linux/fs/ecryptfs/crypto.c

1660 lines
50 KiB
C
Raw Normal View History

/**
* eCryptfs: Linux filesystem encryption layer
*
* Copyright (C) 1997-2004 Erez Zadok
* Copyright (C) 2001-2004 Stony Brook University
* Copyright (C) 2004-2006 International Business Machines Corp.
* Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
* Michael C. Thompson <mcthomps@us.ibm.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
* 02111-1307, USA.
*/
#include <linux/fs.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/random.h>
#include <linux/compiler.h>
#include <linux/key.h>
#include <linux/namei.h>
#include <linux/crypto.h>
#include <linux/file.h>
#include <linux/scatterlist.h>
#include "ecryptfs_kernel.h"
static int
ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
struct page *dst_page, int dst_offset,
struct page *src_page, int src_offset, int size,
unsigned char *iv);
static int
ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
struct page *dst_page, int dst_offset,
struct page *src_page, int src_offset, int size,
unsigned char *iv);
/**
* ecryptfs_to_hex
* @dst: Buffer to take hex character representation of contents of
* src; must be at least of size (src_size * 2)
* @src: Buffer to be converted to a hex string respresentation
* @src_size: number of bytes to convert
*/
void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
{
int x;
for (x = 0; x < src_size; x++)
sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
}
/**
* ecryptfs_from_hex
* @dst: Buffer to take the bytes from src hex; must be at least of
* size (src_size / 2)
* @src: Buffer to be converted from a hex string respresentation to raw value
* @dst_size: size of dst buffer, or number of hex characters pairs to convert
*/
void ecryptfs_from_hex(char *dst, char *src, int dst_size)
{
int x;
char tmp[3] = { 0, };
for (x = 0; x < dst_size; x++) {
tmp[0] = src[x * 2];
tmp[1] = src[x * 2 + 1];
dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
}
}
/**
* ecryptfs_calculate_md5 - calculates the md5 of @src
* @dst: Pointer to 16 bytes of allocated memory
* @crypt_stat: Pointer to crypt_stat struct for the current inode
* @src: Data to be md5'd
* @len: Length of @src
*
* Uses the allocated crypto context that crypt_stat references to
* generate the MD5 sum of the contents of src.
*/
static int ecryptfs_calculate_md5(char *dst,
struct ecryptfs_crypt_stat *crypt_stat,
char *src, int len)
{
int rc = 0;
struct scatterlist sg;
mutex_lock(&crypt_stat->cs_md5_tfm_mutex);
sg_init_one(&sg, (u8 *)src, len);
if (!crypt_stat->md5_tfm) {
crypt_stat->md5_tfm =
crypto_alloc_tfm("md5", CRYPTO_TFM_REQ_MAY_SLEEP);
if (!crypt_stat->md5_tfm) {
rc = -ENOMEM;
ecryptfs_printk(KERN_ERR, "Error attempting to "
"allocate crypto context\n");
goto out;
}
}
crypto_digest_init(crypt_stat->md5_tfm);
crypto_digest_update(crypt_stat->md5_tfm, &sg, 1);
crypto_digest_final(crypt_stat->md5_tfm, dst);
mutex_unlock(&crypt_stat->cs_md5_tfm_mutex);
out:
return rc;
}
/**
* ecryptfs_derive_iv
* @iv: destination for the derived iv vale
* @crypt_stat: Pointer to crypt_stat struct for the current inode
* @offset: Offset of the page whose's iv we are to derive
*
* Generate the initialization vector from the given root IV and page
* offset.
*
* Returns zero on success; non-zero on error.
*/
static int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
pgoff_t offset)
{
int rc = 0;
char dst[MD5_DIGEST_SIZE];
char src[ECRYPTFS_MAX_IV_BYTES + 16];
if (unlikely(ecryptfs_verbosity > 0)) {
ecryptfs_printk(KERN_DEBUG, "root iv:\n");
ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
}
/* TODO: It is probably secure to just cast the least
* significant bits of the root IV into an unsigned long and
* add the offset to that rather than go through all this
* hashing business. -Halcrow */
memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
memset((src + crypt_stat->iv_bytes), 0, 16);
snprintf((src + crypt_stat->iv_bytes), 16, "%ld", offset);
if (unlikely(ecryptfs_verbosity > 0)) {
ecryptfs_printk(KERN_DEBUG, "source:\n");
ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
}
rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
(crypt_stat->iv_bytes + 16));
if (rc) {
ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
"MD5 while generating IV for a page\n");
goto out;
}
memcpy(iv, dst, crypt_stat->iv_bytes);
if (unlikely(ecryptfs_verbosity > 0)) {
ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
}
out:
return rc;
}
/**
* ecryptfs_init_crypt_stat
* @crypt_stat: Pointer to the crypt_stat struct to initialize.
*
* Initialize the crypt_stat structure.
*/
void
ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
{
memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
mutex_init(&crypt_stat->cs_mutex);
mutex_init(&crypt_stat->cs_tfm_mutex);
mutex_init(&crypt_stat->cs_md5_tfm_mutex);
ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_STRUCT_INITIALIZED);
}
/**
* ecryptfs_destruct_crypt_stat
* @crypt_stat: Pointer to the crypt_stat struct to initialize.
*
* Releases all memory associated with a crypt_stat struct.
*/
void ecryptfs_destruct_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
{
if (crypt_stat->tfm)
crypto_free_tfm(crypt_stat->tfm);
if (crypt_stat->md5_tfm)
crypto_free_tfm(crypt_stat->md5_tfm);
memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
}
void ecryptfs_destruct_mount_crypt_stat(
struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
if (mount_crypt_stat->global_auth_tok_key)
key_put(mount_crypt_stat->global_auth_tok_key);
if (mount_crypt_stat->global_key_tfm)
crypto_free_tfm(mount_crypt_stat->global_key_tfm);
memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
}
/**
* virt_to_scatterlist
* @addr: Virtual address
* @size: Size of data; should be an even multiple of the block size
* @sg: Pointer to scatterlist array; set to NULL to obtain only
* the number of scatterlist structs required in array
* @sg_size: Max array size
*
* Fills in a scatterlist array with page references for a passed
* virtual address.
*
* Returns the number of scatterlist structs in array used
*/
int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
int sg_size)
{
int i = 0;
struct page *pg;
int offset;
int remainder_of_page;
while (size > 0 && i < sg_size) {
pg = virt_to_page(addr);
offset = offset_in_page(addr);
if (sg) {
sg[i].page = pg;
sg[i].offset = offset;
}
remainder_of_page = PAGE_CACHE_SIZE - offset;
if (size >= remainder_of_page) {
if (sg)
sg[i].length = remainder_of_page;
addr += remainder_of_page;
size -= remainder_of_page;
} else {
if (sg)
sg[i].length = size;
addr += size;
size = 0;
}
i++;
}
if (size > 0)
return -ENOMEM;
return i;
}
/**
* encrypt_scatterlist
* @crypt_stat: Pointer to the crypt_stat struct to initialize.
* @dest_sg: Destination of encrypted data
* @src_sg: Data to be encrypted
* @size: Length of data to be encrypted
* @iv: iv to use during encryption
*
* Returns the number of bytes encrypted; negative value on error
*/
static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
struct scatterlist *dest_sg,
struct scatterlist *src_sg, int size,
unsigned char *iv)
{
int rc = 0;
BUG_ON(!crypt_stat || !crypt_stat->tfm
|| !ECRYPTFS_CHECK_FLAG(crypt_stat->flags,
ECRYPTFS_STRUCT_INITIALIZED));
if (unlikely(ecryptfs_verbosity > 0)) {
ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
crypt_stat->key_size);
ecryptfs_dump_hex(crypt_stat->key,
crypt_stat->key_size);
}
/* Consider doing this once, when the file is opened */
mutex_lock(&crypt_stat->cs_tfm_mutex);
rc = crypto_cipher_setkey(crypt_stat->tfm, crypt_stat->key,
crypt_stat->key_size);
if (rc) {
ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
rc);
mutex_unlock(&crypt_stat->cs_tfm_mutex);
rc = -EINVAL;
goto out;
}
ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
crypto_cipher_encrypt_iv(crypt_stat->tfm, dest_sg, src_sg, size, iv);
mutex_unlock(&crypt_stat->cs_tfm_mutex);
out:
return rc;
}
static void
ecryptfs_extent_to_lwr_pg_idx_and_offset(unsigned long *lower_page_idx,
int *byte_offset,
struct ecryptfs_crypt_stat *crypt_stat,
unsigned long extent_num)
{
unsigned long lower_extent_num;
int extents_occupied_by_headers_at_front;
int bytes_occupied_by_headers_at_front;
int extent_offset;
int extents_per_page;
bytes_occupied_by_headers_at_front =
( crypt_stat->header_extent_size
* crypt_stat->num_header_extents_at_front );
extents_occupied_by_headers_at_front =
( bytes_occupied_by_headers_at_front
/ crypt_stat->extent_size );
lower_extent_num = extents_occupied_by_headers_at_front + extent_num;
extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
(*lower_page_idx) = lower_extent_num / extents_per_page;
extent_offset = lower_extent_num % extents_per_page;
(*byte_offset) = extent_offset * crypt_stat->extent_size;
ecryptfs_printk(KERN_DEBUG, " * crypt_stat->header_extent_size = "
"[%d]\n", crypt_stat->header_extent_size);
ecryptfs_printk(KERN_DEBUG, " * crypt_stat->"
"num_header_extents_at_front = [%d]\n",
crypt_stat->num_header_extents_at_front);
ecryptfs_printk(KERN_DEBUG, " * extents_occupied_by_headers_at_"
"front = [%d]\n", extents_occupied_by_headers_at_front);
ecryptfs_printk(KERN_DEBUG, " * lower_extent_num = [0x%.16x]\n",
lower_extent_num);
ecryptfs_printk(KERN_DEBUG, " * extents_per_page = [%d]\n",
extents_per_page);
ecryptfs_printk(KERN_DEBUG, " * (*lower_page_idx) = [0x%.16x]\n",
(*lower_page_idx));
ecryptfs_printk(KERN_DEBUG, " * extent_offset = [%d]\n",
extent_offset);
ecryptfs_printk(KERN_DEBUG, " * (*byte_offset) = [%d]\n",
(*byte_offset));
}
static int ecryptfs_write_out_page(struct ecryptfs_page_crypt_context *ctx,
struct page *lower_page,
struct inode *lower_inode,
int byte_offset_in_page, int bytes_to_write)
{
int rc = 0;
if (ctx->mode == ECRYPTFS_PREPARE_COMMIT_MODE) {
rc = ecryptfs_commit_lower_page(lower_page, lower_inode,
ctx->param.lower_file,
byte_offset_in_page,
bytes_to_write);
if (rc) {
ecryptfs_printk(KERN_ERR, "Error calling lower "
"commit; rc = [%d]\n", rc);
goto out;
}
} else {
rc = ecryptfs_writepage_and_release_lower_page(lower_page,
lower_inode,
ctx->param.wbc);
if (rc) {
ecryptfs_printk(KERN_ERR, "Error calling lower "
"writepage(); rc = [%d]\n", rc);
goto out;
}
}
out:
return rc;
}
static int ecryptfs_read_in_page(struct ecryptfs_page_crypt_context *ctx,
struct page **lower_page,
struct inode *lower_inode,
unsigned long lower_page_idx,
int byte_offset_in_page)
{
int rc = 0;
if (ctx->mode == ECRYPTFS_PREPARE_COMMIT_MODE) {
/* TODO: Limit this to only the data extents that are
* needed */
rc = ecryptfs_get_lower_page(lower_page, lower_inode,
ctx->param.lower_file,
lower_page_idx,
byte_offset_in_page,
(PAGE_CACHE_SIZE
- byte_offset_in_page));
if (rc) {
ecryptfs_printk(
KERN_ERR, "Error attempting to grab, map, "
"and prepare_write lower page with index "
"[0x%.16x]; rc = [%d]\n", lower_page_idx, rc);
goto out;
}
} else {
rc = ecryptfs_grab_and_map_lower_page(lower_page, NULL,
lower_inode,
lower_page_idx);
if (rc) {
ecryptfs_printk(
KERN_ERR, "Error attempting to grab and map "
"lower page with index [0x%.16x]; rc = [%d]\n",
lower_page_idx, rc);
goto out;
}
}
out:
return rc;
}
/**
* ecryptfs_encrypt_page
* @ctx: The context of the page
*
* Encrypt an eCryptfs page. This is done on a per-extent basis. Note
* that eCryptfs pages may straddle the lower pages -- for instance,
* if the file was created on a machine with an 8K page size
* (resulting in an 8K header), and then the file is copied onto a
* host with a 32K page size, then when reading page 0 of the eCryptfs
* file, 24K of page 0 of the lower file will be read and decrypted,
* and then 8K of page 1 of the lower file will be read and decrypted.
*
* The actual operations performed on each page depends on the
* contents of the ecryptfs_page_crypt_context struct.
*
* Returns zero on success; negative on error
*/
int ecryptfs_encrypt_page(struct ecryptfs_page_crypt_context *ctx)
{
char extent_iv[ECRYPTFS_MAX_IV_BYTES];
unsigned long base_extent;
unsigned long extent_offset = 0;
unsigned long lower_page_idx = 0;
unsigned long prior_lower_page_idx = 0;
struct page *lower_page;
struct inode *lower_inode;
struct ecryptfs_inode_info *inode_info;
struct ecryptfs_crypt_stat *crypt_stat;
int rc = 0;
int lower_byte_offset = 0;
int orig_byte_offset = 0;
int num_extents_per_page;
#define ECRYPTFS_PAGE_STATE_UNREAD 0
#define ECRYPTFS_PAGE_STATE_READ 1
#define ECRYPTFS_PAGE_STATE_MODIFIED 2
#define ECRYPTFS_PAGE_STATE_WRITTEN 3
int page_state;
lower_inode = ecryptfs_inode_to_lower(ctx->page->mapping->host);
inode_info = ecryptfs_inode_to_private(ctx->page->mapping->host);
crypt_stat = &inode_info->crypt_stat;
if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_ENCRYPTED)) {
rc = ecryptfs_copy_page_to_lower(ctx->page, lower_inode,
ctx->param.lower_file);
if (rc)
ecryptfs_printk(KERN_ERR, "Error attempting to copy "
"page at index [0x%.16x]\n",
ctx->page->index);
goto out;
}
num_extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
base_extent = (ctx->page->index * num_extents_per_page);
page_state = ECRYPTFS_PAGE_STATE_UNREAD;
while (extent_offset < num_extents_per_page) {
ecryptfs_extent_to_lwr_pg_idx_and_offset(
&lower_page_idx, &lower_byte_offset, crypt_stat,
(base_extent + extent_offset));
if (prior_lower_page_idx != lower_page_idx
&& page_state == ECRYPTFS_PAGE_STATE_MODIFIED) {
rc = ecryptfs_write_out_page(ctx, lower_page,
lower_inode,
orig_byte_offset,
(PAGE_CACHE_SIZE
- orig_byte_offset));
if (rc) {
ecryptfs_printk(KERN_ERR, "Error attempting "
"to write out page; rc = [%d]"
"\n", rc);
goto out;
}
page_state = ECRYPTFS_PAGE_STATE_WRITTEN;
}
if (page_state == ECRYPTFS_PAGE_STATE_UNREAD
|| page_state == ECRYPTFS_PAGE_STATE_WRITTEN) {
rc = ecryptfs_read_in_page(ctx, &lower_page,
lower_inode, lower_page_idx,
lower_byte_offset);
if (rc) {
ecryptfs_printk(KERN_ERR, "Error attempting "
"to read in lower page with "
"index [0x%.16x]; rc = [%d]\n",
lower_page_idx, rc);
goto out;
}
orig_byte_offset = lower_byte_offset;
prior_lower_page_idx = lower_page_idx;
page_state = ECRYPTFS_PAGE_STATE_READ;
}
BUG_ON(!(page_state == ECRYPTFS_PAGE_STATE_MODIFIED
|| page_state == ECRYPTFS_PAGE_STATE_READ));
rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
(base_extent + extent_offset));
if (rc) {
ecryptfs_printk(KERN_ERR, "Error attempting to "
"derive IV for extent [0x%.16x]; "
"rc = [%d]\n",
(base_extent + extent_offset), rc);
goto out;
}
if (unlikely(ecryptfs_verbosity > 0)) {
ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
"with iv:\n");
ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
"encryption:\n");
ecryptfs_dump_hex((char *)
(page_address(ctx->page)
+ (extent_offset
* crypt_stat->extent_size)), 8);
}
rc = ecryptfs_encrypt_page_offset(
crypt_stat, lower_page, lower_byte_offset, ctx->page,
(extent_offset * crypt_stat->extent_size),
crypt_stat->extent_size, extent_iv);
ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
"rc = [%d]\n",
(base_extent + extent_offset), rc);
if (unlikely(ecryptfs_verbosity > 0)) {
ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
"encryption:\n");
ecryptfs_dump_hex((char *)(page_address(lower_page)
+ lower_byte_offset), 8);
}
page_state = ECRYPTFS_PAGE_STATE_MODIFIED;
extent_offset++;
}
BUG_ON(orig_byte_offset != 0);
rc = ecryptfs_write_out_page(ctx, lower_page, lower_inode, 0,
(lower_byte_offset
+ crypt_stat->extent_size));
if (rc) {
ecryptfs_printk(KERN_ERR, "Error attempting to write out "
"page; rc = [%d]\n", rc);
goto out;
}
out:
return rc;
}
/**
* ecryptfs_decrypt_page
* @file: The ecryptfs file
* @page: The page in ecryptfs to decrypt
*
* Decrypt an eCryptfs page. This is done on a per-extent basis. Note
* that eCryptfs pages may straddle the lower pages -- for instance,
* if the file was created on a machine with an 8K page size
* (resulting in an 8K header), and then the file is copied onto a
* host with a 32K page size, then when reading page 0 of the eCryptfs
* file, 24K of page 0 of the lower file will be read and decrypted,
* and then 8K of page 1 of the lower file will be read and decrypted.
*
* Returns zero on success; negative on error
*/
int ecryptfs_decrypt_page(struct file *file, struct page *page)
{
char extent_iv[ECRYPTFS_MAX_IV_BYTES];
unsigned long base_extent;
unsigned long extent_offset = 0;
unsigned long lower_page_idx = 0;
unsigned long prior_lower_page_idx = 0;
struct page *lower_page;
char *lower_page_virt = NULL;
struct inode *lower_inode;
struct ecryptfs_crypt_stat *crypt_stat;
int rc = 0;
int byte_offset;
int num_extents_per_page;
int page_state;
crypt_stat = &(ecryptfs_inode_to_private(
page->mapping->host)->crypt_stat);
lower_inode = ecryptfs_inode_to_lower(page->mapping->host);
if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_ENCRYPTED)) {
rc = ecryptfs_do_readpage(file, page, page->index);
if (rc)
ecryptfs_printk(KERN_ERR, "Error attempting to copy "
"page at index [0x%.16x]\n",
page->index);
goto out;
}
num_extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
base_extent = (page->index * num_extents_per_page);
lower_page_virt = kmem_cache_alloc(ecryptfs_lower_page_cache,
SLAB_KERNEL);
if (!lower_page_virt) {
rc = -ENOMEM;
ecryptfs_printk(KERN_ERR, "Error getting page for encrypted "
"lower page(s)\n");
goto out;
}
lower_page = virt_to_page(lower_page_virt);
page_state = ECRYPTFS_PAGE_STATE_UNREAD;
while (extent_offset < num_extents_per_page) {
ecryptfs_extent_to_lwr_pg_idx_and_offset(
&lower_page_idx, &byte_offset, crypt_stat,
(base_extent + extent_offset));
if (prior_lower_page_idx != lower_page_idx
|| page_state == ECRYPTFS_PAGE_STATE_UNREAD) {
rc = ecryptfs_do_readpage(file, lower_page,
lower_page_idx);
if (rc) {
ecryptfs_printk(KERN_ERR, "Error reading "
"lower encrypted page; rc = "
"[%d]\n", rc);
goto out;
}
prior_lower_page_idx = lower_page_idx;
page_state = ECRYPTFS_PAGE_STATE_READ;
}
rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
(base_extent + extent_offset));
if (rc) {
ecryptfs_printk(KERN_ERR, "Error attempting to "
"derive IV for extent [0x%.16x]; rc = "
"[%d]\n",
(base_extent + extent_offset), rc);
goto out;
}
if (unlikely(ecryptfs_verbosity > 0)) {
ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
"with iv:\n");
ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
"decryption:\n");
ecryptfs_dump_hex((lower_page_virt + byte_offset), 8);
}
rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
(extent_offset
* crypt_stat->extent_size),
lower_page, byte_offset,
crypt_stat->extent_size,
extent_iv);
if (rc != crypt_stat->extent_size) {
ecryptfs_printk(KERN_ERR, "Error attempting to "
"decrypt extent [0x%.16x]\n",
(base_extent + extent_offset));
goto out;
}
rc = 0;
if (unlikely(ecryptfs_verbosity > 0)) {
ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
"decryption:\n");
ecryptfs_dump_hex((char *)(page_address(page)
+ byte_offset), 8);
}
extent_offset++;
}
out:
if (lower_page_virt)
kmem_cache_free(ecryptfs_lower_page_cache, lower_page_virt);
return rc;
}
/**
* decrypt_scatterlist
*
* Returns the number of bytes decrypted; negative value on error
*/
static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
struct scatterlist *dest_sg,
struct scatterlist *src_sg, int size,
unsigned char *iv)
{
int rc = 0;
/* Consider doing this once, when the file is opened */
mutex_lock(&crypt_stat->cs_tfm_mutex);
rc = crypto_cipher_setkey(crypt_stat->tfm, crypt_stat->key,
crypt_stat->key_size);
if (rc) {
ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
rc);
mutex_unlock(&crypt_stat->cs_tfm_mutex);
rc = -EINVAL;
goto out;
}
ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
rc = crypto_cipher_decrypt_iv(crypt_stat->tfm, dest_sg, src_sg, size,
iv);
mutex_unlock(&crypt_stat->cs_tfm_mutex);
if (rc) {
ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
rc);
goto out;
}
rc = size;
out:
return rc;
}
/**
* ecryptfs_encrypt_page_offset
*
* Returns the number of bytes encrypted
*/
static int
ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
struct page *dst_page, int dst_offset,
struct page *src_page, int src_offset, int size,
unsigned char *iv)
{
struct scatterlist src_sg, dst_sg;
src_sg.page = src_page;
src_sg.offset = src_offset;
src_sg.length = size;
dst_sg.page = dst_page;
dst_sg.offset = dst_offset;
dst_sg.length = size;
return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
}
/**
* ecryptfs_decrypt_page_offset
*
* Returns the number of bytes decrypted
*/
static int
ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
struct page *dst_page, int dst_offset,
struct page *src_page, int src_offset, int size,
unsigned char *iv)
{
struct scatterlist src_sg, dst_sg;
src_sg.page = src_page;
src_sg.offset = src_offset;
src_sg.length = size;
dst_sg.page = dst_page;
dst_sg.offset = dst_offset;
dst_sg.length = size;
return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
}
#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
/**
* ecryptfs_init_crypt_ctx
* @crypt_stat: Uninitilized crypt stats structure
*
* Initialize the crypto context.
*
* TODO: Performance: Keep a cache of initialized cipher contexts;
* only init if needed
*/
int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
{
int rc = -EINVAL;
if (!crypt_stat->cipher) {
ecryptfs_printk(KERN_ERR, "No cipher specified\n");
goto out;
}
ecryptfs_printk(KERN_DEBUG,
"Initializing cipher [%s]; strlen = [%d]; "
"key_size_bits = [%d]\n",
crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
crypt_stat->key_size << 3);
if (crypt_stat->tfm) {
rc = 0;
goto out;
}
mutex_lock(&crypt_stat->cs_tfm_mutex);
crypt_stat->tfm = crypto_alloc_tfm(crypt_stat->cipher,
ECRYPTFS_DEFAULT_CHAINING_MODE
| CRYPTO_TFM_REQ_WEAK_KEY);
mutex_unlock(&crypt_stat->cs_tfm_mutex);
if (!crypt_stat->tfm) {
ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
"Error initializing cipher [%s]\n",
crypt_stat->cipher);
goto out;
}
rc = 0;
out:
return rc;
}
static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
{
int extent_size_tmp;
crypt_stat->extent_mask = 0xFFFFFFFF;
crypt_stat->extent_shift = 0;
if (crypt_stat->extent_size == 0)
return;
extent_size_tmp = crypt_stat->extent_size;
while ((extent_size_tmp & 0x01) == 0) {
extent_size_tmp >>= 1;
crypt_stat->extent_mask <<= 1;
crypt_stat->extent_shift++;
}
}
void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
{
/* Default values; may be overwritten as we are parsing the
* packets. */
crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
set_extent_mask_and_shift(crypt_stat);
crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) {
crypt_stat->header_extent_size =
ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
} else
crypt_stat->header_extent_size = PAGE_CACHE_SIZE;
crypt_stat->num_header_extents_at_front = 1;
}
/**
* ecryptfs_compute_root_iv
* @crypt_stats
*
* On error, sets the root IV to all 0's.
*/
int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
{
int rc = 0;
char dst[MD5_DIGEST_SIZE];
BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
BUG_ON(crypt_stat->iv_bytes <= 0);
if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID)) {
rc = -EINVAL;
ecryptfs_printk(KERN_WARNING, "Session key not valid; "
"cannot generate root IV\n");
goto out;
}
rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
crypt_stat->key_size);
if (rc) {
ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
"MD5 while generating root IV\n");
goto out;
}
memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
out:
if (rc) {
memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
ECRYPTFS_SET_FLAG(crypt_stat->flags,
ECRYPTFS_SECURITY_WARNING);
}
return rc;
}
static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
{
get_random_bytes(crypt_stat->key, crypt_stat->key_size);
ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID);
ecryptfs_compute_root_iv(crypt_stat);
if (unlikely(ecryptfs_verbosity > 0)) {
ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
ecryptfs_dump_hex(crypt_stat->key,
crypt_stat->key_size);
}
}
/**
* ecryptfs_set_default_crypt_stat_vals
* @crypt_stat
*
* Default values in the event that policy does not override them.
*/
static void ecryptfs_set_default_crypt_stat_vals(
struct ecryptfs_crypt_stat *crypt_stat,
struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
ecryptfs_set_default_sizes(crypt_stat);
strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
ECRYPTFS_CLEAR_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID);
crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
crypt_stat->mount_crypt_stat = mount_crypt_stat;
}
/**
* ecryptfs_new_file_context
* @ecryptfs_dentry
*
* If the crypto context for the file has not yet been established,
* this is where we do that. Establishing a new crypto context
* involves the following decisions:
* - What cipher to use?
* - What set of authentication tokens to use?
* Here we just worry about getting enough information into the
* authentication tokens so that we know that they are available.
* We associate the available authentication tokens with the new file
* via the set of signatures in the crypt_stat struct. Later, when
* the headers are actually written out, we may again defer to
* userspace to perform the encryption of the session key; for the
* foreseeable future, this will be the case with public key packets.
*
* Returns zero on success; non-zero otherwise
*/
/* Associate an authentication token(s) with the file */
int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
{
int rc = 0;
struct ecryptfs_crypt_stat *crypt_stat =
&ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
&ecryptfs_superblock_to_private(
ecryptfs_dentry->d_sb)->mount_crypt_stat;
int cipher_name_len;
ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
/* See if there are mount crypt options */
if (mount_crypt_stat->global_auth_tok) {
ecryptfs_printk(KERN_DEBUG, "Initializing context for new "
"file using mount_crypt_stat\n");
ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_ENCRYPTED);
ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID);
memcpy(crypt_stat->keysigs[crypt_stat->num_keysigs++],
mount_crypt_stat->global_auth_tok_sig,
ECRYPTFS_SIG_SIZE_HEX);
cipher_name_len =
strlen(mount_crypt_stat->global_default_cipher_name);
memcpy(crypt_stat->cipher,
mount_crypt_stat->global_default_cipher_name,
cipher_name_len);
crypt_stat->cipher[cipher_name_len] = '\0';
crypt_stat->key_size =
mount_crypt_stat->global_default_cipher_key_size;
ecryptfs_generate_new_key(crypt_stat);
} else
/* We should not encounter this scenario since we
* should detect lack of global_auth_tok at mount time
* TODO: Applies to 0.1 release only; remove in future
* release */
BUG();
rc = ecryptfs_init_crypt_ctx(crypt_stat);
if (rc)
ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
"context for cipher [%s]: rc = [%d]\n",
crypt_stat->cipher, rc);
return rc;
}
/**
* contains_ecryptfs_marker - check for the ecryptfs marker
* @data: The data block in which to check
*
* Returns one if marker found; zero if not found
*/
int contains_ecryptfs_marker(char *data)
{
u32 m_1, m_2;
memcpy(&m_1, data, 4);
m_1 = be32_to_cpu(m_1);
memcpy(&m_2, (data + 4), 4);
m_2 = be32_to_cpu(m_2);
if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
return 1;
ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
MAGIC_ECRYPTFS_MARKER);
ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
return 0;
}
struct ecryptfs_flag_map_elem {
u32 file_flag;
u32 local_flag;
};
/* Add support for additional flags by adding elements here. */
static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
{0x00000001, ECRYPTFS_ENABLE_HMAC},
{0x00000002, ECRYPTFS_ENCRYPTED}
};
/**
* ecryptfs_process_flags
* @crypt_stat
* @page_virt: Source data to be parsed
* @bytes_read: Updated with the number of bytes read
*
* Returns zero on success; non-zero if the flag set is invalid
*/
static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
char *page_virt, int *bytes_read)
{
int rc = 0;
int i;
u32 flags;
memcpy(&flags, page_virt, 4);
flags = be32_to_cpu(flags);
for (i = 0; i < ((sizeof(ecryptfs_flag_map)
/ sizeof(struct ecryptfs_flag_map_elem))); i++)
if (flags & ecryptfs_flag_map[i].file_flag) {
ECRYPTFS_SET_FLAG(crypt_stat->flags,
ecryptfs_flag_map[i].local_flag);
} else
ECRYPTFS_CLEAR_FLAG(crypt_stat->flags,
ecryptfs_flag_map[i].local_flag);
/* Version is in top 8 bits of the 32-bit flag vector */
crypt_stat->file_version = ((flags >> 24) & 0xFF);
(*bytes_read) = 4;
return rc;
}
/**
* write_ecryptfs_marker
* @page_virt: The pointer to in a page to begin writing the marker
* @written: Number of bytes written
*
* Marker = 0x3c81b7f5
*/
static void write_ecryptfs_marker(char *page_virt, size_t *written)
{
u32 m_1, m_2;
get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
m_1 = cpu_to_be32(m_1);
memcpy(page_virt, &m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
m_2 = cpu_to_be32(m_2);
memcpy(page_virt + (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2), &m_2,
(MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
}
static void
write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
size_t *written)
{
u32 flags = 0;
int i;
for (i = 0; i < ((sizeof(ecryptfs_flag_map)
/ sizeof(struct ecryptfs_flag_map_elem))); i++)
if (ECRYPTFS_CHECK_FLAG(crypt_stat->flags,
ecryptfs_flag_map[i].local_flag))
flags |= ecryptfs_flag_map[i].file_flag;
/* Version is in top 8 bits of the 32-bit flag vector */
flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
flags = cpu_to_be32(flags);
memcpy(page_virt, &flags, 4);
(*written) = 4;
}
struct ecryptfs_cipher_code_str_map_elem {
char cipher_str[16];
u16 cipher_code;
};
/* Add support for additional ciphers by adding elements here. The
* cipher_code is whatever OpenPGP applicatoins use to identify the
* ciphers. List in order of probability. */
static struct ecryptfs_cipher_code_str_map_elem
ecryptfs_cipher_code_str_map[] = {
{"aes",RFC2440_CIPHER_AES_128 },
{"blowfish", RFC2440_CIPHER_BLOWFISH},
{"des3_ede", RFC2440_CIPHER_DES3_EDE},
{"cast5", RFC2440_CIPHER_CAST_5},
{"twofish", RFC2440_CIPHER_TWOFISH},
{"cast6", RFC2440_CIPHER_CAST_6},
{"aes", RFC2440_CIPHER_AES_192},
{"aes", RFC2440_CIPHER_AES_256}
};
/**
* ecryptfs_code_for_cipher_string
* @str: The string representing the cipher name
*
* Returns zero on no match, or the cipher code on match
*/
u16 ecryptfs_code_for_cipher_string(struct ecryptfs_crypt_stat *crypt_stat)
{
int i;
u16 code = 0;
struct ecryptfs_cipher_code_str_map_elem *map =
ecryptfs_cipher_code_str_map;
if (strcmp(crypt_stat->cipher, "aes") == 0) {
switch (crypt_stat->key_size) {
case 16:
code = RFC2440_CIPHER_AES_128;
break;
case 24:
code = RFC2440_CIPHER_AES_192;
break;
case 32:
code = RFC2440_CIPHER_AES_256;
}
} else {
for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
if (strcmp(crypt_stat->cipher, map[i].cipher_str) == 0){
code = map[i].cipher_code;
break;
}
}
return code;
}
/**
* ecryptfs_cipher_code_to_string
* @str: Destination to write out the cipher name
* @cipher_code: The code to convert to cipher name string
*
* Returns zero on success
*/
int ecryptfs_cipher_code_to_string(char *str, u16 cipher_code)
{
int rc = 0;
int i;
str[0] = '\0';
for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
if (str[0] == '\0') {
ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
"[%d]\n", cipher_code);
rc = -EINVAL;
}
return rc;
}
/**
* ecryptfs_read_header_region
* @data
* @dentry
* @nd
*
* Returns zero on success; non-zero otherwise
*/
int ecryptfs_read_header_region(char *data, struct dentry *dentry,
struct vfsmount *mnt)
{
struct file *file;
mm_segment_t oldfs;
int rc;
mnt = mntget(mnt);
file = dentry_open(dentry, mnt, O_RDONLY);
if (IS_ERR(file)) {
ecryptfs_printk(KERN_DEBUG, "Error opening file to "
"read header region\n");
mntput(mnt);
rc = PTR_ERR(file);
goto out;
}
file->f_pos = 0;
oldfs = get_fs();
set_fs(get_ds());
/* For releases 0.1 and 0.2, all of the header information
* fits in the first data extent-sized region. */
rc = file->f_op->read(file, (char __user *)data,
ECRYPTFS_DEFAULT_EXTENT_SIZE, &file->f_pos);
set_fs(oldfs);
fput(file);
rc = 0;
out:
return rc;
}
static void
write_header_metadata(char *virt, struct ecryptfs_crypt_stat *crypt_stat,
size_t *written)
{
u32 header_extent_size;
u16 num_header_extents_at_front;
header_extent_size = (u32)crypt_stat->header_extent_size;
num_header_extents_at_front =
(u16)crypt_stat->num_header_extents_at_front;
header_extent_size = cpu_to_be32(header_extent_size);
memcpy(virt, &header_extent_size, 4);
virt += 4;
num_header_extents_at_front = cpu_to_be16(num_header_extents_at_front);
memcpy(virt, &num_header_extents_at_front, 2);
(*written) = 6;
}
struct kmem_cache *ecryptfs_header_cache_0;
struct kmem_cache *ecryptfs_header_cache_1;
struct kmem_cache *ecryptfs_header_cache_2;
/**
* ecryptfs_write_headers_virt
* @page_virt
* @crypt_stat
* @ecryptfs_dentry
*
* Format version: 1
*
* Header Extent:
* Octets 0-7: Unencrypted file size (big-endian)
* Octets 8-15: eCryptfs special marker
* Octets 16-19: Flags
* Octet 16: File format version number (between 0 and 255)
* Octets 17-18: Reserved
* Octet 19: Bit 1 (lsb): Reserved
* Bit 2: Encrypted?
* Bits 3-8: Reserved
* Octets 20-23: Header extent size (big-endian)
* Octets 24-25: Number of header extents at front of file
* (big-endian)
* Octet 26: Begin RFC 2440 authentication token packet set
* Data Extent 0:
* Lower data (CBC encrypted)
* Data Extent 1:
* Lower data (CBC encrypted)
* ...
*
* Returns zero on success
*/
int ecryptfs_write_headers_virt(char *page_virt,
struct ecryptfs_crypt_stat *crypt_stat,
struct dentry *ecryptfs_dentry)
{
int rc;
size_t written;
size_t offset;
offset = ECRYPTFS_FILE_SIZE_BYTES;
write_ecryptfs_marker((page_virt + offset), &written);
offset += written;
write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
offset += written;
write_header_metadata((page_virt + offset), crypt_stat, &written);
offset += written;
rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
ecryptfs_dentry, &written,
PAGE_CACHE_SIZE - offset);
if (rc)
ecryptfs_printk(KERN_WARNING, "Error generating key packet "
"set; rc = [%d]\n", rc);
return rc;
}
/**
* ecryptfs_write_headers
* @lower_file: The lower file struct, which was returned from dentry_open
*
* Write the file headers out. This will likely involve a userspace
* callout, in which the session key is encrypted with one or more
* public keys and/or the passphrase necessary to do the encryption is
* retrieved via a prompt. Exactly what happens at this point should
* be policy-dependent.
*
* Returns zero on success; non-zero on error
*/
int ecryptfs_write_headers(struct dentry *ecryptfs_dentry,
struct file *lower_file)
{
mm_segment_t oldfs;
struct ecryptfs_crypt_stat *crypt_stat;
char *page_virt;
int current_header_page;
int header_pages;
int rc = 0;
crypt_stat = &ecryptfs_inode_to_private(
ecryptfs_dentry->d_inode)->crypt_stat;
if (likely(ECRYPTFS_CHECK_FLAG(crypt_stat->flags,
ECRYPTFS_ENCRYPTED))) {
if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags,
ECRYPTFS_KEY_VALID)) {
ecryptfs_printk(KERN_DEBUG, "Key is "
"invalid; bailing out\n");
rc = -EINVAL;
goto out;
}
} else {
rc = -EINVAL;
ecryptfs_printk(KERN_WARNING,
"Called with crypt_stat->encrypted == 0\n");
goto out;
}
/* Released in this function */
page_virt = kmem_cache_alloc(ecryptfs_header_cache_0, SLAB_USER);
if (!page_virt) {
ecryptfs_printk(KERN_ERR, "Out of memory\n");
rc = -ENOMEM;
goto out;
}
memset(page_virt, 0, PAGE_CACHE_SIZE);
rc = ecryptfs_write_headers_virt(page_virt, crypt_stat,
ecryptfs_dentry);
if (unlikely(rc)) {
ecryptfs_printk(KERN_ERR, "Error whilst writing headers\n");
memset(page_virt, 0, PAGE_CACHE_SIZE);
goto out_free;
}
ecryptfs_printk(KERN_DEBUG,
"Writing key packet set to underlying file\n");
lower_file->f_pos = 0;
oldfs = get_fs();
set_fs(get_ds());
ecryptfs_printk(KERN_DEBUG, "Calling lower_file->f_op->"
"write() w/ header page; lower_file->f_pos = "
"[0x%.16x]\n", lower_file->f_pos);
lower_file->f_op->write(lower_file, (char __user *)page_virt,
PAGE_CACHE_SIZE, &lower_file->f_pos);
header_pages = ((crypt_stat->header_extent_size
* crypt_stat->num_header_extents_at_front)
/ PAGE_CACHE_SIZE);
memset(page_virt, 0, PAGE_CACHE_SIZE);
current_header_page = 1;
while (current_header_page < header_pages) {
ecryptfs_printk(KERN_DEBUG, "Calling lower_file->f_op->"
"write() w/ zero'd page; lower_file->f_pos = "
"[0x%.16x]\n", lower_file->f_pos);
lower_file->f_op->write(lower_file, (char __user *)page_virt,
PAGE_CACHE_SIZE, &lower_file->f_pos);
current_header_page++;
}
set_fs(oldfs);
ecryptfs_printk(KERN_DEBUG,
"Done writing key packet set to underlying file.\n");
out_free:
kmem_cache_free(ecryptfs_header_cache_0, page_virt);
out:
return rc;
}
static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
char *virt, int *bytes_read)
{
int rc = 0;
u32 header_extent_size;
u16 num_header_extents_at_front;
memcpy(&header_extent_size, virt, 4);
header_extent_size = be32_to_cpu(header_extent_size);
virt += 4;
memcpy(&num_header_extents_at_front, virt, 2);
num_header_extents_at_front = be16_to_cpu(num_header_extents_at_front);
crypt_stat->header_extent_size = (int)header_extent_size;
crypt_stat->num_header_extents_at_front =
(int)num_header_extents_at_front;
(*bytes_read) = 6;
if ((crypt_stat->header_extent_size
* crypt_stat->num_header_extents_at_front)
< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) {
rc = -EINVAL;
ecryptfs_printk(KERN_WARNING, "Invalid header extent size: "
"[%d]\n", crypt_stat->header_extent_size);
}
return rc;
}
/**
* set_default_header_data
*
* For version 0 file format; this function is only for backwards
* compatibility for files created with the prior versions of
* eCryptfs.
*/
static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
{
crypt_stat->header_extent_size = 4096;
crypt_stat->num_header_extents_at_front = 1;
}
/**
* ecryptfs_read_headers_virt
*
* Read/parse the header data. The header format is detailed in the
* comment block for the ecryptfs_write_headers_virt() function.
*
* Returns zero on success
*/
static int ecryptfs_read_headers_virt(char *page_virt,
struct ecryptfs_crypt_stat *crypt_stat,
struct dentry *ecryptfs_dentry)
{
int rc = 0;
int offset;
int bytes_read;
ecryptfs_set_default_sizes(crypt_stat);
crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
ecryptfs_dentry->d_sb)->mount_crypt_stat;
offset = ECRYPTFS_FILE_SIZE_BYTES;
rc = contains_ecryptfs_marker(page_virt + offset);
if (rc == 0) {
rc = -EINVAL;
goto out;
}
offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
&bytes_read);
if (rc) {
ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
goto out;
}
if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
"file version [%d] is supported by this "
"version of eCryptfs\n",
crypt_stat->file_version,
ECRYPTFS_SUPPORTED_FILE_VERSION);
rc = -EINVAL;
goto out;
}
offset += bytes_read;
if (crypt_stat->file_version >= 1) {
rc = parse_header_metadata(crypt_stat, (page_virt + offset),
&bytes_read);
if (rc) {
ecryptfs_printk(KERN_WARNING, "Error reading header "
"metadata; rc = [%d]\n", rc);
}
offset += bytes_read;
} else
set_default_header_data(crypt_stat);
rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
ecryptfs_dentry);
out:
return rc;
}
/**
* ecryptfs_read_headers
*
* Returns zero if valid headers found and parsed; non-zero otherwise
*/
int ecryptfs_read_headers(struct dentry *ecryptfs_dentry,
struct file *lower_file)
{
int rc = 0;
char *page_virt = NULL;
mm_segment_t oldfs;
ssize_t bytes_read;
struct ecryptfs_crypt_stat *crypt_stat =
&ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
/* Read the first page from the underlying file */
page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, SLAB_USER);
if (!page_virt) {
rc = -ENOMEM;
ecryptfs_printk(KERN_ERR, "Unable to allocate page_virt\n");
goto out;
}
lower_file->f_pos = 0;
oldfs = get_fs();
set_fs(get_ds());
bytes_read = lower_file->f_op->read(lower_file,
(char __user *)page_virt,
ECRYPTFS_DEFAULT_EXTENT_SIZE,
&lower_file->f_pos);
set_fs(oldfs);
if (bytes_read != ECRYPTFS_DEFAULT_EXTENT_SIZE) {
rc = -EINVAL;
goto out;
}
rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
ecryptfs_dentry);
if (rc) {
ecryptfs_printk(KERN_DEBUG, "Valid eCryptfs headers not "
"found\n");
rc = -EINVAL;
}
out:
if (page_virt) {
memset(page_virt, 0, PAGE_CACHE_SIZE);
kmem_cache_free(ecryptfs_header_cache_1, page_virt);
}
return rc;
}
/**
* ecryptfs_encode_filename - converts a plaintext file name to cipher text
* @crypt_stat: The crypt_stat struct associated with the file anem to encode
* @name: The plaintext name
* @length: The length of the plaintext
* @encoded_name: The encypted name
*
* Encrypts and encodes a filename into something that constitutes a
* valid filename for a filesystem, with printable characters.
*
* We assume that we have a properly initialized crypto context,
* pointed to by crypt_stat->tfm.
*
* TODO: Implement filename decoding and decryption here, in place of
* memcpy. We are keeping the framework around for now to (1)
* facilitate testing of the components needed to implement filename
* encryption and (2) to provide a code base from which other
* developers in the community can easily implement this feature.
*
* Returns the length of encoded filename; negative if error
*/
int
ecryptfs_encode_filename(struct ecryptfs_crypt_stat *crypt_stat,
const char *name, int length, char **encoded_name)
{
int error = 0;
(*encoded_name) = kmalloc(length + 2, GFP_KERNEL);
if (!(*encoded_name)) {
error = -ENOMEM;
goto out;
}
/* TODO: Filename encryption is a scheduled feature for a
* future version of eCryptfs. This function is here only for
* the purpose of providing a framework for other developers
* to easily implement filename encryption. Hint: Replace this
* memcpy() with a call to encrypt and encode the
* filename, the set the length accordingly. */
memcpy((void *)(*encoded_name), (void *)name, length);
(*encoded_name)[length] = '\0';
error = length + 1;
out:
return error;
}
/**
* ecryptfs_decode_filename - converts the cipher text name to plaintext
* @crypt_stat: The crypt_stat struct associated with the file
* @name: The filename in cipher text
* @length: The length of the cipher text name
* @decrypted_name: The plaintext name
*
* Decodes and decrypts the filename.
*
* We assume that we have a properly initialized crypto context,
* pointed to by crypt_stat->tfm.
*
* TODO: Implement filename decoding and decryption here, in place of
* memcpy. We are keeping the framework around for now to (1)
* facilitate testing of the components needed to implement filename
* encryption and (2) to provide a code base from which other
* developers in the community can easily implement this feature.
*
* Returns the length of decoded filename; negative if error
*/
int
ecryptfs_decode_filename(struct ecryptfs_crypt_stat *crypt_stat,
const char *name, int length, char **decrypted_name)
{
int error = 0;
(*decrypted_name) = kmalloc(length + 2, GFP_KERNEL);
if (!(*decrypted_name)) {
error = -ENOMEM;
goto out;
}
/* TODO: Filename encryption is a scheduled feature for a
* future version of eCryptfs. This function is here only for
* the purpose of providing a framework for other developers
* to easily implement filename encryption. Hint: Replace this
* memcpy() with a call to decode and decrypt the
* filename, the set the length accordingly. */
memcpy((void *)(*decrypted_name), (void *)name, length);
(*decrypted_name)[length + 1] = '\0'; /* Only for convenience
* in printing out the
* string in debug
* messages */
error = length;
out:
return error;
}
/**
* ecryptfs_process_cipher - Perform cipher initialization.
* @tfm: Crypto context set by this function
* @key_tfm: Crypto context for key material, set by this function
* @cipher_name: Name of the cipher.
* @key_size: Size of the key in bytes.
*
* Returns zero on success. Any crypto_tfm structs allocated here
* should be released by other functions, such as on a superblock put
* event, regardless of whether this function succeeds for fails.
*/
int
ecryptfs_process_cipher(struct crypto_tfm **tfm, struct crypto_tfm **key_tfm,
char *cipher_name, size_t key_size)
{
char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
int rc;
*tfm = *key_tfm = NULL;
if (key_size > ECRYPTFS_MAX_KEY_BYTES) {
rc = -EINVAL;
printk(KERN_ERR "Requested key size is [%Zd] bytes; maximum "
"allowable is [%d]\n", key_size, ECRYPTFS_MAX_KEY_BYTES);
goto out;
}
*tfm = crypto_alloc_tfm(cipher_name, (ECRYPTFS_DEFAULT_CHAINING_MODE
| CRYPTO_TFM_REQ_WEAK_KEY));
if (!(*tfm)) {
rc = -EINVAL;
printk(KERN_ERR "Unable to allocate crypto cipher with name "
"[%s]\n", cipher_name);
goto out;
}
*key_tfm = crypto_alloc_tfm(cipher_name, CRYPTO_TFM_REQ_WEAK_KEY);
if (!(*key_tfm)) {
rc = -EINVAL;
printk(KERN_ERR "Unable to allocate crypto cipher with name "
"[%s]\n", cipher_name);
goto out;
}
if (key_size < crypto_tfm_alg_min_keysize(*tfm)) {
rc = -EINVAL;
printk(KERN_ERR "Request key size is [%Zd]; minimum key size "
"supported by cipher [%s] is [%d]\n", key_size,
cipher_name, crypto_tfm_alg_min_keysize(*tfm));
goto out;
}
if (key_size < crypto_tfm_alg_min_keysize(*key_tfm)) {
rc = -EINVAL;
printk(KERN_ERR "Request key size is [%Zd]; minimum key size "
"supported by cipher [%s] is [%d]\n", key_size,
cipher_name, crypto_tfm_alg_min_keysize(*key_tfm));
goto out;
}
if (key_size > crypto_tfm_alg_max_keysize(*tfm)) {
rc = -EINVAL;
printk(KERN_ERR "Request key size is [%Zd]; maximum key size "
"supported by cipher [%s] is [%d]\n", key_size,
cipher_name, crypto_tfm_alg_min_keysize(*tfm));
goto out;
}
if (key_size > crypto_tfm_alg_max_keysize(*key_tfm)) {
rc = -EINVAL;
printk(KERN_ERR "Request key size is [%Zd]; maximum key size "
"supported by cipher [%s] is [%d]\n", key_size,
cipher_name, crypto_tfm_alg_min_keysize(*key_tfm));
goto out;
}
get_random_bytes(dummy_key, key_size);
rc = crypto_cipher_setkey(*tfm, dummy_key, key_size);
if (rc) {
printk(KERN_ERR "Error attempting to set key of size [%Zd] for "
"cipher [%s]; rc = [%d]\n", key_size, cipher_name, rc);
rc = -EINVAL;
goto out;
}
rc = crypto_cipher_setkey(*key_tfm, dummy_key, key_size);
if (rc) {
printk(KERN_ERR "Error attempting to set key of size [%Zd] for "
"cipher [%s]; rc = [%d]\n", key_size, cipher_name, rc);
rc = -EINVAL;
goto out;
}
out:
return rc;
}