2021-10-25 03:46:26 +00:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
/*
|
|
|
|
* Pressure stall information for CPU, memory and IO
|
|
|
|
*
|
|
|
|
* Copyright (c) 2018 Facebook, Inc.
|
|
|
|
* Author: Johannes Weiner <hannes@cmpxchg.org>
|
|
|
|
*
|
2019-05-14 22:41:15 +00:00
|
|
|
* Polling support by Suren Baghdasaryan <surenb@google.com>
|
|
|
|
* Copyright (c) 2018 Google, Inc.
|
|
|
|
*
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
* When CPU, memory and IO are contended, tasks experience delays that
|
|
|
|
* reduce throughput and introduce latencies into the workload. Memory
|
|
|
|
* and IO contention, in addition, can cause a full loss of forward
|
|
|
|
* progress in which the CPU goes idle.
|
|
|
|
*
|
|
|
|
* This code aggregates individual task delays into resource pressure
|
|
|
|
* metrics that indicate problems with both workload health and
|
|
|
|
* resource utilization.
|
|
|
|
*
|
|
|
|
* Model
|
|
|
|
*
|
|
|
|
* The time in which a task can execute on a CPU is our baseline for
|
|
|
|
* productivity. Pressure expresses the amount of time in which this
|
|
|
|
* potential cannot be realized due to resource contention.
|
|
|
|
*
|
|
|
|
* This concept of productivity has two components: the workload and
|
|
|
|
* the CPU. To measure the impact of pressure on both, we define two
|
|
|
|
* contention states for a resource: SOME and FULL.
|
|
|
|
*
|
|
|
|
* In the SOME state of a given resource, one or more tasks are
|
|
|
|
* delayed on that resource. This affects the workload's ability to
|
|
|
|
* perform work, but the CPU may still be executing other tasks.
|
|
|
|
*
|
|
|
|
* In the FULL state of a given resource, all non-idle tasks are
|
|
|
|
* delayed on that resource such that nobody is advancing and the CPU
|
|
|
|
* goes idle. This leaves both workload and CPU unproductive.
|
|
|
|
*
|
|
|
|
* SOME = nr_delayed_tasks != 0
|
2021-11-10 21:33:12 +00:00
|
|
|
* FULL = nr_delayed_tasks != 0 && nr_productive_tasks == 0
|
|
|
|
*
|
|
|
|
* What it means for a task to be productive is defined differently
|
|
|
|
* for each resource. For IO, productive means a running task. For
|
|
|
|
* memory, productive means a running task that isn't a reclaimer. For
|
|
|
|
* CPU, productive means an oncpu task.
|
|
|
|
*
|
|
|
|
* Naturally, the FULL state doesn't exist for the CPU resource at the
|
|
|
|
* system level, but exist at the cgroup level. At the cgroup level,
|
|
|
|
* FULL means all non-idle tasks in the cgroup are delayed on the CPU
|
|
|
|
* resource which is being used by others outside of the cgroup or
|
|
|
|
* throttled by the cgroup cpu.max configuration.
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
*
|
|
|
|
* The percentage of wallclock time spent in those compound stall
|
|
|
|
* states gives pressure numbers between 0 and 100 for each resource,
|
|
|
|
* where the SOME percentage indicates workload slowdowns and the FULL
|
|
|
|
* percentage indicates reduced CPU utilization:
|
|
|
|
*
|
|
|
|
* %SOME = time(SOME) / period
|
|
|
|
* %FULL = time(FULL) / period
|
|
|
|
*
|
|
|
|
* Multiple CPUs
|
|
|
|
*
|
|
|
|
* The more tasks and available CPUs there are, the more work can be
|
|
|
|
* performed concurrently. This means that the potential that can go
|
|
|
|
* unrealized due to resource contention *also* scales with non-idle
|
|
|
|
* tasks and CPUs.
|
|
|
|
*
|
|
|
|
* Consider a scenario where 257 number crunching tasks are trying to
|
|
|
|
* run concurrently on 256 CPUs. If we simply aggregated the task
|
|
|
|
* states, we would have to conclude a CPU SOME pressure number of
|
|
|
|
* 100%, since *somebody* is waiting on a runqueue at all
|
|
|
|
* times. However, that is clearly not the amount of contention the
|
2021-03-18 12:38:50 +00:00
|
|
|
* workload is experiencing: only one out of 256 possible execution
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
* threads will be contended at any given time, or about 0.4%.
|
|
|
|
*
|
|
|
|
* Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
|
|
|
|
* given time *one* of the tasks is delayed due to a lack of memory.
|
|
|
|
* Again, looking purely at the task state would yield a memory FULL
|
|
|
|
* pressure number of 0%, since *somebody* is always making forward
|
|
|
|
* progress. But again this wouldn't capture the amount of execution
|
|
|
|
* potential lost, which is 1 out of 4 CPUs, or 25%.
|
|
|
|
*
|
|
|
|
* To calculate wasted potential (pressure) with multiple processors,
|
|
|
|
* we have to base our calculation on the number of non-idle tasks in
|
|
|
|
* conjunction with the number of available CPUs, which is the number
|
|
|
|
* of potential execution threads. SOME becomes then the proportion of
|
2021-03-18 12:38:50 +00:00
|
|
|
* delayed tasks to possible threads, and FULL is the share of possible
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
* threads that are unproductive due to delays:
|
|
|
|
*
|
|
|
|
* threads = min(nr_nonidle_tasks, nr_cpus)
|
|
|
|
* SOME = min(nr_delayed_tasks / threads, 1)
|
2021-11-10 21:33:12 +00:00
|
|
|
* FULL = (threads - min(nr_productive_tasks, threads)) / threads
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
*
|
|
|
|
* For the 257 number crunchers on 256 CPUs, this yields:
|
|
|
|
*
|
|
|
|
* threads = min(257, 256)
|
|
|
|
* SOME = min(1 / 256, 1) = 0.4%
|
2021-11-10 21:33:12 +00:00
|
|
|
* FULL = (256 - min(256, 256)) / 256 = 0%
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
*
|
|
|
|
* For the 1 out of 4 memory-delayed tasks, this yields:
|
|
|
|
*
|
|
|
|
* threads = min(4, 4)
|
|
|
|
* SOME = min(1 / 4, 1) = 25%
|
|
|
|
* FULL = (4 - min(3, 4)) / 4 = 25%
|
|
|
|
*
|
|
|
|
* [ Substitute nr_cpus with 1, and you can see that it's a natural
|
|
|
|
* extension of the single-CPU model. ]
|
|
|
|
*
|
|
|
|
* Implementation
|
|
|
|
*
|
|
|
|
* To assess the precise time spent in each such state, we would have
|
|
|
|
* to freeze the system on task changes and start/stop the state
|
|
|
|
* clocks accordingly. Obviously that doesn't scale in practice.
|
|
|
|
*
|
|
|
|
* Because the scheduler aims to distribute the compute load evenly
|
|
|
|
* among the available CPUs, we can track task state locally to each
|
|
|
|
* CPU and, at much lower frequency, extrapolate the global state for
|
|
|
|
* the cumulative stall times and the running averages.
|
|
|
|
*
|
|
|
|
* For each runqueue, we track:
|
|
|
|
*
|
|
|
|
* tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
|
2021-11-10 21:33:12 +00:00
|
|
|
* tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_productive_tasks[cpu])
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
* tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
|
|
|
|
*
|
|
|
|
* and then periodically aggregate:
|
|
|
|
*
|
|
|
|
* tNONIDLE = sum(tNONIDLE[i])
|
|
|
|
*
|
|
|
|
* tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
|
|
|
|
* tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
|
|
|
|
*
|
|
|
|
* %SOME = tSOME / period
|
|
|
|
* %FULL = tFULL / period
|
|
|
|
*
|
|
|
|
* This gives us an approximation of pressure that is practical
|
|
|
|
* cost-wise, yet way more sensitive and accurate than periodic
|
|
|
|
* sampling of the aggregate task states would be.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static int psi_bug __read_mostly;
|
|
|
|
|
2018-11-30 22:09:58 +00:00
|
|
|
DEFINE_STATIC_KEY_FALSE(psi_disabled);
|
2023-05-25 10:34:28 +00:00
|
|
|
static DEFINE_STATIC_KEY_TRUE(psi_cgroups_enabled);
|
2018-11-30 22:09:58 +00:00
|
|
|
|
|
|
|
#ifdef CONFIG_PSI_DEFAULT_DISABLED
|
2019-05-14 22:40:59 +00:00
|
|
|
static bool psi_enable;
|
2018-11-30 22:09:58 +00:00
|
|
|
#else
|
2019-05-14 22:40:59 +00:00
|
|
|
static bool psi_enable = true;
|
2018-11-30 22:09:58 +00:00
|
|
|
#endif
|
|
|
|
static int __init setup_psi(char *str)
|
|
|
|
{
|
|
|
|
return kstrtobool(str, &psi_enable) == 0;
|
|
|
|
}
|
|
|
|
__setup("psi=", setup_psi);
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
|
|
|
|
/* Running averages - we need to be higher-res than loadavg */
|
|
|
|
#define PSI_FREQ (2*HZ+1) /* 2 sec intervals */
|
|
|
|
#define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */
|
|
|
|
#define EXP_60s 1981 /* 1/exp(2s/60s) */
|
|
|
|
#define EXP_300s 2034 /* 1/exp(2s/300s) */
|
|
|
|
|
2019-05-14 22:41:15 +00:00
|
|
|
/* PSI trigger definitions */
|
|
|
|
#define WINDOW_MAX_US 10000000 /* Max window size is 10s */
|
|
|
|
#define UPDATES_PER_WINDOW 10 /* 10 updates per window */
|
|
|
|
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
/* Sampling frequency in nanoseconds */
|
|
|
|
static u64 psi_period __read_mostly;
|
|
|
|
|
|
|
|
/* System-level pressure and stall tracking */
|
|
|
|
static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
|
2019-05-14 22:41:18 +00:00
|
|
|
struct psi_group psi_system = {
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
.pcpu = &system_group_pcpu,
|
|
|
|
};
|
|
|
|
|
2019-05-14 22:41:02 +00:00
|
|
|
static void psi_avgs_work(struct work_struct *work);
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
|
2021-06-11 00:29:34 +00:00
|
|
|
static void poll_timer_fn(struct timer_list *t);
|
|
|
|
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
static void group_init(struct psi_group *group)
|
|
|
|
{
|
|
|
|
int cpu;
|
|
|
|
|
sched/psi: Per-cgroup PSI accounting disable/re-enable interface
PSI accounts stalls for each cgroup separately and aggregates it
at each level of the hierarchy. This may cause non-negligible overhead
for some workloads when under deep level of the hierarchy.
commit 3958e2d0c34e ("cgroup: make per-cgroup pressure stall tracking configurable")
make PSI to skip per-cgroup stall accounting, only account system-wide
to avoid this each level overhead.
But for our use case, we also want leaf cgroup PSI stats accounted for
userspace adjustment on that cgroup, apart from only system-wide adjustment.
So this patch introduce a per-cgroup PSI accounting disable/re-enable
interface "cgroup.pressure", which is a read-write single value file that
allowed values are "0" and "1", the defaults is "1" so per-cgroup
PSI stats is enabled by default.
Implementation details:
It should be relatively straight-forward to disable and re-enable
state aggregation, time tracking, averaging on a per-cgroup level,
if we can live with losing history from while it was disabled.
I.e. the avgs will restart from 0, total= will have gaps.
But it's hard or complex to stop/restart groupc->tasks[] updates,
which is not implemented in this patch. So we always update
groupc->tasks[] and PSI_ONCPU bit in psi_group_change() even when
the cgroup PSI stats is disabled.
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lkml.kernel.org/r/20220907090332.2078-1-zhouchengming@bytedance.com
2022-09-07 09:03:32 +00:00
|
|
|
group->enabled = true;
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
for_each_possible_cpu(cpu)
|
|
|
|
seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
|
sched/psi: Fix sampling error and rare div0 crashes with cgroups and high uptime
Jingfeng reports rare div0 crashes in psi on systems with some uptime:
[58914.066423] divide error: 0000 [#1] SMP
[58914.070416] Modules linked in: ipmi_poweroff ipmi_watchdog toa overlay fuse tcp_diag inet_diag binfmt_misc aisqos(O) aisqos_hotfixes(O)
[58914.083158] CPU: 94 PID: 140364 Comm: kworker/94:2 Tainted: G W OE K 4.9.151-015.ali3000.alios7.x86_64 #1
[58914.093722] Hardware name: Alibaba Alibaba Cloud ECS/Alibaba Cloud ECS, BIOS 3.23.34 02/14/2019
[58914.102728] Workqueue: events psi_update_work
[58914.107258] task: ffff8879da83c280 task.stack: ffffc90059dcc000
[58914.113336] RIP: 0010:[] [] psi_update_stats+0x1c1/0x330
[58914.122183] RSP: 0018:ffffc90059dcfd60 EFLAGS: 00010246
[58914.127650] RAX: 0000000000000000 RBX: ffff8858fe98be50 RCX: 000000007744d640
[58914.134947] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 00003594f700648e
[58914.142243] RBP: ffffc90059dcfdf8 R08: 0000359500000000 R09: 0000000000000000
[58914.149538] R10: 0000000000000000 R11: 0000000000000000 R12: 0000359500000000
[58914.156837] R13: 0000000000000000 R14: 0000000000000000 R15: ffff8858fe98bd78
[58914.164136] FS: 0000000000000000(0000) GS:ffff887f7f380000(0000) knlGS:0000000000000000
[58914.172529] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[58914.178467] CR2: 00007f2240452090 CR3: 0000005d5d258000 CR4: 00000000007606f0
[58914.185765] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[58914.193061] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[58914.200360] PKRU: 55555554
[58914.203221] Stack:
[58914.205383] ffff8858fe98bd48 00000000000002f0 0000002e81036d09 ffffc90059dcfde8
[58914.213168] ffff8858fe98bec8 0000000000000000 0000000000000000 0000000000000000
[58914.220951] 0000000000000000 0000000000000000 0000000000000000 0000000000000000
[58914.228734] Call Trace:
[58914.231337] [] psi_update_work+0x22/0x60
[58914.237067] [] process_one_work+0x189/0x420
[58914.243063] [] worker_thread+0x4e/0x4b0
[58914.248701] [] ? process_one_work+0x420/0x420
[58914.254869] [] kthread+0xe6/0x100
[58914.259994] [] ? kthread_park+0x60/0x60
[58914.265640] [] ret_from_fork+0x39/0x50
[58914.271193] Code: 41 29 c3 4d 39 dc 4d 0f 42 dc <49> f7 f1 48 8b 13 48 89 c7 48 c1
[58914.279691] RIP [] psi_update_stats+0x1c1/0x330
The crashing instruction is trying to divide the observed stall time
by the sampling period. The period, stored in R8, is not 0, but we are
dividing by the lower 32 bits only, which are all 0 in this instance.
We could switch to a 64-bit division, but the period shouldn't be that
big in the first place. It's the time between the last update and the
next scheduled one, and so should always be around 2s and comfortably
fit into 32 bits.
The bug is in the initialization of new cgroups: we schedule the first
sampling event in a cgroup as an offset of sched_clock(), but fail to
initialize the last_update timestamp, and it defaults to 0. That
results in a bogusly large sampling period the first time we run the
sampling code, and consequently we underreport pressure for the first
2s of a cgroup's life. But worse, if sched_clock() is sufficiently
advanced on the system, and the user gets unlucky, the period's lower
32 bits can all be 0 and the sampling division will crash.
Fix this by initializing the last update timestamp to the creation
time of the cgroup, thus correctly marking the start of the first
pressure sampling period in a new cgroup.
Reported-by: Jingfeng Xie <xiejingfeng@linux.alibaba.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Link: https://lkml.kernel.org/r/20191203183524.41378-2-hannes@cmpxchg.org
2019-12-03 18:35:23 +00:00
|
|
|
group->avg_last_update = sched_clock();
|
|
|
|
group->avg_next_update = group->avg_last_update + psi_period;
|
2019-05-14 22:41:02 +00:00
|
|
|
mutex_init(&group->avgs_lock);
|
2023-03-30 10:54:18 +00:00
|
|
|
|
|
|
|
/* Init avg trigger-related members */
|
|
|
|
INIT_LIST_HEAD(&group->avg_triggers);
|
|
|
|
memset(group->avg_nr_triggers, 0, sizeof(group->avg_nr_triggers));
|
|
|
|
INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);
|
|
|
|
|
|
|
|
/* Init rtpoll trigger-related members */
|
2023-03-30 10:54:16 +00:00
|
|
|
atomic_set(&group->rtpoll_scheduled, 0);
|
|
|
|
mutex_init(&group->rtpoll_trigger_lock);
|
|
|
|
INIT_LIST_HEAD(&group->rtpoll_triggers);
|
|
|
|
group->rtpoll_min_period = U32_MAX;
|
|
|
|
group->rtpoll_next_update = ULLONG_MAX;
|
|
|
|
init_waitqueue_head(&group->rtpoll_wait);
|
|
|
|
timer_setup(&group->rtpoll_timer, poll_timer_fn, 0);
|
|
|
|
rcu_assign_pointer(group->rtpoll_task, NULL);
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void __init psi_init(void)
|
|
|
|
{
|
2018-11-30 22:09:58 +00:00
|
|
|
if (!psi_enable) {
|
|
|
|
static_branch_enable(&psi_disabled);
|
2022-08-25 16:41:04 +00:00
|
|
|
static_branch_disable(&psi_cgroups_enabled);
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
return;
|
2018-11-30 22:09:58 +00:00
|
|
|
}
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
|
2021-05-24 19:53:39 +00:00
|
|
|
if (!cgroup_psi_enabled())
|
|
|
|
static_branch_disable(&psi_cgroups_enabled);
|
|
|
|
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
psi_period = jiffies_to_nsecs(PSI_FREQ);
|
|
|
|
group_init(&psi_system);
|
|
|
|
}
|
|
|
|
|
2022-08-25 16:41:07 +00:00
|
|
|
static bool test_state(unsigned int *tasks, enum psi_states state, bool oncpu)
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
{
|
|
|
|
switch (state) {
|
|
|
|
case PSI_IO_SOME:
|
2021-03-03 03:46:58 +00:00
|
|
|
return unlikely(tasks[NR_IOWAIT]);
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
case PSI_IO_FULL:
|
2021-03-03 03:46:58 +00:00
|
|
|
return unlikely(tasks[NR_IOWAIT] && !tasks[NR_RUNNING]);
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
case PSI_MEM_SOME:
|
2021-03-03 03:46:58 +00:00
|
|
|
return unlikely(tasks[NR_MEMSTALL]);
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
case PSI_MEM_FULL:
|
2021-11-10 21:33:12 +00:00
|
|
|
return unlikely(tasks[NR_MEMSTALL] &&
|
|
|
|
tasks[NR_RUNNING] == tasks[NR_MEMSTALL_RUNNING]);
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
case PSI_CPU_SOME:
|
2022-08-25 16:41:07 +00:00
|
|
|
return unlikely(tasks[NR_RUNNING] > oncpu);
|
2021-03-03 03:46:56 +00:00
|
|
|
case PSI_CPU_FULL:
|
2022-08-25 16:41:07 +00:00
|
|
|
return unlikely(tasks[NR_RUNNING] && !oncpu);
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
case PSI_NONIDLE:
|
|
|
|
return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] ||
|
|
|
|
tasks[NR_RUNNING];
|
|
|
|
default:
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-05-14 22:41:15 +00:00
|
|
|
static void get_recent_times(struct psi_group *group, int cpu,
|
|
|
|
enum psi_aggregators aggregator, u32 *times,
|
2019-05-14 22:41:09 +00:00
|
|
|
u32 *pchanged_states)
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
{
|
|
|
|
struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
|
2022-10-14 11:05:51 +00:00
|
|
|
int current_cpu = raw_smp_processor_id();
|
|
|
|
unsigned int tasks[NR_PSI_TASK_COUNTS];
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
u64 now, state_start;
|
psi: introduce state_mask to represent stalled psi states
Patch series "psi: pressure stall monitors", v6.
This is a respin of:
https://lwn.net/ml/linux-kernel/20190308184311.144521-1-surenb%40google.com/
Android is adopting psi to detect and remedy memory pressure that
results in stuttering and decreased responsiveness on mobile devices.
Psi gives us the stall information, but because we're dealing with
latencies in the millisecond range, periodically reading the pressure
files to detect stalls in a timely fashion is not feasible. Psi also
doesn't aggregate its averages at a high-enough frequency right now.
This patch series extends the psi interface such that users can
configure sensitive latency thresholds and use poll() and friends to be
notified when these are breached.
As high-frequency aggregation is costly, it implements an aggregation
method that is optimized for fast, short-interval averaging, and makes
the aggregation frequency adaptive, such that high-frequency updates
only happen while monitored stall events are actively occurring.
With these patches applied, Android can monitor for, and ward off,
mounting memory shortages before they cause problems for the user. For
example, using memory stall monitors in userspace low memory killer
daemon (lmkd) we can detect mounting pressure and kill less important
processes before device becomes visibly sluggish. In our memory stress
testing psi memory monitors produce roughly 10x less false positives
compared to vmpressure signals. Having ability to specify multiple
triggers for the same psi metric allows other parts of Android framework
to monitor memory state of the device and act accordingly.
The new interface is straight-forward. The user opens one of the
pressure files for writing and writes a trigger description into the
file descriptor that defines the stall state - some or full, and the
maximum stall time over a given window of time. E.g.:
/* Signal when stall time exceeds 100ms of a 1s window */
char trigger[] = "full 100000 1000000"
fd = open("/proc/pressure/memory")
write(fd, trigger, sizeof(trigger))
while (poll() >= 0) {
...
};
close(fd);
When the monitored stall state is entered, psi adapts its aggregation
frequency according to what the configured time window requires in order
to emit event signals in a timely fashion. Once the stalling subsides,
aggregation reverts back to normal.
The trigger is associated with the open file descriptor. To stop
monitoring, the user only needs to close the file descriptor and the
trigger is discarded.
Patches 1-6 prepare the psi code for polling support. Patch 7
implements the adaptive polling logic, the pressure growth detection
optimized for short intervals, and hooks up write() and poll() on the
pressure files.
The patches were developed in collaboration with Johannes Weiner.
This patch (of 7):
The psi monitoring patches will need to determine the same states as
record_times(). To avoid calculating them twice, maintain a state mask
that can be consulted cheaply. Do this in a separate patch to keep the
churn in the main feature patch at a minimum.
This adds 4-byte state_mask member into psi_group_cpu struct which
results in its first cacheline-aligned part becoming 52 bytes long. Add
explicit values to enumeration element counters that affect
psi_group_cpu struct size.
Link: http://lkml.kernel.org/r/20190124211518.244221-4-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 22:40:56 +00:00
|
|
|
enum psi_states s;
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
unsigned int seq;
|
psi: introduce state_mask to represent stalled psi states
Patch series "psi: pressure stall monitors", v6.
This is a respin of:
https://lwn.net/ml/linux-kernel/20190308184311.144521-1-surenb%40google.com/
Android is adopting psi to detect and remedy memory pressure that
results in stuttering and decreased responsiveness on mobile devices.
Psi gives us the stall information, but because we're dealing with
latencies in the millisecond range, periodically reading the pressure
files to detect stalls in a timely fashion is not feasible. Psi also
doesn't aggregate its averages at a high-enough frequency right now.
This patch series extends the psi interface such that users can
configure sensitive latency thresholds and use poll() and friends to be
notified when these are breached.
As high-frequency aggregation is costly, it implements an aggregation
method that is optimized for fast, short-interval averaging, and makes
the aggregation frequency adaptive, such that high-frequency updates
only happen while monitored stall events are actively occurring.
With these patches applied, Android can monitor for, and ward off,
mounting memory shortages before they cause problems for the user. For
example, using memory stall monitors in userspace low memory killer
daemon (lmkd) we can detect mounting pressure and kill less important
processes before device becomes visibly sluggish. In our memory stress
testing psi memory monitors produce roughly 10x less false positives
compared to vmpressure signals. Having ability to specify multiple
triggers for the same psi metric allows other parts of Android framework
to monitor memory state of the device and act accordingly.
The new interface is straight-forward. The user opens one of the
pressure files for writing and writes a trigger description into the
file descriptor that defines the stall state - some or full, and the
maximum stall time over a given window of time. E.g.:
/* Signal when stall time exceeds 100ms of a 1s window */
char trigger[] = "full 100000 1000000"
fd = open("/proc/pressure/memory")
write(fd, trigger, sizeof(trigger))
while (poll() >= 0) {
...
};
close(fd);
When the monitored stall state is entered, psi adapts its aggregation
frequency according to what the configured time window requires in order
to emit event signals in a timely fashion. Once the stalling subsides,
aggregation reverts back to normal.
The trigger is associated with the open file descriptor. To stop
monitoring, the user only needs to close the file descriptor and the
trigger is discarded.
Patches 1-6 prepare the psi code for polling support. Patch 7
implements the adaptive polling logic, the pressure growth detection
optimized for short intervals, and hooks up write() and poll() on the
pressure files.
The patches were developed in collaboration with Johannes Weiner.
This patch (of 7):
The psi monitoring patches will need to determine the same states as
record_times(). To avoid calculating them twice, maintain a state mask
that can be consulted cheaply. Do this in a separate patch to keep the
churn in the main feature patch at a minimum.
This adds 4-byte state_mask member into psi_group_cpu struct which
results in its first cacheline-aligned part becoming 52 bytes long. Add
explicit values to enumeration element counters that affect
psi_group_cpu struct size.
Link: http://lkml.kernel.org/r/20190124211518.244221-4-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 22:40:56 +00:00
|
|
|
u32 state_mask;
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
|
2019-05-14 22:41:09 +00:00
|
|
|
*pchanged_states = 0;
|
|
|
|
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
/* Snapshot a coherent view of the CPU state */
|
|
|
|
do {
|
|
|
|
seq = read_seqcount_begin(&groupc->seq);
|
|
|
|
now = cpu_clock(cpu);
|
|
|
|
memcpy(times, groupc->times, sizeof(groupc->times));
|
psi: introduce state_mask to represent stalled psi states
Patch series "psi: pressure stall monitors", v6.
This is a respin of:
https://lwn.net/ml/linux-kernel/20190308184311.144521-1-surenb%40google.com/
Android is adopting psi to detect and remedy memory pressure that
results in stuttering and decreased responsiveness on mobile devices.
Psi gives us the stall information, but because we're dealing with
latencies in the millisecond range, periodically reading the pressure
files to detect stalls in a timely fashion is not feasible. Psi also
doesn't aggregate its averages at a high-enough frequency right now.
This patch series extends the psi interface such that users can
configure sensitive latency thresholds and use poll() and friends to be
notified when these are breached.
As high-frequency aggregation is costly, it implements an aggregation
method that is optimized for fast, short-interval averaging, and makes
the aggregation frequency adaptive, such that high-frequency updates
only happen while monitored stall events are actively occurring.
With these patches applied, Android can monitor for, and ward off,
mounting memory shortages before they cause problems for the user. For
example, using memory stall monitors in userspace low memory killer
daemon (lmkd) we can detect mounting pressure and kill less important
processes before device becomes visibly sluggish. In our memory stress
testing psi memory monitors produce roughly 10x less false positives
compared to vmpressure signals. Having ability to specify multiple
triggers for the same psi metric allows other parts of Android framework
to monitor memory state of the device and act accordingly.
The new interface is straight-forward. The user opens one of the
pressure files for writing and writes a trigger description into the
file descriptor that defines the stall state - some or full, and the
maximum stall time over a given window of time. E.g.:
/* Signal when stall time exceeds 100ms of a 1s window */
char trigger[] = "full 100000 1000000"
fd = open("/proc/pressure/memory")
write(fd, trigger, sizeof(trigger))
while (poll() >= 0) {
...
};
close(fd);
When the monitored stall state is entered, psi adapts its aggregation
frequency according to what the configured time window requires in order
to emit event signals in a timely fashion. Once the stalling subsides,
aggregation reverts back to normal.
The trigger is associated with the open file descriptor. To stop
monitoring, the user only needs to close the file descriptor and the
trigger is discarded.
Patches 1-6 prepare the psi code for polling support. Patch 7
implements the adaptive polling logic, the pressure growth detection
optimized for short intervals, and hooks up write() and poll() on the
pressure files.
The patches were developed in collaboration with Johannes Weiner.
This patch (of 7):
The psi monitoring patches will need to determine the same states as
record_times(). To avoid calculating them twice, maintain a state mask
that can be consulted cheaply. Do this in a separate patch to keep the
churn in the main feature patch at a minimum.
This adds 4-byte state_mask member into psi_group_cpu struct which
results in its first cacheline-aligned part becoming 52 bytes long. Add
explicit values to enumeration element counters that affect
psi_group_cpu struct size.
Link: http://lkml.kernel.org/r/20190124211518.244221-4-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 22:40:56 +00:00
|
|
|
state_mask = groupc->state_mask;
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
state_start = groupc->state_start;
|
2022-10-14 11:05:51 +00:00
|
|
|
if (cpu == current_cpu)
|
|
|
|
memcpy(tasks, groupc->tasks, sizeof(groupc->tasks));
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
} while (read_seqcount_retry(&groupc->seq, seq));
|
|
|
|
|
|
|
|
/* Calculate state time deltas against the previous snapshot */
|
|
|
|
for (s = 0; s < NR_PSI_STATES; s++) {
|
|
|
|
u32 delta;
|
|
|
|
/*
|
|
|
|
* In addition to already concluded states, we also
|
|
|
|
* incorporate currently active states on the CPU,
|
|
|
|
* since states may last for many sampling periods.
|
|
|
|
*
|
|
|
|
* This way we keep our delta sampling buckets small
|
|
|
|
* (u32) and our reported pressure close to what's
|
|
|
|
* actually happening.
|
|
|
|
*/
|
psi: introduce state_mask to represent stalled psi states
Patch series "psi: pressure stall monitors", v6.
This is a respin of:
https://lwn.net/ml/linux-kernel/20190308184311.144521-1-surenb%40google.com/
Android is adopting psi to detect and remedy memory pressure that
results in stuttering and decreased responsiveness on mobile devices.
Psi gives us the stall information, but because we're dealing with
latencies in the millisecond range, periodically reading the pressure
files to detect stalls in a timely fashion is not feasible. Psi also
doesn't aggregate its averages at a high-enough frequency right now.
This patch series extends the psi interface such that users can
configure sensitive latency thresholds and use poll() and friends to be
notified when these are breached.
As high-frequency aggregation is costly, it implements an aggregation
method that is optimized for fast, short-interval averaging, and makes
the aggregation frequency adaptive, such that high-frequency updates
only happen while monitored stall events are actively occurring.
With these patches applied, Android can monitor for, and ward off,
mounting memory shortages before they cause problems for the user. For
example, using memory stall monitors in userspace low memory killer
daemon (lmkd) we can detect mounting pressure and kill less important
processes before device becomes visibly sluggish. In our memory stress
testing psi memory monitors produce roughly 10x less false positives
compared to vmpressure signals. Having ability to specify multiple
triggers for the same psi metric allows other parts of Android framework
to monitor memory state of the device and act accordingly.
The new interface is straight-forward. The user opens one of the
pressure files for writing and writes a trigger description into the
file descriptor that defines the stall state - some or full, and the
maximum stall time over a given window of time. E.g.:
/* Signal when stall time exceeds 100ms of a 1s window */
char trigger[] = "full 100000 1000000"
fd = open("/proc/pressure/memory")
write(fd, trigger, sizeof(trigger))
while (poll() >= 0) {
...
};
close(fd);
When the monitored stall state is entered, psi adapts its aggregation
frequency according to what the configured time window requires in order
to emit event signals in a timely fashion. Once the stalling subsides,
aggregation reverts back to normal.
The trigger is associated with the open file descriptor. To stop
monitoring, the user only needs to close the file descriptor and the
trigger is discarded.
Patches 1-6 prepare the psi code for polling support. Patch 7
implements the adaptive polling logic, the pressure growth detection
optimized for short intervals, and hooks up write() and poll() on the
pressure files.
The patches were developed in collaboration with Johannes Weiner.
This patch (of 7):
The psi monitoring patches will need to determine the same states as
record_times(). To avoid calculating them twice, maintain a state mask
that can be consulted cheaply. Do this in a separate patch to keep the
churn in the main feature patch at a minimum.
This adds 4-byte state_mask member into psi_group_cpu struct which
results in its first cacheline-aligned part becoming 52 bytes long. Add
explicit values to enumeration element counters that affect
psi_group_cpu struct size.
Link: http://lkml.kernel.org/r/20190124211518.244221-4-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 22:40:56 +00:00
|
|
|
if (state_mask & (1 << s))
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
times[s] += now - state_start;
|
|
|
|
|
2019-05-14 22:41:15 +00:00
|
|
|
delta = times[s] - groupc->times_prev[aggregator][s];
|
|
|
|
groupc->times_prev[aggregator][s] = times[s];
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
|
|
|
|
times[s] = delta;
|
2019-05-14 22:41:09 +00:00
|
|
|
if (delta)
|
|
|
|
*pchanged_states |= (1 << s);
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
}
|
2022-10-14 11:05:51 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* When collect_percpu_times() from the avgs_work, we don't want to
|
|
|
|
* re-arm avgs_work when all CPUs are IDLE. But the current CPU running
|
|
|
|
* this avgs_work is never IDLE, cause avgs_work can't be shut off.
|
|
|
|
* So for the current CPU, we need to re-arm avgs_work only when
|
|
|
|
* (NR_RUNNING > 1 || NR_IOWAIT > 0 || NR_MEMSTALL > 0), for other CPUs
|
|
|
|
* we can just check PSI_NONIDLE delta.
|
|
|
|
*/
|
|
|
|
if (current_work() == &group->avgs_work.work) {
|
|
|
|
bool reschedule;
|
|
|
|
|
|
|
|
if (cpu == current_cpu)
|
|
|
|
reschedule = tasks[NR_RUNNING] +
|
|
|
|
tasks[NR_IOWAIT] +
|
|
|
|
tasks[NR_MEMSTALL] > 1;
|
|
|
|
else
|
|
|
|
reschedule = *pchanged_states & (1 << PSI_NONIDLE);
|
|
|
|
|
|
|
|
if (reschedule)
|
|
|
|
*pchanged_states |= PSI_STATE_RESCHEDULE;
|
|
|
|
}
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void calc_avgs(unsigned long avg[3], int missed_periods,
|
|
|
|
u64 time, u64 period)
|
|
|
|
{
|
|
|
|
unsigned long pct;
|
|
|
|
|
|
|
|
/* Fill in zeroes for periods of no activity */
|
|
|
|
if (missed_periods) {
|
|
|
|
avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
|
|
|
|
avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
|
|
|
|
avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Sample the most recent active period */
|
|
|
|
pct = div_u64(time * 100, period);
|
|
|
|
pct *= FIXED_1;
|
|
|
|
avg[0] = calc_load(avg[0], EXP_10s, pct);
|
|
|
|
avg[1] = calc_load(avg[1], EXP_60s, pct);
|
|
|
|
avg[2] = calc_load(avg[2], EXP_300s, pct);
|
|
|
|
}
|
|
|
|
|
2019-05-14 22:41:15 +00:00
|
|
|
static void collect_percpu_times(struct psi_group *group,
|
|
|
|
enum psi_aggregators aggregator,
|
|
|
|
u32 *pchanged_states)
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
{
|
|
|
|
u64 deltas[NR_PSI_STATES - 1] = { 0, };
|
|
|
|
unsigned long nonidle_total = 0;
|
2019-05-14 22:41:09 +00:00
|
|
|
u32 changed_states = 0;
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
int cpu;
|
|
|
|
int s;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Collect the per-cpu time buckets and average them into a
|
|
|
|
* single time sample that is normalized to wallclock time.
|
|
|
|
*
|
|
|
|
* For averaging, each CPU is weighted by its non-idle time in
|
|
|
|
* the sampling period. This eliminates artifacts from uneven
|
|
|
|
* loading, or even entirely idle CPUs.
|
|
|
|
*/
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
|
|
u32 times[NR_PSI_STATES];
|
|
|
|
u32 nonidle;
|
2019-05-14 22:41:09 +00:00
|
|
|
u32 cpu_changed_states;
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
|
2019-05-14 22:41:15 +00:00
|
|
|
get_recent_times(group, cpu, aggregator, times,
|
2019-05-14 22:41:09 +00:00
|
|
|
&cpu_changed_states);
|
|
|
|
changed_states |= cpu_changed_states;
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
|
|
|
|
nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
|
|
|
|
nonidle_total += nonidle;
|
|
|
|
|
|
|
|
for (s = 0; s < PSI_NONIDLE; s++)
|
|
|
|
deltas[s] += (u64)times[s] * nonidle;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Integrate the sample into the running statistics that are
|
|
|
|
* reported to userspace: the cumulative stall times and the
|
|
|
|
* decaying averages.
|
|
|
|
*
|
|
|
|
* Pressure percentages are sampled at PSI_FREQ. We might be
|
|
|
|
* called more often when the user polls more frequently than
|
|
|
|
* that; we might be called less often when there is no task
|
|
|
|
* activity, thus no data, and clock ticks are sporadic. The
|
|
|
|
* below handles both.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* total= */
|
|
|
|
for (s = 0; s < NR_PSI_STATES - 1; s++)
|
2019-05-14 22:41:15 +00:00
|
|
|
group->total[aggregator][s] +=
|
|
|
|
div_u64(deltas[s], max(nonidle_total, 1UL));
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
|
2019-05-14 22:41:09 +00:00
|
|
|
if (pchanged_states)
|
|
|
|
*pchanged_states = changed_states;
|
2019-05-14 22:41:06 +00:00
|
|
|
}
|
|
|
|
|
2021-03-18 12:38:50 +00:00
|
|
|
/* Trigger tracking window manipulations */
|
2019-05-14 22:41:15 +00:00
|
|
|
static void window_reset(struct psi_window *win, u64 now, u64 value,
|
|
|
|
u64 prev_growth)
|
|
|
|
{
|
|
|
|
win->start_time = now;
|
|
|
|
win->start_value = value;
|
|
|
|
win->prev_growth = prev_growth;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* PSI growth tracking window update and growth calculation routine.
|
|
|
|
*
|
|
|
|
* This approximates a sliding tracking window by interpolating
|
|
|
|
* partially elapsed windows using historical growth data from the
|
|
|
|
* previous intervals. This minimizes memory requirements (by not storing
|
|
|
|
* all the intermediate values in the previous window) and simplifies
|
|
|
|
* the calculations. It works well because PSI signal changes only in
|
|
|
|
* positive direction and over relatively small window sizes the growth
|
|
|
|
* is close to linear.
|
|
|
|
*/
|
|
|
|
static u64 window_update(struct psi_window *win, u64 now, u64 value)
|
|
|
|
{
|
|
|
|
u64 elapsed;
|
|
|
|
u64 growth;
|
|
|
|
|
|
|
|
elapsed = now - win->start_time;
|
|
|
|
growth = value - win->start_value;
|
|
|
|
/*
|
|
|
|
* After each tracking window passes win->start_value and
|
|
|
|
* win->start_time get reset and win->prev_growth stores
|
|
|
|
* the average per-window growth of the previous window.
|
|
|
|
* win->prev_growth is then used to interpolate additional
|
|
|
|
* growth from the previous window assuming it was linear.
|
|
|
|
*/
|
|
|
|
if (elapsed > win->size)
|
|
|
|
window_reset(win, now, value, growth);
|
|
|
|
else {
|
|
|
|
u32 remaining;
|
|
|
|
|
|
|
|
remaining = win->size - elapsed;
|
2019-12-03 18:35:24 +00:00
|
|
|
growth += div64_u64(win->prev_growth * remaining, win->size);
|
2019-05-14 22:41:15 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return growth;
|
|
|
|
}
|
|
|
|
|
2023-10-10 08:45:43 +00:00
|
|
|
static void update_triggers(struct psi_group *group, u64 now,
|
2023-03-30 10:54:18 +00:00
|
|
|
enum psi_aggregators aggregator)
|
2019-05-14 22:41:15 +00:00
|
|
|
{
|
|
|
|
struct psi_trigger *t;
|
2023-03-30 10:54:18 +00:00
|
|
|
u64 *total = group->total[aggregator];
|
|
|
|
struct list_head *triggers;
|
|
|
|
u64 *aggregator_total;
|
2019-05-14 22:41:15 +00:00
|
|
|
|
2023-03-30 10:54:18 +00:00
|
|
|
if (aggregator == PSI_AVGS) {
|
|
|
|
triggers = &group->avg_triggers;
|
|
|
|
aggregator_total = group->avg_total;
|
|
|
|
} else {
|
|
|
|
triggers = &group->rtpoll_triggers;
|
|
|
|
aggregator_total = group->rtpoll_total;
|
|
|
|
}
|
|
|
|
|
2019-05-14 22:41:15 +00:00
|
|
|
/*
|
|
|
|
* On subsequent updates, calculate growth deltas and let
|
|
|
|
* watchers know when their specified thresholds are exceeded.
|
|
|
|
*/
|
2023-03-30 10:54:18 +00:00
|
|
|
list_for_each_entry(t, triggers, node) {
|
2019-05-14 22:41:15 +00:00
|
|
|
u64 growth;
|
2022-01-25 06:56:58 +00:00
|
|
|
bool new_stall;
|
2019-05-14 22:41:15 +00:00
|
|
|
|
2023-03-30 10:54:18 +00:00
|
|
|
new_stall = aggregator_total[t->state] != total[t->state];
|
2019-05-14 22:41:15 +00:00
|
|
|
|
2022-01-25 06:56:58 +00:00
|
|
|
/* Check for stall activity or a previous threshold breach */
|
|
|
|
if (!new_stall && !t->pending_event)
|
|
|
|
continue;
|
2019-05-14 22:41:15 +00:00
|
|
|
/*
|
2022-01-25 06:56:58 +00:00
|
|
|
* Check for new stall activity, as well as deferred
|
|
|
|
* events that occurred in the last window after the
|
|
|
|
* trigger had already fired (we want to ratelimit
|
|
|
|
* events without dropping any).
|
2019-05-14 22:41:15 +00:00
|
|
|
*/
|
2022-01-25 06:56:58 +00:00
|
|
|
if (new_stall) {
|
|
|
|
/* Calculate growth since last update */
|
|
|
|
growth = window_update(&t->win, now, total[t->state]);
|
2022-09-19 07:23:56 +00:00
|
|
|
if (!t->pending_event) {
|
|
|
|
if (growth < t->threshold)
|
|
|
|
continue;
|
2022-01-25 06:56:58 +00:00
|
|
|
|
2022-09-19 07:23:56 +00:00
|
|
|
t->pending_event = true;
|
|
|
|
}
|
2022-01-25 06:56:58 +00:00
|
|
|
}
|
2019-05-14 22:41:15 +00:00
|
|
|
/* Limit event signaling to once per window */
|
|
|
|
if (now < t->last_event_time + t->win.size)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
/* Generate an event */
|
2023-06-30 00:56:12 +00:00
|
|
|
if (cmpxchg(&t->event, 0, 1) == 0) {
|
|
|
|
if (t->of)
|
|
|
|
kernfs_notify(t->of->kn);
|
|
|
|
else
|
|
|
|
wake_up_interruptible(&t->event_wait);
|
|
|
|
}
|
2019-05-14 22:41:15 +00:00
|
|
|
t->last_event_time = now;
|
2022-01-25 06:56:58 +00:00
|
|
|
/* Reset threshold breach flag once event got generated */
|
|
|
|
t->pending_event = false;
|
2019-05-14 22:41:15 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-03-30 10:54:15 +00:00
|
|
|
static u64 update_averages(struct psi_group *group, u64 now)
|
|
|
|
{
|
|
|
|
unsigned long missed_periods = 0;
|
|
|
|
u64 expires, period;
|
|
|
|
u64 avg_next_update;
|
|
|
|
int s;
|
|
|
|
|
|
|
|
/* avgX= */
|
|
|
|
expires = group->avg_next_update;
|
|
|
|
if (now - expires >= psi_period)
|
|
|
|
missed_periods = div_u64(now - expires, psi_period);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The periodic clock tick can get delayed for various
|
|
|
|
* reasons, especially on loaded systems. To avoid clock
|
|
|
|
* drift, we schedule the clock in fixed psi_period intervals.
|
|
|
|
* But the deltas we sample out of the per-cpu buckets above
|
|
|
|
* are based on the actual time elapsing between clock ticks.
|
|
|
|
*/
|
|
|
|
avg_next_update = expires + ((1 + missed_periods) * psi_period);
|
|
|
|
period = now - (group->avg_last_update + (missed_periods * psi_period));
|
|
|
|
group->avg_last_update = now;
|
|
|
|
|
|
|
|
for (s = 0; s < NR_PSI_STATES - 1; s++) {
|
|
|
|
u32 sample;
|
|
|
|
|
|
|
|
sample = group->total[PSI_AVGS][s] - group->avg_total[s];
|
|
|
|
/*
|
|
|
|
* Due to the lockless sampling of the time buckets,
|
|
|
|
* recorded time deltas can slip into the next period,
|
|
|
|
* which under full pressure can result in samples in
|
|
|
|
* excess of the period length.
|
|
|
|
*
|
|
|
|
* We don't want to report non-sensical pressures in
|
|
|
|
* excess of 100%, nor do we want to drop such events
|
|
|
|
* on the floor. Instead we punt any overage into the
|
|
|
|
* future until pressure subsides. By doing this we
|
|
|
|
* don't underreport the occurring pressure curve, we
|
|
|
|
* just report it delayed by one period length.
|
|
|
|
*
|
|
|
|
* The error isn't cumulative. As soon as another
|
|
|
|
* delta slips from a period P to P+1, by definition
|
|
|
|
* it frees up its time T in P.
|
|
|
|
*/
|
|
|
|
if (sample > period)
|
|
|
|
sample = period;
|
|
|
|
group->avg_total[s] += sample;
|
|
|
|
calc_avgs(group->avg[s], missed_periods, sample, period);
|
|
|
|
}
|
|
|
|
|
|
|
|
return avg_next_update;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void psi_avgs_work(struct work_struct *work)
|
|
|
|
{
|
|
|
|
struct delayed_work *dwork;
|
|
|
|
struct psi_group *group;
|
|
|
|
u32 changed_states;
|
|
|
|
u64 now;
|
|
|
|
|
|
|
|
dwork = to_delayed_work(work);
|
|
|
|
group = container_of(dwork, struct psi_group, avgs_work);
|
|
|
|
|
|
|
|
mutex_lock(&group->avgs_lock);
|
|
|
|
|
|
|
|
now = sched_clock();
|
|
|
|
|
|
|
|
collect_percpu_times(group, PSI_AVGS, &changed_states);
|
|
|
|
/*
|
|
|
|
* If there is task activity, periodically fold the per-cpu
|
|
|
|
* times and feed samples into the running averages. If things
|
|
|
|
* are idle and there is no data to process, stop the clock.
|
|
|
|
* Once restarted, we'll catch up the running averages in one
|
|
|
|
* go - see calc_avgs() and missed_periods.
|
|
|
|
*/
|
2023-03-30 10:54:18 +00:00
|
|
|
if (now >= group->avg_next_update) {
|
2023-10-10 08:45:43 +00:00
|
|
|
update_triggers(group, now, PSI_AVGS);
|
2023-03-30 10:54:15 +00:00
|
|
|
group->avg_next_update = update_averages(group, now);
|
2023-03-30 10:54:18 +00:00
|
|
|
}
|
2023-03-30 10:54:15 +00:00
|
|
|
|
|
|
|
if (changed_states & PSI_STATE_RESCHEDULE) {
|
|
|
|
schedule_delayed_work(dwork, nsecs_to_jiffies(
|
|
|
|
group->avg_next_update - now) + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
mutex_unlock(&group->avgs_lock);
|
|
|
|
}
|
|
|
|
|
2023-03-30 10:54:18 +00:00
|
|
|
static void init_rtpoll_triggers(struct psi_group *group, u64 now)
|
2023-03-30 10:54:15 +00:00
|
|
|
{
|
|
|
|
struct psi_trigger *t;
|
|
|
|
|
2023-03-30 10:54:16 +00:00
|
|
|
list_for_each_entry(t, &group->rtpoll_triggers, node)
|
2023-03-30 10:54:15 +00:00
|
|
|
window_reset(&t->win, now,
|
|
|
|
group->total[PSI_POLL][t->state], 0);
|
2023-03-30 10:54:16 +00:00
|
|
|
memcpy(group->rtpoll_total, group->total[PSI_POLL],
|
|
|
|
sizeof(group->rtpoll_total));
|
|
|
|
group->rtpoll_next_update = now + group->rtpoll_min_period;
|
2023-03-30 10:54:15 +00:00
|
|
|
}
|
|
|
|
|
2023-10-16 11:20:39 +00:00
|
|
|
/* Schedule rtpolling if it's not already scheduled or forced. */
|
2023-03-30 10:54:16 +00:00
|
|
|
static void psi_schedule_rtpoll_work(struct psi_group *group, unsigned long delay,
|
2022-10-28 19:45:41 +00:00
|
|
|
bool force)
|
2019-05-14 22:41:15 +00:00
|
|
|
{
|
2020-05-28 19:54:42 +00:00
|
|
|
struct task_struct *task;
|
2019-05-14 22:41:15 +00:00
|
|
|
|
2020-05-28 19:54:42 +00:00
|
|
|
/*
|
2022-10-28 19:45:41 +00:00
|
|
|
* atomic_xchg should be called even when !force to provide a
|
2023-03-30 10:54:16 +00:00
|
|
|
* full memory barrier (see the comment inside psi_rtpoll_work).
|
2020-05-28 19:54:42 +00:00
|
|
|
*/
|
2023-03-30 10:54:16 +00:00
|
|
|
if (atomic_xchg(&group->rtpoll_scheduled, 1) && !force)
|
2019-05-14 22:41:15 +00:00
|
|
|
return;
|
|
|
|
|
|
|
|
rcu_read_lock();
|
|
|
|
|
2023-03-30 10:54:16 +00:00
|
|
|
task = rcu_dereference(group->rtpoll_task);
|
2019-05-14 22:41:15 +00:00
|
|
|
/*
|
|
|
|
* kworker might be NULL in case psi_trigger_destroy races with
|
|
|
|
* psi_task_change (hotpath) which can't use locks
|
|
|
|
*/
|
2020-05-28 19:54:42 +00:00
|
|
|
if (likely(task))
|
2023-03-30 10:54:16 +00:00
|
|
|
mod_timer(&group->rtpoll_timer, jiffies + delay);
|
2022-10-28 19:45:41 +00:00
|
|
|
else
|
2023-03-30 10:54:16 +00:00
|
|
|
atomic_set(&group->rtpoll_scheduled, 0);
|
2019-05-14 22:41:15 +00:00
|
|
|
|
|
|
|
rcu_read_unlock();
|
|
|
|
}
|
|
|
|
|
2023-03-30 10:54:16 +00:00
|
|
|
static void psi_rtpoll_work(struct psi_group *group)
|
2019-05-14 22:41:15 +00:00
|
|
|
{
|
2022-10-28 19:45:41 +00:00
|
|
|
bool force_reschedule = false;
|
2019-05-14 22:41:15 +00:00
|
|
|
u32 changed_states;
|
|
|
|
u64 now;
|
|
|
|
|
2023-03-30 10:54:16 +00:00
|
|
|
mutex_lock(&group->rtpoll_trigger_lock);
|
2019-05-14 22:41:15 +00:00
|
|
|
|
|
|
|
now = sched_clock();
|
|
|
|
|
2023-03-30 10:54:16 +00:00
|
|
|
if (now > group->rtpoll_until) {
|
2022-10-28 19:45:41 +00:00
|
|
|
/*
|
2023-10-16 11:20:39 +00:00
|
|
|
* We are either about to start or might stop rtpolling if no
|
|
|
|
* state change was recorded. Resetting rtpoll_scheduled leaves
|
2022-10-28 19:45:41 +00:00
|
|
|
* a small window for psi_group_change to sneak in and schedule
|
2023-10-16 11:20:39 +00:00
|
|
|
* an immediate rtpoll_work before we get to rescheduling. One
|
|
|
|
* potential extra wakeup at the end of the rtpolling window
|
|
|
|
* should be negligible and rtpoll_next_update still keeps
|
2022-10-28 19:45:41 +00:00
|
|
|
* updates correctly on schedule.
|
|
|
|
*/
|
2023-03-30 10:54:16 +00:00
|
|
|
atomic_set(&group->rtpoll_scheduled, 0);
|
2022-10-28 19:45:41 +00:00
|
|
|
/*
|
2023-10-16 11:20:39 +00:00
|
|
|
* A task change can race with the rtpoll worker that is supposed to
|
2022-10-28 19:45:41 +00:00
|
|
|
* report on it. To avoid missing events, ensure ordering between
|
2023-10-16 11:20:39 +00:00
|
|
|
* rtpoll_scheduled and the task state accesses, such that if the
|
|
|
|
* rtpoll worker misses the state update, the task change is
|
|
|
|
* guaranteed to reschedule the rtpoll worker:
|
2022-10-28 19:45:41 +00:00
|
|
|
*
|
2023-10-16 11:20:39 +00:00
|
|
|
* rtpoll worker:
|
|
|
|
* atomic_set(rtpoll_scheduled, 0)
|
2022-10-28 19:45:41 +00:00
|
|
|
* smp_mb()
|
|
|
|
* LOAD states
|
|
|
|
*
|
|
|
|
* task change:
|
|
|
|
* STORE states
|
2023-10-16 11:20:39 +00:00
|
|
|
* if atomic_xchg(rtpoll_scheduled, 1) == 0:
|
|
|
|
* schedule rtpoll worker
|
2022-10-28 19:45:41 +00:00
|
|
|
*
|
|
|
|
* The atomic_xchg() implies a full barrier.
|
|
|
|
*/
|
|
|
|
smp_mb();
|
|
|
|
} else {
|
2023-10-16 11:20:39 +00:00
|
|
|
/* The rtpolling window is not over, keep rescheduling */
|
2022-10-28 19:45:41 +00:00
|
|
|
force_reschedule = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2019-05-14 22:41:15 +00:00
|
|
|
collect_percpu_times(group, PSI_POLL, &changed_states);
|
|
|
|
|
2023-03-30 10:54:16 +00:00
|
|
|
if (changed_states & group->rtpoll_states) {
|
2023-10-16 11:20:39 +00:00
|
|
|
/* Initialize trigger windows when entering rtpolling mode */
|
2023-03-30 10:54:16 +00:00
|
|
|
if (now > group->rtpoll_until)
|
2023-03-30 10:54:18 +00:00
|
|
|
init_rtpoll_triggers(group, now);
|
2019-05-14 22:41:15 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Keep the monitor active for at least the duration of the
|
|
|
|
* minimum tracking window as long as monitor states are
|
|
|
|
* changing.
|
|
|
|
*/
|
2023-03-30 10:54:16 +00:00
|
|
|
group->rtpoll_until = now +
|
|
|
|
group->rtpoll_min_period * UPDATES_PER_WINDOW;
|
2019-05-14 22:41:15 +00:00
|
|
|
}
|
|
|
|
|
2023-03-30 10:54:16 +00:00
|
|
|
if (now > group->rtpoll_until) {
|
|
|
|
group->rtpoll_next_update = ULLONG_MAX;
|
2019-05-14 22:41:15 +00:00
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
2023-03-30 10:54:17 +00:00
|
|
|
if (now >= group->rtpoll_next_update) {
|
2023-10-10 08:41:07 +00:00
|
|
|
if (changed_states & group->rtpoll_states) {
|
2023-10-10 08:45:43 +00:00
|
|
|
update_triggers(group, now, PSI_POLL);
|
2023-03-30 10:54:17 +00:00
|
|
|
memcpy(group->rtpoll_total, group->total[PSI_POLL],
|
|
|
|
sizeof(group->rtpoll_total));
|
2023-10-10 08:41:07 +00:00
|
|
|
}
|
|
|
|
group->rtpoll_next_update = now + group->rtpoll_min_period;
|
2023-03-30 10:54:17 +00:00
|
|
|
}
|
2019-05-14 22:41:15 +00:00
|
|
|
|
2023-03-30 10:54:16 +00:00
|
|
|
psi_schedule_rtpoll_work(group,
|
|
|
|
nsecs_to_jiffies(group->rtpoll_next_update - now) + 1,
|
2022-10-28 19:45:41 +00:00
|
|
|
force_reschedule);
|
2019-05-14 22:41:15 +00:00
|
|
|
|
|
|
|
out:
|
2023-03-30 10:54:16 +00:00
|
|
|
mutex_unlock(&group->rtpoll_trigger_lock);
|
2019-05-14 22:41:15 +00:00
|
|
|
}
|
|
|
|
|
2023-03-30 10:54:16 +00:00
|
|
|
static int psi_rtpoll_worker(void *data)
|
2020-05-28 19:54:42 +00:00
|
|
|
{
|
|
|
|
struct psi_group *group = (struct psi_group *)data;
|
|
|
|
|
2020-04-21 10:09:13 +00:00
|
|
|
sched_set_fifo_low(current);
|
2020-05-28 19:54:42 +00:00
|
|
|
|
|
|
|
while (true) {
|
2023-03-30 10:54:16 +00:00
|
|
|
wait_event_interruptible(group->rtpoll_wait,
|
|
|
|
atomic_cmpxchg(&group->rtpoll_wakeup, 1, 0) ||
|
2020-05-28 19:54:42 +00:00
|
|
|
kthread_should_stop());
|
|
|
|
if (kthread_should_stop())
|
|
|
|
break;
|
|
|
|
|
2023-03-30 10:54:16 +00:00
|
|
|
psi_rtpoll_work(group);
|
2020-05-28 19:54:42 +00:00
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void poll_timer_fn(struct timer_list *t)
|
|
|
|
{
|
2023-03-30 10:54:16 +00:00
|
|
|
struct psi_group *group = from_timer(group, t, rtpoll_timer);
|
2020-05-28 19:54:42 +00:00
|
|
|
|
2023-03-30 10:54:16 +00:00
|
|
|
atomic_set(&group->rtpoll_wakeup, 1);
|
|
|
|
wake_up_interruptible(&group->rtpoll_wait);
|
2020-05-28 19:54:42 +00:00
|
|
|
}
|
|
|
|
|
2021-03-21 20:51:56 +00:00
|
|
|
static void record_times(struct psi_group_cpu *groupc, u64 now)
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
{
|
|
|
|
u32 delta;
|
|
|
|
|
|
|
|
delta = now - groupc->state_start;
|
|
|
|
groupc->state_start = now;
|
|
|
|
|
psi: introduce state_mask to represent stalled psi states
Patch series "psi: pressure stall monitors", v6.
This is a respin of:
https://lwn.net/ml/linux-kernel/20190308184311.144521-1-surenb%40google.com/
Android is adopting psi to detect and remedy memory pressure that
results in stuttering and decreased responsiveness on mobile devices.
Psi gives us the stall information, but because we're dealing with
latencies in the millisecond range, periodically reading the pressure
files to detect stalls in a timely fashion is not feasible. Psi also
doesn't aggregate its averages at a high-enough frequency right now.
This patch series extends the psi interface such that users can
configure sensitive latency thresholds and use poll() and friends to be
notified when these are breached.
As high-frequency aggregation is costly, it implements an aggregation
method that is optimized for fast, short-interval averaging, and makes
the aggregation frequency adaptive, such that high-frequency updates
only happen while monitored stall events are actively occurring.
With these patches applied, Android can monitor for, and ward off,
mounting memory shortages before they cause problems for the user. For
example, using memory stall monitors in userspace low memory killer
daemon (lmkd) we can detect mounting pressure and kill less important
processes before device becomes visibly sluggish. In our memory stress
testing psi memory monitors produce roughly 10x less false positives
compared to vmpressure signals. Having ability to specify multiple
triggers for the same psi metric allows other parts of Android framework
to monitor memory state of the device and act accordingly.
The new interface is straight-forward. The user opens one of the
pressure files for writing and writes a trigger description into the
file descriptor that defines the stall state - some or full, and the
maximum stall time over a given window of time. E.g.:
/* Signal when stall time exceeds 100ms of a 1s window */
char trigger[] = "full 100000 1000000"
fd = open("/proc/pressure/memory")
write(fd, trigger, sizeof(trigger))
while (poll() >= 0) {
...
};
close(fd);
When the monitored stall state is entered, psi adapts its aggregation
frequency according to what the configured time window requires in order
to emit event signals in a timely fashion. Once the stalling subsides,
aggregation reverts back to normal.
The trigger is associated with the open file descriptor. To stop
monitoring, the user only needs to close the file descriptor and the
trigger is discarded.
Patches 1-6 prepare the psi code for polling support. Patch 7
implements the adaptive polling logic, the pressure growth detection
optimized for short intervals, and hooks up write() and poll() on the
pressure files.
The patches were developed in collaboration with Johannes Weiner.
This patch (of 7):
The psi monitoring patches will need to determine the same states as
record_times(). To avoid calculating them twice, maintain a state mask
that can be consulted cheaply. Do this in a separate patch to keep the
churn in the main feature patch at a minimum.
This adds 4-byte state_mask member into psi_group_cpu struct which
results in its first cacheline-aligned part becoming 52 bytes long. Add
explicit values to enumeration element counters that affect
psi_group_cpu struct size.
Link: http://lkml.kernel.org/r/20190124211518.244221-4-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 22:40:56 +00:00
|
|
|
if (groupc->state_mask & (1 << PSI_IO_SOME)) {
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
groupc->times[PSI_IO_SOME] += delta;
|
psi: introduce state_mask to represent stalled psi states
Patch series "psi: pressure stall monitors", v6.
This is a respin of:
https://lwn.net/ml/linux-kernel/20190308184311.144521-1-surenb%40google.com/
Android is adopting psi to detect and remedy memory pressure that
results in stuttering and decreased responsiveness on mobile devices.
Psi gives us the stall information, but because we're dealing with
latencies in the millisecond range, periodically reading the pressure
files to detect stalls in a timely fashion is not feasible. Psi also
doesn't aggregate its averages at a high-enough frequency right now.
This patch series extends the psi interface such that users can
configure sensitive latency thresholds and use poll() and friends to be
notified when these are breached.
As high-frequency aggregation is costly, it implements an aggregation
method that is optimized for fast, short-interval averaging, and makes
the aggregation frequency adaptive, such that high-frequency updates
only happen while monitored stall events are actively occurring.
With these patches applied, Android can monitor for, and ward off,
mounting memory shortages before they cause problems for the user. For
example, using memory stall monitors in userspace low memory killer
daemon (lmkd) we can detect mounting pressure and kill less important
processes before device becomes visibly sluggish. In our memory stress
testing psi memory monitors produce roughly 10x less false positives
compared to vmpressure signals. Having ability to specify multiple
triggers for the same psi metric allows other parts of Android framework
to monitor memory state of the device and act accordingly.
The new interface is straight-forward. The user opens one of the
pressure files for writing and writes a trigger description into the
file descriptor that defines the stall state - some or full, and the
maximum stall time over a given window of time. E.g.:
/* Signal when stall time exceeds 100ms of a 1s window */
char trigger[] = "full 100000 1000000"
fd = open("/proc/pressure/memory")
write(fd, trigger, sizeof(trigger))
while (poll() >= 0) {
...
};
close(fd);
When the monitored stall state is entered, psi adapts its aggregation
frequency according to what the configured time window requires in order
to emit event signals in a timely fashion. Once the stalling subsides,
aggregation reverts back to normal.
The trigger is associated with the open file descriptor. To stop
monitoring, the user only needs to close the file descriptor and the
trigger is discarded.
Patches 1-6 prepare the psi code for polling support. Patch 7
implements the adaptive polling logic, the pressure growth detection
optimized for short intervals, and hooks up write() and poll() on the
pressure files.
The patches were developed in collaboration with Johannes Weiner.
This patch (of 7):
The psi monitoring patches will need to determine the same states as
record_times(). To avoid calculating them twice, maintain a state mask
that can be consulted cheaply. Do this in a separate patch to keep the
churn in the main feature patch at a minimum.
This adds 4-byte state_mask member into psi_group_cpu struct which
results in its first cacheline-aligned part becoming 52 bytes long. Add
explicit values to enumeration element counters that affect
psi_group_cpu struct size.
Link: http://lkml.kernel.org/r/20190124211518.244221-4-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 22:40:56 +00:00
|
|
|
if (groupc->state_mask & (1 << PSI_IO_FULL))
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
groupc->times[PSI_IO_FULL] += delta;
|
|
|
|
}
|
|
|
|
|
psi: introduce state_mask to represent stalled psi states
Patch series "psi: pressure stall monitors", v6.
This is a respin of:
https://lwn.net/ml/linux-kernel/20190308184311.144521-1-surenb%40google.com/
Android is adopting psi to detect and remedy memory pressure that
results in stuttering and decreased responsiveness on mobile devices.
Psi gives us the stall information, but because we're dealing with
latencies in the millisecond range, periodically reading the pressure
files to detect stalls in a timely fashion is not feasible. Psi also
doesn't aggregate its averages at a high-enough frequency right now.
This patch series extends the psi interface such that users can
configure sensitive latency thresholds and use poll() and friends to be
notified when these are breached.
As high-frequency aggregation is costly, it implements an aggregation
method that is optimized for fast, short-interval averaging, and makes
the aggregation frequency adaptive, such that high-frequency updates
only happen while monitored stall events are actively occurring.
With these patches applied, Android can monitor for, and ward off,
mounting memory shortages before they cause problems for the user. For
example, using memory stall monitors in userspace low memory killer
daemon (lmkd) we can detect mounting pressure and kill less important
processes before device becomes visibly sluggish. In our memory stress
testing psi memory monitors produce roughly 10x less false positives
compared to vmpressure signals. Having ability to specify multiple
triggers for the same psi metric allows other parts of Android framework
to monitor memory state of the device and act accordingly.
The new interface is straight-forward. The user opens one of the
pressure files for writing and writes a trigger description into the
file descriptor that defines the stall state - some or full, and the
maximum stall time over a given window of time. E.g.:
/* Signal when stall time exceeds 100ms of a 1s window */
char trigger[] = "full 100000 1000000"
fd = open("/proc/pressure/memory")
write(fd, trigger, sizeof(trigger))
while (poll() >= 0) {
...
};
close(fd);
When the monitored stall state is entered, psi adapts its aggregation
frequency according to what the configured time window requires in order
to emit event signals in a timely fashion. Once the stalling subsides,
aggregation reverts back to normal.
The trigger is associated with the open file descriptor. To stop
monitoring, the user only needs to close the file descriptor and the
trigger is discarded.
Patches 1-6 prepare the psi code for polling support. Patch 7
implements the adaptive polling logic, the pressure growth detection
optimized for short intervals, and hooks up write() and poll() on the
pressure files.
The patches were developed in collaboration with Johannes Weiner.
This patch (of 7):
The psi monitoring patches will need to determine the same states as
record_times(). To avoid calculating them twice, maintain a state mask
that can be consulted cheaply. Do this in a separate patch to keep the
churn in the main feature patch at a minimum.
This adds 4-byte state_mask member into psi_group_cpu struct which
results in its first cacheline-aligned part becoming 52 bytes long. Add
explicit values to enumeration element counters that affect
psi_group_cpu struct size.
Link: http://lkml.kernel.org/r/20190124211518.244221-4-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 22:40:56 +00:00
|
|
|
if (groupc->state_mask & (1 << PSI_MEM_SOME)) {
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
groupc->times[PSI_MEM_SOME] += delta;
|
psi: introduce state_mask to represent stalled psi states
Patch series "psi: pressure stall monitors", v6.
This is a respin of:
https://lwn.net/ml/linux-kernel/20190308184311.144521-1-surenb%40google.com/
Android is adopting psi to detect and remedy memory pressure that
results in stuttering and decreased responsiveness on mobile devices.
Psi gives us the stall information, but because we're dealing with
latencies in the millisecond range, periodically reading the pressure
files to detect stalls in a timely fashion is not feasible. Psi also
doesn't aggregate its averages at a high-enough frequency right now.
This patch series extends the psi interface such that users can
configure sensitive latency thresholds and use poll() and friends to be
notified when these are breached.
As high-frequency aggregation is costly, it implements an aggregation
method that is optimized for fast, short-interval averaging, and makes
the aggregation frequency adaptive, such that high-frequency updates
only happen while monitored stall events are actively occurring.
With these patches applied, Android can monitor for, and ward off,
mounting memory shortages before they cause problems for the user. For
example, using memory stall monitors in userspace low memory killer
daemon (lmkd) we can detect mounting pressure and kill less important
processes before device becomes visibly sluggish. In our memory stress
testing psi memory monitors produce roughly 10x less false positives
compared to vmpressure signals. Having ability to specify multiple
triggers for the same psi metric allows other parts of Android framework
to monitor memory state of the device and act accordingly.
The new interface is straight-forward. The user opens one of the
pressure files for writing and writes a trigger description into the
file descriptor that defines the stall state - some or full, and the
maximum stall time over a given window of time. E.g.:
/* Signal when stall time exceeds 100ms of a 1s window */
char trigger[] = "full 100000 1000000"
fd = open("/proc/pressure/memory")
write(fd, trigger, sizeof(trigger))
while (poll() >= 0) {
...
};
close(fd);
When the monitored stall state is entered, psi adapts its aggregation
frequency according to what the configured time window requires in order
to emit event signals in a timely fashion. Once the stalling subsides,
aggregation reverts back to normal.
The trigger is associated with the open file descriptor. To stop
monitoring, the user only needs to close the file descriptor and the
trigger is discarded.
Patches 1-6 prepare the psi code for polling support. Patch 7
implements the adaptive polling logic, the pressure growth detection
optimized for short intervals, and hooks up write() and poll() on the
pressure files.
The patches were developed in collaboration with Johannes Weiner.
This patch (of 7):
The psi monitoring patches will need to determine the same states as
record_times(). To avoid calculating them twice, maintain a state mask
that can be consulted cheaply. Do this in a separate patch to keep the
churn in the main feature patch at a minimum.
This adds 4-byte state_mask member into psi_group_cpu struct which
results in its first cacheline-aligned part becoming 52 bytes long. Add
explicit values to enumeration element counters that affect
psi_group_cpu struct size.
Link: http://lkml.kernel.org/r/20190124211518.244221-4-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 22:40:56 +00:00
|
|
|
if (groupc->state_mask & (1 << PSI_MEM_FULL))
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
groupc->times[PSI_MEM_FULL] += delta;
|
|
|
|
}
|
|
|
|
|
2021-03-03 03:46:56 +00:00
|
|
|
if (groupc->state_mask & (1 << PSI_CPU_SOME)) {
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
groupc->times[PSI_CPU_SOME] += delta;
|
2021-03-03 03:46:56 +00:00
|
|
|
if (groupc->state_mask & (1 << PSI_CPU_FULL))
|
|
|
|
groupc->times[PSI_CPU_FULL] += delta;
|
|
|
|
}
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
|
psi: introduce state_mask to represent stalled psi states
Patch series "psi: pressure stall monitors", v6.
This is a respin of:
https://lwn.net/ml/linux-kernel/20190308184311.144521-1-surenb%40google.com/
Android is adopting psi to detect and remedy memory pressure that
results in stuttering and decreased responsiveness on mobile devices.
Psi gives us the stall information, but because we're dealing with
latencies in the millisecond range, periodically reading the pressure
files to detect stalls in a timely fashion is not feasible. Psi also
doesn't aggregate its averages at a high-enough frequency right now.
This patch series extends the psi interface such that users can
configure sensitive latency thresholds and use poll() and friends to be
notified when these are breached.
As high-frequency aggregation is costly, it implements an aggregation
method that is optimized for fast, short-interval averaging, and makes
the aggregation frequency adaptive, such that high-frequency updates
only happen while monitored stall events are actively occurring.
With these patches applied, Android can monitor for, and ward off,
mounting memory shortages before they cause problems for the user. For
example, using memory stall monitors in userspace low memory killer
daemon (lmkd) we can detect mounting pressure and kill less important
processes before device becomes visibly sluggish. In our memory stress
testing psi memory monitors produce roughly 10x less false positives
compared to vmpressure signals. Having ability to specify multiple
triggers for the same psi metric allows other parts of Android framework
to monitor memory state of the device and act accordingly.
The new interface is straight-forward. The user opens one of the
pressure files for writing and writes a trigger description into the
file descriptor that defines the stall state - some or full, and the
maximum stall time over a given window of time. E.g.:
/* Signal when stall time exceeds 100ms of a 1s window */
char trigger[] = "full 100000 1000000"
fd = open("/proc/pressure/memory")
write(fd, trigger, sizeof(trigger))
while (poll() >= 0) {
...
};
close(fd);
When the monitored stall state is entered, psi adapts its aggregation
frequency according to what the configured time window requires in order
to emit event signals in a timely fashion. Once the stalling subsides,
aggregation reverts back to normal.
The trigger is associated with the open file descriptor. To stop
monitoring, the user only needs to close the file descriptor and the
trigger is discarded.
Patches 1-6 prepare the psi code for polling support. Patch 7
implements the adaptive polling logic, the pressure growth detection
optimized for short intervals, and hooks up write() and poll() on the
pressure files.
The patches were developed in collaboration with Johannes Weiner.
This patch (of 7):
The psi monitoring patches will need to determine the same states as
record_times(). To avoid calculating them twice, maintain a state mask
that can be consulted cheaply. Do this in a separate patch to keep the
churn in the main feature patch at a minimum.
This adds 4-byte state_mask member into psi_group_cpu struct which
results in its first cacheline-aligned part becoming 52 bytes long. Add
explicit values to enumeration element counters that affect
psi_group_cpu struct size.
Link: http://lkml.kernel.org/r/20190124211518.244221-4-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 22:40:56 +00:00
|
|
|
if (groupc->state_mask & (1 << PSI_NONIDLE))
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
groupc->times[PSI_NONIDLE] += delta;
|
|
|
|
}
|
|
|
|
|
2020-03-16 19:13:32 +00:00
|
|
|
static void psi_group_change(struct psi_group *group, int cpu,
|
2021-03-21 20:51:56 +00:00
|
|
|
unsigned int clear, unsigned int set, u64 now,
|
2020-03-16 19:13:32 +00:00
|
|
|
bool wake_clock)
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
{
|
|
|
|
struct psi_group_cpu *groupc;
|
|
|
|
unsigned int t, m;
|
psi: introduce state_mask to represent stalled psi states
Patch series "psi: pressure stall monitors", v6.
This is a respin of:
https://lwn.net/ml/linux-kernel/20190308184311.144521-1-surenb%40google.com/
Android is adopting psi to detect and remedy memory pressure that
results in stuttering and decreased responsiveness on mobile devices.
Psi gives us the stall information, but because we're dealing with
latencies in the millisecond range, periodically reading the pressure
files to detect stalls in a timely fashion is not feasible. Psi also
doesn't aggregate its averages at a high-enough frequency right now.
This patch series extends the psi interface such that users can
configure sensitive latency thresholds and use poll() and friends to be
notified when these are breached.
As high-frequency aggregation is costly, it implements an aggregation
method that is optimized for fast, short-interval averaging, and makes
the aggregation frequency adaptive, such that high-frequency updates
only happen while monitored stall events are actively occurring.
With these patches applied, Android can monitor for, and ward off,
mounting memory shortages before they cause problems for the user. For
example, using memory stall monitors in userspace low memory killer
daemon (lmkd) we can detect mounting pressure and kill less important
processes before device becomes visibly sluggish. In our memory stress
testing psi memory monitors produce roughly 10x less false positives
compared to vmpressure signals. Having ability to specify multiple
triggers for the same psi metric allows other parts of Android framework
to monitor memory state of the device and act accordingly.
The new interface is straight-forward. The user opens one of the
pressure files for writing and writes a trigger description into the
file descriptor that defines the stall state - some or full, and the
maximum stall time over a given window of time. E.g.:
/* Signal when stall time exceeds 100ms of a 1s window */
char trigger[] = "full 100000 1000000"
fd = open("/proc/pressure/memory")
write(fd, trigger, sizeof(trigger))
while (poll() >= 0) {
...
};
close(fd);
When the monitored stall state is entered, psi adapts its aggregation
frequency according to what the configured time window requires in order
to emit event signals in a timely fashion. Once the stalling subsides,
aggregation reverts back to normal.
The trigger is associated with the open file descriptor. To stop
monitoring, the user only needs to close the file descriptor and the
trigger is discarded.
Patches 1-6 prepare the psi code for polling support. Patch 7
implements the adaptive polling logic, the pressure growth detection
optimized for short intervals, and hooks up write() and poll() on the
pressure files.
The patches were developed in collaboration with Johannes Weiner.
This patch (of 7):
The psi monitoring patches will need to determine the same states as
record_times(). To avoid calculating them twice, maintain a state mask
that can be consulted cheaply. Do this in a separate patch to keep the
churn in the main feature patch at a minimum.
This adds 4-byte state_mask member into psi_group_cpu struct which
results in its first cacheline-aligned part becoming 52 bytes long. Add
explicit values to enumeration element counters that affect
psi_group_cpu struct size.
Link: http://lkml.kernel.org/r/20190124211518.244221-4-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 22:40:56 +00:00
|
|
|
enum psi_states s;
|
2022-08-25 16:41:07 +00:00
|
|
|
u32 state_mask;
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
|
|
|
|
groupc = per_cpu_ptr(group->pcpu, cpu);
|
|
|
|
|
|
|
|
/*
|
sched/psi: Per-cgroup PSI accounting disable/re-enable interface
PSI accounts stalls for each cgroup separately and aggregates it
at each level of the hierarchy. This may cause non-negligible overhead
for some workloads when under deep level of the hierarchy.
commit 3958e2d0c34e ("cgroup: make per-cgroup pressure stall tracking configurable")
make PSI to skip per-cgroup stall accounting, only account system-wide
to avoid this each level overhead.
But for our use case, we also want leaf cgroup PSI stats accounted for
userspace adjustment on that cgroup, apart from only system-wide adjustment.
So this patch introduce a per-cgroup PSI accounting disable/re-enable
interface "cgroup.pressure", which is a read-write single value file that
allowed values are "0" and "1", the defaults is "1" so per-cgroup
PSI stats is enabled by default.
Implementation details:
It should be relatively straight-forward to disable and re-enable
state aggregation, time tracking, averaging on a per-cgroup level,
if we can live with losing history from while it was disabled.
I.e. the avgs will restart from 0, total= will have gaps.
But it's hard or complex to stop/restart groupc->tasks[] updates,
which is not implemented in this patch. So we always update
groupc->tasks[] and PSI_ONCPU bit in psi_group_change() even when
the cgroup PSI stats is disabled.
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lkml.kernel.org/r/20220907090332.2078-1-zhouchengming@bytedance.com
2022-09-07 09:03:32 +00:00
|
|
|
* First we update the task counts according to the state
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
* change requested through the @clear and @set bits.
|
sched/psi: Per-cgroup PSI accounting disable/re-enable interface
PSI accounts stalls for each cgroup separately and aggregates it
at each level of the hierarchy. This may cause non-negligible overhead
for some workloads when under deep level of the hierarchy.
commit 3958e2d0c34e ("cgroup: make per-cgroup pressure stall tracking configurable")
make PSI to skip per-cgroup stall accounting, only account system-wide
to avoid this each level overhead.
But for our use case, we also want leaf cgroup PSI stats accounted for
userspace adjustment on that cgroup, apart from only system-wide adjustment.
So this patch introduce a per-cgroup PSI accounting disable/re-enable
interface "cgroup.pressure", which is a read-write single value file that
allowed values are "0" and "1", the defaults is "1" so per-cgroup
PSI stats is enabled by default.
Implementation details:
It should be relatively straight-forward to disable and re-enable
state aggregation, time tracking, averaging on a per-cgroup level,
if we can live with losing history from while it was disabled.
I.e. the avgs will restart from 0, total= will have gaps.
But it's hard or complex to stop/restart groupc->tasks[] updates,
which is not implemented in this patch. So we always update
groupc->tasks[] and PSI_ONCPU bit in psi_group_change() even when
the cgroup PSI stats is disabled.
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lkml.kernel.org/r/20220907090332.2078-1-zhouchengming@bytedance.com
2022-09-07 09:03:32 +00:00
|
|
|
*
|
|
|
|
* Then if the cgroup PSI stats accounting enabled, we
|
|
|
|
* assess the aggregate resource states this CPU's tasks
|
|
|
|
* have been in since the last change, and account any
|
|
|
|
* SOME and FULL time these may have resulted in.
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
*/
|
|
|
|
write_seqcount_begin(&groupc->seq);
|
|
|
|
|
2022-08-25 16:41:07 +00:00
|
|
|
/*
|
|
|
|
* Start with TSK_ONCPU, which doesn't have a corresponding
|
|
|
|
* task count - it's just a boolean flag directly encoded in
|
|
|
|
* the state mask. Clear, set, or carry the current state if
|
|
|
|
* no changes are requested.
|
|
|
|
*/
|
|
|
|
if (unlikely(clear & TSK_ONCPU)) {
|
|
|
|
state_mask = 0;
|
|
|
|
clear &= ~TSK_ONCPU;
|
|
|
|
} else if (unlikely(set & TSK_ONCPU)) {
|
|
|
|
state_mask = PSI_ONCPU;
|
|
|
|
set &= ~TSK_ONCPU;
|
|
|
|
} else {
|
|
|
|
state_mask = groupc->state_mask & PSI_ONCPU;
|
|
|
|
}
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
|
2022-08-25 16:41:07 +00:00
|
|
|
/*
|
|
|
|
* The rest of the state mask is calculated based on the task
|
|
|
|
* counts. Update those first, then construct the mask.
|
|
|
|
*/
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
|
|
|
|
if (!(m & (1 << t)))
|
|
|
|
continue;
|
2021-04-16 15:02:16 +00:00
|
|
|
if (groupc->tasks[t]) {
|
|
|
|
groupc->tasks[t]--;
|
|
|
|
} else if (!psi_bug) {
|
2022-08-25 16:41:07 +00:00
|
|
|
printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n",
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
cpu, t, groupc->tasks[0],
|
|
|
|
groupc->tasks[1], groupc->tasks[2],
|
2022-08-25 16:41:07 +00:00
|
|
|
groupc->tasks[3], clear, set);
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
psi_bug = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (t = 0; set; set &= ~(1 << t), t++)
|
|
|
|
if (set & (1 << t))
|
|
|
|
groupc->tasks[t]++;
|
|
|
|
|
sched/psi: Per-cgroup PSI accounting disable/re-enable interface
PSI accounts stalls for each cgroup separately and aggregates it
at each level of the hierarchy. This may cause non-negligible overhead
for some workloads when under deep level of the hierarchy.
commit 3958e2d0c34e ("cgroup: make per-cgroup pressure stall tracking configurable")
make PSI to skip per-cgroup stall accounting, only account system-wide
to avoid this each level overhead.
But for our use case, we also want leaf cgroup PSI stats accounted for
userspace adjustment on that cgroup, apart from only system-wide adjustment.
So this patch introduce a per-cgroup PSI accounting disable/re-enable
interface "cgroup.pressure", which is a read-write single value file that
allowed values are "0" and "1", the defaults is "1" so per-cgroup
PSI stats is enabled by default.
Implementation details:
It should be relatively straight-forward to disable and re-enable
state aggregation, time tracking, averaging on a per-cgroup level,
if we can live with losing history from while it was disabled.
I.e. the avgs will restart from 0, total= will have gaps.
But it's hard or complex to stop/restart groupc->tasks[] updates,
which is not implemented in this patch. So we always update
groupc->tasks[] and PSI_ONCPU bit in psi_group_change() even when
the cgroup PSI stats is disabled.
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lkml.kernel.org/r/20220907090332.2078-1-zhouchengming@bytedance.com
2022-09-07 09:03:32 +00:00
|
|
|
if (!group->enabled) {
|
|
|
|
/*
|
|
|
|
* On the first group change after disabling PSI, conclude
|
|
|
|
* the current state and flush its time. This is unlikely
|
|
|
|
* to matter to the user, but aggregation (get_recent_times)
|
|
|
|
* may have already incorporated the live state into times_prev;
|
|
|
|
* avoid a delta sample underflow when PSI is later re-enabled.
|
|
|
|
*/
|
|
|
|
if (unlikely(groupc->state_mask & (1 << PSI_NONIDLE)))
|
|
|
|
record_times(groupc, now);
|
|
|
|
|
|
|
|
groupc->state_mask = state_mask;
|
|
|
|
|
|
|
|
write_seqcount_end(&groupc->seq);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
psi: introduce state_mask to represent stalled psi states
Patch series "psi: pressure stall monitors", v6.
This is a respin of:
https://lwn.net/ml/linux-kernel/20190308184311.144521-1-surenb%40google.com/
Android is adopting psi to detect and remedy memory pressure that
results in stuttering and decreased responsiveness on mobile devices.
Psi gives us the stall information, but because we're dealing with
latencies in the millisecond range, periodically reading the pressure
files to detect stalls in a timely fashion is not feasible. Psi also
doesn't aggregate its averages at a high-enough frequency right now.
This patch series extends the psi interface such that users can
configure sensitive latency thresholds and use poll() and friends to be
notified when these are breached.
As high-frequency aggregation is costly, it implements an aggregation
method that is optimized for fast, short-interval averaging, and makes
the aggregation frequency adaptive, such that high-frequency updates
only happen while monitored stall events are actively occurring.
With these patches applied, Android can monitor for, and ward off,
mounting memory shortages before they cause problems for the user. For
example, using memory stall monitors in userspace low memory killer
daemon (lmkd) we can detect mounting pressure and kill less important
processes before device becomes visibly sluggish. In our memory stress
testing psi memory monitors produce roughly 10x less false positives
compared to vmpressure signals. Having ability to specify multiple
triggers for the same psi metric allows other parts of Android framework
to monitor memory state of the device and act accordingly.
The new interface is straight-forward. The user opens one of the
pressure files for writing and writes a trigger description into the
file descriptor that defines the stall state - some or full, and the
maximum stall time over a given window of time. E.g.:
/* Signal when stall time exceeds 100ms of a 1s window */
char trigger[] = "full 100000 1000000"
fd = open("/proc/pressure/memory")
write(fd, trigger, sizeof(trigger))
while (poll() >= 0) {
...
};
close(fd);
When the monitored stall state is entered, psi adapts its aggregation
frequency according to what the configured time window requires in order
to emit event signals in a timely fashion. Once the stalling subsides,
aggregation reverts back to normal.
The trigger is associated with the open file descriptor. To stop
monitoring, the user only needs to close the file descriptor and the
trigger is discarded.
Patches 1-6 prepare the psi code for polling support. Patch 7
implements the adaptive polling logic, the pressure growth detection
optimized for short intervals, and hooks up write() and poll() on the
pressure files.
The patches were developed in collaboration with Johannes Weiner.
This patch (of 7):
The psi monitoring patches will need to determine the same states as
record_times(). To avoid calculating them twice, maintain a state mask
that can be consulted cheaply. Do this in a separate patch to keep the
churn in the main feature patch at a minimum.
This adds 4-byte state_mask member into psi_group_cpu struct which
results in its first cacheline-aligned part becoming 52 bytes long. Add
explicit values to enumeration element counters that affect
psi_group_cpu struct size.
Link: http://lkml.kernel.org/r/20190124211518.244221-4-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 22:40:56 +00:00
|
|
|
for (s = 0; s < NR_PSI_STATES; s++) {
|
2022-08-25 16:41:07 +00:00
|
|
|
if (test_state(groupc->tasks, s, state_mask & PSI_ONCPU))
|
psi: introduce state_mask to represent stalled psi states
Patch series "psi: pressure stall monitors", v6.
This is a respin of:
https://lwn.net/ml/linux-kernel/20190308184311.144521-1-surenb%40google.com/
Android is adopting psi to detect and remedy memory pressure that
results in stuttering and decreased responsiveness on mobile devices.
Psi gives us the stall information, but because we're dealing with
latencies in the millisecond range, periodically reading the pressure
files to detect stalls in a timely fashion is not feasible. Psi also
doesn't aggregate its averages at a high-enough frequency right now.
This patch series extends the psi interface such that users can
configure sensitive latency thresholds and use poll() and friends to be
notified when these are breached.
As high-frequency aggregation is costly, it implements an aggregation
method that is optimized for fast, short-interval averaging, and makes
the aggregation frequency adaptive, such that high-frequency updates
only happen while monitored stall events are actively occurring.
With these patches applied, Android can monitor for, and ward off,
mounting memory shortages before they cause problems for the user. For
example, using memory stall monitors in userspace low memory killer
daemon (lmkd) we can detect mounting pressure and kill less important
processes before device becomes visibly sluggish. In our memory stress
testing psi memory monitors produce roughly 10x less false positives
compared to vmpressure signals. Having ability to specify multiple
triggers for the same psi metric allows other parts of Android framework
to monitor memory state of the device and act accordingly.
The new interface is straight-forward. The user opens one of the
pressure files for writing and writes a trigger description into the
file descriptor that defines the stall state - some or full, and the
maximum stall time over a given window of time. E.g.:
/* Signal when stall time exceeds 100ms of a 1s window */
char trigger[] = "full 100000 1000000"
fd = open("/proc/pressure/memory")
write(fd, trigger, sizeof(trigger))
while (poll() >= 0) {
...
};
close(fd);
When the monitored stall state is entered, psi adapts its aggregation
frequency according to what the configured time window requires in order
to emit event signals in a timely fashion. Once the stalling subsides,
aggregation reverts back to normal.
The trigger is associated with the open file descriptor. To stop
monitoring, the user only needs to close the file descriptor and the
trigger is discarded.
Patches 1-6 prepare the psi code for polling support. Patch 7
implements the adaptive polling logic, the pressure growth detection
optimized for short intervals, and hooks up write() and poll() on the
pressure files.
The patches were developed in collaboration with Johannes Weiner.
This patch (of 7):
The psi monitoring patches will need to determine the same states as
record_times(). To avoid calculating them twice, maintain a state mask
that can be consulted cheaply. Do this in a separate patch to keep the
churn in the main feature patch at a minimum.
This adds 4-byte state_mask member into psi_group_cpu struct which
results in its first cacheline-aligned part becoming 52 bytes long. Add
explicit values to enumeration element counters that affect
psi_group_cpu struct size.
Link: http://lkml.kernel.org/r/20190124211518.244221-4-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 22:40:56 +00:00
|
|
|
state_mask |= (1 << s);
|
|
|
|
}
|
2021-03-03 03:46:57 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Since we care about lost potential, a memstall is FULL
|
|
|
|
* when there are no other working tasks, but also when
|
|
|
|
* the CPU is actively reclaiming and nothing productive
|
|
|
|
* could run even if it were runnable. So when the current
|
|
|
|
* task in a cgroup is in_memstall, the corresponding groupc
|
|
|
|
* on that cpu is in PSI_MEM_FULL state.
|
|
|
|
*/
|
2022-08-25 16:41:07 +00:00
|
|
|
if (unlikely((state_mask & PSI_ONCPU) && cpu_curr(cpu)->in_memstall))
|
2021-03-03 03:46:57 +00:00
|
|
|
state_mask |= (1 << PSI_MEM_FULL);
|
|
|
|
|
sched/psi: Per-cgroup PSI accounting disable/re-enable interface
PSI accounts stalls for each cgroup separately and aggregates it
at each level of the hierarchy. This may cause non-negligible overhead
for some workloads when under deep level of the hierarchy.
commit 3958e2d0c34e ("cgroup: make per-cgroup pressure stall tracking configurable")
make PSI to skip per-cgroup stall accounting, only account system-wide
to avoid this each level overhead.
But for our use case, we also want leaf cgroup PSI stats accounted for
userspace adjustment on that cgroup, apart from only system-wide adjustment.
So this patch introduce a per-cgroup PSI accounting disable/re-enable
interface "cgroup.pressure", which is a read-write single value file that
allowed values are "0" and "1", the defaults is "1" so per-cgroup
PSI stats is enabled by default.
Implementation details:
It should be relatively straight-forward to disable and re-enable
state aggregation, time tracking, averaging on a per-cgroup level,
if we can live with losing history from while it was disabled.
I.e. the avgs will restart from 0, total= will have gaps.
But it's hard or complex to stop/restart groupc->tasks[] updates,
which is not implemented in this patch. So we always update
groupc->tasks[] and PSI_ONCPU bit in psi_group_change() even when
the cgroup PSI stats is disabled.
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lkml.kernel.org/r/20220907090332.2078-1-zhouchengming@bytedance.com
2022-09-07 09:03:32 +00:00
|
|
|
record_times(groupc, now);
|
|
|
|
|
psi: introduce state_mask to represent stalled psi states
Patch series "psi: pressure stall monitors", v6.
This is a respin of:
https://lwn.net/ml/linux-kernel/20190308184311.144521-1-surenb%40google.com/
Android is adopting psi to detect and remedy memory pressure that
results in stuttering and decreased responsiveness on mobile devices.
Psi gives us the stall information, but because we're dealing with
latencies in the millisecond range, periodically reading the pressure
files to detect stalls in a timely fashion is not feasible. Psi also
doesn't aggregate its averages at a high-enough frequency right now.
This patch series extends the psi interface such that users can
configure sensitive latency thresholds and use poll() and friends to be
notified when these are breached.
As high-frequency aggregation is costly, it implements an aggregation
method that is optimized for fast, short-interval averaging, and makes
the aggregation frequency adaptive, such that high-frequency updates
only happen while monitored stall events are actively occurring.
With these patches applied, Android can monitor for, and ward off,
mounting memory shortages before they cause problems for the user. For
example, using memory stall monitors in userspace low memory killer
daemon (lmkd) we can detect mounting pressure and kill less important
processes before device becomes visibly sluggish. In our memory stress
testing psi memory monitors produce roughly 10x less false positives
compared to vmpressure signals. Having ability to specify multiple
triggers for the same psi metric allows other parts of Android framework
to monitor memory state of the device and act accordingly.
The new interface is straight-forward. The user opens one of the
pressure files for writing and writes a trigger description into the
file descriptor that defines the stall state - some or full, and the
maximum stall time over a given window of time. E.g.:
/* Signal when stall time exceeds 100ms of a 1s window */
char trigger[] = "full 100000 1000000"
fd = open("/proc/pressure/memory")
write(fd, trigger, sizeof(trigger))
while (poll() >= 0) {
...
};
close(fd);
When the monitored stall state is entered, psi adapts its aggregation
frequency according to what the configured time window requires in order
to emit event signals in a timely fashion. Once the stalling subsides,
aggregation reverts back to normal.
The trigger is associated with the open file descriptor. To stop
monitoring, the user only needs to close the file descriptor and the
trigger is discarded.
Patches 1-6 prepare the psi code for polling support. Patch 7
implements the adaptive polling logic, the pressure growth detection
optimized for short intervals, and hooks up write() and poll() on the
pressure files.
The patches were developed in collaboration with Johannes Weiner.
This patch (of 7):
The psi monitoring patches will need to determine the same states as
record_times(). To avoid calculating them twice, maintain a state mask
that can be consulted cheaply. Do this in a separate patch to keep the
churn in the main feature patch at a minimum.
This adds 4-byte state_mask member into psi_group_cpu struct which
results in its first cacheline-aligned part becoming 52 bytes long. Add
explicit values to enumeration element counters that affect
psi_group_cpu struct size.
Link: http://lkml.kernel.org/r/20190124211518.244221-4-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 22:40:56 +00:00
|
|
|
groupc->state_mask = state_mask;
|
|
|
|
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
write_seqcount_end(&groupc->seq);
|
2019-05-14 22:41:15 +00:00
|
|
|
|
2023-03-30 10:54:16 +00:00
|
|
|
if (state_mask & group->rtpoll_states)
|
|
|
|
psi_schedule_rtpoll_work(group, 1, false);
|
2020-03-16 19:13:32 +00:00
|
|
|
|
|
|
|
if (wake_clock && !delayed_work_pending(&group->avgs_work))
|
|
|
|
schedule_delayed_work(&group->avgs_work, PSI_FREQ);
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
}
|
|
|
|
|
2022-08-25 16:41:10 +00:00
|
|
|
static inline struct psi_group *task_psi_group(struct task_struct *task)
|
2018-10-26 22:06:31 +00:00
|
|
|
{
|
|
|
|
#ifdef CONFIG_CGROUPS
|
2022-08-25 16:41:10 +00:00
|
|
|
if (static_branch_likely(&psi_cgroups_enabled))
|
|
|
|
return cgroup_psi(task_dfl_cgroup(task));
|
2018-10-26 22:06:31 +00:00
|
|
|
#endif
|
|
|
|
return &psi_system;
|
|
|
|
}
|
|
|
|
|
2020-03-16 19:13:32 +00:00
|
|
|
static void psi_flags_change(struct task_struct *task, int clear, int set)
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
{
|
|
|
|
if (((task->psi_flags & set) ||
|
|
|
|
(task->psi_flags & clear) != clear) &&
|
|
|
|
!psi_bug) {
|
|
|
|
printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
|
2020-03-16 19:13:32 +00:00
|
|
|
task->pid, task->comm, task_cpu(task),
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
task->psi_flags, clear, set);
|
|
|
|
psi_bug = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
task->psi_flags &= ~clear;
|
|
|
|
task->psi_flags |= set;
|
2020-03-16 19:13:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void psi_task_change(struct task_struct *task, int clear, int set)
|
|
|
|
{
|
|
|
|
int cpu = task_cpu(task);
|
|
|
|
struct psi_group *group;
|
2021-03-21 20:51:56 +00:00
|
|
|
u64 now;
|
2020-03-16 19:13:32 +00:00
|
|
|
|
|
|
|
if (!task->pid)
|
|
|
|
return;
|
|
|
|
|
|
|
|
psi_flags_change(task, clear, set);
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
|
2021-03-21 20:51:56 +00:00
|
|
|
now = cpu_clock(cpu);
|
psi: fix aggregation idle shut-off
psi has provisions to shut off the periodic aggregation worker when
there is a period of no task activity - and thus no data that needs
aggregating. However, while developing psi monitoring, Suren noticed
that the aggregation clock currently won't stay shut off for good.
Debugging this revealed a flaw in the idle design: an aggregation run
will see no task activity and decide to go to sleep; shortly thereafter,
the kworker thread that executed the aggregation will go idle and cause
a scheduling change, during which the psi callback will kick the
!pending worker again. This will ping-pong forever, and is equivalent
to having no shut-off logic at all (but with more code!)
Fix this by exempting aggregation workers from psi's clock waking logic
when the state change is them going to sleep. To do this, tag workers
with the last work function they executed, and if in psi we see a worker
going to sleep after aggregating psi data, we will not reschedule the
aggregation work item.
What if the worker is also executing other items before or after?
Any psi state times that were incurred by work items preceding the
aggregation work will have been collected from the per-cpu buckets
during the aggregation itself. If there are work items following the
aggregation work, the worker's last_func tag will be overwritten and the
aggregator will be kept alive to process this genuine new activity.
If the aggregation work is the last thing the worker does, and we decide
to go idle, the brief period of non-idle time incurred between the
aggregation run and the kworker's dequeue will be stranded in the
per-cpu buckets until the clock is woken by later activity. But that
should not be a problem. The buckets can hold 4s worth of time, and
future activity will wake the clock with a 2s delay, giving us 2s worth
of data we can leave behind when disabling aggregation. If it takes a
worker more than two seconds to go idle after it finishes its last work
item, we likely have bigger problems in the system, and won't notice one
sample that was averaged with a bogus per-CPU weight.
Link: http://lkml.kernel.org/r/20190116193501.1910-1-hannes@cmpxchg.org
Fixes: eb414681d5a0 ("psi: pressure stall information for CPU, memory, and IO")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-01 22:20:42 +00:00
|
|
|
|
2022-08-25 16:41:10 +00:00
|
|
|
group = task_psi_group(task);
|
|
|
|
do {
|
2022-08-25 16:41:02 +00:00
|
|
|
psi_group_change(group, cpu, clear, set, now, true);
|
2022-08-25 16:41:10 +00:00
|
|
|
} while ((group = group->parent));
|
2020-03-16 19:13:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void psi_task_switch(struct task_struct *prev, struct task_struct *next,
|
|
|
|
bool sleep)
|
|
|
|
{
|
|
|
|
struct psi_group *group, *common = NULL;
|
|
|
|
int cpu = task_cpu(prev);
|
2021-03-21 20:51:56 +00:00
|
|
|
u64 now = cpu_clock(cpu);
|
2020-03-16 19:13:32 +00:00
|
|
|
|
|
|
|
if (next->pid) {
|
|
|
|
psi_flags_change(next, 0, TSK_ONCPU);
|
|
|
|
/*
|
sched/psi: Optimize task switch inside shared cgroups again
Way back when PSI_MEM_FULL was accounted from the timer tick, task
switching could simply iterate next and prev to the common ancestor to
update TSK_ONCPU and be done.
Then memstall ticks were replaced with checking curr->in_memstall
directly in psi_group_change(). That meant that now if the task switch
was between a memstall and a !memstall task, we had to iterate through
the common ancestors at least ONCE to fix up their state_masks.
We added the identical_state filter to make sure the common ancestor
elimination was skipped in that case. It seems that was always a
little too eager, because it caused us to walk the common ancestors
*twice* instead of the required once: the iteration for next could
have stopped at the common ancestor; prev could have updated TSK_ONCPU
up to the common ancestor, then finish to the root without changing
any flags, just to get the new curr->in_memstall into the state_masks.
This patch recognizes this and makes it so that we walk to the root
exactly once if state_mask needs updating, which is simply catching up
on a missed optimization that could have been done in commit 7fae6c8171d2
("psi: Use ONCPU state tracking machinery to detect reclaim") directly.
Apart from this, it's also necessary for the next patch "sched/psi: remove
NR_ONCPU task accounting". Suppose we walk the common ancestors twice:
(1) psi_group_change(.clear = 0, .set = TSK_ONCPU)
(2) psi_group_change(.clear = TSK_ONCPU, .set = 0)
We previously used tasks[NR_ONCPU] to record TSK_ONCPU, tasks[NR_ONCPU]++
in (1) then tasks[NR_ONCPU]-- in (2), so tasks[NR_ONCPU] still be correct.
The next patch change to use one bit in state mask to record TSK_ONCPU,
PSI_ONCPU bit will be set in (1), but then be cleared in (2), which cause
the psi_group_cpu has task running on CPU but without PSI_ONCPU bit set!
With this patch, we will never walk the common ancestors twice, so won't
have above problem.
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lore.kernel.org/r/20220825164111.29534-6-zhouchengming@bytedance.com
2022-08-25 16:41:06 +00:00
|
|
|
* Set TSK_ONCPU on @next's cgroups. If @next shares any
|
|
|
|
* ancestors with @prev, those will already have @prev's
|
|
|
|
* TSK_ONCPU bit set, and we can stop the iteration there.
|
2020-03-16 19:13:32 +00:00
|
|
|
*/
|
2022-08-25 16:41:10 +00:00
|
|
|
group = task_psi_group(next);
|
|
|
|
do {
|
2022-08-25 16:41:07 +00:00
|
|
|
if (per_cpu_ptr(group->pcpu, cpu)->state_mask &
|
|
|
|
PSI_ONCPU) {
|
2020-03-16 19:13:32 +00:00
|
|
|
common = group;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2021-03-21 20:51:56 +00:00
|
|
|
psi_group_change(group, cpu, 0, TSK_ONCPU, now, true);
|
2022-08-25 16:41:10 +00:00
|
|
|
} while ((group = group->parent));
|
2020-03-16 19:13:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (prev->pid) {
|
2021-03-03 03:46:59 +00:00
|
|
|
int clear = TSK_ONCPU, set = 0;
|
2022-08-25 16:41:02 +00:00
|
|
|
bool wake_clock = true;
|
2021-03-03 03:46:59 +00:00
|
|
|
|
|
|
|
/*
|
2021-11-10 21:33:12 +00:00
|
|
|
* When we're going to sleep, psi_dequeue() lets us
|
|
|
|
* handle TSK_RUNNING, TSK_MEMSTALL_RUNNING and
|
|
|
|
* TSK_IOWAIT here, where we can combine it with
|
|
|
|
* TSK_ONCPU and save walking common ancestors twice.
|
2021-03-03 03:46:59 +00:00
|
|
|
*/
|
|
|
|
if (sleep) {
|
|
|
|
clear |= TSK_RUNNING;
|
2021-11-10 21:33:12 +00:00
|
|
|
if (prev->in_memstall)
|
|
|
|
clear |= TSK_MEMSTALL_RUNNING;
|
2021-03-03 03:46:59 +00:00
|
|
|
if (prev->in_iowait)
|
|
|
|
set |= TSK_IOWAIT;
|
2022-08-25 16:41:02 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Periodic aggregation shuts off if there is a period of no
|
|
|
|
* task changes, so we wake it back up if necessary. However,
|
|
|
|
* don't do this if the task change is the aggregation worker
|
|
|
|
* itself going to sleep, or we'll ping-pong forever.
|
|
|
|
*/
|
|
|
|
if (unlikely((prev->flags & PF_WQ_WORKER) &&
|
|
|
|
wq_worker_last_func(prev) == psi_avgs_work))
|
|
|
|
wake_clock = false;
|
2021-03-03 03:46:59 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
psi_flags_change(prev, clear, set);
|
2019-05-14 22:41:15 +00:00
|
|
|
|
2022-08-25 16:41:10 +00:00
|
|
|
group = task_psi_group(prev);
|
|
|
|
do {
|
|
|
|
if (group == common)
|
|
|
|
break;
|
2022-08-25 16:41:02 +00:00
|
|
|
psi_group_change(group, cpu, clear, set, now, wake_clock);
|
2022-08-25 16:41:10 +00:00
|
|
|
} while ((group = group->parent));
|
2021-03-03 03:46:59 +00:00
|
|
|
|
|
|
|
/*
|
sched/psi: Optimize task switch inside shared cgroups again
Way back when PSI_MEM_FULL was accounted from the timer tick, task
switching could simply iterate next and prev to the common ancestor to
update TSK_ONCPU and be done.
Then memstall ticks were replaced with checking curr->in_memstall
directly in psi_group_change(). That meant that now if the task switch
was between a memstall and a !memstall task, we had to iterate through
the common ancestors at least ONCE to fix up their state_masks.
We added the identical_state filter to make sure the common ancestor
elimination was skipped in that case. It seems that was always a
little too eager, because it caused us to walk the common ancestors
*twice* instead of the required once: the iteration for next could
have stopped at the common ancestor; prev could have updated TSK_ONCPU
up to the common ancestor, then finish to the root without changing
any flags, just to get the new curr->in_memstall into the state_masks.
This patch recognizes this and makes it so that we walk to the root
exactly once if state_mask needs updating, which is simply catching up
on a missed optimization that could have been done in commit 7fae6c8171d2
("psi: Use ONCPU state tracking machinery to detect reclaim") directly.
Apart from this, it's also necessary for the next patch "sched/psi: remove
NR_ONCPU task accounting". Suppose we walk the common ancestors twice:
(1) psi_group_change(.clear = 0, .set = TSK_ONCPU)
(2) psi_group_change(.clear = TSK_ONCPU, .set = 0)
We previously used tasks[NR_ONCPU] to record TSK_ONCPU, tasks[NR_ONCPU]++
in (1) then tasks[NR_ONCPU]-- in (2), so tasks[NR_ONCPU] still be correct.
The next patch change to use one bit in state mask to record TSK_ONCPU,
PSI_ONCPU bit will be set in (1), but then be cleared in (2), which cause
the psi_group_cpu has task running on CPU but without PSI_ONCPU bit set!
With this patch, we will never walk the common ancestors twice, so won't
have above problem.
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lore.kernel.org/r/20220825164111.29534-6-zhouchengming@bytedance.com
2022-08-25 16:41:06 +00:00
|
|
|
* TSK_ONCPU is handled up to the common ancestor. If there are
|
|
|
|
* any other differences between the two tasks (e.g. prev goes
|
|
|
|
* to sleep, or only one task is memstall), finish propagating
|
|
|
|
* those differences all the way up to the root.
|
2021-03-03 03:46:59 +00:00
|
|
|
*/
|
sched/psi: Optimize task switch inside shared cgroups again
Way back when PSI_MEM_FULL was accounted from the timer tick, task
switching could simply iterate next and prev to the common ancestor to
update TSK_ONCPU and be done.
Then memstall ticks were replaced with checking curr->in_memstall
directly in psi_group_change(). That meant that now if the task switch
was between a memstall and a !memstall task, we had to iterate through
the common ancestors at least ONCE to fix up their state_masks.
We added the identical_state filter to make sure the common ancestor
elimination was skipped in that case. It seems that was always a
little too eager, because it caused us to walk the common ancestors
*twice* instead of the required once: the iteration for next could
have stopped at the common ancestor; prev could have updated TSK_ONCPU
up to the common ancestor, then finish to the root without changing
any flags, just to get the new curr->in_memstall into the state_masks.
This patch recognizes this and makes it so that we walk to the root
exactly once if state_mask needs updating, which is simply catching up
on a missed optimization that could have been done in commit 7fae6c8171d2
("psi: Use ONCPU state tracking machinery to detect reclaim") directly.
Apart from this, it's also necessary for the next patch "sched/psi: remove
NR_ONCPU task accounting". Suppose we walk the common ancestors twice:
(1) psi_group_change(.clear = 0, .set = TSK_ONCPU)
(2) psi_group_change(.clear = TSK_ONCPU, .set = 0)
We previously used tasks[NR_ONCPU] to record TSK_ONCPU, tasks[NR_ONCPU]++
in (1) then tasks[NR_ONCPU]-- in (2), so tasks[NR_ONCPU] still be correct.
The next patch change to use one bit in state mask to record TSK_ONCPU,
PSI_ONCPU bit will be set in (1), but then be cleared in (2), which cause
the psi_group_cpu has task running on CPU but without PSI_ONCPU bit set!
With this patch, we will never walk the common ancestors twice, so won't
have above problem.
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lore.kernel.org/r/20220825164111.29534-6-zhouchengming@bytedance.com
2022-08-25 16:41:06 +00:00
|
|
|
if ((prev->psi_flags ^ next->psi_flags) & ~TSK_ONCPU) {
|
2021-03-03 03:46:59 +00:00
|
|
|
clear &= ~TSK_ONCPU;
|
2022-08-25 16:41:10 +00:00
|
|
|
for (; group; group = group->parent)
|
2022-08-25 16:41:02 +00:00
|
|
|
psi_group_change(group, cpu, clear, set, now, wake_clock);
|
2021-03-03 03:46:59 +00:00
|
|
|
}
|
psi: fix aggregation idle shut-off
psi has provisions to shut off the periodic aggregation worker when
there is a period of no task activity - and thus no data that needs
aggregating. However, while developing psi monitoring, Suren noticed
that the aggregation clock currently won't stay shut off for good.
Debugging this revealed a flaw in the idle design: an aggregation run
will see no task activity and decide to go to sleep; shortly thereafter,
the kworker thread that executed the aggregation will go idle and cause
a scheduling change, during which the psi callback will kick the
!pending worker again. This will ping-pong forever, and is equivalent
to having no shut-off logic at all (but with more code!)
Fix this by exempting aggregation workers from psi's clock waking logic
when the state change is them going to sleep. To do this, tag workers
with the last work function they executed, and if in psi we see a worker
going to sleep after aggregating psi data, we will not reschedule the
aggregation work item.
What if the worker is also executing other items before or after?
Any psi state times that were incurred by work items preceding the
aggregation work will have been collected from the per-cpu buckets
during the aggregation itself. If there are work items following the
aggregation work, the worker's last_func tag will be overwritten and the
aggregator will be kept alive to process this genuine new activity.
If the aggregation work is the last thing the worker does, and we decide
to go idle, the brief period of non-idle time incurred between the
aggregation run and the kworker's dequeue will be stranded in the
per-cpu buckets until the clock is woken by later activity. But that
should not be a problem. The buckets can hold 4s worth of time, and
future activity will wake the clock with a 2s delay, giving us 2s worth
of data we can leave behind when disabling aggregation. If it takes a
worker more than two seconds to go idle after it finishes its last work
item, we likely have bigger problems in the system, and won't notice one
sample that was averaged with a bogus per-CPU weight.
Link: http://lkml.kernel.org/r/20190116193501.1910-1-hannes@cmpxchg.org
Fixes: eb414681d5a0 ("psi: pressure stall information for CPU, memory, and IO")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-01 22:20:42 +00:00
|
|
|
}
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
}
|
|
|
|
|
2022-08-25 16:41:08 +00:00
|
|
|
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
|
|
|
|
void psi_account_irqtime(struct task_struct *task, u32 delta)
|
|
|
|
{
|
|
|
|
int cpu = task_cpu(task);
|
|
|
|
struct psi_group *group;
|
|
|
|
struct psi_group_cpu *groupc;
|
|
|
|
u64 now;
|
|
|
|
|
2023-09-26 11:57:22 +00:00
|
|
|
if (static_branch_likely(&psi_disabled))
|
|
|
|
return;
|
|
|
|
|
2022-08-25 16:41:08 +00:00
|
|
|
if (!task->pid)
|
|
|
|
return;
|
|
|
|
|
|
|
|
now = cpu_clock(cpu);
|
|
|
|
|
2022-08-25 16:41:10 +00:00
|
|
|
group = task_psi_group(task);
|
|
|
|
do {
|
sched/psi: Per-cgroup PSI accounting disable/re-enable interface
PSI accounts stalls for each cgroup separately and aggregates it
at each level of the hierarchy. This may cause non-negligible overhead
for some workloads when under deep level of the hierarchy.
commit 3958e2d0c34e ("cgroup: make per-cgroup pressure stall tracking configurable")
make PSI to skip per-cgroup stall accounting, only account system-wide
to avoid this each level overhead.
But for our use case, we also want leaf cgroup PSI stats accounted for
userspace adjustment on that cgroup, apart from only system-wide adjustment.
So this patch introduce a per-cgroup PSI accounting disable/re-enable
interface "cgroup.pressure", which is a read-write single value file that
allowed values are "0" and "1", the defaults is "1" so per-cgroup
PSI stats is enabled by default.
Implementation details:
It should be relatively straight-forward to disable and re-enable
state aggregation, time tracking, averaging on a per-cgroup level,
if we can live with losing history from while it was disabled.
I.e. the avgs will restart from 0, total= will have gaps.
But it's hard or complex to stop/restart groupc->tasks[] updates,
which is not implemented in this patch. So we always update
groupc->tasks[] and PSI_ONCPU bit in psi_group_change() even when
the cgroup PSI stats is disabled.
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lkml.kernel.org/r/20220907090332.2078-1-zhouchengming@bytedance.com
2022-09-07 09:03:32 +00:00
|
|
|
if (!group->enabled)
|
|
|
|
continue;
|
|
|
|
|
2022-08-25 16:41:08 +00:00
|
|
|
groupc = per_cpu_ptr(group->pcpu, cpu);
|
|
|
|
|
|
|
|
write_seqcount_begin(&groupc->seq);
|
|
|
|
|
|
|
|
record_times(groupc, now);
|
|
|
|
groupc->times[PSI_IRQ_FULL] += delta;
|
|
|
|
|
|
|
|
write_seqcount_end(&groupc->seq);
|
|
|
|
|
2023-03-30 10:54:16 +00:00
|
|
|
if (group->rtpoll_states & (1 << PSI_IRQ_FULL))
|
|
|
|
psi_schedule_rtpoll_work(group, 1, false);
|
2022-08-25 16:41:10 +00:00
|
|
|
} while ((group = group->parent));
|
2022-08-25 16:41:08 +00:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
/**
|
|
|
|
* psi_memstall_enter - mark the beginning of a memory stall section
|
|
|
|
* @flags: flags to handle nested sections
|
|
|
|
*
|
|
|
|
* Marks the calling task as being stalled due to a lack of memory,
|
|
|
|
* such as waiting for a refault or performing reclaim.
|
|
|
|
*/
|
|
|
|
void psi_memstall_enter(unsigned long *flags)
|
|
|
|
{
|
|
|
|
struct rq_flags rf;
|
|
|
|
struct rq *rq;
|
|
|
|
|
2018-11-30 22:09:58 +00:00
|
|
|
if (static_branch_likely(&psi_disabled))
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
return;
|
|
|
|
|
2020-03-17 01:28:05 +00:00
|
|
|
*flags = current->in_memstall;
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
if (*flags)
|
|
|
|
return;
|
|
|
|
/*
|
2020-03-17 01:28:05 +00:00
|
|
|
* in_memstall setting & accounting needs to be atomic wrt
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
* changes to the task's scheduling state, otherwise we can
|
|
|
|
* race with CPU migration.
|
|
|
|
*/
|
|
|
|
rq = this_rq_lock_irq(&rf);
|
|
|
|
|
2020-03-17 01:28:05 +00:00
|
|
|
current->in_memstall = 1;
|
2021-11-10 21:33:12 +00:00
|
|
|
psi_task_change(current, 0, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING);
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
|
|
|
|
rq_unlock_irq(rq, &rf);
|
|
|
|
}
|
2022-09-15 09:41:57 +00:00
|
|
|
EXPORT_SYMBOL_GPL(psi_memstall_enter);
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
|
|
|
|
/**
|
|
|
|
* psi_memstall_leave - mark the end of an memory stall section
|
|
|
|
* @flags: flags to handle nested memdelay sections
|
|
|
|
*
|
|
|
|
* Marks the calling task as no longer stalled due to lack of memory.
|
|
|
|
*/
|
|
|
|
void psi_memstall_leave(unsigned long *flags)
|
|
|
|
{
|
|
|
|
struct rq_flags rf;
|
|
|
|
struct rq *rq;
|
|
|
|
|
2018-11-30 22:09:58 +00:00
|
|
|
if (static_branch_likely(&psi_disabled))
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
return;
|
|
|
|
|
|
|
|
if (*flags)
|
|
|
|
return;
|
|
|
|
/*
|
2020-03-17 01:28:05 +00:00
|
|
|
* in_memstall clearing & accounting needs to be atomic wrt
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
* changes to the task's scheduling state, otherwise we could
|
|
|
|
* race with CPU migration.
|
|
|
|
*/
|
|
|
|
rq = this_rq_lock_irq(&rf);
|
|
|
|
|
2020-03-17 01:28:05 +00:00
|
|
|
current->in_memstall = 0;
|
2021-11-10 21:33:12 +00:00
|
|
|
psi_task_change(current, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING, 0);
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
|
|
|
|
rq_unlock_irq(rq, &rf);
|
|
|
|
}
|
2022-09-15 09:41:57 +00:00
|
|
|
EXPORT_SYMBOL_GPL(psi_memstall_leave);
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
|
2018-10-26 22:06:31 +00:00
|
|
|
#ifdef CONFIG_CGROUPS
|
|
|
|
int psi_cgroup_alloc(struct cgroup *cgroup)
|
|
|
|
{
|
2022-08-25 16:41:04 +00:00
|
|
|
if (!static_branch_likely(&psi_cgroups_enabled))
|
2018-10-26 22:06:31 +00:00
|
|
|
return 0;
|
|
|
|
|
2022-08-06 12:05:08 +00:00
|
|
|
cgroup->psi = kzalloc(sizeof(struct psi_group), GFP_KERNEL);
|
2022-05-26 12:26:56 +00:00
|
|
|
if (!cgroup->psi)
|
2018-10-26 22:06:31 +00:00
|
|
|
return -ENOMEM;
|
2022-05-26 12:26:56 +00:00
|
|
|
|
|
|
|
cgroup->psi->pcpu = alloc_percpu(struct psi_group_cpu);
|
|
|
|
if (!cgroup->psi->pcpu) {
|
|
|
|
kfree(cgroup->psi);
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
group_init(cgroup->psi);
|
2022-08-25 16:41:10 +00:00
|
|
|
cgroup->psi->parent = cgroup_psi(cgroup_parent(cgroup));
|
2018-10-26 22:06:31 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void psi_cgroup_free(struct cgroup *cgroup)
|
|
|
|
{
|
2022-08-25 16:41:04 +00:00
|
|
|
if (!static_branch_likely(&psi_cgroups_enabled))
|
2018-10-26 22:06:31 +00:00
|
|
|
return;
|
|
|
|
|
2022-05-26 12:26:56 +00:00
|
|
|
cancel_delayed_work_sync(&cgroup->psi->avgs_work);
|
|
|
|
free_percpu(cgroup->psi->pcpu);
|
2019-05-14 22:41:15 +00:00
|
|
|
/* All triggers must be removed by now */
|
2023-03-30 10:54:16 +00:00
|
|
|
WARN_ONCE(cgroup->psi->rtpoll_states, "psi: trigger leak\n");
|
2022-05-26 12:26:56 +00:00
|
|
|
kfree(cgroup->psi);
|
2018-10-26 22:06:31 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cgroup_move_task - move task to a different cgroup
|
|
|
|
* @task: the task
|
|
|
|
* @to: the target css_set
|
|
|
|
*
|
|
|
|
* Move task to a new cgroup and safely migrate its associated stall
|
|
|
|
* state between the different groups.
|
|
|
|
*
|
|
|
|
* This function acquires the task's rq lock to lock out concurrent
|
|
|
|
* changes to the task's scheduling state and - in case the task is
|
|
|
|
* running - concurrent changes to its stall state.
|
|
|
|
*/
|
|
|
|
void cgroup_move_task(struct task_struct *task, struct css_set *to)
|
|
|
|
{
|
psi: Fix psi state corruption when schedule() races with cgroup move
4117cebf1a9f ("psi: Optimize task switch inside shared cgroups")
introduced a race condition that corrupts internal psi state. This
manifests as kernel warnings, sometimes followed by bogusly high IO
pressure:
psi: task underflow! cpu=1 t=2 tasks=[0 0 0 0] clear=c set=0
(schedule() decreasing RUNNING and ONCPU, both of which are 0)
psi: incosistent task state! task=2412744:systemd cpu=17 psi_flags=e clear=3 set=0
(cgroup_move_task() clearing MEMSTALL and IOWAIT, but task is MEMSTALL | RUNNING | ONCPU)
What the offending commit does is batch the two psi callbacks in
schedule() to reduce the number of cgroup tree updates. When prev is
deactivated and removed from the runqueue, nothing is done in psi at
first; when the task switch completes, TSK_RUNNING and TSK_IOWAIT are
updated along with TSK_ONCPU.
However, the deactivation and the task switch inside schedule() aren't
atomic: pick_next_task() may drop the rq lock for load balancing. When
this happens, cgroup_move_task() can run after the task has been
physically dequeued, but the psi updates are still pending. Since it
looks at the task's scheduler state, it doesn't move everything to the
new cgroup that the task switch that follows is about to clear from
it. cgroup_move_task() will leak the TSK_RUNNING count in the old
cgroup, and psi_sched_switch() will underflow it in the new cgroup.
A similar thing can happen for iowait. TSK_IOWAIT is usually set when
a p->in_iowait task is dequeued, but again this update is deferred to
the switch. cgroup_move_task() can see an unqueued p->in_iowait task
and move a non-existent TSK_IOWAIT. This results in the inconsistent
task state warning, as well as a counter underflow that will result in
permanent IO ghost pressure being reported.
Fix this bug by making cgroup_move_task() use task->psi_flags instead
of looking at the potentially mismatching scheduler state.
[ We used the scheduler state historically in order to not rely on
task->psi_flags for anything but debugging. But that ship has sailed
anyway, and this is simpler and more robust.
We previously already batched TSK_ONCPU clearing with the
TSK_RUNNING update inside the deactivation call from schedule(). But
that ordering was safe and didn't result in TSK_ONCPU corruption:
unlike most places in the scheduler, cgroup_move_task() only checked
task_current() and handled TSK_ONCPU if the task was still queued. ]
Fixes: 4117cebf1a9f ("psi: Optimize task switch inside shared cgroups")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210503174917.38579-1-hannes@cmpxchg.org
2021-05-03 17:49:17 +00:00
|
|
|
unsigned int task_flags;
|
2018-10-26 22:06:31 +00:00
|
|
|
struct rq_flags rf;
|
|
|
|
struct rq *rq;
|
|
|
|
|
2022-08-25 16:41:04 +00:00
|
|
|
if (!static_branch_likely(&psi_cgroups_enabled)) {
|
2018-11-16 23:08:00 +00:00
|
|
|
/*
|
|
|
|
* Lame to do this here, but the scheduler cannot be locked
|
|
|
|
* from the outside, so we move cgroups from inside sched/.
|
|
|
|
*/
|
|
|
|
rcu_assign_pointer(task->cgroups, to);
|
|
|
|
return;
|
|
|
|
}
|
2018-10-26 22:06:31 +00:00
|
|
|
|
2018-11-16 23:08:00 +00:00
|
|
|
rq = task_rq_lock(task, &rf);
|
2018-10-26 22:06:31 +00:00
|
|
|
|
psi: Fix psi state corruption when schedule() races with cgroup move
4117cebf1a9f ("psi: Optimize task switch inside shared cgroups")
introduced a race condition that corrupts internal psi state. This
manifests as kernel warnings, sometimes followed by bogusly high IO
pressure:
psi: task underflow! cpu=1 t=2 tasks=[0 0 0 0] clear=c set=0
(schedule() decreasing RUNNING and ONCPU, both of which are 0)
psi: incosistent task state! task=2412744:systemd cpu=17 psi_flags=e clear=3 set=0
(cgroup_move_task() clearing MEMSTALL and IOWAIT, but task is MEMSTALL | RUNNING | ONCPU)
What the offending commit does is batch the two psi callbacks in
schedule() to reduce the number of cgroup tree updates. When prev is
deactivated and removed from the runqueue, nothing is done in psi at
first; when the task switch completes, TSK_RUNNING and TSK_IOWAIT are
updated along with TSK_ONCPU.
However, the deactivation and the task switch inside schedule() aren't
atomic: pick_next_task() may drop the rq lock for load balancing. When
this happens, cgroup_move_task() can run after the task has been
physically dequeued, but the psi updates are still pending. Since it
looks at the task's scheduler state, it doesn't move everything to the
new cgroup that the task switch that follows is about to clear from
it. cgroup_move_task() will leak the TSK_RUNNING count in the old
cgroup, and psi_sched_switch() will underflow it in the new cgroup.
A similar thing can happen for iowait. TSK_IOWAIT is usually set when
a p->in_iowait task is dequeued, but again this update is deferred to
the switch. cgroup_move_task() can see an unqueued p->in_iowait task
and move a non-existent TSK_IOWAIT. This results in the inconsistent
task state warning, as well as a counter underflow that will result in
permanent IO ghost pressure being reported.
Fix this bug by making cgroup_move_task() use task->psi_flags instead
of looking at the potentially mismatching scheduler state.
[ We used the scheduler state historically in order to not rely on
task->psi_flags for anything but debugging. But that ship has sailed
anyway, and this is simpler and more robust.
We previously already batched TSK_ONCPU clearing with the
TSK_RUNNING update inside the deactivation call from schedule(). But
that ordering was safe and didn't result in TSK_ONCPU corruption:
unlike most places in the scheduler, cgroup_move_task() only checked
task_current() and handled TSK_ONCPU if the task was still queued. ]
Fixes: 4117cebf1a9f ("psi: Optimize task switch inside shared cgroups")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210503174917.38579-1-hannes@cmpxchg.org
2021-05-03 17:49:17 +00:00
|
|
|
/*
|
|
|
|
* We may race with schedule() dropping the rq lock between
|
|
|
|
* deactivating prev and switching to next. Because the psi
|
|
|
|
* updates from the deactivation are deferred to the switch
|
|
|
|
* callback to save cgroup tree updates, the task's scheduling
|
|
|
|
* state here is not coherent with its psi state:
|
|
|
|
*
|
|
|
|
* schedule() cgroup_move_task()
|
|
|
|
* rq_lock()
|
|
|
|
* deactivate_task()
|
|
|
|
* p->on_rq = 0
|
|
|
|
* psi_dequeue() // defers TSK_RUNNING & TSK_IOWAIT updates
|
|
|
|
* pick_next_task()
|
|
|
|
* rq_unlock()
|
|
|
|
* rq_lock()
|
|
|
|
* psi_task_change() // old cgroup
|
|
|
|
* task->cgroups = to
|
|
|
|
* psi_task_change() // new cgroup
|
|
|
|
* rq_unlock()
|
|
|
|
* rq_lock()
|
|
|
|
* psi_sched_switch() // does deferred updates in new cgroup
|
|
|
|
*
|
|
|
|
* Don't rely on the scheduling state. Use psi_flags instead.
|
|
|
|
*/
|
|
|
|
task_flags = task->psi_flags;
|
2018-10-26 22:06:31 +00:00
|
|
|
|
2018-11-16 23:08:00 +00:00
|
|
|
if (task_flags)
|
|
|
|
psi_task_change(task, task_flags, 0);
|
|
|
|
|
|
|
|
/* See comment above */
|
2018-10-26 22:06:31 +00:00
|
|
|
rcu_assign_pointer(task->cgroups, to);
|
|
|
|
|
2018-11-16 23:08:00 +00:00
|
|
|
if (task_flags)
|
|
|
|
psi_task_change(task, 0, task_flags);
|
2018-10-26 22:06:31 +00:00
|
|
|
|
2018-11-16 23:08:00 +00:00
|
|
|
task_rq_unlock(rq, task, &rf);
|
2018-10-26 22:06:31 +00:00
|
|
|
}
|
sched/psi: Per-cgroup PSI accounting disable/re-enable interface
PSI accounts stalls for each cgroup separately and aggregates it
at each level of the hierarchy. This may cause non-negligible overhead
for some workloads when under deep level of the hierarchy.
commit 3958e2d0c34e ("cgroup: make per-cgroup pressure stall tracking configurable")
make PSI to skip per-cgroup stall accounting, only account system-wide
to avoid this each level overhead.
But for our use case, we also want leaf cgroup PSI stats accounted for
userspace adjustment on that cgroup, apart from only system-wide adjustment.
So this patch introduce a per-cgroup PSI accounting disable/re-enable
interface "cgroup.pressure", which is a read-write single value file that
allowed values are "0" and "1", the defaults is "1" so per-cgroup
PSI stats is enabled by default.
Implementation details:
It should be relatively straight-forward to disable and re-enable
state aggregation, time tracking, averaging on a per-cgroup level,
if we can live with losing history from while it was disabled.
I.e. the avgs will restart from 0, total= will have gaps.
But it's hard or complex to stop/restart groupc->tasks[] updates,
which is not implemented in this patch. So we always update
groupc->tasks[] and PSI_ONCPU bit in psi_group_change() even when
the cgroup PSI stats is disabled.
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lkml.kernel.org/r/20220907090332.2078-1-zhouchengming@bytedance.com
2022-09-07 09:03:32 +00:00
|
|
|
|
|
|
|
void psi_cgroup_restart(struct psi_group *group)
|
|
|
|
{
|
|
|
|
int cpu;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* After we disable psi_group->enabled, we don't actually
|
|
|
|
* stop percpu tasks accounting in each psi_group_cpu,
|
|
|
|
* instead only stop test_state() loop, record_times()
|
|
|
|
* and averaging worker, see psi_group_change() for details.
|
|
|
|
*
|
|
|
|
* When disable cgroup PSI, this function has nothing to sync
|
|
|
|
* since cgroup pressure files are hidden and percpu psi_group_cpu
|
|
|
|
* would see !psi_group->enabled and only do task accounting.
|
|
|
|
*
|
|
|
|
* When re-enable cgroup PSI, this function use psi_group_change()
|
|
|
|
* to get correct state mask from test_state() loop on tasks[],
|
|
|
|
* and restart groupc->state_start from now, use .clear = .set = 0
|
|
|
|
* here since no task status really changed.
|
|
|
|
*/
|
|
|
|
if (!group->enabled)
|
|
|
|
return;
|
|
|
|
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
|
|
struct rq *rq = cpu_rq(cpu);
|
|
|
|
struct rq_flags rf;
|
|
|
|
u64 now;
|
|
|
|
|
|
|
|
rq_lock_irq(rq, &rf);
|
|
|
|
now = cpu_clock(cpu);
|
|
|
|
psi_group_change(group, cpu, 0, 0, now, true);
|
|
|
|
rq_unlock_irq(rq, &rf);
|
|
|
|
}
|
|
|
|
}
|
2018-10-26 22:06:31 +00:00
|
|
|
#endif /* CONFIG_CGROUPS */
|
|
|
|
|
|
|
|
int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
{
|
2022-08-25 16:41:08 +00:00
|
|
|
bool only_full = false;
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
int full;
|
2019-05-14 22:41:06 +00:00
|
|
|
u64 now;
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
|
2018-11-30 22:09:58 +00:00
|
|
|
if (static_branch_likely(&psi_disabled))
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
return -EOPNOTSUPP;
|
|
|
|
|
2019-05-14 22:41:06 +00:00
|
|
|
/* Update averages before reporting them */
|
|
|
|
mutex_lock(&group->avgs_lock);
|
|
|
|
now = sched_clock();
|
2019-05-14 22:41:15 +00:00
|
|
|
collect_percpu_times(group, PSI_AVGS, NULL);
|
2019-05-14 22:41:06 +00:00
|
|
|
if (now >= group->avg_next_update)
|
|
|
|
group->avg_next_update = update_averages(group, now);
|
|
|
|
mutex_unlock(&group->avgs_lock);
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
|
2022-08-25 16:41:08 +00:00
|
|
|
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
|
|
|
|
only_full = res == PSI_IRQ;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
for (full = 0; full < 2 - only_full; full++) {
|
2022-04-08 12:19:14 +00:00
|
|
|
unsigned long avg[3] = { 0, };
|
|
|
|
u64 total = 0;
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
int w;
|
|
|
|
|
2022-04-08 12:19:14 +00:00
|
|
|
/* CPU FULL is undefined at the system level */
|
|
|
|
if (!(group == &psi_system && res == PSI_CPU && full)) {
|
|
|
|
for (w = 0; w < 3; w++)
|
|
|
|
avg[w] = group->avg[res * 2 + full][w];
|
|
|
|
total = div_u64(group->total[PSI_AVGS][res * 2 + full],
|
|
|
|
NSEC_PER_USEC);
|
|
|
|
}
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
|
|
|
|
seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
|
2022-08-25 16:41:08 +00:00
|
|
|
full || only_full ? "full" : "some",
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
|
|
|
|
LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
|
|
|
|
LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
|
|
|
|
total);
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2023-06-30 00:56:12 +00:00
|
|
|
struct psi_trigger *psi_trigger_create(struct psi_group *group, char *buf,
|
|
|
|
enum psi_res res, struct file *file,
|
|
|
|
struct kernfs_open_file *of)
|
2019-05-14 22:41:15 +00:00
|
|
|
{
|
|
|
|
struct psi_trigger *t;
|
|
|
|
enum psi_states state;
|
|
|
|
u32 threshold_us;
|
2023-03-30 10:54:18 +00:00
|
|
|
bool privileged;
|
2019-05-14 22:41:15 +00:00
|
|
|
u32 window_us;
|
|
|
|
|
|
|
|
if (static_branch_likely(&psi_disabled))
|
|
|
|
return ERR_PTR(-EOPNOTSUPP);
|
|
|
|
|
2023-03-30 10:54:18 +00:00
|
|
|
/*
|
|
|
|
* Checking the privilege here on file->f_cred implies that a privileged user
|
|
|
|
* could open the file and delegate the write to an unprivileged one.
|
|
|
|
*/
|
|
|
|
privileged = cap_raised(file->f_cred->cap_effective, CAP_SYS_RESOURCE);
|
|
|
|
|
2019-05-14 22:41:15 +00:00
|
|
|
if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)
|
|
|
|
state = PSI_IO_SOME + res * 2;
|
|
|
|
else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2)
|
|
|
|
state = PSI_IO_FULL + res * 2;
|
|
|
|
else
|
|
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
|
2022-08-25 16:41:08 +00:00
|
|
|
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
|
|
|
|
if (res == PSI_IRQ && --state != PSI_IRQ_FULL)
|
|
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
#endif
|
|
|
|
|
2019-05-14 22:41:15 +00:00
|
|
|
if (state >= PSI_NONIDLE)
|
|
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
|
2023-03-03 01:13:46 +00:00
|
|
|
if (window_us == 0 || window_us > WINDOW_MAX_US)
|
2019-05-14 22:41:15 +00:00
|
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
|
2023-03-30 10:54:18 +00:00
|
|
|
/*
|
|
|
|
* Unprivileged users can only use 2s windows so that averages aggregation
|
|
|
|
* work is used, and no RT threads need to be spawned.
|
|
|
|
*/
|
|
|
|
if (!privileged && window_us % 2000000)
|
|
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
|
2019-05-14 22:41:15 +00:00
|
|
|
/* Check threshold */
|
|
|
|
if (threshold_us == 0 || threshold_us > window_us)
|
|
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
|
|
|
|
t = kmalloc(sizeof(*t), GFP_KERNEL);
|
|
|
|
if (!t)
|
|
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
|
|
|
|
t->group = group;
|
|
|
|
t->state = state;
|
|
|
|
t->threshold = threshold_us * NSEC_PER_USEC;
|
|
|
|
t->win.size = window_us * NSEC_PER_USEC;
|
2022-04-01 05:10:11 +00:00
|
|
|
window_reset(&t->win, sched_clock(),
|
|
|
|
group->total[PSI_POLL][t->state], 0);
|
2019-05-14 22:41:15 +00:00
|
|
|
|
|
|
|
t->event = 0;
|
|
|
|
t->last_event_time = 0;
|
2023-06-30 00:56:12 +00:00
|
|
|
t->of = of;
|
|
|
|
if (!of)
|
|
|
|
init_waitqueue_head(&t->event_wait);
|
2022-01-25 06:56:58 +00:00
|
|
|
t->pending_event = false;
|
2023-03-30 10:54:18 +00:00
|
|
|
t->aggregator = privileged ? PSI_POLL : PSI_AVGS;
|
2019-05-14 22:41:15 +00:00
|
|
|
|
2023-03-30 10:54:18 +00:00
|
|
|
if (privileged) {
|
|
|
|
mutex_lock(&group->rtpoll_trigger_lock);
|
2019-05-14 22:41:15 +00:00
|
|
|
|
2023-03-30 10:54:18 +00:00
|
|
|
if (!rcu_access_pointer(group->rtpoll_task)) {
|
|
|
|
struct task_struct *task;
|
2019-05-14 22:41:15 +00:00
|
|
|
|
2023-03-30 10:54:18 +00:00
|
|
|
task = kthread_create(psi_rtpoll_worker, group, "psimon");
|
|
|
|
if (IS_ERR(task)) {
|
|
|
|
kfree(t);
|
|
|
|
mutex_unlock(&group->rtpoll_trigger_lock);
|
|
|
|
return ERR_CAST(task);
|
|
|
|
}
|
|
|
|
atomic_set(&group->rtpoll_wakeup, 0);
|
|
|
|
wake_up_process(task);
|
|
|
|
rcu_assign_pointer(group->rtpoll_task, task);
|
2019-05-14 22:41:15 +00:00
|
|
|
}
|
|
|
|
|
2023-03-30 10:54:18 +00:00
|
|
|
list_add(&t->node, &group->rtpoll_triggers);
|
|
|
|
group->rtpoll_min_period = min(group->rtpoll_min_period,
|
|
|
|
div_u64(t->win.size, UPDATES_PER_WINDOW));
|
|
|
|
group->rtpoll_nr_triggers[t->state]++;
|
|
|
|
group->rtpoll_states |= (1 << t->state);
|
2019-05-14 22:41:15 +00:00
|
|
|
|
2023-03-30 10:54:18 +00:00
|
|
|
mutex_unlock(&group->rtpoll_trigger_lock);
|
|
|
|
} else {
|
|
|
|
mutex_lock(&group->avgs_lock);
|
|
|
|
|
|
|
|
list_add(&t->node, &group->avg_triggers);
|
|
|
|
group->avg_nr_triggers[t->state]++;
|
2019-05-14 22:41:15 +00:00
|
|
|
|
2023-03-30 10:54:18 +00:00
|
|
|
mutex_unlock(&group->avgs_lock);
|
|
|
|
}
|
2019-05-14 22:41:15 +00:00
|
|
|
return t;
|
|
|
|
}
|
|
|
|
|
2022-01-11 23:23:09 +00:00
|
|
|
void psi_trigger_destroy(struct psi_trigger *t)
|
2019-05-14 22:41:15 +00:00
|
|
|
{
|
2022-01-11 23:23:09 +00:00
|
|
|
struct psi_group *group;
|
2020-05-28 19:54:42 +00:00
|
|
|
struct task_struct *task_to_destroy = NULL;
|
2019-05-14 22:41:15 +00:00
|
|
|
|
2022-01-11 23:23:09 +00:00
|
|
|
/*
|
|
|
|
* We do not check psi_disabled since it might have been disabled after
|
|
|
|
* the trigger got created.
|
|
|
|
*/
|
|
|
|
if (!t)
|
2019-05-14 22:41:15 +00:00
|
|
|
return;
|
|
|
|
|
2022-01-11 23:23:09 +00:00
|
|
|
group = t->group;
|
2019-05-14 22:41:15 +00:00
|
|
|
/*
|
2023-02-14 21:27:05 +00:00
|
|
|
* Wakeup waiters to stop polling and clear the queue to prevent it from
|
|
|
|
* being accessed later. Can happen if cgroup is deleted from under a
|
|
|
|
* polling process.
|
2019-05-14 22:41:15 +00:00
|
|
|
*/
|
2023-06-30 00:56:12 +00:00
|
|
|
if (t->of)
|
|
|
|
kernfs_notify(t->of->kn);
|
|
|
|
else
|
|
|
|
wake_up_interruptible(&t->event_wait);
|
2019-05-14 22:41:15 +00:00
|
|
|
|
2023-03-30 10:54:18 +00:00
|
|
|
if (t->aggregator == PSI_AVGS) {
|
|
|
|
mutex_lock(&group->avgs_lock);
|
|
|
|
if (!list_empty(&t->node)) {
|
|
|
|
list_del(&t->node);
|
|
|
|
group->avg_nr_triggers[t->state]--;
|
2019-05-14 22:41:15 +00:00
|
|
|
}
|
2023-03-30 10:54:18 +00:00
|
|
|
mutex_unlock(&group->avgs_lock);
|
|
|
|
} else {
|
|
|
|
mutex_lock(&group->rtpoll_trigger_lock);
|
|
|
|
if (!list_empty(&t->node)) {
|
|
|
|
struct psi_trigger *tmp;
|
|
|
|
u64 period = ULLONG_MAX;
|
|
|
|
|
|
|
|
list_del(&t->node);
|
|
|
|
group->rtpoll_nr_triggers[t->state]--;
|
|
|
|
if (!group->rtpoll_nr_triggers[t->state])
|
|
|
|
group->rtpoll_states &= ~(1 << t->state);
|
2023-05-14 16:33:38 +00:00
|
|
|
/*
|
|
|
|
* Reset min update period for the remaining triggers
|
|
|
|
* iff the destroying trigger had the min window size.
|
|
|
|
*/
|
|
|
|
if (group->rtpoll_min_period == div_u64(t->win.size, UPDATES_PER_WINDOW)) {
|
|
|
|
list_for_each_entry(tmp, &group->rtpoll_triggers, node)
|
|
|
|
period = min(period, div_u64(tmp->win.size,
|
|
|
|
UPDATES_PER_WINDOW));
|
|
|
|
group->rtpoll_min_period = period;
|
|
|
|
}
|
2023-03-30 10:54:18 +00:00
|
|
|
/* Destroy rtpoll_task when the last trigger is destroyed */
|
|
|
|
if (group->rtpoll_states == 0) {
|
|
|
|
group->rtpoll_until = 0;
|
|
|
|
task_to_destroy = rcu_dereference_protected(
|
|
|
|
group->rtpoll_task,
|
|
|
|
lockdep_is_held(&group->rtpoll_trigger_lock));
|
|
|
|
rcu_assign_pointer(group->rtpoll_task, NULL);
|
|
|
|
del_timer(&group->rtpoll_timer);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
mutex_unlock(&group->rtpoll_trigger_lock);
|
2019-05-14 22:41:15 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2023-03-30 10:54:16 +00:00
|
|
|
* Wait for psi_schedule_rtpoll_work RCU to complete its read-side
|
2022-01-11 23:23:09 +00:00
|
|
|
* critical section before destroying the trigger and optionally the
|
2023-03-30 10:54:16 +00:00
|
|
|
* rtpoll_task.
|
2019-05-14 22:41:15 +00:00
|
|
|
*/
|
|
|
|
synchronize_rcu();
|
|
|
|
/*
|
2023-03-30 10:54:16 +00:00
|
|
|
* Stop kthread 'psimon' after releasing rtpoll_trigger_lock to prevent
|
|
|
|
* a deadlock while waiting for psi_rtpoll_work to acquire
|
|
|
|
* rtpoll_trigger_lock
|
2019-05-14 22:41:15 +00:00
|
|
|
*/
|
2020-05-28 19:54:42 +00:00
|
|
|
if (task_to_destroy) {
|
2019-08-25 00:54:53 +00:00
|
|
|
/*
|
|
|
|
* After the RCU grace period has expired, the worker
|
2023-03-30 10:54:16 +00:00
|
|
|
* can no longer be found through group->rtpoll_task.
|
2019-08-25 00:54:53 +00:00
|
|
|
*/
|
2020-05-28 19:54:42 +00:00
|
|
|
kthread_stop(task_to_destroy);
|
2023-03-30 10:54:16 +00:00
|
|
|
atomic_set(&group->rtpoll_scheduled, 0);
|
2019-05-14 22:41:15 +00:00
|
|
|
}
|
|
|
|
kfree(t);
|
|
|
|
}
|
|
|
|
|
|
|
|
__poll_t psi_trigger_poll(void **trigger_ptr,
|
|
|
|
struct file *file, poll_table *wait)
|
|
|
|
{
|
|
|
|
__poll_t ret = DEFAULT_POLLMASK;
|
|
|
|
struct psi_trigger *t;
|
|
|
|
|
|
|
|
if (static_branch_likely(&psi_disabled))
|
|
|
|
return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
|
|
|
|
|
2022-01-11 23:23:09 +00:00
|
|
|
t = smp_load_acquire(trigger_ptr);
|
|
|
|
if (!t)
|
2019-05-14 22:41:15 +00:00
|
|
|
return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
|
|
|
|
|
2023-06-30 00:56:12 +00:00
|
|
|
if (t->of)
|
|
|
|
kernfs_generic_poll(t->of, wait);
|
|
|
|
else
|
|
|
|
poll_wait(file, &t->event_wait, wait);
|
2019-05-14 22:41:15 +00:00
|
|
|
|
|
|
|
if (cmpxchg(&t->event, 1, 0) == 1)
|
|
|
|
ret |= EPOLLPRI;
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2022-01-19 22:39:40 +00:00
|
|
|
#ifdef CONFIG_PROC_FS
|
|
|
|
static int psi_io_show(struct seq_file *m, void *v)
|
|
|
|
{
|
|
|
|
return psi_show(m, &psi_system, PSI_IO);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int psi_memory_show(struct seq_file *m, void *v)
|
|
|
|
{
|
|
|
|
return psi_show(m, &psi_system, PSI_MEM);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int psi_cpu_show(struct seq_file *m, void *v)
|
|
|
|
{
|
|
|
|
return psi_show(m, &psi_system, PSI_CPU);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int psi_io_open(struct inode *inode, struct file *file)
|
|
|
|
{
|
2023-03-30 10:54:18 +00:00
|
|
|
return single_open(file, psi_io_show, NULL);
|
2022-01-19 22:39:40 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int psi_memory_open(struct inode *inode, struct file *file)
|
|
|
|
{
|
2023-03-30 10:54:18 +00:00
|
|
|
return single_open(file, psi_memory_show, NULL);
|
2022-01-19 22:39:40 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int psi_cpu_open(struct inode *inode, struct file *file)
|
|
|
|
{
|
2023-03-30 10:54:18 +00:00
|
|
|
return single_open(file, psi_cpu_show, NULL);
|
2022-01-19 22:39:40 +00:00
|
|
|
}
|
|
|
|
|
2019-05-14 22:41:15 +00:00
|
|
|
static ssize_t psi_write(struct file *file, const char __user *user_buf,
|
|
|
|
size_t nbytes, enum psi_res res)
|
|
|
|
{
|
|
|
|
char buf[32];
|
|
|
|
size_t buf_size;
|
|
|
|
struct seq_file *seq;
|
|
|
|
struct psi_trigger *new;
|
|
|
|
|
|
|
|
if (static_branch_likely(&psi_disabled))
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
|
2020-02-03 21:22:16 +00:00
|
|
|
if (!nbytes)
|
|
|
|
return -EINVAL;
|
|
|
|
|
2019-09-12 10:34:52 +00:00
|
|
|
buf_size = min(nbytes, sizeof(buf));
|
2019-05-14 22:41:15 +00:00
|
|
|
if (copy_from_user(buf, user_buf, buf_size))
|
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
buf[buf_size - 1] = '\0';
|
|
|
|
|
|
|
|
seq = file->private_data;
|
2022-01-11 23:23:09 +00:00
|
|
|
|
2019-05-14 22:41:15 +00:00
|
|
|
/* Take seq->lock to protect seq->private from concurrent writes */
|
|
|
|
mutex_lock(&seq->lock);
|
2022-01-11 23:23:09 +00:00
|
|
|
|
|
|
|
/* Allow only one trigger per file descriptor */
|
|
|
|
if (seq->private) {
|
|
|
|
mutex_unlock(&seq->lock);
|
|
|
|
return -EBUSY;
|
|
|
|
}
|
|
|
|
|
2023-06-30 00:56:12 +00:00
|
|
|
new = psi_trigger_create(&psi_system, buf, res, file, NULL);
|
2022-01-11 23:23:09 +00:00
|
|
|
if (IS_ERR(new)) {
|
|
|
|
mutex_unlock(&seq->lock);
|
|
|
|
return PTR_ERR(new);
|
|
|
|
}
|
|
|
|
|
|
|
|
smp_store_release(&seq->private, new);
|
2019-05-14 22:41:15 +00:00
|
|
|
mutex_unlock(&seq->lock);
|
|
|
|
|
|
|
|
return nbytes;
|
|
|
|
}
|
|
|
|
|
|
|
|
static ssize_t psi_io_write(struct file *file, const char __user *user_buf,
|
|
|
|
size_t nbytes, loff_t *ppos)
|
|
|
|
{
|
|
|
|
return psi_write(file, user_buf, nbytes, PSI_IO);
|
|
|
|
}
|
|
|
|
|
|
|
|
static ssize_t psi_memory_write(struct file *file, const char __user *user_buf,
|
|
|
|
size_t nbytes, loff_t *ppos)
|
|
|
|
{
|
|
|
|
return psi_write(file, user_buf, nbytes, PSI_MEM);
|
|
|
|
}
|
|
|
|
|
|
|
|
static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf,
|
|
|
|
size_t nbytes, loff_t *ppos)
|
|
|
|
{
|
|
|
|
return psi_write(file, user_buf, nbytes, PSI_CPU);
|
|
|
|
}
|
|
|
|
|
|
|
|
static __poll_t psi_fop_poll(struct file *file, poll_table *wait)
|
|
|
|
{
|
|
|
|
struct seq_file *seq = file->private_data;
|
|
|
|
|
|
|
|
return psi_trigger_poll(&seq->private, file, wait);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int psi_fop_release(struct inode *inode, struct file *file)
|
|
|
|
{
|
|
|
|
struct seq_file *seq = file->private_data;
|
|
|
|
|
2022-01-11 23:23:09 +00:00
|
|
|
psi_trigger_destroy(seq->private);
|
2019-05-14 22:41:15 +00:00
|
|
|
return single_release(inode, file);
|
|
|
|
}
|
|
|
|
|
2020-02-04 01:37:17 +00:00
|
|
|
static const struct proc_ops psi_io_proc_ops = {
|
|
|
|
.proc_open = psi_io_open,
|
|
|
|
.proc_read = seq_read,
|
|
|
|
.proc_lseek = seq_lseek,
|
|
|
|
.proc_write = psi_io_write,
|
|
|
|
.proc_poll = psi_fop_poll,
|
|
|
|
.proc_release = psi_fop_release,
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
};
|
|
|
|
|
2020-02-04 01:37:17 +00:00
|
|
|
static const struct proc_ops psi_memory_proc_ops = {
|
|
|
|
.proc_open = psi_memory_open,
|
|
|
|
.proc_read = seq_read,
|
|
|
|
.proc_lseek = seq_lseek,
|
|
|
|
.proc_write = psi_memory_write,
|
|
|
|
.proc_poll = psi_fop_poll,
|
|
|
|
.proc_release = psi_fop_release,
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
};
|
|
|
|
|
2020-02-04 01:37:17 +00:00
|
|
|
static const struct proc_ops psi_cpu_proc_ops = {
|
|
|
|
.proc_open = psi_cpu_open,
|
|
|
|
.proc_read = seq_read,
|
|
|
|
.proc_lseek = seq_lseek,
|
|
|
|
.proc_write = psi_cpu_write,
|
|
|
|
.proc_poll = psi_fop_poll,
|
|
|
|
.proc_release = psi_fop_release,
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
};
|
|
|
|
|
2022-08-25 16:41:08 +00:00
|
|
|
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
|
|
|
|
static int psi_irq_show(struct seq_file *m, void *v)
|
|
|
|
{
|
|
|
|
return psi_show(m, &psi_system, PSI_IRQ);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int psi_irq_open(struct inode *inode, struct file *file)
|
|
|
|
{
|
2023-03-30 10:54:18 +00:00
|
|
|
return single_open(file, psi_irq_show, NULL);
|
2022-08-25 16:41:08 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static ssize_t psi_irq_write(struct file *file, const char __user *user_buf,
|
|
|
|
size_t nbytes, loff_t *ppos)
|
|
|
|
{
|
|
|
|
return psi_write(file, user_buf, nbytes, PSI_IRQ);
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct proc_ops psi_irq_proc_ops = {
|
|
|
|
.proc_open = psi_irq_open,
|
|
|
|
.proc_read = seq_read,
|
|
|
|
.proc_lseek = seq_lseek,
|
|
|
|
.proc_write = psi_irq_write,
|
|
|
|
.proc_poll = psi_fop_poll,
|
|
|
|
.proc_release = psi_fop_release,
|
|
|
|
};
|
|
|
|
#endif
|
|
|
|
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
static int __init psi_proc_init(void)
|
|
|
|
{
|
2019-12-18 12:38:18 +00:00
|
|
|
if (psi_enable) {
|
|
|
|
proc_mkdir("pressure", NULL);
|
2021-04-02 02:58:33 +00:00
|
|
|
proc_create("pressure/io", 0666, NULL, &psi_io_proc_ops);
|
|
|
|
proc_create("pressure/memory", 0666, NULL, &psi_memory_proc_ops);
|
|
|
|
proc_create("pressure/cpu", 0666, NULL, &psi_cpu_proc_ops);
|
2022-08-25 16:41:08 +00:00
|
|
|
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
|
|
|
|
proc_create("pressure/irq", 0666, NULL, &psi_irq_proc_ops);
|
|
|
|
#endif
|
2019-12-18 12:38:18 +00:00
|
|
|
}
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
module_init(psi_proc_init);
|
2022-01-19 22:39:40 +00:00
|
|
|
|
|
|
|
#endif /* CONFIG_PROC_FS */
|