linux/mm/kmsan/core.c

451 lines
13 KiB
C
Raw Normal View History

kmsan: add KMSAN runtime core For each memory location KernelMemorySanitizer maintains two types of metadata: 1. The so-called shadow of that location - а byte:byte mapping describing whether or not individual bits of memory are initialized (shadow is 0) or not (shadow is 1). 2. The origins of that location - а 4-byte:4-byte mapping containing 4-byte IDs of the stack traces where uninitialized values were created. Each struct page now contains pointers to two struct pages holding KMSAN metadata (shadow and origins) for the original struct page. Utility routines in mm/kmsan/core.c and mm/kmsan/shadow.c handle the metadata creation, addressing, copying and checking. mm/kmsan/report.c performs error reporting in the cases an uninitialized value is used in a way that leads to undefined behavior. KMSAN compiler instrumentation is responsible for tracking the metadata along with the kernel memory. mm/kmsan/instrumentation.c provides the implementation for instrumentation hooks that are called from files compiled with -fsanitize=kernel-memory. To aid parameter passing (also done at instrumentation level), each task_struct now contains a struct kmsan_task_state used to track the metadata of function parameters and return values for that task. Finally, this patch provides CONFIG_KMSAN that enables KMSAN, and declares CFLAGS_KMSAN, which are applied to files compiled with KMSAN. The KMSAN_SANITIZE:=n Makefile directive can be used to completely disable KMSAN instrumentation for certain files. Similarly, KMSAN_ENABLE_CHECKS:=n disables KMSAN checks and makes newly created stack memory initialized. Users can also use functions from include/linux/kmsan-checks.h to mark certain memory regions as uninitialized or initialized (this is called "poisoning" and "unpoisoning") or check that a particular region is initialized. Link: https://lkml.kernel.org/r/20220915150417.722975-12-glider@google.com Signed-off-by: Alexander Potapenko <glider@google.com> Acked-by: Marco Elver <elver@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Christoph Hellwig <hch@lst.de> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Eric Biggers <ebiggers@google.com> Cc: Eric Biggers <ebiggers@kernel.org> Cc: Eric Dumazet <edumazet@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Ilya Leoshkevich <iii@linux.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kees Cook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vegard Nossum <vegard.nossum@oracle.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-15 15:03:45 +00:00
// SPDX-License-Identifier: GPL-2.0
/*
* KMSAN runtime library.
*
* Copyright (C) 2017-2022 Google LLC
* Author: Alexander Potapenko <glider@google.com>
*
*/
#include <asm/page.h>
#include <linux/compiler.h>
#include <linux/export.h>
#include <linux/highmem.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmsan_types.h>
#include <linux/memory.h>
#include <linux/mm.h>
#include <linux/mm_types.h>
#include <linux/mmzone.h>
#include <linux/percpu-defs.h>
#include <linux/preempt.h>
#include <linux/slab.h>
#include <linux/stackdepot.h>
#include <linux/stacktrace.h>
#include <linux/types.h>
#include <linux/vmalloc.h>
#include "../slab.h"
#include "kmsan.h"
bool kmsan_enabled __read_mostly;
/*
* Per-CPU KMSAN context to be used in interrupts, where current->kmsan is
* unavaliable.
*/
DEFINE_PER_CPU(struct kmsan_ctx, kmsan_percpu_ctx);
kmsan: handle task creation and exiting Tell KMSAN that a new task is created, so the tool creates a backing metadata structure for that task. Link: https://lkml.kernel.org/r/20220915150417.722975-17-glider@google.com Signed-off-by: Alexander Potapenko <glider@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Christoph Hellwig <hch@lst.de> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Eric Biggers <ebiggers@google.com> Cc: Eric Biggers <ebiggers@kernel.org> Cc: Eric Dumazet <edumazet@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Ilya Leoshkevich <iii@linux.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kees Cook <keescook@chromium.org> Cc: Marco Elver <elver@google.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vegard Nossum <vegard.nossum@oracle.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-15 15:03:50 +00:00
void kmsan_internal_task_create(struct task_struct *task)
{
struct kmsan_ctx *ctx = &task->kmsan_ctx;
struct thread_info *info = current_thread_info();
__memset(ctx, 0, sizeof(*ctx));
ctx->allow_reporting = true;
kmsan_internal_unpoison_memory(info, sizeof(*info), false);
}
kmsan: add KMSAN runtime core For each memory location KernelMemorySanitizer maintains two types of metadata: 1. The so-called shadow of that location - а byte:byte mapping describing whether or not individual bits of memory are initialized (shadow is 0) or not (shadow is 1). 2. The origins of that location - а 4-byte:4-byte mapping containing 4-byte IDs of the stack traces where uninitialized values were created. Each struct page now contains pointers to two struct pages holding KMSAN metadata (shadow and origins) for the original struct page. Utility routines in mm/kmsan/core.c and mm/kmsan/shadow.c handle the metadata creation, addressing, copying and checking. mm/kmsan/report.c performs error reporting in the cases an uninitialized value is used in a way that leads to undefined behavior. KMSAN compiler instrumentation is responsible for tracking the metadata along with the kernel memory. mm/kmsan/instrumentation.c provides the implementation for instrumentation hooks that are called from files compiled with -fsanitize=kernel-memory. To aid parameter passing (also done at instrumentation level), each task_struct now contains a struct kmsan_task_state used to track the metadata of function parameters and return values for that task. Finally, this patch provides CONFIG_KMSAN that enables KMSAN, and declares CFLAGS_KMSAN, which are applied to files compiled with KMSAN. The KMSAN_SANITIZE:=n Makefile directive can be used to completely disable KMSAN instrumentation for certain files. Similarly, KMSAN_ENABLE_CHECKS:=n disables KMSAN checks and makes newly created stack memory initialized. Users can also use functions from include/linux/kmsan-checks.h to mark certain memory regions as uninitialized or initialized (this is called "poisoning" and "unpoisoning") or check that a particular region is initialized. Link: https://lkml.kernel.org/r/20220915150417.722975-12-glider@google.com Signed-off-by: Alexander Potapenko <glider@google.com> Acked-by: Marco Elver <elver@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Christoph Hellwig <hch@lst.de> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Eric Biggers <ebiggers@google.com> Cc: Eric Biggers <ebiggers@kernel.org> Cc: Eric Dumazet <edumazet@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Ilya Leoshkevich <iii@linux.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kees Cook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vegard Nossum <vegard.nossum@oracle.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-15 15:03:45 +00:00
void kmsan_internal_poison_memory(void *address, size_t size, gfp_t flags,
unsigned int poison_flags)
{
u32 extra_bits =
kmsan_extra_bits(/*depth*/ 0, poison_flags & KMSAN_POISON_FREE);
bool checked = poison_flags & KMSAN_POISON_CHECK;
depot_stack_handle_t handle;
handle = kmsan_save_stack_with_flags(flags, extra_bits);
kmsan_internal_set_shadow_origin(address, size, -1, handle, checked);
}
void kmsan_internal_unpoison_memory(void *address, size_t size, bool checked)
{
kmsan_internal_set_shadow_origin(address, size, 0, 0, checked);
}
depot_stack_handle_t kmsan_save_stack_with_flags(gfp_t flags,
unsigned int extra)
{
unsigned long entries[KMSAN_STACK_DEPTH];
unsigned int nr_entries;
nr_entries = stack_trace_save(entries, KMSAN_STACK_DEPTH, 0);
/* Don't sleep (see might_sleep_if() in __alloc_pages_nodemask()). */
flags &= ~__GFP_DIRECT_RECLAIM;
return __stack_depot_save(entries, nr_entries, extra, flags, true);
}
/* Copy the metadata following the memmove() behavior. */
void kmsan_internal_memmove_metadata(void *dst, void *src, size_t n)
{
depot_stack_handle_t old_origin = 0, new_origin = 0;
int src_slots, dst_slots, i, iter, step, skip_bits;
depot_stack_handle_t *origin_src, *origin_dst;
void *shadow_src, *shadow_dst;
u32 *align_shadow_src, shadow;
bool backwards;
shadow_dst = kmsan_get_metadata(dst, KMSAN_META_SHADOW);
if (!shadow_dst)
return;
KMSAN_WARN_ON(!kmsan_metadata_is_contiguous(dst, n));
shadow_src = kmsan_get_metadata(src, KMSAN_META_SHADOW);
if (!shadow_src) {
/*
* @src is untracked: zero out destination shadow, ignore the
* origins, we're done.
*/
__memset(shadow_dst, 0, n);
return;
}
KMSAN_WARN_ON(!kmsan_metadata_is_contiguous(src, n));
__memmove(shadow_dst, shadow_src, n);
origin_dst = kmsan_get_metadata(dst, KMSAN_META_ORIGIN);
origin_src = kmsan_get_metadata(src, KMSAN_META_ORIGIN);
KMSAN_WARN_ON(!origin_dst || !origin_src);
src_slots = (ALIGN((u64)src + n, KMSAN_ORIGIN_SIZE) -
ALIGN_DOWN((u64)src, KMSAN_ORIGIN_SIZE)) /
KMSAN_ORIGIN_SIZE;
dst_slots = (ALIGN((u64)dst + n, KMSAN_ORIGIN_SIZE) -
ALIGN_DOWN((u64)dst, KMSAN_ORIGIN_SIZE)) /
KMSAN_ORIGIN_SIZE;
KMSAN_WARN_ON((src_slots < 1) || (dst_slots < 1));
KMSAN_WARN_ON((src_slots - dst_slots > 1) ||
(dst_slots - src_slots < -1));
backwards = dst > src;
i = backwards ? min(src_slots, dst_slots) - 1 : 0;
iter = backwards ? -1 : 1;
align_shadow_src =
(u32 *)ALIGN_DOWN((u64)shadow_src, KMSAN_ORIGIN_SIZE);
for (step = 0; step < min(src_slots, dst_slots); step++, i += iter) {
KMSAN_WARN_ON(i < 0);
shadow = align_shadow_src[i];
if (i == 0) {
/*
* If @src isn't aligned on KMSAN_ORIGIN_SIZE, don't
* look at the first @src % KMSAN_ORIGIN_SIZE bytes
* of the first shadow slot.
*/
skip_bits = ((u64)src % KMSAN_ORIGIN_SIZE) * 8;
shadow = (shadow >> skip_bits) << skip_bits;
}
if (i == src_slots - 1) {
/*
* If @src + n isn't aligned on
* KMSAN_ORIGIN_SIZE, don't look at the last
* (@src + n) % KMSAN_ORIGIN_SIZE bytes of the
* last shadow slot.
*/
skip_bits = (((u64)src + n) % KMSAN_ORIGIN_SIZE) * 8;
shadow = (shadow << skip_bits) >> skip_bits;
}
/*
* Overwrite the origin only if the corresponding
* shadow is nonempty.
*/
if (origin_src[i] && (origin_src[i] != old_origin) && shadow) {
old_origin = origin_src[i];
new_origin = kmsan_internal_chain_origin(old_origin);
/*
* kmsan_internal_chain_origin() may return
* NULL, but we don't want to lose the previous
* origin value.
*/
if (!new_origin)
new_origin = old_origin;
}
if (shadow)
origin_dst[i] = new_origin;
else
origin_dst[i] = 0;
}
/*
* If dst_slots is greater than src_slots (i.e.
* dst_slots == src_slots + 1), there is an extra origin slot at the
* beginning or end of the destination buffer, for which we take the
* origin from the previous slot.
* This is only done if the part of the source shadow corresponding to
* slot is non-zero.
*
* E.g. if we copy 8 aligned bytes that are marked as uninitialized
* and have origins o111 and o222, to an unaligned buffer with offset 1,
* these two origins are copied to three origin slots, so one of then
* needs to be duplicated, depending on the copy direction (@backwards)
*
* src shadow: |uuuu|uuuu|....|
* src origin: |o111|o222|....|
*
* backwards = 0:
* dst shadow: |.uuu|uuuu|u...|
* dst origin: |....|o111|o222| - fill the empty slot with o111
* backwards = 1:
* dst shadow: |.uuu|uuuu|u...|
* dst origin: |o111|o222|....| - fill the empty slot with o222
*/
if (src_slots < dst_slots) {
if (backwards) {
shadow = align_shadow_src[src_slots - 1];
skip_bits = (((u64)dst + n) % KMSAN_ORIGIN_SIZE) * 8;
shadow = (shadow << skip_bits) >> skip_bits;
if (shadow)
/* src_slots > 0, therefore dst_slots is at least 2 */
origin_dst[dst_slots - 1] =
origin_dst[dst_slots - 2];
} else {
shadow = align_shadow_src[0];
skip_bits = ((u64)dst % KMSAN_ORIGIN_SIZE) * 8;
shadow = (shadow >> skip_bits) << skip_bits;
if (shadow)
origin_dst[0] = origin_dst[1];
}
}
}
depot_stack_handle_t kmsan_internal_chain_origin(depot_stack_handle_t id)
{
unsigned long entries[3];
u32 extra_bits;
int depth;
bool uaf;
if (!id)
return id;
/*
* Make sure we have enough spare bits in @id to hold the UAF bit and
* the chain depth.
*/
BUILD_BUG_ON(
(1 << STACK_DEPOT_EXTRA_BITS) <= (KMSAN_MAX_ORIGIN_DEPTH << 1));
extra_bits = stack_depot_get_extra_bits(id);
depth = kmsan_depth_from_eb(extra_bits);
uaf = kmsan_uaf_from_eb(extra_bits);
/*
* Stop chaining origins once the depth reached KMSAN_MAX_ORIGIN_DEPTH.
* This mostly happens in the case structures with uninitialized padding
* are copied around many times. Origin chains for such structures are
* usually periodic, and it does not make sense to fully store them.
*/
if (depth == KMSAN_MAX_ORIGIN_DEPTH)
return id;
depth++;
extra_bits = kmsan_extra_bits(depth, uaf);
entries[0] = KMSAN_CHAIN_MAGIC_ORIGIN;
entries[1] = kmsan_save_stack_with_flags(GFP_ATOMIC, 0);
entries[2] = id;
/*
* @entries is a local var in non-instrumented code, so KMSAN does not
* know it is initialized. Explicitly unpoison it to avoid false
* positives when __stack_depot_save() passes it to instrumented code.
*/
kmsan_internal_unpoison_memory(entries, sizeof(entries), false);
return __stack_depot_save(entries, ARRAY_SIZE(entries), extra_bits,
GFP_ATOMIC, true);
}
void kmsan_internal_set_shadow_origin(void *addr, size_t size, int b,
u32 origin, bool checked)
{
u64 address = (u64)addr;
void *shadow_start;
u32 *origin_start;
size_t pad = 0;
KMSAN_WARN_ON(!kmsan_metadata_is_contiguous(addr, size));
shadow_start = kmsan_get_metadata(addr, KMSAN_META_SHADOW);
if (!shadow_start) {
/*
* kmsan_metadata_is_contiguous() is true, so either all shadow
* and origin pages are NULL, or all are non-NULL.
*/
if (checked) {
pr_err("%s: not memsetting %ld bytes starting at %px, because the shadow is NULL\n",
__func__, size, addr);
KMSAN_WARN_ON(true);
}
return;
}
__memset(shadow_start, b, size);
if (!IS_ALIGNED(address, KMSAN_ORIGIN_SIZE)) {
pad = address % KMSAN_ORIGIN_SIZE;
address -= pad;
size += pad;
}
size = ALIGN(size, KMSAN_ORIGIN_SIZE);
origin_start =
(u32 *)kmsan_get_metadata((void *)address, KMSAN_META_ORIGIN);
for (int i = 0; i < size / KMSAN_ORIGIN_SIZE; i++)
origin_start[i] = origin;
}
struct page *kmsan_vmalloc_to_page_or_null(void *vaddr)
{
struct page *page;
if (!kmsan_internal_is_vmalloc_addr(vaddr) &&
!kmsan_internal_is_module_addr(vaddr))
return NULL;
page = vmalloc_to_page(vaddr);
if (pfn_valid(page_to_pfn(page)))
return page;
else
return NULL;
}
void kmsan_internal_check_memory(void *addr, size_t size, const void *user_addr,
int reason)
{
depot_stack_handle_t cur_origin = 0, new_origin = 0;
unsigned long addr64 = (unsigned long)addr;
depot_stack_handle_t *origin = NULL;
unsigned char *shadow = NULL;
int cur_off_start = -1;
int chunk_size;
size_t pos = 0;
if (!size)
return;
KMSAN_WARN_ON(!kmsan_metadata_is_contiguous(addr, size));
while (pos < size) {
chunk_size = min(size - pos,
PAGE_SIZE - ((addr64 + pos) % PAGE_SIZE));
shadow = kmsan_get_metadata((void *)(addr64 + pos),
KMSAN_META_SHADOW);
if (!shadow) {
/*
* This page is untracked. If there were uninitialized
* bytes before, report them.
*/
if (cur_origin) {
kmsan_enter_runtime();
kmsan_report(cur_origin, addr, size,
cur_off_start, pos - 1, user_addr,
reason);
kmsan_leave_runtime();
}
cur_origin = 0;
cur_off_start = -1;
pos += chunk_size;
continue;
}
for (int i = 0; i < chunk_size; i++) {
if (!shadow[i]) {
/*
* This byte is unpoisoned. If there were
* poisoned bytes before, report them.
*/
if (cur_origin) {
kmsan_enter_runtime();
kmsan_report(cur_origin, addr, size,
cur_off_start, pos + i - 1,
user_addr, reason);
kmsan_leave_runtime();
}
cur_origin = 0;
cur_off_start = -1;
continue;
}
origin = kmsan_get_metadata((void *)(addr64 + pos + i),
KMSAN_META_ORIGIN);
KMSAN_WARN_ON(!origin);
new_origin = *origin;
/*
* Encountered new origin - report the previous
* uninitialized range.
*/
if (cur_origin != new_origin) {
if (cur_origin) {
kmsan_enter_runtime();
kmsan_report(cur_origin, addr, size,
cur_off_start, pos + i - 1,
user_addr, reason);
kmsan_leave_runtime();
}
cur_origin = new_origin;
cur_off_start = pos + i;
}
}
pos += chunk_size;
}
KMSAN_WARN_ON(pos != size);
if (cur_origin) {
kmsan_enter_runtime();
kmsan_report(cur_origin, addr, size, cur_off_start, pos - 1,
user_addr, reason);
kmsan_leave_runtime();
}
}
bool kmsan_metadata_is_contiguous(void *addr, size_t size)
{
char *cur_shadow = NULL, *next_shadow = NULL, *cur_origin = NULL,
*next_origin = NULL;
u64 cur_addr = (u64)addr, next_addr = cur_addr + PAGE_SIZE;
depot_stack_handle_t *origin_p;
bool all_untracked = false;
if (!size)
return true;
/* The whole range belongs to the same page. */
if (ALIGN_DOWN(cur_addr + size - 1, PAGE_SIZE) ==
ALIGN_DOWN(cur_addr, PAGE_SIZE))
return true;
cur_shadow = kmsan_get_metadata((void *)cur_addr, /*is_origin*/ false);
if (!cur_shadow)
all_untracked = true;
cur_origin = kmsan_get_metadata((void *)cur_addr, /*is_origin*/ true);
if (all_untracked && cur_origin)
goto report;
for (; next_addr < (u64)addr + size;
cur_addr = next_addr, cur_shadow = next_shadow,
cur_origin = next_origin, next_addr += PAGE_SIZE) {
next_shadow = kmsan_get_metadata((void *)next_addr, false);
next_origin = kmsan_get_metadata((void *)next_addr, true);
if (all_untracked) {
if (next_shadow || next_origin)
goto report;
if (!next_shadow && !next_origin)
continue;
}
if (((u64)cur_shadow == ((u64)next_shadow - PAGE_SIZE)) &&
((u64)cur_origin == ((u64)next_origin - PAGE_SIZE)))
continue;
goto report;
}
return true;
report:
pr_err("%s: attempting to access two shadow page ranges.\n", __func__);
pr_err("Access of size %ld at %px.\n", size, addr);
pr_err("Addresses belonging to different ranges: %px and %px\n",
(void *)cur_addr, (void *)next_addr);
pr_err("page[0].shadow: %px, page[1].shadow: %px\n", cur_shadow,
next_shadow);
pr_err("page[0].origin: %px, page[1].origin: %px\n", cur_origin,
next_origin);
origin_p = kmsan_get_metadata(addr, KMSAN_META_ORIGIN);
if (origin_p) {
pr_err("Origin: %08x\n", *origin_p);
kmsan_print_origin(*origin_p);
} else {
pr_err("Origin: unavailable\n");
}
return false;
}