linux/drivers/char/hw_random/omap-rng.c

583 lines
14 KiB
C
Raw Normal View History

/*
* omap-rng.c - RNG driver for TI OMAP CPU family
*
* Author: Deepak Saxena <dsaxena@plexity.net>
*
* Copyright 2005 (c) MontaVista Software, Inc.
*
* Mostly based on original driver:
*
* Copyright (C) 2005 Nokia Corporation
* Author: Juha Yrjölä <juha.yrjola@nokia.com>
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/random.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/hw_random.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_address.h>
#include <linux/interrupt.h>
#include <linux/clk.h>
#include <asm/io.h>
#define RNG_REG_STATUS_RDY (1 << 0)
#define RNG_REG_INTACK_RDY_MASK (1 << 0)
#define RNG_REG_INTACK_SHUTDOWN_OFLO_MASK (1 << 1)
#define RNG_SHUTDOWN_OFLO_MASK (1 << 1)
#define RNG_CONTROL_STARTUP_CYCLES_SHIFT 16
#define RNG_CONTROL_STARTUP_CYCLES_MASK (0xffff << 16)
#define RNG_CONTROL_ENABLE_TRNG_SHIFT 10
#define RNG_CONTROL_ENABLE_TRNG_MASK (1 << 10)
#define RNG_CONFIG_MAX_REFIL_CYCLES_SHIFT 16
#define RNG_CONFIG_MAX_REFIL_CYCLES_MASK (0xffff << 16)
#define RNG_CONFIG_MIN_REFIL_CYCLES_SHIFT 0
#define RNG_CONFIG_MIN_REFIL_CYCLES_MASK (0xff << 0)
#define RNG_CONTROL_STARTUP_CYCLES 0xff
#define RNG_CONFIG_MIN_REFIL_CYCLES 0x21
#define RNG_CONFIG_MAX_REFIL_CYCLES 0x22
#define RNG_ALARMCNT_ALARM_TH_SHIFT 0x0
#define RNG_ALARMCNT_ALARM_TH_MASK (0xff << 0)
#define RNG_ALARMCNT_SHUTDOWN_TH_SHIFT 16
#define RNG_ALARMCNT_SHUTDOWN_TH_MASK (0x1f << 16)
#define RNG_ALARM_THRESHOLD 0xff
#define RNG_SHUTDOWN_THRESHOLD 0x4
#define RNG_REG_FROENABLE_MASK 0xffffff
#define RNG_REG_FRODETUNE_MASK 0xffffff
#define OMAP2_RNG_OUTPUT_SIZE 0x4
#define OMAP4_RNG_OUTPUT_SIZE 0x8
#define EIP76_RNG_OUTPUT_SIZE 0x10
enum {
RNG_OUTPUT_0_REG = 0,
RNG_OUTPUT_1_REG,
RNG_OUTPUT_2_REG,
RNG_OUTPUT_3_REG,
RNG_STATUS_REG,
RNG_INTMASK_REG,
RNG_INTACK_REG,
RNG_CONTROL_REG,
RNG_CONFIG_REG,
RNG_ALARMCNT_REG,
RNG_FROENABLE_REG,
RNG_FRODETUNE_REG,
RNG_ALARMMASK_REG,
RNG_ALARMSTOP_REG,
RNG_REV_REG,
RNG_SYSCONFIG_REG,
};
static const u16 reg_map_omap2[] = {
[RNG_OUTPUT_0_REG] = 0x0,
[RNG_STATUS_REG] = 0x4,
[RNG_CONFIG_REG] = 0x28,
[RNG_REV_REG] = 0x3c,
[RNG_SYSCONFIG_REG] = 0x40,
};
static const u16 reg_map_omap4[] = {
[RNG_OUTPUT_0_REG] = 0x0,
[RNG_OUTPUT_1_REG] = 0x4,
[RNG_STATUS_REG] = 0x8,
[RNG_INTMASK_REG] = 0xc,
[RNG_INTACK_REG] = 0x10,
[RNG_CONTROL_REG] = 0x14,
[RNG_CONFIG_REG] = 0x18,
[RNG_ALARMCNT_REG] = 0x1c,
[RNG_FROENABLE_REG] = 0x20,
[RNG_FRODETUNE_REG] = 0x24,
[RNG_ALARMMASK_REG] = 0x28,
[RNG_ALARMSTOP_REG] = 0x2c,
[RNG_REV_REG] = 0x1FE0,
[RNG_SYSCONFIG_REG] = 0x1FE4,
};
static const u16 reg_map_eip76[] = {
[RNG_OUTPUT_0_REG] = 0x0,
[RNG_OUTPUT_1_REG] = 0x4,
[RNG_OUTPUT_2_REG] = 0x8,
[RNG_OUTPUT_3_REG] = 0xc,
[RNG_STATUS_REG] = 0x10,
[RNG_INTACK_REG] = 0x10,
[RNG_CONTROL_REG] = 0x14,
[RNG_CONFIG_REG] = 0x18,
[RNG_ALARMCNT_REG] = 0x1c,
[RNG_FROENABLE_REG] = 0x20,
[RNG_FRODETUNE_REG] = 0x24,
[RNG_ALARMMASK_REG] = 0x28,
[RNG_ALARMSTOP_REG] = 0x2c,
[RNG_REV_REG] = 0x7c,
};
struct omap_rng_dev;
/**
* struct omap_rng_pdata - RNG IP block-specific data
* @regs: Pointer to the register offsets structure.
* @data_size: No. of bytes in RNG output.
* @data_present: Callback to determine if data is available.
* @init: Callback for IP specific initialization sequence.
* @cleanup: Callback for IP specific cleanup sequence.
*/
struct omap_rng_pdata {
u16 *regs;
u32 data_size;
u32 (*data_present)(struct omap_rng_dev *priv);
int (*init)(struct omap_rng_dev *priv);
void (*cleanup)(struct omap_rng_dev *priv);
};
struct omap_rng_dev {
void __iomem *base;
struct device *dev;
const struct omap_rng_pdata *pdata;
struct hwrng rng;
struct clk *clk;
struct clk *clk_reg;
};
static inline u32 omap_rng_read(struct omap_rng_dev *priv, u16 reg)
{
return __raw_readl(priv->base + priv->pdata->regs[reg]);
}
static inline void omap_rng_write(struct omap_rng_dev *priv, u16 reg,
u32 val)
{
__raw_writel(val, priv->base + priv->pdata->regs[reg]);
}
static int omap_rng_do_read(struct hwrng *rng, void *data, size_t max,
bool wait)
{
struct omap_rng_dev *priv;
int i, present;
priv = (struct omap_rng_dev *)rng->priv;
if (max < priv->pdata->data_size)
return 0;
for (i = 0; i < 20; i++) {
present = priv->pdata->data_present(priv);
if (present || !wait)
break;
udelay(10);
}
if (!present)
return 0;
memcpy_fromio(data, priv->base + priv->pdata->regs[RNG_OUTPUT_0_REG],
priv->pdata->data_size);
if (priv->pdata->regs[RNG_INTACK_REG])
omap_rng_write(priv, RNG_INTACK_REG, RNG_REG_INTACK_RDY_MASK);
return priv->pdata->data_size;
}
static int omap_rng_init(struct hwrng *rng)
{
struct omap_rng_dev *priv;
priv = (struct omap_rng_dev *)rng->priv;
return priv->pdata->init(priv);
}
static void omap_rng_cleanup(struct hwrng *rng)
{
struct omap_rng_dev *priv;
priv = (struct omap_rng_dev *)rng->priv;
priv->pdata->cleanup(priv);
}
static inline u32 omap2_rng_data_present(struct omap_rng_dev *priv)
{
return omap_rng_read(priv, RNG_STATUS_REG) ? 0 : 1;
}
static int omap2_rng_init(struct omap_rng_dev *priv)
{
omap_rng_write(priv, RNG_SYSCONFIG_REG, 0x1);
return 0;
}
static void omap2_rng_cleanup(struct omap_rng_dev *priv)
{
omap_rng_write(priv, RNG_SYSCONFIG_REG, 0x0);
}
static struct omap_rng_pdata omap2_rng_pdata = {
.regs = (u16 *)reg_map_omap2,
.data_size = OMAP2_RNG_OUTPUT_SIZE,
.data_present = omap2_rng_data_present,
.init = omap2_rng_init,
.cleanup = omap2_rng_cleanup,
};
#if defined(CONFIG_OF)
static inline u32 omap4_rng_data_present(struct omap_rng_dev *priv)
{
return omap_rng_read(priv, RNG_STATUS_REG) & RNG_REG_STATUS_RDY;
}
static int eip76_rng_init(struct omap_rng_dev *priv)
{
u32 val;
/* Return if RNG is already running. */
if (omap_rng_read(priv, RNG_CONTROL_REG) & RNG_CONTROL_ENABLE_TRNG_MASK)
return 0;
/* Number of 512 bit blocks of raw Noise Source output data that must
* be processed by either the Conditioning Function or the
* SP 800-90 DRBG BC_DF functionality to yield a full entropy
* output value.
*/
val = 0x5 << RNG_CONFIG_MIN_REFIL_CYCLES_SHIFT;
/* Number of FRO samples that are XOR-ed together into one bit to be
* shifted into the main shift register
*/
val |= RNG_CONFIG_MAX_REFIL_CYCLES << RNG_CONFIG_MAX_REFIL_CYCLES_SHIFT;
omap_rng_write(priv, RNG_CONFIG_REG, val);
/* Enable all available FROs */
omap_rng_write(priv, RNG_FRODETUNE_REG, 0x0);
omap_rng_write(priv, RNG_FROENABLE_REG, RNG_REG_FROENABLE_MASK);
/* Enable TRNG */
val = RNG_CONTROL_ENABLE_TRNG_MASK;
omap_rng_write(priv, RNG_CONTROL_REG, val);
return 0;
}
static int omap4_rng_init(struct omap_rng_dev *priv)
{
u32 val;
/* Return if RNG is already running. */
if (omap_rng_read(priv, RNG_CONTROL_REG) & RNG_CONTROL_ENABLE_TRNG_MASK)
return 0;
val = RNG_CONFIG_MIN_REFIL_CYCLES << RNG_CONFIG_MIN_REFIL_CYCLES_SHIFT;
val |= RNG_CONFIG_MAX_REFIL_CYCLES << RNG_CONFIG_MAX_REFIL_CYCLES_SHIFT;
omap_rng_write(priv, RNG_CONFIG_REG, val);
omap_rng_write(priv, RNG_FRODETUNE_REG, 0x0);
omap_rng_write(priv, RNG_FROENABLE_REG, RNG_REG_FROENABLE_MASK);
val = RNG_ALARM_THRESHOLD << RNG_ALARMCNT_ALARM_TH_SHIFT;
val |= RNG_SHUTDOWN_THRESHOLD << RNG_ALARMCNT_SHUTDOWN_TH_SHIFT;
omap_rng_write(priv, RNG_ALARMCNT_REG, val);
val = RNG_CONTROL_STARTUP_CYCLES << RNG_CONTROL_STARTUP_CYCLES_SHIFT;
val |= RNG_CONTROL_ENABLE_TRNG_MASK;
omap_rng_write(priv, RNG_CONTROL_REG, val);
return 0;
}
static void omap4_rng_cleanup(struct omap_rng_dev *priv)
{
int val;
val = omap_rng_read(priv, RNG_CONTROL_REG);
val &= ~RNG_CONTROL_ENABLE_TRNG_MASK;
hwrng: omap - Change RNG_CONFIG_REG to RNG_CONTROL_REG when checking and disabling TRNG In omap4_rng_init(), a check of bit 10 of the RNG_CONFIG_REG is done to determine whether the RNG is running. This is suspicious firstly due to the use of RNG_CONTROL_ENABLE_TRNG_MASK and secondly because the same mask is written to RNG_CONTROL_REG after configuration of the FROs. Similar suspicious logic is repeated in omap4_rng_cleanup() when RNG_CONTROL_REG masked with RNG_CONTROL_ENABLE_TRNG_MASK is read, the same mask bit is cleared, and then written to RNG_CONFIG_REG. Unless the TRNG is enabled with one bit in RNG_CONTROL and disabled with another in RNG_CONFIG and these bits are mirrored in some way, I believe that the TRNG is not really shutting off. Apart from the strange logic, I have reason to suspect that the OMAP4 related code in this driver is driving an Inside Secure IP hardware RNG and strongly suspect that bit 10 of RNG_CONFIG_REG is one of the bits configuring the sampling rate of the FROs. This option is by default set to 0 and is not being set anywhere in omap-rng.c. Reading this bit during omap4_rng_init() will always return 0. It will remain 0 because ~(value of TRNG_MASK in control) will always be 0, because the TRNG is never shut off. This is of course presuming that the OMAP4 features the Inside Secure IP. I'm interested in knowing what the guys at TI think about this, as only they can confirm or deny the detailed structure of these registers. Signed-off-by: Andre Wolokita <Andre.Wolokita@analog.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-03-15 23:19:11 +00:00
omap_rng_write(priv, RNG_CONTROL_REG, val);
}
static irqreturn_t omap4_rng_irq(int irq, void *dev_id)
{
struct omap_rng_dev *priv = dev_id;
u32 fro_detune, fro_enable;
/*
* Interrupt raised by a fro shutdown threshold, do the following:
* 1. Clear the alarm events.
* 2. De tune the FROs which are shutdown.
* 3. Re enable the shutdown FROs.
*/
omap_rng_write(priv, RNG_ALARMMASK_REG, 0x0);
omap_rng_write(priv, RNG_ALARMSTOP_REG, 0x0);
fro_enable = omap_rng_read(priv, RNG_FROENABLE_REG);
fro_detune = ~fro_enable & RNG_REG_FRODETUNE_MASK;
fro_detune = fro_detune | omap_rng_read(priv, RNG_FRODETUNE_REG);
fro_enable = RNG_REG_FROENABLE_MASK;
omap_rng_write(priv, RNG_FRODETUNE_REG, fro_detune);
omap_rng_write(priv, RNG_FROENABLE_REG, fro_enable);
omap_rng_write(priv, RNG_INTACK_REG, RNG_REG_INTACK_SHUTDOWN_OFLO_MASK);
return IRQ_HANDLED;
}
static struct omap_rng_pdata omap4_rng_pdata = {
.regs = (u16 *)reg_map_omap4,
.data_size = OMAP4_RNG_OUTPUT_SIZE,
.data_present = omap4_rng_data_present,
.init = omap4_rng_init,
.cleanup = omap4_rng_cleanup,
};
static struct omap_rng_pdata eip76_rng_pdata = {
.regs = (u16 *)reg_map_eip76,
.data_size = EIP76_RNG_OUTPUT_SIZE,
.data_present = omap4_rng_data_present,
.init = eip76_rng_init,
.cleanup = omap4_rng_cleanup,
};
static const struct of_device_id omap_rng_of_match[] = {
{
.compatible = "ti,omap2-rng",
.data = &omap2_rng_pdata,
},
{
.compatible = "ti,omap4-rng",
.data = &omap4_rng_pdata,
},
{
.compatible = "inside-secure,safexcel-eip76",
.data = &eip76_rng_pdata,
},
{},
};
MODULE_DEVICE_TABLE(of, omap_rng_of_match);
static int of_get_omap_rng_device_details(struct omap_rng_dev *priv,
struct platform_device *pdev)
{
const struct of_device_id *match;
struct device *dev = &pdev->dev;
int irq, err;
match = of_match_device(of_match_ptr(omap_rng_of_match), dev);
if (!match) {
dev_err(dev, "no compatible OF match\n");
return -EINVAL;
}
priv->pdata = match->data;
if (of_device_is_compatible(dev->of_node, "ti,omap4-rng") ||
of_device_is_compatible(dev->of_node, "inside-secure,safexcel-eip76")) {
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(dev, "%s: error getting IRQ resource - %d\n",
__func__, irq);
return irq;
}
err = devm_request_irq(dev, irq, omap4_rng_irq,
IRQF_TRIGGER_NONE, dev_name(dev), priv);
if (err) {
dev_err(dev, "unable to request irq %d, err = %d\n",
irq, err);
return err;
}
/*
* On OMAP4, enabling the shutdown_oflo interrupt is
* done in the interrupt mask register. There is no
* such register on EIP76, and it's enabled by the
* same bit in the control register
*/
if (priv->pdata->regs[RNG_INTMASK_REG])
omap_rng_write(priv, RNG_INTMASK_REG,
RNG_SHUTDOWN_OFLO_MASK);
else
omap_rng_write(priv, RNG_CONTROL_REG,
RNG_SHUTDOWN_OFLO_MASK);
}
return 0;
}
#else
static int of_get_omap_rng_device_details(struct omap_rng_dev *omap_rng,
struct platform_device *pdev)
{
return -EINVAL;
}
#endif
static int get_omap_rng_device_details(struct omap_rng_dev *omap_rng)
{
/* Only OMAP2/3 can be non-DT */
omap_rng->pdata = &omap2_rng_pdata;
return 0;
}
static int omap_rng_probe(struct platform_device *pdev)
{
struct omap_rng_dev *priv;
struct resource *res;
struct device *dev = &pdev->dev;
int ret;
priv = devm_kzalloc(dev, sizeof(struct omap_rng_dev), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->rng.read = omap_rng_do_read;
priv->rng.init = omap_rng_init;
priv->rng.cleanup = omap_rng_cleanup;
priv->rng.priv = (unsigned long)priv;
platform_set_drvdata(pdev, priv);
priv->dev = dev;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
priv->base = devm_ioremap_resource(dev, res);
if (IS_ERR(priv->base)) {
ret = PTR_ERR(priv->base);
goto err_ioremap;
}
priv->rng.name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
if (!priv->rng.name) {
ret = -ENOMEM;
goto err_ioremap;
}
pm_runtime_enable(&pdev->dev);
ret = pm_runtime_get_sync(&pdev->dev);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to runtime_get device: %d\n", ret);
pm_runtime_put_noidle(&pdev->dev);
goto err_ioremap;
}
priv->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(priv->clk) && PTR_ERR(priv->clk) == -EPROBE_DEFER)
return -EPROBE_DEFER;
if (!IS_ERR(priv->clk)) {
ret = clk_prepare_enable(priv->clk);
if (ret) {
dev_err(&pdev->dev,
"Unable to enable the clk: %d\n", ret);
goto err_register;
}
}
priv->clk_reg = devm_clk_get(&pdev->dev, "reg");
if (IS_ERR(priv->clk_reg) && PTR_ERR(priv->clk_reg) == -EPROBE_DEFER)
return -EPROBE_DEFER;
if (!IS_ERR(priv->clk_reg)) {
ret = clk_prepare_enable(priv->clk_reg);
if (ret) {
dev_err(&pdev->dev,
"Unable to enable the register clk: %d\n",
ret);
goto err_register;
}
}
ret = (dev->of_node) ? of_get_omap_rng_device_details(priv, pdev) :
get_omap_rng_device_details(priv);
if (ret)
goto err_register;
ret = hwrng_register(&priv->rng);
if (ret)
goto err_register;
dev_info(&pdev->dev, "Random Number Generator ver. %02x\n",
omap_rng_read(priv, RNG_REV_REG));
return 0;
err_register:
priv->base = NULL;
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
clk_disable_unprepare(priv->clk_reg);
clk_disable_unprepare(priv->clk);
err_ioremap:
dev_err(dev, "initialization failed.\n");
return ret;
}
static int omap_rng_remove(struct platform_device *pdev)
{
struct omap_rng_dev *priv = platform_get_drvdata(pdev);
hwrng_unregister(&priv->rng);
priv->pdata->cleanup(priv);
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
clk_disable_unprepare(priv->clk);
clk_disable_unprepare(priv->clk_reg);
return 0;
}
static int __maybe_unused omap_rng_suspend(struct device *dev)
{
struct omap_rng_dev *priv = dev_get_drvdata(dev);
priv->pdata->cleanup(priv);
pm_runtime_put_sync(dev);
return 0;
}
static int __maybe_unused omap_rng_resume(struct device *dev)
{
struct omap_rng_dev *priv = dev_get_drvdata(dev);
int ret;
ret = pm_runtime_get_sync(dev);
if (ret < 0) {
dev_err(dev, "Failed to runtime_get device: %d\n", ret);
pm_runtime_put_noidle(dev);
return ret;
}
priv->pdata->init(priv);
return 0;
}
static SIMPLE_DEV_PM_OPS(omap_rng_pm, omap_rng_suspend, omap_rng_resume);
static struct platform_driver omap_rng_driver = {
.driver = {
.name = "omap_rng",
.pm = &omap_rng_pm,
.of_match_table = of_match_ptr(omap_rng_of_match),
},
.probe = omap_rng_probe,
.remove = omap_rng_remove,
};
module_platform_driver(omap_rng_driver);
MODULE_ALIAS("platform:omap_rng");
MODULE_AUTHOR("Deepak Saxena (and others)");
MODULE_LICENSE("GPL");