linux/fs/hpfs/dnode.c

1096 lines
30 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
// SPDX-License-Identifier: GPL-2.0
/*
* linux/fs/hpfs/dnode.c
*
* Mikulas Patocka (mikulas@artax.karlin.mff.cuni.cz), 1998-1999
*
* handling directory dnode tree - adding, deleteing & searching for dirents
*/
#include "hpfs_fn.h"
static loff_t get_pos(struct dnode *d, struct hpfs_dirent *fde)
{
struct hpfs_dirent *de;
struct hpfs_dirent *de_end = dnode_end_de(d);
int i = 1;
for (de = dnode_first_de(d); de < de_end; de = de_next_de(de)) {
if (de == fde) return ((loff_t) le32_to_cpu(d->self) << 4) | (loff_t)i;
i++;
}
pr_info("%s(): not_found\n", __func__);
return ((loff_t)le32_to_cpu(d->self) << 4) | (loff_t)1;
}
int hpfs_add_pos(struct inode *inode, loff_t *pos)
{
struct hpfs_inode_info *hpfs_inode = hpfs_i(inode);
int i = 0;
loff_t **ppos;
if (hpfs_inode->i_rddir_off)
for (; hpfs_inode->i_rddir_off[i]; i++)
if (hpfs_inode->i_rddir_off[i] == pos)
return 0;
if (!(i&0x0f)) {
treewide: kmalloc() -> kmalloc_array() The kmalloc() function has a 2-factor argument form, kmalloc_array(). This patch replaces cases of: kmalloc(a * b, gfp) with: kmalloc_array(a * b, gfp) as well as handling cases of: kmalloc(a * b * c, gfp) with: kmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The tools/ directory was manually excluded, since it has its own implementation of kmalloc(). The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(char) * COUNT + COUNT , ...) | kmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kmalloc + kmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kmalloc(C1 * C2 * C3, ...) | kmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kmalloc(sizeof(THING) * C2, ...) | kmalloc(sizeof(TYPE) * C2, ...) | kmalloc(C1 * C2 * C3, ...) | kmalloc(C1 * C2, ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kmalloc + kmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kmalloc + kmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 20:55:00 +00:00
ppos = kmalloc_array(i + 0x11, sizeof(loff_t *), GFP_NOFS);
if (!ppos) {
pr_err("out of memory for position list\n");
return -ENOMEM;
}
if (hpfs_inode->i_rddir_off) {
memcpy(ppos, hpfs_inode->i_rddir_off, i * sizeof(loff_t));
kfree(hpfs_inode->i_rddir_off);
}
hpfs_inode->i_rddir_off = ppos;
}
hpfs_inode->i_rddir_off[i] = pos;
hpfs_inode->i_rddir_off[i + 1] = NULL;
return 0;
}
void hpfs_del_pos(struct inode *inode, loff_t *pos)
{
struct hpfs_inode_info *hpfs_inode = hpfs_i(inode);
loff_t **i, **j;
if (!hpfs_inode->i_rddir_off) goto not_f;
for (i = hpfs_inode->i_rddir_off; *i; i++) if (*i == pos) goto fnd;
goto not_f;
fnd:
for (j = i + 1; *j; j++) ;
*i = *(j - 1);
*(j - 1) = NULL;
if (j - 1 == hpfs_inode->i_rddir_off) {
kfree(hpfs_inode->i_rddir_off);
hpfs_inode->i_rddir_off = NULL;
}
return;
not_f:
/*pr_warn("position pointer %p->%08x not found\n",
pos, (int)*pos);*/
return;
}
static void for_all_poss(struct inode *inode, void (*f)(loff_t *, loff_t, loff_t),
loff_t p1, loff_t p2)
{
struct hpfs_inode_info *hpfs_inode = hpfs_i(inode);
loff_t **i;
if (!hpfs_inode->i_rddir_off) return;
for (i = hpfs_inode->i_rddir_off; *i; i++) (*f)(*i, p1, p2);
return;
}
static void hpfs_pos_subst(loff_t *p, loff_t f, loff_t t)
{
if (*p == f) *p = t;
}
/*void hpfs_hpfs_pos_substd(loff_t *p, loff_t f, loff_t t)
{
if ((*p & ~0x3f) == (f & ~0x3f)) *p = (t & ~0x3f) | (*p & 0x3f);
}*/
static void hpfs_pos_ins(loff_t *p, loff_t d, loff_t c)
{
if ((*p & ~0x3f) == (d & ~0x3f) && (*p & 0x3f) >= (d & 0x3f)) {
int n = (*p & 0x3f) + c;
if (n > 0x3f)
pr_err("%s(): %08x + %d\n",
__func__, (int)*p, (int)c >> 8);
else
*p = (*p & ~0x3f) | n;
}
}
static void hpfs_pos_del(loff_t *p, loff_t d, loff_t c)
{
if ((*p & ~0x3f) == (d & ~0x3f) && (*p & 0x3f) >= (d & 0x3f)) {
int n = (*p & 0x3f) - c;
if (n < 1)
pr_err("%s(): %08x - %d\n",
__func__, (int)*p, (int)c >> 8);
else
*p = (*p & ~0x3f) | n;
}
}
static struct hpfs_dirent *dnode_pre_last_de(struct dnode *d)
{
struct hpfs_dirent *de, *de_end, *dee = NULL, *deee = NULL;
de_end = dnode_end_de(d);
for (de = dnode_first_de(d); de < de_end; de = de_next_de(de)) {
deee = dee; dee = de;
}
return deee;
}
static struct hpfs_dirent *dnode_last_de(struct dnode *d)
{
struct hpfs_dirent *de, *de_end, *dee = NULL;
de_end = dnode_end_de(d);
for (de = dnode_first_de(d); de < de_end; de = de_next_de(de)) {
dee = de;
}
return dee;
}
static void set_last_pointer(struct super_block *s, struct dnode *d, dnode_secno ptr)
{
struct hpfs_dirent *de;
if (!(de = dnode_last_de(d))) {
hpfs_error(s, "set_last_pointer: empty dnode %08x", le32_to_cpu(d->self));
return;
}
if (hpfs_sb(s)->sb_chk) {
if (de->down) {
hpfs_error(s, "set_last_pointer: dnode %08x has already last pointer %08x",
le32_to_cpu(d->self), de_down_pointer(de));
return;
}
if (le16_to_cpu(de->length) != 32) {
hpfs_error(s, "set_last_pointer: bad last dirent in dnode %08x", le32_to_cpu(d->self));
return;
}
}
if (ptr) {
le32_add_cpu(&d->first_free, 4);
if (le32_to_cpu(d->first_free) > 2048) {
hpfs_error(s, "set_last_pointer: too long dnode %08x", le32_to_cpu(d->self));
le32_add_cpu(&d->first_free, -4);
return;
}
de->length = cpu_to_le16(36);
de->down = 1;
*(__le32 *)((char *)de + 32) = cpu_to_le32(ptr);
}
}
/* Add an entry to dnode and don't care if it grows over 2048 bytes */
struct hpfs_dirent *hpfs_add_de(struct super_block *s, struct dnode *d,
const unsigned char *name,
unsigned namelen, secno down_ptr)
{
struct hpfs_dirent *de;
struct hpfs_dirent *de_end = dnode_end_de(d);
unsigned d_size = de_size(namelen, down_ptr);
for (de = dnode_first_de(d); de < de_end; de = de_next_de(de)) {
int c = hpfs_compare_names(s, name, namelen, de->name, de->namelen, de->last);
if (!c) {
hpfs_error(s, "name (%c,%d) already exists in dnode %08x", *name, namelen, le32_to_cpu(d->self));
return NULL;
}
if (c < 0) break;
}
memmove((char *)de + d_size, de, (char *)de_end - (char *)de);
memset(de, 0, d_size);
if (down_ptr) {
*(__le32 *)((char *)de + d_size - 4) = cpu_to_le32(down_ptr);
de->down = 1;
}
de->length = cpu_to_le16(d_size);
de->not_8x3 = hpfs_is_name_long(name, namelen);
de->namelen = namelen;
memcpy(de->name, name, namelen);
le32_add_cpu(&d->first_free, d_size);
return de;
}
/* Delete dirent and don't care about its subtree */
static void hpfs_delete_de(struct super_block *s, struct dnode *d,
struct hpfs_dirent *de)
{
if (de->last) {
hpfs_error(s, "attempt to delete last dirent in dnode %08x", le32_to_cpu(d->self));
return;
}
d->first_free = cpu_to_le32(le32_to_cpu(d->first_free) - le16_to_cpu(de->length));
memmove(de, de_next_de(de), le32_to_cpu(d->first_free) + (char *)d - (char *)de);
}
static void fix_up_ptrs(struct super_block *s, struct dnode *d)
{
struct hpfs_dirent *de;
struct hpfs_dirent *de_end = dnode_end_de(d);
dnode_secno dno = le32_to_cpu(d->self);
for (de = dnode_first_de(d); de < de_end; de = de_next_de(de))
if (de->down) {
struct quad_buffer_head qbh;
struct dnode *dd;
if ((dd = hpfs_map_dnode(s, de_down_pointer(de), &qbh))) {
if (le32_to_cpu(dd->up) != dno || dd->root_dnode) {
dd->up = cpu_to_le32(dno);
dd->root_dnode = 0;
hpfs_mark_4buffers_dirty(&qbh);
}
hpfs_brelse4(&qbh);
}
}
}
/* Add an entry to dnode and do dnode splitting if required */
static int hpfs_add_to_dnode(struct inode *i, dnode_secno dno,
const unsigned char *name, unsigned namelen,
struct hpfs_dirent *new_de, dnode_secno down_ptr)
{
struct quad_buffer_head qbh, qbh1, qbh2;
struct dnode *d, *ad, *rd, *nd = NULL;
dnode_secno adno, rdno;
struct hpfs_dirent *de;
struct hpfs_dirent nde;
unsigned char *nname;
int h;
int pos;
struct buffer_head *bh;
struct fnode *fnode;
int c1, c2 = 0;
if (!(nname = kmalloc(256, GFP_NOFS))) {
pr_err("out of memory, can't add to dnode\n");
return 1;
}
go_up:
if (namelen >= 256) {
hpfs_error(i->i_sb, "%s(): namelen == %d", __func__, namelen);
kfree(nd);
kfree(nname);
return 1;
}
if (!(d = hpfs_map_dnode(i->i_sb, dno, &qbh))) {
kfree(nd);
kfree(nname);
return 1;
}
go_up_a:
if (hpfs_sb(i->i_sb)->sb_chk)
if (hpfs_stop_cycles(i->i_sb, dno, &c1, &c2, "hpfs_add_to_dnode")) {
hpfs_brelse4(&qbh);
kfree(nd);
kfree(nname);
return 1;
}
if (le32_to_cpu(d->first_free) + de_size(namelen, down_ptr) <= 2048) {
loff_t t;
copy_de(de=hpfs_add_de(i->i_sb, d, name, namelen, down_ptr), new_de);
t = get_pos(d, de);
for_all_poss(i, hpfs_pos_ins, t, 1);
for_all_poss(i, hpfs_pos_subst, 4, t);
for_all_poss(i, hpfs_pos_subst, 5, t + 1);
hpfs_mark_4buffers_dirty(&qbh);
hpfs_brelse4(&qbh);
kfree(nd);
kfree(nname);
return 0;
}
if (!nd) if (!(nd = kmalloc(0x924, GFP_NOFS))) {
/* 0x924 is a max size of dnode after adding a dirent with
max name length. We alloc this only once. There must
not be any error while splitting dnodes, otherwise the
whole directory, not only file we're adding, would
be lost. */
pr_err("out of memory for dnode splitting\n");
hpfs_brelse4(&qbh);
kfree(nname);
return 1;
}
memcpy(nd, d, le32_to_cpu(d->first_free));
copy_de(de = hpfs_add_de(i->i_sb, nd, name, namelen, down_ptr), new_de);
for_all_poss(i, hpfs_pos_ins, get_pos(nd, de), 1);
h = ((char *)dnode_last_de(nd) - (char *)nd) / 2 + 10;
if (!(ad = hpfs_alloc_dnode(i->i_sb, le32_to_cpu(d->up), &adno, &qbh1))) {
hpfs_error(i->i_sb, "unable to alloc dnode - dnode tree will be corrupted");
hpfs_brelse4(&qbh);
kfree(nd);
kfree(nname);
return 1;
}
i->i_size += 2048;
i->i_blocks += 4;
pos = 1;
for (de = dnode_first_de(nd); (char *)de_next_de(de) - (char *)nd < h; de = de_next_de(de)) {
copy_de(hpfs_add_de(i->i_sb, ad, de->name, de->namelen, de->down ? de_down_pointer(de) : 0), de);
for_all_poss(i, hpfs_pos_subst, ((loff_t)dno << 4) | pos, ((loff_t)adno << 4) | pos);
pos++;
}
copy_de(new_de = &nde, de);
memcpy(nname, de->name, de->namelen);
name = nname;
namelen = de->namelen;
for_all_poss(i, hpfs_pos_subst, ((loff_t)dno << 4) | pos, 4);
down_ptr = adno;
set_last_pointer(i->i_sb, ad, de->down ? de_down_pointer(de) : 0);
de = de_next_de(de);
memmove((char *)nd + 20, de, le32_to_cpu(nd->first_free) + (char *)nd - (char *)de);
le32_add_cpu(&nd->first_free, -((char *)de - (char *)nd - 20));
memcpy(d, nd, le32_to_cpu(nd->first_free));
for_all_poss(i, hpfs_pos_del, (loff_t)dno << 4, pos);
fix_up_ptrs(i->i_sb, ad);
if (!d->root_dnode) {
ad->up = d->up;
dno = le32_to_cpu(ad->up);
hpfs_mark_4buffers_dirty(&qbh);
hpfs_brelse4(&qbh);
hpfs_mark_4buffers_dirty(&qbh1);
hpfs_brelse4(&qbh1);
goto go_up;
}
if (!(rd = hpfs_alloc_dnode(i->i_sb, le32_to_cpu(d->up), &rdno, &qbh2))) {
hpfs_error(i->i_sb, "unable to alloc dnode - dnode tree will be corrupted");
hpfs_brelse4(&qbh);
hpfs_brelse4(&qbh1);
kfree(nd);
kfree(nname);
return 1;
}
i->i_size += 2048;
i->i_blocks += 4;
rd->root_dnode = 1;
rd->up = d->up;
if (!(fnode = hpfs_map_fnode(i->i_sb, le32_to_cpu(d->up), &bh))) {
hpfs_free_dnode(i->i_sb, rdno);
hpfs_brelse4(&qbh);
hpfs_brelse4(&qbh1);
hpfs_brelse4(&qbh2);
kfree(nd);
kfree(nname);
return 1;
}
fnode->u.external[0].disk_secno = cpu_to_le32(rdno);
mark_buffer_dirty(bh);
brelse(bh);
hpfs_i(i)->i_dno = rdno;
d->up = ad->up = cpu_to_le32(rdno);
d->root_dnode = ad->root_dnode = 0;
hpfs_mark_4buffers_dirty(&qbh);
hpfs_brelse4(&qbh);
hpfs_mark_4buffers_dirty(&qbh1);
hpfs_brelse4(&qbh1);
qbh = qbh2;
set_last_pointer(i->i_sb, rd, dno);
dno = rdno;
d = rd;
goto go_up_a;
}
/*
* Add an entry to directory btree.
* I hate such crazy directory structure.
* It's easy to read but terrible to write.
* I wrote this directory code 4 times.
* I hope, now it's finally bug-free.
*/
int hpfs_add_dirent(struct inode *i,
const unsigned char *name, unsigned namelen,
struct hpfs_dirent *new_de)
{
struct hpfs_inode_info *hpfs_inode = hpfs_i(i);
struct dnode *d;
struct hpfs_dirent *de, *de_end;
struct quad_buffer_head qbh;
dnode_secno dno;
int c;
int c1, c2 = 0;
dno = hpfs_inode->i_dno;
down:
if (hpfs_sb(i->i_sb)->sb_chk)
if (hpfs_stop_cycles(i->i_sb, dno, &c1, &c2, "hpfs_add_dirent")) return 1;
if (!(d = hpfs_map_dnode(i->i_sb, dno, &qbh))) return 1;
de_end = dnode_end_de(d);
for (de = dnode_first_de(d); de < de_end; de = de_next_de(de)) {
if (!(c = hpfs_compare_names(i->i_sb, name, namelen, de->name, de->namelen, de->last))) {
hpfs_brelse4(&qbh);
return -1;
}
if (c < 0) {
if (de->down) {
dno = de_down_pointer(de);
hpfs_brelse4(&qbh);
goto down;
}
break;
}
}
hpfs_brelse4(&qbh);
if (hpfs_check_free_dnodes(i->i_sb, FREE_DNODES_ADD)) {
c = 1;
goto ret;
}
c = hpfs_add_to_dnode(i, dno, name, namelen, new_de, 0);
ret:
return c;
}
/*
* Find dirent with higher name in 'from' subtree and move it to 'to' dnode.
* Return the dnode we moved from (to be checked later if it's empty)
*/
static secno move_to_top(struct inode *i, dnode_secno from, dnode_secno to)
{
dnode_secno dno, ddno;
dnode_secno chk_up = to;
struct dnode *dnode;
struct quad_buffer_head qbh;
struct hpfs_dirent *de, *nde;
int a;
loff_t t;
int c1, c2 = 0;
dno = from;
while (1) {
if (hpfs_sb(i->i_sb)->sb_chk)
if (hpfs_stop_cycles(i->i_sb, dno, &c1, &c2, "move_to_top"))
return 0;
if (!(dnode = hpfs_map_dnode(i->i_sb, dno, &qbh))) return 0;
if (hpfs_sb(i->i_sb)->sb_chk) {
if (le32_to_cpu(dnode->up) != chk_up) {
hpfs_error(i->i_sb, "move_to_top: up pointer from %08x should be %08x, is %08x",
dno, chk_up, le32_to_cpu(dnode->up));
hpfs_brelse4(&qbh);
return 0;
}
chk_up = dno;
}
if (!(de = dnode_last_de(dnode))) {
hpfs_error(i->i_sb, "move_to_top: dnode %08x has no last de", dno);
hpfs_brelse4(&qbh);
return 0;
}
if (!de->down) break;
dno = de_down_pointer(de);
hpfs_brelse4(&qbh);
}
while (!(de = dnode_pre_last_de(dnode))) {
dnode_secno up = le32_to_cpu(dnode->up);
hpfs_brelse4(&qbh);
hpfs_free_dnode(i->i_sb, dno);
i->i_size -= 2048;
i->i_blocks -= 4;
for_all_poss(i, hpfs_pos_subst, ((loff_t)dno << 4) | 1, 5);
if (up == to) return to;
if (!(dnode = hpfs_map_dnode(i->i_sb, up, &qbh))) return 0;
if (dnode->root_dnode) {
hpfs_error(i->i_sb, "move_to_top: got to root_dnode while moving from %08x to %08x", from, to);
hpfs_brelse4(&qbh);
return 0;
}
de = dnode_last_de(dnode);
if (!de || !de->down) {
hpfs_error(i->i_sb, "move_to_top: dnode %08x doesn't point down to %08x", up, dno);
hpfs_brelse4(&qbh);
return 0;
}
le32_add_cpu(&dnode->first_free, -4);
le16_add_cpu(&de->length, -4);
de->down = 0;
hpfs_mark_4buffers_dirty(&qbh);
dno = up;
}
t = get_pos(dnode, de);
for_all_poss(i, hpfs_pos_subst, t, 4);
for_all_poss(i, hpfs_pos_subst, t + 1, 5);
if (!(nde = kmalloc(le16_to_cpu(de->length), GFP_NOFS))) {
hpfs_error(i->i_sb, "out of memory for dirent - directory will be corrupted");
hpfs_brelse4(&qbh);
return 0;
}
memcpy(nde, de, le16_to_cpu(de->length));
ddno = de->down ? de_down_pointer(de) : 0;
hpfs_delete_de(i->i_sb, dnode, de);
set_last_pointer(i->i_sb, dnode, ddno);
hpfs_mark_4buffers_dirty(&qbh);
hpfs_brelse4(&qbh);
a = hpfs_add_to_dnode(i, to, nde->name, nde->namelen, nde, from);
kfree(nde);
if (a) return 0;
return dno;
}
/*
* Check if a dnode is empty and delete it from the tree
* (chkdsk doesn't like empty dnodes)
*/
static void delete_empty_dnode(struct inode *i, dnode_secno dno)
{
struct hpfs_inode_info *hpfs_inode = hpfs_i(i);
struct quad_buffer_head qbh;
struct dnode *dnode;
dnode_secno down, up, ndown;
int p;
struct hpfs_dirent *de;
int c1, c2 = 0;
try_it_again:
if (hpfs_stop_cycles(i->i_sb, dno, &c1, &c2, "delete_empty_dnode")) return;
if (!(dnode = hpfs_map_dnode(i->i_sb, dno, &qbh))) return;
if (le32_to_cpu(dnode->first_free) > 56) goto end;
if (le32_to_cpu(dnode->first_free) == 52 || le32_to_cpu(dnode->first_free) == 56) {
struct hpfs_dirent *de_end;
int root = dnode->root_dnode;
up = le32_to_cpu(dnode->up);
de = dnode_first_de(dnode);
down = de->down ? de_down_pointer(de) : 0;
if (hpfs_sb(i->i_sb)->sb_chk) if (root && !down) {
hpfs_error(i->i_sb, "delete_empty_dnode: root dnode %08x is empty", dno);
goto end;
}
hpfs_brelse4(&qbh);
hpfs_free_dnode(i->i_sb, dno);
i->i_size -= 2048;
i->i_blocks -= 4;
if (root) {
struct fnode *fnode;
struct buffer_head *bh;
struct dnode *d1;
struct quad_buffer_head qbh1;
[PATCH] hpfs: fix printk format warnings Fix hpfs printk warnings: fs/hpfs/dir.c:87: warning: format '%08x' expects type 'unsigned int', but argument 3 has type 'long unsigned int' fs/hpfs/dir.c:147: warning: format '%08x' expects type 'unsigned int', but argument 3 has type 'long int' fs/hpfs/dir.c:148: warning: format '%08x' expects type 'unsigned int', but argument 3 has type 'long int' fs/hpfs/dnode.c:537: warning: format '%08x' expects type 'unsigned int', but argument 5 has type 'long unsigned int' fs/hpfs/dnode.c:854: warning: format '%08x' expects type 'unsigned int', but argument 3 has type 'loff_t' fs/hpfs/ea.c:247: warning: format '%08x' expects type 'unsigned int', but argument 3 has type 'long unsigned int' fs/hpfs/inode.c:254: warning: format '%08x' expects type 'unsigned int', but argument 3 has type 'long unsigned int' fs/hpfs/map.c:129: warning: format '%08x' expects type 'unsigned int', but argument 3 has type 'ino_t' fs/hpfs/map.c:135: warning: format '%08x' expects type 'unsigned int', but argument 3 has type 'ino_t' fs/hpfs/map.c:140: warning: format '%08x' expects type 'unsigned int', but argument 3 has type 'ino_t' fs/hpfs/map.c:147: warning: format '%08x' expects type 'unsigned int', but argument 3 has type 'ino_t' fs/hpfs/map.c:154: warning: format '%08x' expects type 'unsigned int', but argument 3 has type 'ino_t' Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 04:37:05 +00:00
if (hpfs_sb(i->i_sb)->sb_chk)
if (up != i->i_ino) {
hpfs_error(i->i_sb,
"bad pointer to fnode, dnode %08x, pointing to %08x, should be %08lx",
dno, up,
(unsigned long)i->i_ino);
return;
}
if ((d1 = hpfs_map_dnode(i->i_sb, down, &qbh1))) {
d1->up = cpu_to_le32(up);
d1->root_dnode = 1;
hpfs_mark_4buffers_dirty(&qbh1);
hpfs_brelse4(&qbh1);
}
if ((fnode = hpfs_map_fnode(i->i_sb, up, &bh))) {
fnode->u.external[0].disk_secno = cpu_to_le32(down);
mark_buffer_dirty(bh);
brelse(bh);
}
hpfs_inode->i_dno = down;
for_all_poss(i, hpfs_pos_subst, ((loff_t)dno << 4) | 1, (loff_t) 12);
return;
}
if (!(dnode = hpfs_map_dnode(i->i_sb, up, &qbh))) return;
p = 1;
de_end = dnode_end_de(dnode);
for (de = dnode_first_de(dnode); de < de_end; de = de_next_de(de), p++)
if (de->down) if (de_down_pointer(de) == dno) goto fnd;
hpfs_error(i->i_sb, "delete_empty_dnode: pointer to dnode %08x not found in dnode %08x", dno, up);
goto end;
fnd:
for_all_poss(i, hpfs_pos_subst, ((loff_t)dno << 4) | 1, ((loff_t)up << 4) | p);
if (!down) {
de->down = 0;
le16_add_cpu(&de->length, -4);
le32_add_cpu(&dnode->first_free, -4);
memmove(de_next_de(de), (char *)de_next_de(de) + 4,
(char *)dnode + le32_to_cpu(dnode->first_free) - (char *)de_next_de(de));
} else {
struct dnode *d1;
struct quad_buffer_head qbh1;
*(dnode_secno *) ((void *) de + le16_to_cpu(de->length) - 4) = down;
if ((d1 = hpfs_map_dnode(i->i_sb, down, &qbh1))) {
d1->up = cpu_to_le32(up);
hpfs_mark_4buffers_dirty(&qbh1);
hpfs_brelse4(&qbh1);
}
}
} else {
hpfs_error(i->i_sb, "delete_empty_dnode: dnode %08x, first_free == %03x", dno, le32_to_cpu(dnode->first_free));
goto end;
}
if (!de->last) {
struct hpfs_dirent *de_next = de_next_de(de);
struct hpfs_dirent *de_cp;
struct dnode *d1;
struct quad_buffer_head qbh1;
if (!de_next->down) goto endm;
ndown = de_down_pointer(de_next);
if (!(de_cp = kmalloc(le16_to_cpu(de->length), GFP_NOFS))) {
pr_err("out of memory for dtree balancing\n");
goto endm;
}
memcpy(de_cp, de, le16_to_cpu(de->length));
hpfs_delete_de(i->i_sb, dnode, de);
hpfs_mark_4buffers_dirty(&qbh);
hpfs_brelse4(&qbh);
for_all_poss(i, hpfs_pos_subst, ((loff_t)up << 4) | p, 4);
for_all_poss(i, hpfs_pos_del, ((loff_t)up << 4) | p, 1);
if (de_cp->down) if ((d1 = hpfs_map_dnode(i->i_sb, de_down_pointer(de_cp), &qbh1))) {
d1->up = cpu_to_le32(ndown);
hpfs_mark_4buffers_dirty(&qbh1);
hpfs_brelse4(&qbh1);
}
hpfs_add_to_dnode(i, ndown, de_cp->name, de_cp->namelen, de_cp, de_cp->down ? de_down_pointer(de_cp) : 0);
/*pr_info("UP-TO-DNODE: %08x (ndown = %08x, down = %08x, dno = %08x)\n",
up, ndown, down, dno);*/
dno = up;
kfree(de_cp);
goto try_it_again;
} else {
struct hpfs_dirent *de_prev = dnode_pre_last_de(dnode);
struct hpfs_dirent *de_cp;
struct dnode *d1;
struct quad_buffer_head qbh1;
dnode_secno dlp;
if (!de_prev) {
hpfs_error(i->i_sb, "delete_empty_dnode: empty dnode %08x", up);
hpfs_mark_4buffers_dirty(&qbh);
hpfs_brelse4(&qbh);
dno = up;
goto try_it_again;
}
if (!de_prev->down) goto endm;
ndown = de_down_pointer(de_prev);
if ((d1 = hpfs_map_dnode(i->i_sb, ndown, &qbh1))) {
struct hpfs_dirent *del = dnode_last_de(d1);
dlp = del->down ? de_down_pointer(del) : 0;
if (!dlp && down) {
if (le32_to_cpu(d1->first_free) > 2044) {
if (hpfs_sb(i->i_sb)->sb_chk >= 2) {
pr_err("unbalanced dnode tree, see hpfs.txt 4 more info\n");
pr_err("terminating balancing operation\n");
}
hpfs_brelse4(&qbh1);
goto endm;
}
if (hpfs_sb(i->i_sb)->sb_chk >= 2) {
pr_err("unbalanced dnode tree, see hpfs.txt 4 more info\n");
pr_err("goin'on\n");
}
le16_add_cpu(&del->length, 4);
del->down = 1;
le32_add_cpu(&d1->first_free, 4);
}
if (dlp && !down) {
le16_add_cpu(&del->length, -4);
del->down = 0;
le32_add_cpu(&d1->first_free, -4);
} else if (down)
*(__le32 *) ((void *) del + le16_to_cpu(del->length) - 4) = cpu_to_le32(down);
} else goto endm;
if (!(de_cp = kmalloc(le16_to_cpu(de_prev->length), GFP_NOFS))) {
pr_err("out of memory for dtree balancing\n");
hpfs_brelse4(&qbh1);
goto endm;
}
hpfs_mark_4buffers_dirty(&qbh1);
hpfs_brelse4(&qbh1);
memcpy(de_cp, de_prev, le16_to_cpu(de_prev->length));
hpfs_delete_de(i->i_sb, dnode, de_prev);
if (!de_prev->down) {
le16_add_cpu(&de_prev->length, 4);
de_prev->down = 1;
le32_add_cpu(&dnode->first_free, 4);
}
*(__le32 *) ((void *) de_prev + le16_to_cpu(de_prev->length) - 4) = cpu_to_le32(ndown);
hpfs_mark_4buffers_dirty(&qbh);
hpfs_brelse4(&qbh);
for_all_poss(i, hpfs_pos_subst, ((loff_t)up << 4) | (p - 1), 4);
for_all_poss(i, hpfs_pos_subst, ((loff_t)up << 4) | p, ((loff_t)up << 4) | (p - 1));
if (down) if ((d1 = hpfs_map_dnode(i->i_sb, de_down_pointer(de), &qbh1))) {
d1->up = cpu_to_le32(ndown);
hpfs_mark_4buffers_dirty(&qbh1);
hpfs_brelse4(&qbh1);
}
hpfs_add_to_dnode(i, ndown, de_cp->name, de_cp->namelen, de_cp, dlp);
dno = up;
kfree(de_cp);
goto try_it_again;
}
endm:
hpfs_mark_4buffers_dirty(&qbh);
end:
hpfs_brelse4(&qbh);
}
/* Delete dirent from directory */
int hpfs_remove_dirent(struct inode *i, dnode_secno dno, struct hpfs_dirent *de,
struct quad_buffer_head *qbh, int depth)
{
struct dnode *dnode = qbh->data;
dnode_secno down = 0;
loff_t t;
if (de->first || de->last) {
hpfs_error(i->i_sb, "hpfs_remove_dirent: attempt to delete first or last dirent in dnode %08x", dno);
hpfs_brelse4(qbh);
return 1;
}
if (de->down) down = de_down_pointer(de);
if (depth && (de->down || (de == dnode_first_de(dnode) && de_next_de(de)->last))) {
if (hpfs_check_free_dnodes(i->i_sb, FREE_DNODES_DEL)) {
hpfs_brelse4(qbh);
return 2;
}
}
for_all_poss(i, hpfs_pos_del, (t = get_pos(dnode, de)) + 1, 1);
hpfs_delete_de(i->i_sb, dnode, de);
hpfs_mark_4buffers_dirty(qbh);
hpfs_brelse4(qbh);
if (down) {
dnode_secno a = move_to_top(i, down, dno);
for_all_poss(i, hpfs_pos_subst, 5, t);
if (a) delete_empty_dnode(i, a);
return !a;
}
delete_empty_dnode(i, dno);
return 0;
}
void hpfs_count_dnodes(struct super_block *s, dnode_secno dno, int *n_dnodes,
int *n_subdirs, int *n_items)
{
struct dnode *dnode;
struct quad_buffer_head qbh;
struct hpfs_dirent *de;
dnode_secno ptr, odno = 0;
int c1, c2 = 0;
int d1, d2 = 0;
go_down:
if (n_dnodes) (*n_dnodes)++;
if (hpfs_sb(s)->sb_chk)
if (hpfs_stop_cycles(s, dno, &c1, &c2, "hpfs_count_dnodes #1")) return;
ptr = 0;
go_up:
if (!(dnode = hpfs_map_dnode(s, dno, &qbh))) return;
if (hpfs_sb(s)->sb_chk) if (odno && odno != -1 && le32_to_cpu(dnode->up) != odno)
hpfs_error(s, "hpfs_count_dnodes: bad up pointer; dnode %08x, down %08x points to %08x", odno, dno, le32_to_cpu(dnode->up));
de = dnode_first_de(dnode);
if (ptr) while(1) {
if (de->down) if (de_down_pointer(de) == ptr) goto process_de;
if (de->last) {
hpfs_brelse4(&qbh);
hpfs_error(s, "hpfs_count_dnodes: pointer to dnode %08x not found in dnode %08x, got here from %08x",
ptr, dno, odno);
return;
}
de = de_next_de(de);
}
next_de:
if (de->down) {
odno = dno;
dno = de_down_pointer(de);
hpfs_brelse4(&qbh);
goto go_down;
}
process_de:
if (!de->first && !de->last && de->directory && n_subdirs) (*n_subdirs)++;
if (!de->first && !de->last && n_items) (*n_items)++;
if ((de = de_next_de(de)) < dnode_end_de(dnode)) goto next_de;
ptr = dno;
dno = le32_to_cpu(dnode->up);
if (dnode->root_dnode) {
hpfs_brelse4(&qbh);
return;
}
hpfs_brelse4(&qbh);
if (hpfs_sb(s)->sb_chk)
if (hpfs_stop_cycles(s, ptr, &d1, &d2, "hpfs_count_dnodes #2")) return;
odno = -1;
goto go_up;
}
static struct hpfs_dirent *map_nth_dirent(struct super_block *s, dnode_secno dno, int n,
struct quad_buffer_head *qbh, struct dnode **dn)
{
int i;
struct hpfs_dirent *de, *de_end;
struct dnode *dnode;
dnode = hpfs_map_dnode(s, dno, qbh);
if (!dnode) return NULL;
if (dn) *dn=dnode;
de = dnode_first_de(dnode);
de_end = dnode_end_de(dnode);
for (i = 1; de < de_end; i++, de = de_next_de(de)) {
if (i == n) {
return de;
}
if (de->last) break;
}
hpfs_brelse4(qbh);
hpfs_error(s, "map_nth_dirent: n too high; dnode = %08x, requested %08x", dno, n);
return NULL;
}
dnode_secno hpfs_de_as_down_as_possible(struct super_block *s, dnode_secno dno)
{
struct quad_buffer_head qbh;
dnode_secno d = dno;
dnode_secno up = 0;
struct hpfs_dirent *de;
int c1, c2 = 0;
again:
if (hpfs_sb(s)->sb_chk)
if (hpfs_stop_cycles(s, d, &c1, &c2, "hpfs_de_as_down_as_possible"))
return d;
if (!(de = map_nth_dirent(s, d, 1, &qbh, NULL))) return dno;
if (hpfs_sb(s)->sb_chk)
if (up && le32_to_cpu(((struct dnode *)qbh.data)->up) != up)
hpfs_error(s, "hpfs_de_as_down_as_possible: bad up pointer; dnode %08x, down %08x points to %08x", up, d, le32_to_cpu(((struct dnode *)qbh.data)->up));
if (!de->down) {
hpfs_brelse4(&qbh);
return d;
}
up = d;
d = de_down_pointer(de);
hpfs_brelse4(&qbh);
goto again;
}
struct hpfs_dirent *map_pos_dirent(struct inode *inode, loff_t *posp,
struct quad_buffer_head *qbh)
{
loff_t pos;
unsigned c;
dnode_secno dno;
struct hpfs_dirent *de, *d;
struct hpfs_dirent *up_de;
struct hpfs_dirent *end_up_de;
struct dnode *dnode;
struct dnode *up_dnode;
struct quad_buffer_head qbh0;
pos = *posp;
dno = pos >> 6 << 2;
pos &= 077;
if (!(de = map_nth_dirent(inode->i_sb, dno, pos, qbh, &dnode)))
goto bail;
/* Going to the next dirent */
if ((d = de_next_de(de)) < dnode_end_de(dnode)) {
if (!(++*posp & 077)) {
[PATCH] hpfs: fix printk format warnings Fix hpfs printk warnings: fs/hpfs/dir.c:87: warning: format '%08x' expects type 'unsigned int', but argument 3 has type 'long unsigned int' fs/hpfs/dir.c:147: warning: format '%08x' expects type 'unsigned int', but argument 3 has type 'long int' fs/hpfs/dir.c:148: warning: format '%08x' expects type 'unsigned int', but argument 3 has type 'long int' fs/hpfs/dnode.c:537: warning: format '%08x' expects type 'unsigned int', but argument 5 has type 'long unsigned int' fs/hpfs/dnode.c:854: warning: format '%08x' expects type 'unsigned int', but argument 3 has type 'loff_t' fs/hpfs/ea.c:247: warning: format '%08x' expects type 'unsigned int', but argument 3 has type 'long unsigned int' fs/hpfs/inode.c:254: warning: format '%08x' expects type 'unsigned int', but argument 3 has type 'long unsigned int' fs/hpfs/map.c:129: warning: format '%08x' expects type 'unsigned int', but argument 3 has type 'ino_t' fs/hpfs/map.c:135: warning: format '%08x' expects type 'unsigned int', but argument 3 has type 'ino_t' fs/hpfs/map.c:140: warning: format '%08x' expects type 'unsigned int', but argument 3 has type 'ino_t' fs/hpfs/map.c:147: warning: format '%08x' expects type 'unsigned int', but argument 3 has type 'ino_t' fs/hpfs/map.c:154: warning: format '%08x' expects type 'unsigned int', but argument 3 has type 'ino_t' Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 04:37:05 +00:00
hpfs_error(inode->i_sb,
"map_pos_dirent: pos crossed dnode boundary; pos = %08llx",
(unsigned long long)*posp);
goto bail;
}
/* We're going down the tree */
if (d->down) {
*posp = ((loff_t) hpfs_de_as_down_as_possible(inode->i_sb, de_down_pointer(d)) << 4) + 1;
}
return de;
}
/* Going up */
if (dnode->root_dnode) goto bail;
if (!(up_dnode = hpfs_map_dnode(inode->i_sb, le32_to_cpu(dnode->up), &qbh0)))
goto bail;
end_up_de = dnode_end_de(up_dnode);
c = 0;
for (up_de = dnode_first_de(up_dnode); up_de < end_up_de;
up_de = de_next_de(up_de)) {
if (!(++c & 077)) hpfs_error(inode->i_sb,
"map_pos_dirent: pos crossed dnode boundary; dnode = %08x", le32_to_cpu(dnode->up));
if (up_de->down && de_down_pointer(up_de) == dno) {
*posp = ((loff_t) le32_to_cpu(dnode->up) << 4) + c;
hpfs_brelse4(&qbh0);
return de;
}
}
hpfs_error(inode->i_sb, "map_pos_dirent: pointer to dnode %08x not found in parent dnode %08x",
dno, le32_to_cpu(dnode->up));
hpfs_brelse4(&qbh0);
bail:
*posp = 12;
return de;
}
/* Find a dirent in tree */
struct hpfs_dirent *map_dirent(struct inode *inode, dnode_secno dno,
const unsigned char *name, unsigned len,
dnode_secno *dd, struct quad_buffer_head *qbh)
{
struct dnode *dnode;
struct hpfs_dirent *de;
struct hpfs_dirent *de_end;
int c1, c2 = 0;
if (!S_ISDIR(inode->i_mode)) hpfs_error(inode->i_sb, "map_dirent: not a directory\n");
again:
if (hpfs_sb(inode->i_sb)->sb_chk)
if (hpfs_stop_cycles(inode->i_sb, dno, &c1, &c2, "map_dirent")) return NULL;
if (!(dnode = hpfs_map_dnode(inode->i_sb, dno, qbh))) return NULL;
de_end = dnode_end_de(dnode);
for (de = dnode_first_de(dnode); de < de_end; de = de_next_de(de)) {
int t = hpfs_compare_names(inode->i_sb, name, len, de->name, de->namelen, de->last);
if (!t) {
if (dd) *dd = dno;
return de;
}
if (t < 0) {
if (de->down) {
dno = de_down_pointer(de);
hpfs_brelse4(qbh);
goto again;
}
break;
}
}
hpfs_brelse4(qbh);
return NULL;
}
/*
* Remove empty directory. In normal cases it is only one dnode with two
* entries, but we must handle also such obscure cases when it's a tree
* of empty dnodes.
*/
void hpfs_remove_dtree(struct super_block *s, dnode_secno dno)
{
struct quad_buffer_head qbh;
struct dnode *dnode;
struct hpfs_dirent *de;
dnode_secno d1, d2, rdno = dno;
while (1) {
if (!(dnode = hpfs_map_dnode(s, dno, &qbh))) return;
de = dnode_first_de(dnode);
if (de->last) {
if (de->down) d1 = de_down_pointer(de);
else goto error;
hpfs_brelse4(&qbh);
hpfs_free_dnode(s, dno);
dno = d1;
} else break;
}
if (!de->first) goto error;
d1 = de->down ? de_down_pointer(de) : 0;
de = de_next_de(de);
if (!de->last) goto error;
d2 = de->down ? de_down_pointer(de) : 0;
hpfs_brelse4(&qbh);
hpfs_free_dnode(s, dno);
do {
while (d1) {
if (!(dnode = hpfs_map_dnode(s, dno = d1, &qbh))) return;
de = dnode_first_de(dnode);
if (!de->last) goto error;
d1 = de->down ? de_down_pointer(de) : 0;
hpfs_brelse4(&qbh);
hpfs_free_dnode(s, dno);
}
d1 = d2;
d2 = 0;
} while (d1);
return;
error:
hpfs_brelse4(&qbh);
hpfs_free_dnode(s, dno);
hpfs_error(s, "directory %08x is corrupted or not empty", rdno);
}
/*
* Find dirent for specified fnode. Use truncated 15-char name in fnode as
* a help for searching.
*/
struct hpfs_dirent *map_fnode_dirent(struct super_block *s, fnode_secno fno,
struct fnode *f, struct quad_buffer_head *qbh)
{
unsigned char *name1;
unsigned char *name2;
int name1len, name2len;
struct dnode *d;
dnode_secno dno, downd;
struct fnode *upf;
struct buffer_head *bh;
struct hpfs_dirent *de, *de_end;
int c;
int c1, c2 = 0;
int d1, d2 = 0;
name1 = f->name;
if (!(name2 = kmalloc(256, GFP_NOFS))) {
pr_err("out of memory, can't map dirent\n");
return NULL;
}
if (f->len <= 15)
memcpy(name2, name1, name1len = name2len = f->len);
else {
memcpy(name2, name1, 15);
memset(name2 + 15, 0xff, 256 - 15);
/*name2[15] = 0xff;*/
name1len = 15; name2len = 256;
}
if (!(upf = hpfs_map_fnode(s, le32_to_cpu(f->up), &bh))) {
kfree(name2);
return NULL;
}
if (!fnode_is_dir(upf)) {
brelse(bh);
hpfs_error(s, "fnode %08x has non-directory parent %08x", fno, le32_to_cpu(f->up));
kfree(name2);
return NULL;
}
dno = le32_to_cpu(upf->u.external[0].disk_secno);
brelse(bh);
go_down:
downd = 0;
go_up:
if (!(d = hpfs_map_dnode(s, dno, qbh))) {
kfree(name2);
return NULL;
}
de_end = dnode_end_de(d);
de = dnode_first_de(d);
if (downd) {
while (de < de_end) {
if (de->down) if (de_down_pointer(de) == downd) goto f;
de = de_next_de(de);
}
hpfs_error(s, "pointer to dnode %08x not found in dnode %08x", downd, dno);
hpfs_brelse4(qbh);
kfree(name2);
return NULL;
}
next_de:
if (le32_to_cpu(de->fnode) == fno) {
kfree(name2);
return de;
}
c = hpfs_compare_names(s, name1, name1len, de->name, de->namelen, de->last);
if (c < 0 && de->down) {
dno = de_down_pointer(de);
hpfs_brelse4(qbh);
if (hpfs_sb(s)->sb_chk)
if (hpfs_stop_cycles(s, dno, &c1, &c2, "map_fnode_dirent #1")) {
kfree(name2);
return NULL;
}
goto go_down;
}
f:
if (le32_to_cpu(de->fnode) == fno) {
kfree(name2);
return de;
}
c = hpfs_compare_names(s, name2, name2len, de->name, de->namelen, de->last);
if (c < 0 && !de->last) goto not_found;
if ((de = de_next_de(de)) < de_end) goto next_de;
if (d->root_dnode) goto not_found;
downd = dno;
dno = le32_to_cpu(d->up);
hpfs_brelse4(qbh);
if (hpfs_sb(s)->sb_chk)
if (hpfs_stop_cycles(s, downd, &d1, &d2, "map_fnode_dirent #2")) {
kfree(name2);
return NULL;
}
goto go_up;
not_found:
hpfs_brelse4(qbh);
hpfs_error(s, "dirent for fnode %08x not found", fno);
kfree(name2);
return NULL;
}