License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
|
|
|
# SPDX-License-Identifier: GPL-2.0
|
powerpc: Book3S 64-bit outline-only KASAN support
Implement a limited form of KASAN for Book3S 64-bit machines running under
the Radix MMU, supporting only outline mode.
- Enable the compiler instrumentation to check addresses and maintain the
shadow region. (This is the guts of KASAN which we can easily reuse.)
- Require kasan-vmalloc support to handle modules and anything else in
vmalloc space.
- KASAN needs to be able to validate all pointer accesses, but we can't
instrument all kernel addresses - only linear map and vmalloc. On boot,
set up a single page of read-only shadow that marks all iomap and
vmemmap accesses as valid.
- Document KASAN in powerpc docs.
Background
----------
KASAN support on Book3S is a bit tricky to get right:
- It would be good to support inline instrumentation so as to be able to
catch stack issues that cannot be caught with outline mode.
- Inline instrumentation requires a fixed offset.
- Book3S runs code with translations off ("real mode") during boot,
including a lot of generic device-tree parsing code which is used to
determine MMU features.
[ppc64 mm note: The kernel installs a linear mapping at effective
address c000...-c008.... This is a one-to-one mapping with physical
memory from 0000... onward. Because of how memory accesses work on
powerpc 64-bit Book3S, a kernel pointer in the linear map accesses the
same memory both with translations on (accessing as an 'effective
address'), and with translations off (accessing as a 'real
address'). This works in both guests and the hypervisor. For more
details, see s5.7 of Book III of version 3 of the ISA, in particular
the Storage Control Overview, s5.7.3, and s5.7.5 - noting that this
KASAN implementation currently only supports Radix.]
- Some code - most notably a lot of KVM code - also runs with translations
off after boot.
- Therefore any offset has to point to memory that is valid with
translations on or off.
One approach is just to give up on inline instrumentation. This way
boot-time checks can be delayed until after the MMU is set is up, and we
can just not instrument any code that runs with translations off after
booting. Take this approach for now and require outline instrumentation.
Previous attempts allowed inline instrumentation. However, they came with
some unfortunate restrictions: only physically contiguous memory could be
used and it had to be specified at compile time. Maybe we can do better in
the future.
[paulus@ozlabs.org - Rebased onto 5.17. Note that a kernel with
CONFIG_KASAN=y will crash during boot on a machine using HPT
translation because not all the entry points to the generic
KASAN code are protected with a call to kasan_arch_is_ready().]
Originally-by: Balbir Singh <bsingharora@gmail.com> # ppc64 out-of-line radix version
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
[mpe: Update copyright year and comment formatting]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/YoTE69OQwiG7z+Gu@cleo
2022-05-18 10:05:31 +00:00
|
|
|
|
|
|
|
# nothing that deals with real mode is safe to KASAN
|
|
|
|
# in particular, idle code runs a bunch of things in real mode
|
|
|
|
KASAN_SANITIZE_idle.o := n
|
|
|
|
KASAN_SANITIZE_pci-ioda.o := n
|
2022-05-19 07:45:21 +00:00
|
|
|
KASAN_SANITIZE_pci-ioda-tce.o := n
|
powerpc: Book3S 64-bit outline-only KASAN support
Implement a limited form of KASAN for Book3S 64-bit machines running under
the Radix MMU, supporting only outline mode.
- Enable the compiler instrumentation to check addresses and maintain the
shadow region. (This is the guts of KASAN which we can easily reuse.)
- Require kasan-vmalloc support to handle modules and anything else in
vmalloc space.
- KASAN needs to be able to validate all pointer accesses, but we can't
instrument all kernel addresses - only linear map and vmalloc. On boot,
set up a single page of read-only shadow that marks all iomap and
vmemmap accesses as valid.
- Document KASAN in powerpc docs.
Background
----------
KASAN support on Book3S is a bit tricky to get right:
- It would be good to support inline instrumentation so as to be able to
catch stack issues that cannot be caught with outline mode.
- Inline instrumentation requires a fixed offset.
- Book3S runs code with translations off ("real mode") during boot,
including a lot of generic device-tree parsing code which is used to
determine MMU features.
[ppc64 mm note: The kernel installs a linear mapping at effective
address c000...-c008.... This is a one-to-one mapping with physical
memory from 0000... onward. Because of how memory accesses work on
powerpc 64-bit Book3S, a kernel pointer in the linear map accesses the
same memory both with translations on (accessing as an 'effective
address'), and with translations off (accessing as a 'real
address'). This works in both guests and the hypervisor. For more
details, see s5.7 of Book III of version 3 of the ISA, in particular
the Storage Control Overview, s5.7.3, and s5.7.5 - noting that this
KASAN implementation currently only supports Radix.]
- Some code - most notably a lot of KVM code - also runs with translations
off after boot.
- Therefore any offset has to point to memory that is valid with
translations on or off.
One approach is just to give up on inline instrumentation. This way
boot-time checks can be delayed until after the MMU is set is up, and we
can just not instrument any code that runs with translations off after
booting. Take this approach for now and require outline instrumentation.
Previous attempts allowed inline instrumentation. However, they came with
some unfortunate restrictions: only physically contiguous memory could be
used and it had to be specified at compile time. Maybe we can do better in
the future.
[paulus@ozlabs.org - Rebased onto 5.17. Note that a kernel with
CONFIG_KASAN=y will crash during boot on a machine using HPT
translation because not all the entry points to the generic
KASAN code are protected with a call to kasan_arch_is_ready().]
Originally-by: Balbir Singh <bsingharora@gmail.com> # ppc64 out-of-line radix version
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
[mpe: Update copyright year and comment formatting]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/YoTE69OQwiG7z+Gu@cleo
2022-05-18 10:05:31 +00:00
|
|
|
# pnv_machine_check_early
|
|
|
|
KASAN_SANITIZE_setup.o := n
|
|
|
|
|
powerpc/powernv: move OPAL call wrapper tracing and interrupt handling to C
The OPAL call wrapper gets interrupt disabling wrong. It disables
interrupts just by clearing MSR[EE], which has two problems:
- It doesn't call into the IRQ tracing subsystem, which means tracing
across OPAL calls does not always notice IRQs have been disabled.
- It doesn't go through the IRQ soft-mask code, which causes a minor
bug. MSR[EE] can not be restored by saving the MSR then clearing
MSR[EE], because a racing interrupt while soft-masked could clear
MSR[EE] between the two steps. This can cause MSR[EE] to be
incorrectly enabled when the OPAL call returns. Fortunately that
should only result in another masked interrupt being taken to
disable MSR[EE] again, but it's a bit sloppy.
The existing code also saves MSR to PACA, which is not re-entrant if
there is a nested OPAL call from different MSR contexts, which can
happen these days with SRESET interrupts on bare metal.
To fix these issues, move the tracing and IRQ handling code to C, and
call into asm just for the low level call when everything is ready to
go. Save the MSR on stack rather than PACA.
Performance cost is kept to a minimum with a few optimisations:
- The endian switch upon return is combined with the MSR restore,
which avoids an expensive context synchronizing operation for LE
kernels. This makes up for the additional mtmsrd to enable
interrupts with local_irq_enable().
- blr is now used to return from the opal_* functions that are called
as C functions, to avoid link stack corruption. This requires a
skiboot fix as well to keep the call stack balanced.
A NULL call is more costly after this, (410ns->430ns on POWER9), but
OPAL calls are generally not performance critical at this scale.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-02-26 09:30:35 +00:00
|
|
|
obj-y += setup.o opal-call.o opal-wrappers.o opal.o opal-async.o
|
|
|
|
obj-y += idle.o opal-rtc.o opal-nvram.o opal-lpc.o opal-flash.o
|
2014-03-07 05:33:27 +00:00
|
|
|
obj-y += rng.o opal-elog.o opal-dump.o opal-sysparam.o opal-sensor.o
|
2015-05-15 04:06:37 +00:00
|
|
|
obj-y += opal-msglog.o opal-hmi.o opal-power.o opal-irqchip.o
|
2017-08-10 03:31:20 +00:00
|
|
|
obj-y += opal-kmsg.o opal-powercap.o opal-psr.o opal-sensor-groups.o
|
2019-08-22 03:48:34 +00:00
|
|
|
obj-y += ultravisor.o
|
2011-09-19 17:45:01 +00:00
|
|
|
|
2014-06-06 10:22:51 +00:00
|
|
|
obj-$(CONFIG_SMP) += smp.o subcore.o subcore-asm.o
|
2019-09-11 14:50:26 +00:00
|
|
|
obj-$(CONFIG_FA_DUMP) += opal-fadump.o
|
2019-09-11 14:56:03 +00:00
|
|
|
obj-$(CONFIG_PRESERVE_FA_DUMP) += opal-fadump.o
|
2019-09-11 14:56:33 +00:00
|
|
|
obj-$(CONFIG_OPAL_CORE) += opal-core.o
|
2021-03-26 06:13:11 +00:00
|
|
|
obj-$(CONFIG_PCI) += pci.o pci-ioda.o pci-ioda-tce.o
|
2020-07-22 06:57:04 +00:00
|
|
|
obj-$(CONFIG_PCI_IOV) += pci-sriov.o
|
2016-07-13 21:17:00 +00:00
|
|
|
obj-$(CONFIG_CXL_BASE) += pci-cxl.o
|
2015-02-16 03:45:48 +00:00
|
|
|
obj-$(CONFIG_EEH) += eeh-powernv.o
|
2013-11-15 04:20:57 +00:00
|
|
|
obj-$(CONFIG_MEMORY_FAILURE) += opal-memory-errors.o
|
2015-06-04 13:51:47 +00:00
|
|
|
obj-$(CONFIG_OPAL_PRD) += opal-prd.o
|
2017-07-18 21:36:33 +00:00
|
|
|
obj-$(CONFIG_PERF_EVENTS) += opal-imc.o
|
2017-06-01 05:34:38 +00:00
|
|
|
obj-$(CONFIG_PPC_MEMTRACE) += memtrace.o
|
2021-06-17 20:29:48 +00:00
|
|
|
obj-$(CONFIG_PPC_VAS) += vas.o vas-window.o vas-debug.o vas-fault.o
|
2018-01-23 11:31:39 +00:00
|
|
|
obj-$(CONFIG_OCXL_BASE) += ocxl.o
|
2019-05-09 05:11:17 +00:00
|
|
|
obj-$(CONFIG_SCOM_DEBUGFS) += opal-xscom.o
|
2019-11-11 03:10:33 +00:00
|
|
|
obj-$(CONFIG_PPC_SECURE_BOOT) += opal-secvar.o
|