 2;
break;
case MC_SEQ_CAS_TIMING >> 2:
*out_reg = MC_SEQ_CAS_TIMING_LP >> 2;
break;
case MC_SEQ_MISC_TIMING >> 2:
*out_reg = MC_SEQ_MISC_TIMING_LP >> 2;
break;
case MC_SEQ_MISC_TIMING2 >> 2:
*out_reg = MC_SEQ_MISC_TIMING2_LP >> 2;
break;
case MC_SEQ_PMG_DVS_CMD >> 2:
*out_reg = MC_SEQ_PMG_DVS_CMD_LP >> 2;
break;
case MC_SEQ_PMG_DVS_CTL >> 2:
*out_reg = MC_SEQ_PMG_DVS_CTL_LP >> 2;
break;
case MC_SEQ_RD_CTL_D0 >> 2:
*out_reg = MC_SEQ_RD_CTL_D0_LP >> 2;
break;
case MC_SEQ_RD_CTL_D1 >> 2:
*out_reg = MC_SEQ_RD_CTL_D1_LP >> 2;
break;
case MC_SEQ_WR_CTL_D0 >> 2:
*out_reg = MC_SEQ_WR_CTL_D0_LP >> 2;
break;
case MC_SEQ_WR_CTL_D1 >> 2:
*out_reg = MC_SEQ_WR_CTL_D1_LP >> 2;
break;
case MC_PMG_CMD_EMRS >> 2:
*out_reg = MC_SEQ_PMG_CMD_EMRS_LP >> 2;
break;
case MC_PMG_CMD_MRS >> 2:
*out_reg = MC_SEQ_PMG_CMD_MRS_LP >> 2;
break;
case MC_PMG_CMD_MRS1 >> 2:
*out_reg = MC_SEQ_PMG_CMD_MRS1_LP >> 2;
break;
case MC_SEQ_PMG_TIMING >> 2:
*out_reg = MC_SEQ_PMG_TIMING_LP >> 2;
break;
case MC_PMG_CMD_MRS2 >> 2:
*out_reg = MC_SEQ_PMG_CMD_MRS2_LP >> 2;
break;
case MC_SEQ_WR_CTL_2 >> 2:
*out_reg = MC_SEQ_WR_CTL_2_LP >> 2;
break;
default:
result = false;
break;
}
return result;
}
static void ci_set_valid_flag(struct ci_mc_reg_table *table)
{
u8 i, j;
for (i = 0; i < table->last; i++) {
for (j = 1; j < table->num_entries; j++) {
if (table->mc_reg_table_entry[j-1].mc_data[i] !=
table->mc_reg_table_entry[j].mc_data[i]) {
table->valid_flag |= 1 << i;
break;
}
}
}
}
static void ci_set_s0_mc_reg_index(struct ci_mc_reg_table *table)
{
u32 i;
u16 address;
for (i = 0; i < table->last; i++) {
table->mc_reg_address[i].s0 =
ci_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address) ?
address : table->mc_reg_address[i].s1;
}
}
static int ci_copy_vbios_mc_reg_table(const struct atom_mc_reg_table *table,
struct ci_mc_reg_table *ci_table)
{
u8 i, j;
if (table->last > SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE)
return -EINVAL;
if (table->num_entries > MAX_AC_TIMING_ENTRIES)
return -EINVAL;
for (i = 0; i < table->last; i++)
ci_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
ci_table->last = table->last;
for (i = 0; i < table->num_entries; i++) {
ci_table->mc_reg_table_entry[i].mclk_max =
table->mc_reg_table_entry[i].mclk_max;
for (j = 0; j < table->last; j++)
ci_table->mc_reg_table_entry[i].mc_data[j] =
table->mc_reg_table_entry[i].mc_data[j];
}
ci_table->num_entries = table->num_entries;
return 0;
}
static int ci_initialize_mc_reg_table(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct atom_mc_reg_table *table;
struct ci_mc_reg_table *ci_table = &pi->mc_reg_table;
u8 module_index = rv770_get_memory_module_index(rdev);
int ret;
table = kzalloc(sizeof(struct atom_mc_reg_table), GFP_KERNEL);
if (!table)
return -ENOMEM;
WREG32(MC_SEQ_RAS_TIMING_LP, RREG32(MC_SEQ_RAS_TIMING));
WREG32(MC_SEQ_CAS_TIMING_LP, RREG32(MC_SEQ_CAS_TIMING));
WREG32(MC_SEQ_DLL_STBY_LP, RREG32(MC_SEQ_DLL_STBY));
WREG32(MC_SEQ_G5PDX_CMD0_LP, RREG32(MC_SEQ_G5PDX_CMD0));
WREG32(MC_SEQ_G5PDX_CMD1_LP, RREG32(MC_SEQ_G5PDX_CMD1));
WREG32(MC_SEQ_G5PDX_CTRL_LP, RREG32(MC_SEQ_G5PDX_CTRL));
WREG32(MC_SEQ_PMG_DVS_CMD_LP, RREG32(MC_SEQ_PMG_DVS_CMD));
WREG32(MC_SEQ_PMG_DVS_CTL_LP, RREG32(MC_SEQ_PMG_DVS_CTL));
WREG32(MC_SEQ_MISC_TIMING_LP, RREG32(MC_SEQ_MISC_TIMING));
WREG32(MC_SEQ_MISC_TIMING2_LP, RREG32(MC_SEQ_MISC_TIMING2));
WREG32(MC_SEQ_PMG_CMD_EMRS_LP, RREG32(MC_PMG_CMD_EMRS));
WREG32(MC_SEQ_PMG_CMD_MRS_LP, RREG32(MC_PMG_CMD_MRS));
WREG32(MC_SEQ_PMG_CMD_MRS1_LP, RREG32(MC_PMG_CMD_MRS1));
WREG32(MC_SEQ_WR_CTL_D0_LP, RREG32(MC_SEQ_WR_CTL_D0));
WREG32(MC_SEQ_WR_CTL_D1_LP, RREG32(MC_SEQ_WR_CTL_D1));
WREG32(MC_SEQ_RD_CTL_D0_LP, RREG32(MC_SEQ_RD_CTL_D0));
WREG32(MC_SEQ_RD_CTL_D1_LP, RREG32(MC_SEQ_RD_CTL_D1));
WREG32(MC_SEQ_PMG_TIMING_LP, RREG32(MC_SEQ_PMG_TIMING));
WREG32(MC_SEQ_PMG_CMD_MRS2_LP, RREG32(MC_PMG_CMD_MRS2));
WREG32(MC_SEQ_WR_CTL_2_LP, RREG32(MC_SEQ_WR_CTL_2));
ret = radeon_atom_init_mc_reg_table(rdev, module_index, table);
if (ret)
goto init_mc_done;
ret = ci_copy_vbios_mc_reg_table(table, ci_table);
if (ret)
goto init_mc_done;
ci_set_s0_mc_reg_index(ci_table);
ret = ci_set_mc_special_registers(rdev, ci_table);
if (ret)
goto init_mc_done;
ci_set_valid_flag(ci_table);
init_mc_done:
kfree(table);
return ret;
}
static int ci_populate_mc_reg_addresses(struct radeon_device *rdev,
SMU7_Discrete_MCRegisters *mc_reg_table)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u32 i, j;
for (i = 0, j = 0; j < pi->mc_reg_table.last; j++) {
if (pi->mc_reg_table.valid_flag & (1 << j)) {
if (i >= SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE)
return -EINVAL;
mc_reg_table->address[i].s0 = cpu_to_be16(pi->mc_reg_table.mc_reg_address[j].s0);
mc_reg_table->address[i].s1 = cpu_to_be16(pi->mc_reg_table.mc_reg_address[j].s1);
i++;
}
}
mc_reg_table->last = (u8)i;
return 0;
}
static void ci_convert_mc_registers(const struct ci_mc_reg_entry *entry,
SMU7_Discrete_MCRegisterSet *data,
u32 num_entries, u32 valid_flag)
{
u32 i, j;
for (i = 0, j = 0; j < num_entries; j++) {
if (valid_flag & (1 << j)) {
data->value[i] = cpu_to_be32(entry->mc_data[j]);
i++;
}
}
}
static void ci_convert_mc_reg_table_entry_to_smc(struct radeon_device *rdev,
const u32 memory_clock,
SMU7_Discrete_MCRegisterSet *mc_reg_table_data)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u32 i = 0;
for(i = 0; i < pi->mc_reg_table.num_entries; i++) {
if (memory_clock <= pi->mc_reg_table.mc_reg_table_entry[i].mclk_max)
break;
}
if ((i == pi->mc_reg_table.num_entries) && (i > 0))
--i;
ci_convert_mc_registers(&pi->mc_reg_table.mc_reg_table_entry[i],
mc_reg_table_data, pi->mc_reg_table.last,
pi->mc_reg_table.valid_flag);
}
static void ci_convert_mc_reg_table_to_smc(struct radeon_device *rdev,
SMU7_Discrete_MCRegisters *mc_reg_table)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u32 i;
for (i = 0; i < pi->dpm_table.mclk_table.count; i++)
ci_convert_mc_reg_table_entry_to_smc(rdev,
pi->dpm_table.mclk_table.dpm_levels[i].value,
&mc_reg_table->data[i]);
}
static int ci_populate_initial_mc_reg_table(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
int ret;
memset(&pi->smc_mc_reg_table, 0, sizeof(SMU7_Discrete_MCRegisters));
ret = ci_populate_mc_reg_addresses(rdev, &pi->smc_mc_reg_table);
if (ret)
return ret;
ci_convert_mc_reg_table_to_smc(rdev, &pi->smc_mc_reg_table);
return ci_copy_bytes_to_smc(rdev,
pi->mc_reg_table_start,
(u8 *)&pi->smc_mc_reg_table,
sizeof(SMU7_Discrete_MCRegisters),
pi->sram_end);
}
static int ci_update_and_upload_mc_reg_table(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
if (!(pi->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
return 0;
memset(&pi->smc_mc_reg_table, 0, sizeof(SMU7_Discrete_MCRegisters));
ci_convert_mc_reg_table_to_smc(rdev, &pi->smc_mc_reg_table);
return ci_copy_bytes_to_smc(rdev,
pi->mc_reg_table_start +
offsetof(SMU7_Discrete_MCRegisters, data[0]),
(u8 *)&pi->smc_mc_reg_table.data[0],
sizeof(SMU7_Discrete_MCRegisterSet) *
pi->dpm_table.mclk_table.count,
pi->sram_end);
}
static void ci_enable_voltage_control(struct radeon_device *rdev)
{
u32 tmp = RREG32_SMC(GENERAL_PWRMGT);
tmp |= VOLT_PWRMGT_EN;
WREG32_SMC(GENERAL_PWRMGT, tmp);
}
static enum radeon_pcie_gen ci_get_maximum_link_speed(struct radeon_device *rdev,
struct radeon_ps *radeon_state)
{
struct ci_ps *state = ci_get_ps(radeon_state);
int i;
u16 pcie_speed, max_speed = 0;
for (i = 0; i < state->performance_level_count; i++) {
pcie_speed = state->performance_levels[i].pcie_gen;
if (max_speed < pcie_speed)
max_speed = pcie_speed;
}
return max_speed;
}
static u16 ci_get_current_pcie_speed(struct radeon_device *rdev)
{
u32 speed_cntl = 0;
speed_cntl = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL) & LC_CURRENT_DATA_RATE_MASK;
speed_cntl >>= LC_CURRENT_DATA_RATE_SHIFT;
return (u16)speed_cntl;
}
static int ci_get_current_pcie_lane_number(struct radeon_device *rdev)
{
u32 link_width = 0;
link_width = RREG32_PCIE_PORT(PCIE_LC_LINK_WIDTH_CNTL) & LC_LINK_WIDTH_RD_MASK;
link_width >>= LC_LINK_WIDTH_RD_SHIFT;
switch (link_width) {
case RADEON_PCIE_LC_LINK_WIDTH_X1:
return 1;
case RADEON_PCIE_LC_LINK_WIDTH_X2:
return 2;
case RADEON_PCIE_LC_LINK_WIDTH_X4:
return 4;
case RADEON_PCIE_LC_LINK_WIDTH_X8:
return 8;
case RADEON_PCIE_LC_LINK_WIDTH_X12:
/* not actually supported */
return 12;
case RADEON_PCIE_LC_LINK_WIDTH_X0:
case RADEON_PCIE_LC_LINK_WIDTH_X16:
default:
return 16;
}
}
static void ci_request_link_speed_change_before_state_change(struct radeon_device *rdev,
struct radeon_ps *radeon_new_state,
struct radeon_ps *radeon_current_state)
{
struct ci_power_info *pi = ci_get_pi(rdev);
enum radeon_pcie_gen target_link_speed =
ci_get_maximum_link_speed(rdev, radeon_new_state);
enum radeon_pcie_gen current_link_speed;
if (pi->force_pcie_gen == RADEON_PCIE_GEN_INVALID)
current_link_speed = ci_get_maximum_link_speed(rdev, radeon_current_state);
else
current_link_speed = pi->force_pcie_gen;
pi->force_pcie_gen = RADEON_PCIE_GEN_INVALID;
pi->pspp_notify_required = false;
if (target_link_speed > current_link_speed) {
switch (target_link_speed) {
#ifdef CONFIG_ACPI
case RADEON_PCIE_GEN3:
if (radeon_acpi_pcie_performance_request(rdev, PCIE_PERF_REQ_PECI_GEN3, false) == 0)
break;
pi->force_pcie_gen = RADEON_PCIE_GEN2;
if (current_link_speed == RADEON_PCIE_GEN2)
break;
case RADEON_PCIE_GEN2:
if (radeon_acpi_pcie_performance_request(rdev, PCIE_PERF_REQ_PECI_GEN2, false) == 0)
break;
#endif
default:
pi->force_pcie_gen = ci_get_current_pcie_speed(rdev);
break;
}
} else {
if (target_link_speed < current_link_speed)
pi->pspp_notify_required = true;
}
}
static void ci_notify_link_speed_change_after_state_change(struct radeon_device *rdev,
struct radeon_ps *radeon_new_state,
struct radeon_ps *radeon_current_state)
{
struct ci_power_info *pi = ci_get_pi(rdev);
enum radeon_pcie_gen target_link_speed =
ci_get_maximum_link_speed(rdev, radeon_new_state);
u8 request;
if (pi->pspp_notify_required) {
if (target_link_speed == RADEON_PCIE_GEN3)
request = PCIE_PERF_REQ_PECI_GEN3;
else if (target_link_speed == RADEON_PCIE_GEN2)
request = PCIE_PERF_REQ_PECI_GEN2;
else
request = PCIE_PERF_REQ_PECI_GEN1;
if ((request == PCIE_PERF_REQ_PECI_GEN1) &&
(ci_get_current_pcie_speed(rdev) > 0))
return;
#ifdef CONFIG_ACPI
radeon_acpi_pcie_performance_request(rdev, request, false);
#endif
}
}
static int ci_set_private_data_variables_based_on_pptable(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct radeon_clock_voltage_dependency_table *allowed_sclk_vddc_table =
&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
struct radeon_clock_voltage_dependency_table *allowed_mclk_vddc_table =
&rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk;
struct radeon_clock_voltage_dependency_table *allowed_mclk_vddci_table =
&rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk;
if (allowed_sclk_vddc_table == NULL)
return -EINVAL;
if (allowed_sclk_vddc_table->count < 1)
return -EINVAL;
if (allowed_mclk_vddc_table == NULL)
return -EINVAL;
if (allowed_mclk_vddc_table->count < 1)
return -EINVAL;
if (allowed_mclk_vddci_table == NULL)
return -EINVAL;
if (allowed_mclk_vddci_table->count < 1)
return -EINVAL;
pi->min_vddc_in_pp_table = allowed_sclk_vddc_table->entries[0].v;
pi->max_vddc_in_pp_table =
allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v;
pi->min_vddci_in_pp_table = allowed_mclk_vddci_table->entries[0].v;
pi->max_vddci_in_pp_table =
allowed_mclk_vddci_table->entries[allowed_mclk_vddci_table->count - 1].v;
rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.sclk =
allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].clk;
rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.mclk =
allowed_mclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].clk;
rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.vddc =
allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v;
rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.vddci =
allowed_mclk_vddci_table->entries[allowed_mclk_vddci_table->count - 1].v;
return 0;
}
static void ci_patch_with_vddc_leakage(struct radeon_device *rdev, u16 *vddc)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct ci_leakage_voltage *leakage_table = &pi->vddc_leakage;
u32 leakage_index;
for (leakage_index = 0; leakage_index < leakage_table->count; leakage_index++) {
if (leakage_table->leakage_id[leakage_index] == *vddc) {
*vddc = leakage_table->actual_voltage[leakage_index];
break;
}
}
}
static void ci_patch_with_vddci_leakage(struct radeon_device *rdev, u16 *vddci)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct ci_leakage_voltage *leakage_table = &pi->vddci_leakage;
u32 leakage_index;
for (leakage_index = 0; leakage_index < leakage_table->count; leakage_index++) {
if (leakage_table->leakage_id[leakage_index] == *vddci) {
*vddci = leakage_table->actual_voltage[leakage_index];
break;
}
}
}
static void ci_patch_clock_voltage_dependency_table_with_vddc_leakage(struct radeon_device *rdev,
struct radeon_clock_voltage_dependency_table *table)
{
u32 i;
if (table) {
for (i = 0; i < table->count; i++)
ci_patch_with_vddc_leakage(rdev, &table->entries[i].v);
}
}
static void ci_patch_clock_voltage_dependency_table_with_vddci_leakage(struct radeon_device *rdev,
struct radeon_clock_voltage_dependency_table *table)
{
u32 i;
if (table) {
for (i = 0; i < table->count; i++)
ci_patch_with_vddci_leakage(rdev, &table->entries[i].v);
}
}
static void ci_patch_vce_clock_voltage_dependency_table_with_vddc_leakage(struct radeon_device *rdev,
struct radeon_vce_clock_voltage_dependency_table *table)
{
u32 i;
if (table) {
for (i = 0; i < table->count; i++)
ci_patch_with_vddc_leakage(rdev, &table->entries[i].v);
}
}
static void ci_patch_uvd_clock_voltage_dependency_table_with_vddc_leakage(struct radeon_device *rdev,
struct radeon_uvd_clock_voltage_dependency_table *table)
{
u32 i;
if (table) {
for (i = 0; i < table->count; i++)
ci_patch_with_vddc_leakage(rdev, &table->entries[i].v);
}
}
static void ci_patch_vddc_phase_shed_limit_table_with_vddc_leakage(struct radeon_device *rdev,
struct radeon_phase_shedding_limits_table *table)
{
u32 i;
if (table) {
for (i = 0; i < table->count; i++)
ci_patch_with_vddc_leakage(rdev, &table->entries[i].voltage);
}
}
static void ci_patch_clock_voltage_limits_with_vddc_leakage(struct radeon_device *rdev,
struct radeon_clock_and_voltage_limits *table)
{
if (table) {
ci_patch_with_vddc_leakage(rdev, (u16 *)&table->vddc);
ci_patch_with_vddci_leakage(rdev, (u16 *)&table->vddci);
}
}
static void ci_patch_cac_leakage_table_with_vddc_leakage(struct radeon_device *rdev,
struct radeon_cac_leakage_table *table)
{
u32 i;
if (table) {
for (i = 0; i < table->count; i++)
ci_patch_with_vddc_leakage(rdev, &table->entries[i].vddc);
}
}
static void ci_patch_dependency_tables_with_leakage(struct radeon_device *rdev)
{
ci_patch_clock_voltage_dependency_table_with_vddc_leakage(rdev,
&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk);
ci_patch_clock_voltage_dependency_table_with_vddc_leakage(rdev,
&rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk);
ci_patch_clock_voltage_dependency_table_with_vddc_leakage(rdev,
&rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk);
ci_patch_clock_voltage_dependency_table_with_vddci_leakage(rdev,
&rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk);
ci_patch_vce_clock_voltage_dependency_table_with_vddc_leakage(rdev,
&rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table);
ci_patch_uvd_clock_voltage_dependency_table_with_vddc_leakage(rdev,
&rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table);
ci_patch_clock_voltage_dependency_table_with_vddc_leakage(rdev,
&rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table);
ci_patch_clock_voltage_dependency_table_with_vddc_leakage(rdev,
&rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table);
ci_patch_vddc_phase_shed_limit_table_with_vddc_leakage(rdev,
&rdev->pm.dpm.dyn_state.phase_shedding_limits_table);
ci_patch_clock_voltage_limits_with_vddc_leakage(rdev,
&rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac);
ci_patch_clock_voltage_limits_with_vddc_leakage(rdev,
&rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc);
ci_patch_cac_leakage_table_with_vddc_leakage(rdev,
&rdev->pm.dpm.dyn_state.cac_leakage_table);
}
static void ci_get_memory_type(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u32 tmp;
tmp = RREG32(MC_SEQ_MISC0);
if (((tmp & MC_SEQ_MISC0_GDDR5_MASK) >> MC_SEQ_MISC0_GDDR5_SHIFT) ==
MC_SEQ_MISC0_GDDR5_VALUE)
pi->mem_gddr5 = true;
else
pi->mem_gddr5 = false;
}
void ci_update_current_ps(struct radeon_device *rdev,
struct radeon_ps *rps)
{
struct ci_ps *new_ps = ci_get_ps(rps);
struct ci_power_info *pi = ci_get_pi(rdev);
pi->current_rps = *rps;
pi->current_ps = *new_ps;
pi->current_rps.ps_priv = &pi->current_ps;
}
void ci_update_requested_ps(struct radeon_device *rdev,
struct radeon_ps *rps)
{
struct ci_ps *new_ps = ci_get_ps(rps);
struct ci_power_info *pi = ci_get_pi(rdev);
pi->requested_rps = *rps;
pi->requested_ps = *new_ps;
pi->requested_rps.ps_priv = &pi->requested_ps;
}
int ci_dpm_pre_set_power_state(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct radeon_ps requested_ps = *rdev->pm.dpm.requested_ps;
struct radeon_ps *new_ps = &requested_ps;
ci_update_requested_ps(rdev, new_ps);
ci_apply_state_adjust_rules(rdev, &pi->requested_rps);
return 0;
}
void ci_dpm_post_set_power_state(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct radeon_ps *new_ps = &pi->requested_rps;
ci_update_current_ps(rdev, new_ps);
}
void ci_dpm_setup_asic(struct radeon_device *rdev)
{
ci_read_clock_registers(rdev);
ci_get_memory_type(rdev);
ci_enable_acpi_power_management(rdev);
ci_init_sclk_t(rdev);
}
int ci_dpm_enable(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct radeon_ps *boot_ps = rdev->pm.dpm.boot_ps;
int ret;
cik_update_cg(rdev, (RADEON_CG_BLOCK_GFX |
RADEON_CG_BLOCK_MC |
RADEON_CG_BLOCK_SDMA |
RADEON_CG_BLOCK_BIF |
RADEON_CG_BLOCK_UVD |
RADEON_CG_BLOCK_HDP), false);
if (ci_is_smc_running(rdev))
return -EINVAL;
if (pi->voltage_control != CISLANDS_VOLTAGE_CONTROL_NONE) {
ci_enable_voltage_control(rdev);
ret = ci_construct_voltage_tables(rdev);
if (ret) {
DRM_ERROR("ci_construct_voltage_tables failed\n");
return ret;
}
}
if (pi->caps_dynamic_ac_timing) {
ret = ci_initialize_mc_reg_table(rdev);
if (ret)
pi->caps_dynamic_ac_timing = false;
}
if (pi->dynamic_ss)
ci_enable_spread_spectrum(rdev, true);
if (pi->thermal_protection)
ci_enable_thermal_protection(rdev, true);
ci_program_sstp(rdev);
ci_enable_display_gap(rdev);
ci_program_vc(rdev);
ret = ci_upload_firmware(rdev);
if (ret) {
DRM_ERROR("ci_upload_firmware failed\n");
return ret;
}
ret = ci_process_firmware_header(rdev);
if (ret) {
DRM_ERROR("ci_process_firmware_header failed\n");
return ret;
}
ret = ci_initial_switch_from_arb_f0_to_f1(rdev);
if (ret) {
DRM_ERROR("ci_initial_switch_from_arb_f0_to_f1 failed\n");
return ret;
}
ret = ci_init_smc_table(rdev);
if (ret) {
DRM_ERROR("ci_init_smc_table failed\n");
return ret;
}
ret = ci_init_arb_table_index(rdev);
if (ret) {
DRM_ERROR("ci_init_arb_table_index failed\n");
return ret;
}
if (pi->caps_dynamic_ac_timing) {
ret = ci_populate_initial_mc_reg_table(rdev);
if (ret) {
DRM_ERROR("ci_populate_initial_mc_reg_table failed\n");
return ret;
}
}
ret = ci_populate_pm_base(rdev);
if (ret) {
DRM_ERROR("ci_populate_pm_base failed\n");
return ret;
}
ci_dpm_start_smc(rdev);
ci_enable_vr_hot_gpio_interrupt(rdev);
ret = ci_notify_smc_display_change(rdev, false);
if (ret) {
DRM_ERROR("ci_notify_smc_display_change failed\n");
return ret;
}
ci_enable_sclk_control(rdev, true);
ret = ci_enable_ulv(rdev, true);
if (ret) {
DRM_ERROR("ci_enable_ulv failed\n");
return ret;
}
ret = ci_enable_ds_master_switch(rdev, true);
if (ret) {
DRM_ERROR("ci_enable_ds_master_switch failed\n");
return ret;
}
ret = ci_start_dpm(rdev);
if (ret) {
DRM_ERROR("ci_start_dpm failed\n");
return ret;
}
ret = ci_enable_didt(rdev, true);
if (ret) {
DRM_ERROR("ci_enable_didt failed\n");
return ret;
}
ret = ci_enable_smc_cac(rdev, true);
if (ret) {
DRM_ERROR("ci_enable_smc_cac failed\n");
return ret;
}
ret = ci_enable_power_containment(rdev, true);
if (ret) {
DRM_ERROR("ci_enable_power_containment failed\n");
return ret;
}
if (rdev->irq.installed &&
r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) {
#if 0
PPSMC_Result result;
#endif
ret = ci_set_thermal_temperature_range(rdev, R600_TEMP_RANGE_MIN, R600_TEMP_RANGE_MAX);
if (ret) {
DRM_ERROR("ci_set_thermal_temperature_range failed\n");
return ret;
}
rdev->irq.dpm_thermal = true;
radeon_irq_set(rdev);
#if 0
result = ci_send_msg_to_smc(rdev, PPSMC_MSG_EnableThermalInterrupt);
if (result != PPSMC_Result_OK)
DRM_DEBUG_KMS("Could not enable thermal interrupts.\n");
#endif
}
ci_enable_auto_throttle_source(rdev, RADEON_DPM_AUTO_THROTTLE_SRC_THERMAL, true);
ci_dpm_powergate_uvd(rdev, true);
cik_update_cg(rdev, (RADEON_CG_BLOCK_GFX |
RADEON_CG_BLOCK_MC |
RADEON_CG_BLOCK_SDMA |
RADEON_CG_BLOCK_BIF |
RADEON_CG_BLOCK_UVD |
RADEON_CG_BLOCK_HDP), true);
ci_update_current_ps(rdev, boot_ps);
return 0;
}
void ci_dpm_disable(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct radeon_ps *boot_ps = rdev->pm.dpm.boot_ps;
cik_update_cg(rdev, (RADEON_CG_BLOCK_GFX |
RADEON_CG_BLOCK_MC |
RADEON_CG_BLOCK_SDMA |
RADEON_CG_BLOCK_UVD |
RADEON_CG_BLOCK_HDP), false);
ci_dpm_powergate_uvd(rdev, false);
if (!ci_is_smc_running(rdev))
return;
if (pi->thermal_protection)
ci_enable_thermal_protection(rdev, false);
ci_enable_power_containment(rdev, false);
ci_enable_smc_cac(rdev, false);
ci_enable_didt(rdev, false);
ci_enable_spread_spectrum(rdev, false);
ci_enable_auto_throttle_source(rdev, RADEON_DPM_AUTO_THROTTLE_SRC_THERMAL, false);
ci_stop_dpm(rdev);
ci_enable_ds_master_switch(rdev, true);
ci_enable_ulv(rdev, false);
ci_clear_vc(rdev);
ci_reset_to_default(rdev);
ci_dpm_stop_smc(rdev);
ci_force_switch_to_arb_f0(rdev);
ci_update_current_ps(rdev, boot_ps);
}
int ci_dpm_set_power_state(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct radeon_ps *new_ps = &pi->requested_rps;
struct radeon_ps *old_ps = &pi->current_rps;
int ret;
cik_update_cg(rdev, (RADEON_CG_BLOCK_GFX |
RADEON_CG_BLOCK_MC |
RADEON_CG_BLOCK_SDMA |
RADEON_CG_BLOCK_BIF |
RADEON_CG_BLOCK_UVD |
RADEON_CG_BLOCK_HDP), false);
ci_find_dpm_states_clocks_in_dpm_table(rdev, new_ps);
if (pi->pcie_performance_request)
ci_request_link_speed_change_before_state_change(rdev, new_ps, old_ps);
ret = ci_freeze_sclk_mclk_dpm(rdev);
if (ret) {
DRM_ERROR("ci_freeze_sclk_mclk_dpm failed\n");
return ret;
}
ret = ci_populate_and_upload_sclk_mclk_dpm_levels(rdev, new_ps);
if (ret) {
DRM_ERROR("ci_populate_and_upload_sclk_mclk_dpm_levels failed\n");
return ret;
}
ret = ci_generate_dpm_level_enable_mask(rdev, new_ps);
if (ret) {
DRM_ERROR("ci_generate_dpm_level_enable_mask failed\n");
return ret;
}
#if 0
ret = ci_update_vce_dpm(rdev, new_ps, old_ps);
if (ret) {
DRM_ERROR("ci_update_vce_dpm failed\n");
return ret;
}
#endif
ret = ci_update_sclk_t(rdev);
if (ret) {
DRM_ERROR("ci_update_sclk_t failed\n");
return ret;
}
if (pi->caps_dynamic_ac_timing) {
ret = ci_update_and_upload_mc_reg_table(rdev);
if (ret) {
DRM_ERROR("ci_update_and_upload_mc_reg_table failed\n");
return ret;
}
}
ret = ci_program_memory_timing_parameters(rdev);
if (ret) {
DRM_ERROR("ci_program_memory_timing_parameters failed\n");
return ret;
}
ret = ci_unfreeze_sclk_mclk_dpm(rdev);
if (ret) {
DRM_ERROR("ci_unfreeze_sclk_mclk_dpm failed\n");
return ret;
}
ret = ci_upload_dpm_level_enable_mask(rdev);
if (ret) {
DRM_ERROR("ci_upload_dpm_level_enable_mask failed\n");
return ret;
}
if (pi->pcie_performance_request)
ci_notify_link_speed_change_after_state_change(rdev, new_ps, old_ps);
cik_update_cg(rdev, (RADEON_CG_BLOCK_GFX |
RADEON_CG_BLOCK_MC |
RADEON_CG_BLOCK_SDMA |
RADEON_CG_BLOCK_BIF |
RADEON_CG_BLOCK_UVD |
RADEON_CG_BLOCK_HDP), true);
return 0;
}
int ci_dpm_power_control_set_level(struct radeon_device *rdev)
{
return ci_power_control_set_level(rdev);
}
void ci_dpm_reset_asic(struct radeon_device *rdev)
{
ci_set_boot_state(rdev);
}
void ci_dpm_display_configuration_changed(struct radeon_device *rdev)
{
ci_program_display_gap(rdev);
}
union power_info {
struct _ATOM_POWERPLAY_INFO info;
struct _ATOM_POWERPLAY_INFO_V2 info_2;
struct _ATOM_POWERPLAY_INFO_V3 info_3;
struct _ATOM_PPLIB_POWERPLAYTABLE pplib;
struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2;
struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3;
};
union pplib_clock_info {
struct _ATOM_PPLIB_R600_CLOCK_INFO r600;
struct _ATOM_PPLIB_RS780_CLOCK_INFO rs780;
struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen;
struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo;
struct _ATOM_PPLIB_SI_CLOCK_INFO si;
struct _ATOM_PPLIB_CI_CLOCK_INFO ci;
};
union pplib_power_state {
struct _ATOM_PPLIB_STATE v1;
struct _ATOM_PPLIB_STATE_V2 v2;
};
static void ci_parse_pplib_non_clock_info(struct radeon_device *rdev,
struct radeon_ps *rps,
struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info,
u8 table_rev)
{
rps->caps = le32_to_cpu(non_clock_info->ulCapsAndSettings);
rps->class = le16_to_cpu(non_clock_info->usClassification);
rps->class2 = le16_to_cpu(non_clock_info->usClassification2);
if (ATOM_PPLIB_NONCLOCKINFO_VER1 < table_rev) {
rps->vclk = le32_to_cpu(non_clock_info->ulVCLK);
rps->dclk = le32_to_cpu(non_clock_info->ulDCLK);
} else {
rps->vclk = 0;
rps->dclk = 0;
}
if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT)
rdev->pm.dpm.boot_ps = rps;
if (rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
rdev->pm.dpm.uvd_ps = rps;
}
static void ci_parse_pplib_clock_info(struct radeon_device *rdev,
struct radeon_ps *rps, int index,
union pplib_clock_info *clock_info)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct ci_ps *ps = ci_get_ps(rps);
struct ci_pl *pl = &ps->performance_levels[index];
ps->performance_level_count = index + 1;
pl->sclk = le16_to_cpu(clock_info->ci.usEngineClockLow);
pl->sclk |= clock_info->ci.ucEngineClockHigh << 16;
pl->mclk = le16_to_cpu(clock_info->ci.usMemoryClockLow);
pl->mclk |= clock_info->ci.ucMemoryClockHigh << 16;
pl->pcie_gen = r600_get_pcie_gen_support(rdev,
pi->sys_pcie_mask,
pi->vbios_boot_state.pcie_gen_bootup_value,
clock_info->ci.ucPCIEGen);
pl->pcie_lane = r600_get_pcie_lane_support(rdev,
pi->vbios_boot_state.pcie_lane_bootup_value,
le16_to_cpu(clock_info->ci.usPCIELane));
if (rps->class & ATOM_PPLIB_CLASSIFICATION_ACPI) {
pi->acpi_pcie_gen = pl->pcie_gen;
}
if (rps->class2 & ATOM_PPLIB_CLASSIFICATION2_ULV) {
pi->ulv.supported = true;
pi->ulv.pl = *pl;
pi->ulv.cg_ulv_parameter = CISLANDS_CGULVPARAMETER_DFLT;
}
/* patch up boot state */
if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) {
pl->mclk = pi->vbios_boot_state.mclk_bootup_value;
pl->sclk = pi->vbios_boot_state.sclk_bootup_value;
pl->pcie_gen = pi->vbios_boot_state.pcie_gen_bootup_value;
pl->pcie_lane = pi->vbios_boot_state.pcie_lane_bootup_value;
}
switch (rps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) {
case ATOM_PPLIB_CLASSIFICATION_UI_BATTERY:
pi->use_pcie_powersaving_levels = true;
if (pi->pcie_gen_powersaving.max < pl->pcie_gen)
pi->pcie_gen_powersaving.max = pl->pcie_gen;
if (pi->pcie_gen_powersaving.min > pl->pcie_gen)
pi->pcie_gen_powersaving.min = pl->pcie_gen;
if (pi->pcie_lane_powersaving.max < pl->pcie_lane)
pi->pcie_lane_powersaving.max = pl->pcie_lane;
if (pi->pcie_lane_powersaving.min > pl->pcie_lane)
pi->pcie_lane_powersaving.min = pl->pcie_lane;
break;
case ATOM_PPLIB_CLASSIFICATION_UI_PERFORMANCE:
pi->use_pcie_performance_levels = true;
if (pi->pcie_gen_performance.max < pl->pcie_gen)
pi->pcie_gen_performance.max = pl->pcie_gen;
if (pi->pcie_gen_performance.min > pl->pcie_gen)
pi->pcie_gen_performance.min = pl->pcie_gen;
if (pi->pcie_lane_performance.max < pl->pcie_lane)
pi->pcie_lane_performance.max = pl->pcie_lane;
if (pi->pcie_lane_performance.min > pl->pcie_lane)
pi->pcie_lane_performance.min = pl->pcie_lane;
break;
default:
break;
}
}
static int ci_parse_power_table(struct radeon_device *rdev)
{
struct radeon_mode_info *mode_info = &rdev->mode_info;
struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info;
union pplib_power_state *power_state;
int i, j, k, non_clock_array_index, clock_array_index;
union pplib_clock_info *clock_info;
struct _StateArray *state_array;
struct _ClockInfoArray *clock_info_array;
struct _NonClockInfoArray *non_clock_info_array;
union power_info *power_info;
int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
u16 data_offset;
u8 frev, crev;
u8 *power_state_offset;
struct ci_ps *ps;
if (!atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset))
return -EINVAL;
power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);
state_array = (struct _StateArray *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usStateArrayOffset));
clock_info_array = (struct _ClockInfoArray *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usClockInfoArrayOffset));
non_clock_info_array = (struct _NonClockInfoArray *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset));
rdev->pm.dpm.ps = kzalloc(sizeof(struct radeon_ps) *
state_array->ucNumEntries, GFP_KERNEL);
if (!rdev->pm.dpm.ps)
return -ENOMEM;
power_state_offset = (u8 *)state_array->states;
rdev->pm.dpm.platform_caps = le32_to_cpu(power_info->pplib.ulPlatformCaps);
rdev->pm.dpm.backbias_response_time = le16_to_cpu(power_info->pplib.usBackbiasTime);
rdev->pm.dpm.voltage_response_time = le16_to_cpu(power_info->pplib.usVoltageTime);
for (i = 0; i < state_array->ucNumEntries; i++) {
u8 *idx;
power_state = (union pplib_power_state *)power_state_offset;
non_clock_array_index = power_state->v2.nonClockInfoIndex;
non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *)
&non_clock_info_array->nonClockInfo[non_clock_array_index];
if (!rdev->pm.power_state[i].clock_info)
return -EINVAL;
ps = kzalloc(sizeof(struct ci_ps), GFP_KERNEL);
if (ps == NULL) {
kfree(rdev->pm.dpm.ps);
return -ENOMEM;
}
rdev->pm.dpm.ps[i].ps_priv = ps;
ci_parse_pplib_non_clock_info(rdev, &rdev->pm.dpm.ps[i],
non_clock_info,
non_clock_info_array->ucEntrySize);
k = 0;
idx = (u8 *)&power_state->v2.clockInfoIndex[0];
for (j = 0; j < power_state->v2.ucNumDPMLevels; j++) {
clock_array_index = idx[j];
if (clock_array_index >= clock_info_array->ucNumEntries)
continue;
if (k >= CISLANDS_MAX_HARDWARE_POWERLEVELS)
break;
clock_info = (union pplib_clock_info *)
((u8 *)&clock_info_array->clockInfo[0] +
(clock_array_index * clock_info_array->ucEntrySize));
ci_parse_pplib_clock_info(rdev,
&rdev->pm.dpm.ps[i], k,
clock_info);
k++;
}
power_state_offset += 2 + power_state->v2.ucNumDPMLevels;
}
rdev->pm.dpm.num_ps = state_array->ucNumEntries;
return 0;
}
int ci_get_vbios_boot_values(struct radeon_device *rdev,
struct ci_vbios_boot_state *boot_state)
{
struct radeon_mode_info *mode_info = &rdev->mode_info;
int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
ATOM_FIRMWARE_INFO_V2_2 *firmware_info;
u8 frev, crev;
u16 data_offset;
if (atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset)) {
firmware_info =
(ATOM_FIRMWARE_INFO_V2_2 *)(mode_info->atom_context->bios +
data_offset);
boot_state->mvdd_bootup_value = le16_to_cpu(firmware_info->usBootUpMVDDCVoltage);
boot_state->vddc_bootup_value = le16_to_cpu(firmware_info->usBootUpVDDCVoltage);
boot_state->vddci_bootup_value = le16_to_cpu(firmware_info->usBootUpVDDCIVoltage);
boot_state->pcie_gen_bootup_value = ci_get_current_pcie_speed(rdev);
boot_state->pcie_lane_bootup_value = ci_get_current_pcie_lane_number(rdev);
boot_state->sclk_bootup_value = le32_to_cpu(firmware_info->ulDefaultEngineClock);
boot_state->mclk_bootup_value = le32_to_cpu(firmware_info->ulDefaultMemoryClock);
return 0;
}
return -EINVAL;
}
void ci_dpm_fini(struct radeon_device *rdev)
{
int i;
for (i = 0; i < rdev->pm.dpm.num_ps; i++) {
kfree(rdev->pm.dpm.ps[i].ps_priv);
}
kfree(rdev->pm.dpm.ps);
kfree(rdev->pm.dpm.priv);
kfree(rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries);
r600_free_extended_power_table(rdev);
}
int ci_dpm_init(struct radeon_device *rdev)
{
int index = GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info);
u16 data_offset, size;
u8 frev, crev;
struct ci_power_info *pi;
int ret;
u32 mask;
pi = kzalloc(sizeof(struct ci_power_info), GFP_KERNEL);
if (pi == NULL)
return -ENOMEM;
rdev->pm.dpm.priv = pi;
ret = drm_pcie_get_speed_cap_mask(rdev->ddev, &mask);
if (ret)
pi->sys_pcie_mask = 0;
else
pi->sys_pcie_mask = mask;
pi->force_pcie_gen = RADEON_PCIE_GEN_INVALID;
pi->pcie_gen_performance.max = RADEON_PCIE_GEN1;
pi->pcie_gen_performance.min = RADEON_PCIE_GEN3;
pi->pcie_gen_powersaving.max = RADEON_PCIE_GEN1;
pi->pcie_gen_powersaving.min = RADEON_PCIE_GEN3;
pi->pcie_lane_performance.max = 0;
pi->pcie_lane_performance.min = 16;
pi->pcie_lane_powersaving.max = 0;
pi->pcie_lane_powersaving.min = 16;
ret = ci_get_vbios_boot_values(rdev, &pi->vbios_boot_state);
if (ret) {
ci_dpm_fini(rdev);
return ret;
}
ret = ci_parse_power_table(rdev);
if (ret) {
ci_dpm_fini(rdev);
return ret;
}
ret = r600_parse_extended_power_table(rdev);
if (ret) {
ci_dpm_fini(rdev);
return ret;
}
pi->dll_default_on = false;
pi->sram_end = SMC_RAM_END;
pi->activity_target[0] = CISLAND_TARGETACTIVITY_DFLT;
pi->activity_target[1] = CISLAND_TARGETACTIVITY_DFLT;
pi->activity_target[2] = CISLAND_TARGETACTIVITY_DFLT;
pi->activity_target[3] = CISLAND_TARGETACTIVITY_DFLT;
pi->activity_target[4] = CISLAND_TARGETACTIVITY_DFLT;
pi->activity_target[5] = CISLAND_TARGETACTIVITY_DFLT;
pi->activity_target[6] = CISLAND_TARGETACTIVITY_DFLT;
pi->activity_target[7] = CISLAND_TARGETACTIVITY_DFLT;
pi->mclk_activity_target = CISLAND_MCLK_TARGETACTIVITY_DFLT;
pi->sclk_dpm_key_disabled = 0;
pi->mclk_dpm_key_disabled = 0;
pi->pcie_dpm_key_disabled = 0;
pi->caps_sclk_ds = true;
pi->mclk_strobe_mode_threshold = 40000;
pi->mclk_stutter_mode_threshold = 40000;
pi->mclk_edc_enable_threshold = 40000;
pi->mclk_edc_wr_enable_threshold = 40000;
ci_initialize_powertune_defaults(rdev);
pi->caps_fps = false;
pi->caps_sclk_throttle_low_notification = false;
pi->caps_uvd_dpm = true;
ci_get_leakage_voltages(rdev);
ci_patch_dependency_tables_with_leakage(rdev);
ci_set_private_data_variables_based_on_pptable(rdev);
rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries =
kzalloc(4 * sizeof(struct radeon_clock_voltage_dependency_entry), GFP_KERNEL);
if (!rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries) {
ci_dpm_fini(rdev);
return -ENOMEM;
}
rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.count = 4;
rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[0].clk = 0;
rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[0].v = 0;
rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[1].clk = 36000;
rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[1].v = 720;
rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[2].clk = 54000;
rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[2].v = 810;
rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[3].clk = 72000;
rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[3].v = 900;
rdev->pm.dpm.dyn_state.mclk_sclk_ratio = 4;
rdev->pm.dpm.dyn_state.sclk_mclk_delta = 15000;
rdev->pm.dpm.dyn_state.vddc_vddci_delta = 200;
rdev->pm.dpm.dyn_state.valid_sclk_values.count = 0;
rdev->pm.dpm.dyn_state.valid_sclk_values.values = NULL;
rdev->pm.dpm.dyn_state.valid_mclk_values.count = 0;
rdev->pm.dpm.dyn_state.valid_mclk_values.values = NULL;
pi->thermal_temp_setting.temperature_low = 99500;
pi->thermal_temp_setting.temperature_high = 100000;
pi->thermal_temp_setting.temperature_shutdown = 104000;
pi->uvd_enabled = false;
pi->voltage_control = CISLANDS_VOLTAGE_CONTROL_NONE;
pi->vddci_control = CISLANDS_VOLTAGE_CONTROL_NONE;
pi->mvdd_control = CISLANDS_VOLTAGE_CONTROL_NONE;
if (radeon_atom_is_voltage_gpio(rdev, VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT))
pi->voltage_control = CISLANDS_VOLTAGE_CONTROL_BY_GPIO;
else if (radeon_atom_is_voltage_gpio(rdev, VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2))
pi->voltage_control = CISLANDS_VOLTAGE_CONTROL_BY_SVID2;
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_VDDCI_CONTROL) {
if (radeon_atom_is_voltage_gpio(rdev, VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
pi->vddci_control = CISLANDS_VOLTAGE_CONTROL_BY_GPIO;
else if (radeon_atom_is_voltage_gpio(rdev, VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
pi->vddci_control = CISLANDS_VOLTAGE_CONTROL_BY_SVID2;
else
rdev->pm.dpm.platform_caps &= ~ATOM_PP_PLATFORM_CAP_VDDCI_CONTROL;
}
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_MVDDCONTROL) {
if (radeon_atom_is_voltage_gpio(rdev, VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT))
pi->mvdd_control = CISLANDS_VOLTAGE_CONTROL_BY_GPIO;
else if (radeon_atom_is_voltage_gpio(rdev, VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2))
pi->mvdd_control = CISLANDS_VOLTAGE_CONTROL_BY_SVID2;
else
rdev->pm.dpm.platform_caps &= ~ATOM_PP_PLATFORM_CAP_MVDDCONTROL;
}
pi->vddc_phase_shed_control = true;
#if defined(CONFIG_ACPI)
pi->pcie_performance_request =
radeon_acpi_is_pcie_performance_request_supported(rdev);
#else
pi->pcie_performance_request = false;
#endif
if (atom_parse_data_header(rdev->mode_info.atom_context, index, &size,
&frev, &crev, &data_offset)) {
pi->caps_sclk_ss_support = true;
pi->caps_mclk_ss_support = true;
pi->dynamic_ss = true;
} else {
pi->caps_sclk_ss_support = false;
pi->caps_mclk_ss_support = false;
pi->dynamic_ss = true;
}
if (rdev->pm.int_thermal_type != THERMAL_TYPE_NONE)
pi->thermal_protection = true;
else
pi->thermal_protection = false;
pi->caps_dynamic_ac_timing = true;
pi->uvd_power_gated = false;
/* make sure dc limits are valid */
if ((rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc.sclk == 0) ||
(rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc.mclk == 0))
rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc =
rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
return 0;
}
void ci_dpm_debugfs_print_current_performance_level(struct radeon_device *rdev,
struct seq_file *m)
{
u32 sclk = ci_get_average_sclk_freq(rdev);
u32 mclk = ci_get_average_mclk_freq(rdev);
seq_printf(m, "power level avg sclk: %u mclk: %u\n",
sclk, mclk);
}
void ci_dpm_print_power_state(struct radeon_device *rdev,
struct radeon_ps *rps)
{
struct ci_ps *ps = ci_get_ps(rps);
struct ci_pl *pl;
int i;
r600_dpm_print_class_info(rps->class, rps->class2);
r600_dpm_print_cap_info(rps->caps);
printk("\tuvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk);
for (i = 0; i < ps->performance_level_count; i++) {
pl = &ps->performance_levels[i];
printk("\t\tpower level %d sclk: %u mclk: %u pcie gen: %u pcie lanes: %u\n",
i, pl->sclk, pl->mclk, pl->pcie_gen + 1, pl->pcie_lane);
}
r600_dpm_print_ps_status(rdev, rps);
}
u32 ci_dpm_get_sclk(struct radeon_device *rdev, bool low)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct ci_ps *requested_state = ci_get_ps(&pi->requested_rps);
if (low)
return requested_state->performance_levels[0].sclk;
else
return requested_state->performance_levels[requested_state->performance_level_count - 1].sclk;
}
u32 ci_dpm_get_mclk(struct radeon_device *rdev, bool low)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct ci_ps *requested_state = ci_get_ps(&pi->requested_rps);
if (low)
return requested_state->performance_levels[0].mclk;
else
return requested_state->performance_levels[requested_state->performance_level_count - 1].mclk;
}