linux/sound/pci/cs4281.c

2110 lines
65 KiB
C
Raw Normal View History

/*
* Driver for Cirrus Logic CS4281 based PCI soundcard
* Copyright (c) by Jaroslav Kysela <perex@perex.cz>,
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <asm/io.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/gameport.h>
#include <linux/module.h>
#include <sound/core.h>
#include <sound/control.h>
#include <sound/pcm.h>
#include <sound/rawmidi.h>
#include <sound/ac97_codec.h>
#include <sound/tlv.h>
#include <sound/opl3.h>
#include <sound/initval.h>
MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>");
MODULE_DESCRIPTION("Cirrus Logic CS4281");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{Cirrus Logic,CS4281}}");
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable switches */
static int dual_codec[SNDRV_CARDS]; /* dual codec */
module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for CS4281 soundcard.");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for CS4281 soundcard.");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable CS4281 soundcard.");
module_param_array(dual_codec, bool, NULL, 0444);
MODULE_PARM_DESC(dual_codec, "Secondary Codec ID (0 = disabled).");
/*
* Direct registers
*/
#define CS4281_BA0_SIZE 0x1000
#define CS4281_BA1_SIZE 0x10000
/*
* BA0 registers
*/
#define BA0_HISR 0x0000 /* Host Interrupt Status Register */
#define BA0_HISR_INTENA (1<<31) /* Internal Interrupt Enable Bit */
#define BA0_HISR_MIDI (1<<22) /* MIDI port interrupt */
#define BA0_HISR_FIFOI (1<<20) /* FIFO polled interrupt */
#define BA0_HISR_DMAI (1<<18) /* DMA interrupt (half or end) */
#define BA0_HISR_FIFO(c) (1<<(12+(c))) /* FIFO channel interrupt */
#define BA0_HISR_DMA(c) (1<<(8+(c))) /* DMA channel interrupt */
#define BA0_HISR_GPPI (1<<5) /* General Purpose Input (Primary chip) */
#define BA0_HISR_GPSI (1<<4) /* General Purpose Input (Secondary chip) */
#define BA0_HISR_GP3I (1<<3) /* GPIO3 pin Interrupt */
#define BA0_HISR_GP1I (1<<2) /* GPIO1 pin Interrupt */
#define BA0_HISR_VUPI (1<<1) /* VOLUP pin Interrupt */
#define BA0_HISR_VDNI (1<<0) /* VOLDN pin Interrupt */
#define BA0_HICR 0x0008 /* Host Interrupt Control Register */
#define BA0_HICR_CHGM (1<<1) /* INTENA Change Mask */
#define BA0_HICR_IEV (1<<0) /* INTENA Value */
#define BA0_HICR_EOI (3<<0) /* End of Interrupt command */
#define BA0_HIMR 0x000c /* Host Interrupt Mask Register */
/* Use same contants as for BA0_HISR */
#define BA0_IIER 0x0010 /* ISA Interrupt Enable Register */
#define BA0_HDSR0 0x00f0 /* Host DMA Engine 0 Status Register */
#define BA0_HDSR1 0x00f4 /* Host DMA Engine 1 Status Register */
#define BA0_HDSR2 0x00f8 /* Host DMA Engine 2 Status Register */
#define BA0_HDSR3 0x00fc /* Host DMA Engine 3 Status Register */
#define BA0_HDSR_CH1P (1<<25) /* Channel 1 Pending */
#define BA0_HDSR_CH2P (1<<24) /* Channel 2 Pending */
#define BA0_HDSR_DHTC (1<<17) /* DMA Half Terminal Count */
#define BA0_HDSR_DTC (1<<16) /* DMA Terminal Count */
#define BA0_HDSR_DRUN (1<<15) /* DMA Running */
#define BA0_HDSR_RQ (1<<7) /* Pending Request */
#define BA0_DCA0 0x0110 /* Host DMA Engine 0 Current Address */
#define BA0_DCC0 0x0114 /* Host DMA Engine 0 Current Count */
#define BA0_DBA0 0x0118 /* Host DMA Engine 0 Base Address */
#define BA0_DBC0 0x011c /* Host DMA Engine 0 Base Count */
#define BA0_DCA1 0x0120 /* Host DMA Engine 1 Current Address */
#define BA0_DCC1 0x0124 /* Host DMA Engine 1 Current Count */
#define BA0_DBA1 0x0128 /* Host DMA Engine 1 Base Address */
#define BA0_DBC1 0x012c /* Host DMA Engine 1 Base Count */
#define BA0_DCA2 0x0130 /* Host DMA Engine 2 Current Address */
#define BA0_DCC2 0x0134 /* Host DMA Engine 2 Current Count */
#define BA0_DBA2 0x0138 /* Host DMA Engine 2 Base Address */
#define BA0_DBC2 0x013c /* Host DMA Engine 2 Base Count */
#define BA0_DCA3 0x0140 /* Host DMA Engine 3 Current Address */
#define BA0_DCC3 0x0144 /* Host DMA Engine 3 Current Count */
#define BA0_DBA3 0x0148 /* Host DMA Engine 3 Base Address */
#define BA0_DBC3 0x014c /* Host DMA Engine 3 Base Count */
#define BA0_DMR0 0x0150 /* Host DMA Engine 0 Mode */
#define BA0_DCR0 0x0154 /* Host DMA Engine 0 Command */
#define BA0_DMR1 0x0158 /* Host DMA Engine 1 Mode */
#define BA0_DCR1 0x015c /* Host DMA Engine 1 Command */
#define BA0_DMR2 0x0160 /* Host DMA Engine 2 Mode */
#define BA0_DCR2 0x0164 /* Host DMA Engine 2 Command */
#define BA0_DMR3 0x0168 /* Host DMA Engine 3 Mode */
#define BA0_DCR3 0x016c /* Host DMA Engine 3 Command */
#define BA0_DMR_DMA (1<<29) /* Enable DMA mode */
#define BA0_DMR_POLL (1<<28) /* Enable poll mode */
#define BA0_DMR_TBC (1<<25) /* Transfer By Channel */
#define BA0_DMR_CBC (1<<24) /* Count By Channel (0 = frame resolution) */
#define BA0_DMR_SWAPC (1<<22) /* Swap Left/Right Channels */
#define BA0_DMR_SIZE20 (1<<20) /* Sample is 20-bit */
#define BA0_DMR_USIGN (1<<19) /* Unsigned */
#define BA0_DMR_BEND (1<<18) /* Big Endian */
#define BA0_DMR_MONO (1<<17) /* Mono */
#define BA0_DMR_SIZE8 (1<<16) /* Sample is 8-bit */
#define BA0_DMR_TYPE_DEMAND (0<<6)
#define BA0_DMR_TYPE_SINGLE (1<<6)
#define BA0_DMR_TYPE_BLOCK (2<<6)
#define BA0_DMR_TYPE_CASCADE (3<<6) /* Not supported */
#define BA0_DMR_DEC (1<<5) /* Access Increment (0) or Decrement (1) */
#define BA0_DMR_AUTO (1<<4) /* Auto-Initialize */
#define BA0_DMR_TR_VERIFY (0<<2) /* Verify Transfer */
#define BA0_DMR_TR_WRITE (1<<2) /* Write Transfer */
#define BA0_DMR_TR_READ (2<<2) /* Read Transfer */
#define BA0_DCR_HTCIE (1<<17) /* Half Terminal Count Interrupt */
#define BA0_DCR_TCIE (1<<16) /* Terminal Count Interrupt */
#define BA0_DCR_MSK (1<<0) /* DMA Mask bit */
#define BA0_FCR0 0x0180 /* FIFO Control 0 */
#define BA0_FCR1 0x0184 /* FIFO Control 1 */
#define BA0_FCR2 0x0188 /* FIFO Control 2 */
#define BA0_FCR3 0x018c /* FIFO Control 3 */
#define BA0_FCR_FEN (1<<31) /* FIFO Enable bit */
#define BA0_FCR_DACZ (1<<30) /* DAC Zero */
#define BA0_FCR_PSH (1<<29) /* Previous Sample Hold */
#define BA0_FCR_RS(x) (((x)&0x1f)<<24) /* Right Slot Mapping */
#define BA0_FCR_LS(x) (((x)&0x1f)<<16) /* Left Slot Mapping */
#define BA0_FCR_SZ(x) (((x)&0x7f)<<8) /* FIFO buffer size (in samples) */
#define BA0_FCR_OF(x) (((x)&0x7f)<<0) /* FIFO starting offset (in samples) */
#define BA0_FPDR0 0x0190 /* FIFO Polled Data 0 */
#define BA0_FPDR1 0x0194 /* FIFO Polled Data 1 */
#define BA0_FPDR2 0x0198 /* FIFO Polled Data 2 */
#define BA0_FPDR3 0x019c /* FIFO Polled Data 3 */
#define BA0_FCHS 0x020c /* FIFO Channel Status */
#define BA0_FCHS_RCO(x) (1<<(7+(((x)&3)<<3))) /* Right Channel Out */
#define BA0_FCHS_LCO(x) (1<<(6+(((x)&3)<<3))) /* Left Channel Out */
#define BA0_FCHS_MRP(x) (1<<(5+(((x)&3)<<3))) /* Move Read Pointer */
#define BA0_FCHS_FE(x) (1<<(4+(((x)&3)<<3))) /* FIFO Empty */
#define BA0_FCHS_FF(x) (1<<(3+(((x)&3)<<3))) /* FIFO Full */
#define BA0_FCHS_IOR(x) (1<<(2+(((x)&3)<<3))) /* Internal Overrun Flag */
#define BA0_FCHS_RCI(x) (1<<(1+(((x)&3)<<3))) /* Right Channel In */
#define BA0_FCHS_LCI(x) (1<<(0+(((x)&3)<<3))) /* Left Channel In */
#define BA0_FSIC0 0x0210 /* FIFO Status and Interrupt Control 0 */
#define BA0_FSIC1 0x0214 /* FIFO Status and Interrupt Control 1 */
#define BA0_FSIC2 0x0218 /* FIFO Status and Interrupt Control 2 */
#define BA0_FSIC3 0x021c /* FIFO Status and Interrupt Control 3 */
#define BA0_FSIC_FIC(x) (((x)&0x7f)<<24) /* FIFO Interrupt Count */
#define BA0_FSIC_FORIE (1<<23) /* FIFO OverRun Interrupt Enable */
#define BA0_FSIC_FURIE (1<<22) /* FIFO UnderRun Interrupt Enable */
#define BA0_FSIC_FSCIE (1<<16) /* FIFO Sample Count Interrupt Enable */
#define BA0_FSIC_FSC(x) (((x)&0x7f)<<8) /* FIFO Sample Count */
#define BA0_FSIC_FOR (1<<7) /* FIFO OverRun */
#define BA0_FSIC_FUR (1<<6) /* FIFO UnderRun */
#define BA0_FSIC_FSCR (1<<0) /* FIFO Sample Count Reached */
#define BA0_PMCS 0x0344 /* Power Management Control/Status */
#define BA0_CWPR 0x03e0 /* Configuration Write Protect */
#define BA0_EPPMC 0x03e4 /* Extended PCI Power Management Control */
#define BA0_EPPMC_FPDN (1<<14) /* Full Power DowN */
#define BA0_GPIOR 0x03e8 /* GPIO Pin Interface Register */
#define BA0_SPMC 0x03ec /* Serial Port Power Management Control (& ASDIN2 enable) */
#define BA0_SPMC_GIPPEN (1<<15) /* GP INT Primary PME# Enable */
#define BA0_SPMC_GISPEN (1<<14) /* GP INT Secondary PME# Enable */
#define BA0_SPMC_EESPD (1<<9) /* EEPROM Serial Port Disable */
#define BA0_SPMC_ASDI2E (1<<8) /* ASDIN2 Enable */
#define BA0_SPMC_ASDO (1<<7) /* Asynchronous ASDOUT Assertion */
#define BA0_SPMC_WUP2 (1<<3) /* Wakeup for Secondary Input */
#define BA0_SPMC_WUP1 (1<<2) /* Wakeup for Primary Input */
#define BA0_SPMC_ASYNC (1<<1) /* Asynchronous ASYNC Assertion */
#define BA0_SPMC_RSTN (1<<0) /* Reset Not! */
#define BA0_CFLR 0x03f0 /* Configuration Load Register (EEPROM or BIOS) */
#define BA0_CFLR_DEFAULT 0x00000001 /* CFLR must be in AC97 link mode */
#define BA0_IISR 0x03f4 /* ISA Interrupt Select */
#define BA0_TMS 0x03f8 /* Test Register */
#define BA0_SSVID 0x03fc /* Subsystem ID register */
#define BA0_CLKCR1 0x0400 /* Clock Control Register 1 */
#define BA0_CLKCR1_CLKON (1<<25) /* Read Only */
#define BA0_CLKCR1_DLLRDY (1<<24) /* DLL Ready */
#define BA0_CLKCR1_DLLOS (1<<6) /* DLL Output Select */
#define BA0_CLKCR1_SWCE (1<<5) /* Clock Enable */
#define BA0_CLKCR1_DLLP (1<<4) /* DLL PowerUp */
#define BA0_CLKCR1_DLLSS (((x)&3)<<3) /* DLL Source Select */
#define BA0_FRR 0x0410 /* Feature Reporting Register */
#define BA0_SLT12O 0x041c /* Slot 12 GPIO Output Register for AC-Link */
#define BA0_SERMC 0x0420 /* Serial Port Master Control */
#define BA0_SERMC_FCRN (1<<27) /* Force Codec Ready Not */
#define BA0_SERMC_ODSEN2 (1<<25) /* On-Demand Support Enable ASDIN2 */
#define BA0_SERMC_ODSEN1 (1<<24) /* On-Demand Support Enable ASDIN1 */
#define BA0_SERMC_SXLB (1<<21) /* ASDIN2 to ASDOUT Loopback */
#define BA0_SERMC_SLB (1<<20) /* ASDOUT to ASDIN2 Loopback */
#define BA0_SERMC_LOVF (1<<19) /* Loopback Output Valid Frame bit */
#define BA0_SERMC_TCID(x) (((x)&3)<<16) /* Target Secondary Codec ID */
#define BA0_SERMC_PXLB (5<<1) /* Primary Port External Loopback */
#define BA0_SERMC_PLB (4<<1) /* Primary Port Internal Loopback */
#define BA0_SERMC_PTC (7<<1) /* Port Timing Configuration */
#define BA0_SERMC_PTC_AC97 (1<<1) /* AC97 mode */
#define BA0_SERMC_MSPE (1<<0) /* Master Serial Port Enable */
#define BA0_SERC1 0x0428 /* Serial Port Configuration 1 */
#define BA0_SERC1_SO1F(x) (((x)&7)>>1) /* Primary Output Port Format */
#define BA0_SERC1_AC97 (1<<1)
#define BA0_SERC1_SO1EN (1<<0) /* Primary Output Port Enable */
#define BA0_SERC2 0x042c /* Serial Port Configuration 2 */
#define BA0_SERC2_SI1F(x) (((x)&7)>>1) /* Primary Input Port Format */
#define BA0_SERC2_AC97 (1<<1)
#define BA0_SERC2_SI1EN (1<<0) /* Primary Input Port Enable */
#define BA0_SLT12M 0x045c /* Slot 12 Monitor Register for Primary AC-Link */
#define BA0_ACCTL 0x0460 /* AC'97 Control */
#define BA0_ACCTL_TC (1<<6) /* Target Codec */
#define BA0_ACCTL_CRW (1<<4) /* 0=Write, 1=Read Command */
#define BA0_ACCTL_DCV (1<<3) /* Dynamic Command Valid */
#define BA0_ACCTL_VFRM (1<<2) /* Valid Frame */
#define BA0_ACCTL_ESYN (1<<1) /* Enable Sync */
#define BA0_ACSTS 0x0464 /* AC'97 Status */
#define BA0_ACSTS_VSTS (1<<1) /* Valid Status */
#define BA0_ACSTS_CRDY (1<<0) /* Codec Ready */
#define BA0_ACOSV 0x0468 /* AC'97 Output Slot Valid */
#define BA0_ACOSV_SLV(x) (1<<((x)-3))
#define BA0_ACCAD 0x046c /* AC'97 Command Address */
#define BA0_ACCDA 0x0470 /* AC'97 Command Data */
#define BA0_ACISV 0x0474 /* AC'97 Input Slot Valid */
#define BA0_ACISV_SLV(x) (1<<((x)-3))
#define BA0_ACSAD 0x0478 /* AC'97 Status Address */
#define BA0_ACSDA 0x047c /* AC'97 Status Data */
#define BA0_JSPT 0x0480 /* Joystick poll/trigger */
#define BA0_JSCTL 0x0484 /* Joystick control */
#define BA0_JSC1 0x0488 /* Joystick control */
#define BA0_JSC2 0x048c /* Joystick control */
#define BA0_JSIO 0x04a0
#define BA0_MIDCR 0x0490 /* MIDI Control */
#define BA0_MIDCR_MRST (1<<5) /* Reset MIDI Interface */
#define BA0_MIDCR_MLB (1<<4) /* MIDI Loop Back Enable */
#define BA0_MIDCR_TIE (1<<3) /* MIDI Transmuit Interrupt Enable */
#define BA0_MIDCR_RIE (1<<2) /* MIDI Receive Interrupt Enable */
#define BA0_MIDCR_RXE (1<<1) /* MIDI Receive Enable */
#define BA0_MIDCR_TXE (1<<0) /* MIDI Transmit Enable */
#define BA0_MIDCMD 0x0494 /* MIDI Command (wo) */
#define BA0_MIDSR 0x0494 /* MIDI Status (ro) */
#define BA0_MIDSR_RDA (1<<15) /* Sticky bit (RBE 1->0) */
#define BA0_MIDSR_TBE (1<<14) /* Sticky bit (TBF 0->1) */
#define BA0_MIDSR_RBE (1<<7) /* Receive Buffer Empty */
#define BA0_MIDSR_TBF (1<<6) /* Transmit Buffer Full */
#define BA0_MIDWP 0x0498 /* MIDI Write */
#define BA0_MIDRP 0x049c /* MIDI Read (ro) */
#define BA0_AODSD1 0x04a8 /* AC'97 On-Demand Slot Disable for primary link (ro) */
#define BA0_AODSD1_NDS(x) (1<<((x)-3))
#define BA0_AODSD2 0x04ac /* AC'97 On-Demand Slot Disable for secondary link (ro) */
#define BA0_AODSD2_NDS(x) (1<<((x)-3))
#define BA0_CFGI 0x04b0 /* Configure Interface (EEPROM interface) */
#define BA0_SLT12M2 0x04dc /* Slot 12 Monitor Register 2 for secondary AC-link */
#define BA0_ACSTS2 0x04e4 /* AC'97 Status Register 2 */
#define BA0_ACISV2 0x04f4 /* AC'97 Input Slot Valid Register 2 */
#define BA0_ACSAD2 0x04f8 /* AC'97 Status Address Register 2 */
#define BA0_ACSDA2 0x04fc /* AC'97 Status Data Register 2 */
#define BA0_FMSR 0x0730 /* FM Synthesis Status (ro) */
#define BA0_B0AP 0x0730 /* FM Bank 0 Address Port (wo) */
#define BA0_FMDP 0x0734 /* FM Data Port */
#define BA0_B1AP 0x0738 /* FM Bank 1 Address Port */
#define BA0_B1DP 0x073c /* FM Bank 1 Data Port */
#define BA0_SSPM 0x0740 /* Sound System Power Management */
#define BA0_SSPM_MIXEN (1<<6) /* Playback SRC + FM/Wavetable MIX */
#define BA0_SSPM_CSRCEN (1<<5) /* Capture Sample Rate Converter Enable */
#define BA0_SSPM_PSRCEN (1<<4) /* Playback Sample Rate Converter Enable */
#define BA0_SSPM_JSEN (1<<3) /* Joystick Enable */
#define BA0_SSPM_ACLEN (1<<2) /* Serial Port Engine and AC-Link Enable */
#define BA0_SSPM_FMEN (1<<1) /* FM Synthesis Block Enable */
#define BA0_DACSR 0x0744 /* DAC Sample Rate - Playback SRC */
#define BA0_ADCSR 0x0748 /* ADC Sample Rate - Capture SRC */
#define BA0_SSCR 0x074c /* Sound System Control Register */
#define BA0_SSCR_HVS1 (1<<23) /* Hardwave Volume Step (0=1,1=2) */
#define BA0_SSCR_MVCS (1<<19) /* Master Volume Codec Select */
#define BA0_SSCR_MVLD (1<<18) /* Master Volume Line Out Disable */
#define BA0_SSCR_MVAD (1<<17) /* Master Volume Alternate Out Disable */
#define BA0_SSCR_MVMD (1<<16) /* Master Volume Mono Out Disable */
#define BA0_SSCR_XLPSRC (1<<8) /* External SRC Loopback Mode */
#define BA0_SSCR_LPSRC (1<<7) /* SRC Loopback Mode */
#define BA0_SSCR_CDTX (1<<5) /* CD Transfer Data */
#define BA0_SSCR_HVC (1<<3) /* Harware Volume Control Enable */
#define BA0_FMLVC 0x0754 /* FM Synthesis Left Volume Control */
#define BA0_FMRVC 0x0758 /* FM Synthesis Right Volume Control */
#define BA0_SRCSA 0x075c /* SRC Slot Assignments */
#define BA0_PPLVC 0x0760 /* PCM Playback Left Volume Control */
#define BA0_PPRVC 0x0764 /* PCM Playback Right Volume Control */
#define BA0_PASR 0x0768 /* playback sample rate */
#define BA0_CASR 0x076C /* capture sample rate */
/* Source Slot Numbers - Playback */
#define SRCSLOT_LEFT_PCM_PLAYBACK 0
#define SRCSLOT_RIGHT_PCM_PLAYBACK 1
#define SRCSLOT_PHONE_LINE_1_DAC 2
#define SRCSLOT_CENTER_PCM_PLAYBACK 3
#define SRCSLOT_LEFT_SURROUND_PCM_PLAYBACK 4
#define SRCSLOT_RIGHT_SURROUND_PCM_PLAYBACK 5
#define SRCSLOT_LFE_PCM_PLAYBACK 6
#define SRCSLOT_PHONE_LINE_2_DAC 7
#define SRCSLOT_HEADSET_DAC 8
#define SRCSLOT_LEFT_WT 29 /* invalid for BA0_SRCSA */
#define SRCSLOT_RIGHT_WT 30 /* invalid for BA0_SRCSA */
/* Source Slot Numbers - Capture */
#define SRCSLOT_LEFT_PCM_RECORD 10
#define SRCSLOT_RIGHT_PCM_RECORD 11
#define SRCSLOT_PHONE_LINE_1_ADC 12
#define SRCSLOT_MIC_ADC 13
#define SRCSLOT_PHONE_LINE_2_ADC 17
#define SRCSLOT_HEADSET_ADC 18
#define SRCSLOT_SECONDARY_LEFT_PCM_RECORD 20
#define SRCSLOT_SECONDARY_RIGHT_PCM_RECORD 21
#define SRCSLOT_SECONDARY_PHONE_LINE_1_ADC 22
#define SRCSLOT_SECONDARY_MIC_ADC 23
#define SRCSLOT_SECONDARY_PHONE_LINE_2_ADC 27
#define SRCSLOT_SECONDARY_HEADSET_ADC 28
/* Source Slot Numbers - Others */
#define SRCSLOT_POWER_DOWN 31
/* MIDI modes */
#define CS4281_MODE_OUTPUT (1<<0)
#define CS4281_MODE_INPUT (1<<1)
/* joystick bits */
/* Bits for JSPT */
#define JSPT_CAX 0x00000001
#define JSPT_CAY 0x00000002
#define JSPT_CBX 0x00000004
#define JSPT_CBY 0x00000008
#define JSPT_BA1 0x00000010
#define JSPT_BA2 0x00000020
#define JSPT_BB1 0x00000040
#define JSPT_BB2 0x00000080
/* Bits for JSCTL */
#define JSCTL_SP_MASK 0x00000003
#define JSCTL_SP_SLOW 0x00000000
#define JSCTL_SP_MEDIUM_SLOW 0x00000001
#define JSCTL_SP_MEDIUM_FAST 0x00000002
#define JSCTL_SP_FAST 0x00000003
#define JSCTL_ARE 0x00000004
/* Data register pairs masks */
#define JSC1_Y1V_MASK 0x0000FFFF
#define JSC1_X1V_MASK 0xFFFF0000
#define JSC1_Y1V_SHIFT 0
#define JSC1_X1V_SHIFT 16
#define JSC2_Y2V_MASK 0x0000FFFF
#define JSC2_X2V_MASK 0xFFFF0000
#define JSC2_Y2V_SHIFT 0
#define JSC2_X2V_SHIFT 16
/* JS GPIO */
#define JSIO_DAX 0x00000001
#define JSIO_DAY 0x00000002
#define JSIO_DBX 0x00000004
#define JSIO_DBY 0x00000008
#define JSIO_AXOE 0x00000010
#define JSIO_AYOE 0x00000020
#define JSIO_BXOE 0x00000040
#define JSIO_BYOE 0x00000080
/*
*
*/
struct cs4281_dma {
struct snd_pcm_substream *substream;
unsigned int regDBA; /* offset to DBA register */
unsigned int regDCA; /* offset to DCA register */
unsigned int regDBC; /* offset to DBC register */
unsigned int regDCC; /* offset to DCC register */
unsigned int regDMR; /* offset to DMR register */
unsigned int regDCR; /* offset to DCR register */
unsigned int regHDSR; /* offset to HDSR register */
unsigned int regFCR; /* offset to FCR register */
unsigned int regFSIC; /* offset to FSIC register */
unsigned int valDMR; /* DMA mode */
unsigned int valDCR; /* DMA command */
unsigned int valFCR; /* FIFO control */
unsigned int fifo_offset; /* FIFO offset within BA1 */
unsigned char left_slot; /* FIFO left slot */
unsigned char right_slot; /* FIFO right slot */
int frag; /* period number */
};
#define SUSPEND_REGISTERS 20
struct cs4281 {
int irq;
void __iomem *ba0; /* virtual (accessible) address */
void __iomem *ba1; /* virtual (accessible) address */
unsigned long ba0_addr;
unsigned long ba1_addr;
int dual_codec;
struct snd_ac97_bus *ac97_bus;
struct snd_ac97 *ac97;
struct snd_ac97 *ac97_secondary;
struct pci_dev *pci;
struct snd_card *card;
struct snd_pcm *pcm;
struct snd_rawmidi *rmidi;
struct snd_rawmidi_substream *midi_input;
struct snd_rawmidi_substream *midi_output;
struct cs4281_dma dma[4];
unsigned char src_left_play_slot;
unsigned char src_right_play_slot;
unsigned char src_left_rec_slot;
unsigned char src_right_rec_slot;
unsigned int spurious_dhtc_irq;
unsigned int spurious_dtc_irq;
spinlock_t reg_lock;
unsigned int midcr;
unsigned int uartm;
struct gameport *gameport;
#ifdef CONFIG_PM
u32 suspend_regs[SUSPEND_REGISTERS];
#endif
};
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
static irqreturn_t snd_cs4281_interrupt(int irq, void *dev_id);
static DEFINE_PCI_DEVICE_TABLE(snd_cs4281_ids) = {
{ PCI_VDEVICE(CIRRUS, 0x6005), 0, }, /* CS4281 */
{ 0, }
};
MODULE_DEVICE_TABLE(pci, snd_cs4281_ids);
/*
* constants
*/
#define CS4281_FIFO_SIZE 32
/*
* common I/O routines
*/
static inline void snd_cs4281_pokeBA0(struct cs4281 *chip, unsigned long offset,
unsigned int val)
{
writel(val, chip->ba0 + offset);
}
static inline unsigned int snd_cs4281_peekBA0(struct cs4281 *chip, unsigned long offset)
{
return readl(chip->ba0 + offset);
}
static void snd_cs4281_ac97_write(struct snd_ac97 *ac97,
unsigned short reg, unsigned short val)
{
/*
* 1. Write ACCAD = Command Address Register = 46Ch for AC97 register address
* 2. Write ACCDA = Command Data Register = 470h for data to write to AC97
* 3. Write ACCTL = Control Register = 460h for initiating the write
* 4. Read ACCTL = 460h, DCV should be reset by now and 460h = 07h
* 5. if DCV not cleared, break and return error
*/
struct cs4281 *chip = ac97->private_data;
int count;
/*
* Setup the AC97 control registers on the CS461x to send the
* appropriate command to the AC97 to perform the read.
* ACCAD = Command Address Register = 46Ch
* ACCDA = Command Data Register = 470h
* ACCTL = Control Register = 460h
* set DCV - will clear when process completed
* reset CRW - Write command
* set VFRM - valid frame enabled
* set ESYN - ASYNC generation enabled
* set RSTN - ARST# inactive, AC97 codec not reset
*/
snd_cs4281_pokeBA0(chip, BA0_ACCAD, reg);
snd_cs4281_pokeBA0(chip, BA0_ACCDA, val);
snd_cs4281_pokeBA0(chip, BA0_ACCTL, BA0_ACCTL_DCV | BA0_ACCTL_VFRM |
BA0_ACCTL_ESYN | (ac97->num ? BA0_ACCTL_TC : 0));
for (count = 0; count < 2000; count++) {
/*
* First, we want to wait for a short time.
*/
udelay(10);
/*
* Now, check to see if the write has completed.
* ACCTL = 460h, DCV should be reset by now and 460h = 07h
*/
if (!(snd_cs4281_peekBA0(chip, BA0_ACCTL) & BA0_ACCTL_DCV)) {
return;
}
}
snd_printk(KERN_ERR "AC'97 write problem, reg = 0x%x, val = 0x%x\n", reg, val);
}
static unsigned short snd_cs4281_ac97_read(struct snd_ac97 *ac97,
unsigned short reg)
{
struct cs4281 *chip = ac97->private_data;
int count;
unsigned short result;
// FIXME: volatile is necessary in the following due to a bug of
// some gcc versions
volatile int ac97_num = ((volatile struct snd_ac97 *)ac97)->num;
/*
* 1. Write ACCAD = Command Address Register = 46Ch for AC97 register address
* 2. Write ACCDA = Command Data Register = 470h for data to write to AC97
* 3. Write ACCTL = Control Register = 460h for initiating the write
* 4. Read ACCTL = 460h, DCV should be reset by now and 460h = 17h
* 5. if DCV not cleared, break and return error
* 6. Read ACSTS = Status Register = 464h, check VSTS bit
*/
snd_cs4281_peekBA0(chip, ac97_num ? BA0_ACSDA2 : BA0_ACSDA);
/*
* Setup the AC97 control registers on the CS461x to send the
* appropriate command to the AC97 to perform the read.
* ACCAD = Command Address Register = 46Ch
* ACCDA = Command Data Register = 470h
* ACCTL = Control Register = 460h
* set DCV - will clear when process completed
* set CRW - Read command
* set VFRM - valid frame enabled
* set ESYN - ASYNC generation enabled
* set RSTN - ARST# inactive, AC97 codec not reset
*/
snd_cs4281_pokeBA0(chip, BA0_ACCAD, reg);
snd_cs4281_pokeBA0(chip, BA0_ACCDA, 0);
snd_cs4281_pokeBA0(chip, BA0_ACCTL, BA0_ACCTL_DCV | BA0_ACCTL_CRW |
BA0_ACCTL_VFRM | BA0_ACCTL_ESYN |
(ac97_num ? BA0_ACCTL_TC : 0));
/*
* Wait for the read to occur.
*/
for (count = 0; count < 500; count++) {
/*
* First, we want to wait for a short time.
*/
udelay(10);
/*
* Now, check to see if the read has completed.
* ACCTL = 460h, DCV should be reset by now and 460h = 17h
*/
if (!(snd_cs4281_peekBA0(chip, BA0_ACCTL) & BA0_ACCTL_DCV))
goto __ok1;
}
snd_printk(KERN_ERR "AC'97 read problem (ACCTL_DCV), reg = 0x%x\n", reg);
result = 0xffff;
goto __end;
__ok1:
/*
* Wait for the valid status bit to go active.
*/
for (count = 0; count < 100; count++) {
/*
* Read the AC97 status register.
* ACSTS = Status Register = 464h
* VSTS - Valid Status
*/
if (snd_cs4281_peekBA0(chip, ac97_num ? BA0_ACSTS2 : BA0_ACSTS) & BA0_ACSTS_VSTS)
goto __ok2;
udelay(10);
}
snd_printk(KERN_ERR "AC'97 read problem (ACSTS_VSTS), reg = 0x%x\n", reg);
result = 0xffff;
goto __end;
__ok2:
/*
* Read the data returned from the AC97 register.
* ACSDA = Status Data Register = 474h
*/
result = snd_cs4281_peekBA0(chip, ac97_num ? BA0_ACSDA2 : BA0_ACSDA);
__end:
return result;
}
/*
* PCM part
*/
static int snd_cs4281_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct cs4281_dma *dma = substream->runtime->private_data;
struct cs4281 *chip = snd_pcm_substream_chip(substream);
spin_lock(&chip->reg_lock);
switch (cmd) {
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
dma->valDCR |= BA0_DCR_MSK;
dma->valFCR |= BA0_FCR_FEN;
break;
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
dma->valDCR &= ~BA0_DCR_MSK;
dma->valFCR &= ~BA0_FCR_FEN;
break;
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
snd_cs4281_pokeBA0(chip, dma->regDMR, dma->valDMR & ~BA0_DMR_DMA);
dma->valDMR |= BA0_DMR_DMA;
dma->valDCR &= ~BA0_DCR_MSK;
dma->valFCR |= BA0_FCR_FEN;
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
dma->valDMR &= ~(BA0_DMR_DMA|BA0_DMR_POLL);
dma->valDCR |= BA0_DCR_MSK;
dma->valFCR &= ~BA0_FCR_FEN;
/* Leave wave playback FIFO enabled for FM */
if (dma->regFCR != BA0_FCR0)
dma->valFCR &= ~BA0_FCR_FEN;
break;
default:
spin_unlock(&chip->reg_lock);
return -EINVAL;
}
snd_cs4281_pokeBA0(chip, dma->regDMR, dma->valDMR);
snd_cs4281_pokeBA0(chip, dma->regFCR, dma->valFCR);
snd_cs4281_pokeBA0(chip, dma->regDCR, dma->valDCR);
spin_unlock(&chip->reg_lock);
return 0;
}
static unsigned int snd_cs4281_rate(unsigned int rate, unsigned int *real_rate)
{
unsigned int val = ~0;
if (real_rate)
*real_rate = rate;
/* special "hardcoded" rates */
switch (rate) {
case 8000: return 5;
case 11025: return 4;
case 16000: return 3;
case 22050: return 2;
case 44100: return 1;
case 48000: return 0;
default:
goto __variable;
}
__variable:
val = 1536000 / rate;
if (real_rate)
*real_rate = 1536000 / val;
return val;
}
static void snd_cs4281_mode(struct cs4281 *chip, struct cs4281_dma *dma,
struct snd_pcm_runtime *runtime,
int capture, int src)
{
int rec_mono;
dma->valDMR = BA0_DMR_TYPE_SINGLE | BA0_DMR_AUTO |
(capture ? BA0_DMR_TR_WRITE : BA0_DMR_TR_READ);
if (runtime->channels == 1)
dma->valDMR |= BA0_DMR_MONO;
if (snd_pcm_format_unsigned(runtime->format) > 0)
dma->valDMR |= BA0_DMR_USIGN;
if (snd_pcm_format_big_endian(runtime->format) > 0)
dma->valDMR |= BA0_DMR_BEND;
switch (snd_pcm_format_width(runtime->format)) {
case 8: dma->valDMR |= BA0_DMR_SIZE8;
if (runtime->channels == 1)
dma->valDMR |= BA0_DMR_SWAPC;
break;
case 32: dma->valDMR |= BA0_DMR_SIZE20; break;
}
dma->frag = 0; /* for workaround */
dma->valDCR = BA0_DCR_TCIE | BA0_DCR_MSK;
if (runtime->buffer_size != runtime->period_size)
dma->valDCR |= BA0_DCR_HTCIE;
/* Initialize DMA */
snd_cs4281_pokeBA0(chip, dma->regDBA, runtime->dma_addr);
snd_cs4281_pokeBA0(chip, dma->regDBC, runtime->buffer_size - 1);
rec_mono = (chip->dma[1].valDMR & BA0_DMR_MONO) == BA0_DMR_MONO;
snd_cs4281_pokeBA0(chip, BA0_SRCSA, (chip->src_left_play_slot << 0) |
(chip->src_right_play_slot << 8) |
(chip->src_left_rec_slot << 16) |
((rec_mono ? 31 : chip->src_right_rec_slot) << 24));
if (!src)
goto __skip_src;
if (!capture) {
if (dma->left_slot == chip->src_left_play_slot) {
unsigned int val = snd_cs4281_rate(runtime->rate, NULL);
snd_BUG_ON(dma->right_slot != chip->src_right_play_slot);
snd_cs4281_pokeBA0(chip, BA0_DACSR, val);
}
} else {
if (dma->left_slot == chip->src_left_rec_slot) {
unsigned int val = snd_cs4281_rate(runtime->rate, NULL);
snd_BUG_ON(dma->right_slot != chip->src_right_rec_slot);
snd_cs4281_pokeBA0(chip, BA0_ADCSR, val);
}
}
__skip_src:
/* Deactivate wave playback FIFO before changing slot assignments */
if (dma->regFCR == BA0_FCR0)
snd_cs4281_pokeBA0(chip, dma->regFCR, snd_cs4281_peekBA0(chip, dma->regFCR) & ~BA0_FCR_FEN);
/* Initialize FIFO */
dma->valFCR = BA0_FCR_LS(dma->left_slot) |
BA0_FCR_RS(capture && (dma->valDMR & BA0_DMR_MONO) ? 31 : dma->right_slot) |
BA0_FCR_SZ(CS4281_FIFO_SIZE) |
BA0_FCR_OF(dma->fifo_offset);
snd_cs4281_pokeBA0(chip, dma->regFCR, dma->valFCR | (capture ? BA0_FCR_PSH : 0));
/* Activate FIFO again for FM playback */
if (dma->regFCR == BA0_FCR0)
snd_cs4281_pokeBA0(chip, dma->regFCR, dma->valFCR | BA0_FCR_FEN);
/* Clear FIFO Status and Interrupt Control Register */
snd_cs4281_pokeBA0(chip, dma->regFSIC, 0);
}
static int snd_cs4281_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
}
static int snd_cs4281_hw_free(struct snd_pcm_substream *substream)
{
return snd_pcm_lib_free_pages(substream);
}
static int snd_cs4281_playback_prepare(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct cs4281_dma *dma = runtime->private_data;
struct cs4281 *chip = snd_pcm_substream_chip(substream);
spin_lock_irq(&chip->reg_lock);
snd_cs4281_mode(chip, dma, runtime, 0, 1);
spin_unlock_irq(&chip->reg_lock);
return 0;
}
static int snd_cs4281_capture_prepare(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct cs4281_dma *dma = runtime->private_data;
struct cs4281 *chip = snd_pcm_substream_chip(substream);
spin_lock_irq(&chip->reg_lock);
snd_cs4281_mode(chip, dma, runtime, 1, 1);
spin_unlock_irq(&chip->reg_lock);
return 0;
}
static snd_pcm_uframes_t snd_cs4281_pointer(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct cs4281_dma *dma = runtime->private_data;
struct cs4281 *chip = snd_pcm_substream_chip(substream);
/*
printk(KERN_DEBUG "DCC = 0x%x, buffer_size = 0x%x, jiffies = %li\n",
snd_cs4281_peekBA0(chip, dma->regDCC), runtime->buffer_size,
jiffies);
*/
return runtime->buffer_size -
snd_cs4281_peekBA0(chip, dma->regDCC) - 1;
}
static struct snd_pcm_hardware snd_cs4281_playback =
{
.info = SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_PAUSE |
SNDRV_PCM_INFO_RESUME,
.formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S8 |
SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_U16_BE | SNDRV_PCM_FMTBIT_S16_BE |
SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_S32_LE |
SNDRV_PCM_FMTBIT_U32_BE | SNDRV_PCM_FMTBIT_S32_BE,
.rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
.rate_min = 4000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = (512*1024),
.period_bytes_min = 64,
.period_bytes_max = (512*1024),
.periods_min = 1,
.periods_max = 2,
.fifo_size = CS4281_FIFO_SIZE,
};
static struct snd_pcm_hardware snd_cs4281_capture =
{
.info = SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_PAUSE |
SNDRV_PCM_INFO_RESUME,
.formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S8 |
SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_U16_BE | SNDRV_PCM_FMTBIT_S16_BE |
SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_S32_LE |
SNDRV_PCM_FMTBIT_U32_BE | SNDRV_PCM_FMTBIT_S32_BE,
.rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
.rate_min = 4000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = (512*1024),
.period_bytes_min = 64,
.period_bytes_max = (512*1024),
.periods_min = 1,
.periods_max = 2,
.fifo_size = CS4281_FIFO_SIZE,
};
static int snd_cs4281_playback_open(struct snd_pcm_substream *substream)
{
struct cs4281 *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct cs4281_dma *dma;
dma = &chip->dma[0];
dma->substream = substream;
dma->left_slot = 0;
dma->right_slot = 1;
runtime->private_data = dma;
runtime->hw = snd_cs4281_playback;
/* should be detected from the AC'97 layer, but it seems
that although CS4297A rev B reports 18-bit ADC resolution,
samples are 20-bit */
snd_pcm_hw_constraint_msbits(runtime, 0, 32, 20);
return 0;
}
static int snd_cs4281_capture_open(struct snd_pcm_substream *substream)
{
struct cs4281 *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct cs4281_dma *dma;
dma = &chip->dma[1];
dma->substream = substream;
dma->left_slot = 10;
dma->right_slot = 11;
runtime->private_data = dma;
runtime->hw = snd_cs4281_capture;
/* should be detected from the AC'97 layer, but it seems
that although CS4297A rev B reports 18-bit ADC resolution,
samples are 20-bit */
snd_pcm_hw_constraint_msbits(runtime, 0, 32, 20);
return 0;
}
static int snd_cs4281_playback_close(struct snd_pcm_substream *substream)
{
struct cs4281_dma *dma = substream->runtime->private_data;
dma->substream = NULL;
return 0;
}
static int snd_cs4281_capture_close(struct snd_pcm_substream *substream)
{
struct cs4281_dma *dma = substream->runtime->private_data;
dma->substream = NULL;
return 0;
}
static struct snd_pcm_ops snd_cs4281_playback_ops = {
.open = snd_cs4281_playback_open,
.close = snd_cs4281_playback_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_cs4281_hw_params,
.hw_free = snd_cs4281_hw_free,
.prepare = snd_cs4281_playback_prepare,
.trigger = snd_cs4281_trigger,
.pointer = snd_cs4281_pointer,
};
static struct snd_pcm_ops snd_cs4281_capture_ops = {
.open = snd_cs4281_capture_open,
.close = snd_cs4281_capture_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_cs4281_hw_params,
.hw_free = snd_cs4281_hw_free,
.prepare = snd_cs4281_capture_prepare,
.trigger = snd_cs4281_trigger,
.pointer = snd_cs4281_pointer,
};
static int __devinit snd_cs4281_pcm(struct cs4281 * chip, int device,
struct snd_pcm ** rpcm)
{
struct snd_pcm *pcm;
int err;
if (rpcm)
*rpcm = NULL;
err = snd_pcm_new(chip->card, "CS4281", device, 1, 1, &pcm);
if (err < 0)
return err;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cs4281_playback_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cs4281_capture_ops);
pcm->private_data = chip;
pcm->info_flags = 0;
strcpy(pcm->name, "CS4281");
chip->pcm = pcm;
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
snd_dma_pci_data(chip->pci), 64*1024, 512*1024);
if (rpcm)
*rpcm = pcm;
return 0;
}
/*
* Mixer section
*/
#define CS_VOL_MASK 0x1f
static int snd_cs4281_info_volume(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = CS_VOL_MASK;
return 0;
}
static int snd_cs4281_get_volume(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct cs4281 *chip = snd_kcontrol_chip(kcontrol);
int regL = (kcontrol->private_value >> 16) & 0xffff;
int regR = kcontrol->private_value & 0xffff;
int volL, volR;
volL = CS_VOL_MASK - (snd_cs4281_peekBA0(chip, regL) & CS_VOL_MASK);
volR = CS_VOL_MASK - (snd_cs4281_peekBA0(chip, regR) & CS_VOL_MASK);
ucontrol->value.integer.value[0] = volL;
ucontrol->value.integer.value[1] = volR;
return 0;
}
static int snd_cs4281_put_volume(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct cs4281 *chip = snd_kcontrol_chip(kcontrol);
int change = 0;
int regL = (kcontrol->private_value >> 16) & 0xffff;
int regR = kcontrol->private_value & 0xffff;
int volL, volR;
volL = CS_VOL_MASK - (snd_cs4281_peekBA0(chip, regL) & CS_VOL_MASK);
volR = CS_VOL_MASK - (snd_cs4281_peekBA0(chip, regR) & CS_VOL_MASK);
if (ucontrol->value.integer.value[0] != volL) {
volL = CS_VOL_MASK - (ucontrol->value.integer.value[0] & CS_VOL_MASK);
snd_cs4281_pokeBA0(chip, regL, volL);
change = 1;
}
if (ucontrol->value.integer.value[1] != volR) {
volR = CS_VOL_MASK - (ucontrol->value.integer.value[1] & CS_VOL_MASK);
snd_cs4281_pokeBA0(chip, regR, volR);
change = 1;
}
return change;
}
static const DECLARE_TLV_DB_SCALE(db_scale_dsp, -4650, 150, 0);
static struct snd_kcontrol_new snd_cs4281_fm_vol =
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Synth Playback Volume",
.info = snd_cs4281_info_volume,
.get = snd_cs4281_get_volume,
.put = snd_cs4281_put_volume,
.private_value = ((BA0_FMLVC << 16) | BA0_FMRVC),
.tlv = { .p = db_scale_dsp },
};
static struct snd_kcontrol_new snd_cs4281_pcm_vol =
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "PCM Stream Playback Volume",
.info = snd_cs4281_info_volume,
.get = snd_cs4281_get_volume,
.put = snd_cs4281_put_volume,
.private_value = ((BA0_PPLVC << 16) | BA0_PPRVC),
.tlv = { .p = db_scale_dsp },
};
static void snd_cs4281_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
{
struct cs4281 *chip = bus->private_data;
chip->ac97_bus = NULL;
}
static void snd_cs4281_mixer_free_ac97(struct snd_ac97 *ac97)
{
struct cs4281 *chip = ac97->private_data;
if (ac97->num)
chip->ac97_secondary = NULL;
else
chip->ac97 = NULL;
}
static int __devinit snd_cs4281_mixer(struct cs4281 * chip)
{
struct snd_card *card = chip->card;
struct snd_ac97_template ac97;
int err;
static struct snd_ac97_bus_ops ops = {
.write = snd_cs4281_ac97_write,
.read = snd_cs4281_ac97_read,
};
if ((err = snd_ac97_bus(card, 0, &ops, chip, &chip->ac97_bus)) < 0)
return err;
chip->ac97_bus->private_free = snd_cs4281_mixer_free_ac97_bus;
memset(&ac97, 0, sizeof(ac97));
ac97.private_data = chip;
ac97.private_free = snd_cs4281_mixer_free_ac97;
if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
return err;
if (chip->dual_codec) {
ac97.num = 1;
if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97_secondary)) < 0)
return err;
}
if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cs4281_fm_vol, chip))) < 0)
return err;
if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cs4281_pcm_vol, chip))) < 0)
return err;
return 0;
}
/*
* proc interface
*/
static void snd_cs4281_proc_read(struct snd_info_entry *entry,
struct snd_info_buffer *buffer)
{
struct cs4281 *chip = entry->private_data;
snd_iprintf(buffer, "Cirrus Logic CS4281\n\n");
snd_iprintf(buffer, "Spurious half IRQs : %u\n", chip->spurious_dhtc_irq);
snd_iprintf(buffer, "Spurious end IRQs : %u\n", chip->spurious_dtc_irq);
}
static ssize_t snd_cs4281_BA0_read(struct snd_info_entry *entry,
void *file_private_data,
struct file *file, char __user *buf,
size_t count, loff_t pos)
{
struct cs4281 *chip = entry->private_data;
if (copy_to_user_fromio(buf, chip->ba0 + pos, count))
return -EFAULT;
return count;
}
static ssize_t snd_cs4281_BA1_read(struct snd_info_entry *entry,
void *file_private_data,
struct file *file, char __user *buf,
size_t count, loff_t pos)
{
struct cs4281 *chip = entry->private_data;
if (copy_to_user_fromio(buf, chip->ba1 + pos, count))
return -EFAULT;
return count;
}
static struct snd_info_entry_ops snd_cs4281_proc_ops_BA0 = {
.read = snd_cs4281_BA0_read,
};
static struct snd_info_entry_ops snd_cs4281_proc_ops_BA1 = {
.read = snd_cs4281_BA1_read,
};
static void __devinit snd_cs4281_proc_init(struct cs4281 * chip)
{
struct snd_info_entry *entry;
if (! snd_card_proc_new(chip->card, "cs4281", &entry))
snd_info_set_text_ops(entry, chip, snd_cs4281_proc_read);
if (! snd_card_proc_new(chip->card, "cs4281_BA0", &entry)) {
entry->content = SNDRV_INFO_CONTENT_DATA;
entry->private_data = chip;
entry->c.ops = &snd_cs4281_proc_ops_BA0;
entry->size = CS4281_BA0_SIZE;
}
if (! snd_card_proc_new(chip->card, "cs4281_BA1", &entry)) {
entry->content = SNDRV_INFO_CONTENT_DATA;
entry->private_data = chip;
entry->c.ops = &snd_cs4281_proc_ops_BA1;
entry->size = CS4281_BA1_SIZE;
}
}
/*
* joystick support
*/
#if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
static void snd_cs4281_gameport_trigger(struct gameport *gameport)
{
struct cs4281 *chip = gameport_get_port_data(gameport);
if (snd_BUG_ON(!chip))
return;
snd_cs4281_pokeBA0(chip, BA0_JSPT, 0xff);
}
static unsigned char snd_cs4281_gameport_read(struct gameport *gameport)
{
struct cs4281 *chip = gameport_get_port_data(gameport);
if (snd_BUG_ON(!chip))
return 0;
return snd_cs4281_peekBA0(chip, BA0_JSPT);
}
#ifdef COOKED_MODE
static int snd_cs4281_gameport_cooked_read(struct gameport *gameport,
int *axes, int *buttons)
{
struct cs4281 *chip = gameport_get_port_data(gameport);
unsigned js1, js2, jst;
if (snd_BUG_ON(!chip))
return 0;
js1 = snd_cs4281_peekBA0(chip, BA0_JSC1);
js2 = snd_cs4281_peekBA0(chip, BA0_JSC2);
jst = snd_cs4281_peekBA0(chip, BA0_JSPT);
*buttons = (~jst >> 4) & 0x0F;
axes[0] = ((js1 & JSC1_Y1V_MASK) >> JSC1_Y1V_SHIFT) & 0xFFFF;
axes[1] = ((js1 & JSC1_X1V_MASK) >> JSC1_X1V_SHIFT) & 0xFFFF;
axes[2] = ((js2 & JSC2_Y2V_MASK) >> JSC2_Y2V_SHIFT) & 0xFFFF;
axes[3] = ((js2 & JSC2_X2V_MASK) >> JSC2_X2V_SHIFT) & 0xFFFF;
for (jst = 0; jst < 4; ++jst)
if (axes[jst] == 0xFFFF) axes[jst] = -1;
return 0;
}
#else
#define snd_cs4281_gameport_cooked_read NULL
#endif
static int snd_cs4281_gameport_open(struct gameport *gameport, int mode)
{
switch (mode) {
#ifdef COOKED_MODE
case GAMEPORT_MODE_COOKED:
return 0;
#endif
case GAMEPORT_MODE_RAW:
return 0;
default:
return -1;
}
return 0;
}
static int __devinit snd_cs4281_create_gameport(struct cs4281 *chip)
{
struct gameport *gp;
chip->gameport = gp = gameport_allocate_port();
if (!gp) {
printk(KERN_ERR "cs4281: cannot allocate memory for gameport\n");
return -ENOMEM;
}
gameport_set_name(gp, "CS4281 Gameport");
gameport_set_phys(gp, "pci%s/gameport0", pci_name(chip->pci));
gameport_set_dev_parent(gp, &chip->pci->dev);
gp->open = snd_cs4281_gameport_open;
gp->read = snd_cs4281_gameport_read;
gp->trigger = snd_cs4281_gameport_trigger;
gp->cooked_read = snd_cs4281_gameport_cooked_read;
gameport_set_port_data(gp, chip);
snd_cs4281_pokeBA0(chip, BA0_JSIO, 0xFF); // ?
snd_cs4281_pokeBA0(chip, BA0_JSCTL, JSCTL_SP_MEDIUM_SLOW);
gameport_register_port(gp);
return 0;
}
static void snd_cs4281_free_gameport(struct cs4281 *chip)
{
if (chip->gameport) {
gameport_unregister_port(chip->gameport);
chip->gameport = NULL;
}
}
#else
static inline int snd_cs4281_create_gameport(struct cs4281 *chip) { return -ENOSYS; }
static inline void snd_cs4281_free_gameport(struct cs4281 *chip) { }
#endif /* CONFIG_GAMEPORT || (MODULE && CONFIG_GAMEPORT_MODULE) */
static int snd_cs4281_free(struct cs4281 *chip)
{
snd_cs4281_free_gameport(chip);
if (chip->irq >= 0)
synchronize_irq(chip->irq);
/* Mask interrupts */
snd_cs4281_pokeBA0(chip, BA0_HIMR, 0x7fffffff);
/* Stop the DLL Clock logic. */
snd_cs4281_pokeBA0(chip, BA0_CLKCR1, 0);
/* Sound System Power Management - Turn Everything OFF */
snd_cs4281_pokeBA0(chip, BA0_SSPM, 0);
/* PCI interface - D3 state */
pci_set_power_state(chip->pci, 3);
if (chip->irq >= 0)
free_irq(chip->irq, chip);
if (chip->ba0)
iounmap(chip->ba0);
if (chip->ba1)
iounmap(chip->ba1);
pci_release_regions(chip->pci);
pci_disable_device(chip->pci);
kfree(chip);
return 0;
}
static int snd_cs4281_dev_free(struct snd_device *device)
{
struct cs4281 *chip = device->device_data;
return snd_cs4281_free(chip);
}
static int snd_cs4281_chip_init(struct cs4281 *chip); /* defined below */
static int __devinit snd_cs4281_create(struct snd_card *card,
struct pci_dev *pci,
struct cs4281 ** rchip,
int dual_codec)
{
struct cs4281 *chip;
unsigned int tmp;
int err;
static struct snd_device_ops ops = {
.dev_free = snd_cs4281_dev_free,
};
*rchip = NULL;
if ((err = pci_enable_device(pci)) < 0)
return err;
chip = kzalloc(sizeof(*chip), GFP_KERNEL);
if (chip == NULL) {
pci_disable_device(pci);
return -ENOMEM;
}
spin_lock_init(&chip->reg_lock);
chip->card = card;
chip->pci = pci;
chip->irq = -1;
pci_set_master(pci);
if (dual_codec < 0 || dual_codec > 3) {
snd_printk(KERN_ERR "invalid dual_codec option %d\n", dual_codec);
dual_codec = 0;
}
chip->dual_codec = dual_codec;
if ((err = pci_request_regions(pci, "CS4281")) < 0) {
kfree(chip);
pci_disable_device(pci);
return err;
}
chip->ba0_addr = pci_resource_start(pci, 0);
chip->ba1_addr = pci_resource_start(pci, 1);
chip->ba0 = pci_ioremap_bar(pci, 0);
chip->ba1 = pci_ioremap_bar(pci, 1);
if (!chip->ba0 || !chip->ba1) {
snd_cs4281_free(chip);
return -ENOMEM;
}
if (request_irq(pci->irq, snd_cs4281_interrupt, IRQF_SHARED,
KBUILD_MODNAME, chip)) {
snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
snd_cs4281_free(chip);
return -ENOMEM;
}
chip->irq = pci->irq;
tmp = snd_cs4281_chip_init(chip);
if (tmp) {
snd_cs4281_free(chip);
return tmp;
}
if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
snd_cs4281_free(chip);
return err;
}
snd_cs4281_proc_init(chip);
snd_card_set_dev(card, &pci->dev);
*rchip = chip;
return 0;
}
static int snd_cs4281_chip_init(struct cs4281 *chip)
{
unsigned int tmp;
unsigned long end_time;
int retry_count = 2;
/* Having EPPMC.FPDN=1 prevent proper chip initialisation */
tmp = snd_cs4281_peekBA0(chip, BA0_EPPMC);
if (tmp & BA0_EPPMC_FPDN)
snd_cs4281_pokeBA0(chip, BA0_EPPMC, tmp & ~BA0_EPPMC_FPDN);
__retry:
tmp = snd_cs4281_peekBA0(chip, BA0_CFLR);
if (tmp != BA0_CFLR_DEFAULT) {
snd_cs4281_pokeBA0(chip, BA0_CFLR, BA0_CFLR_DEFAULT);
tmp = snd_cs4281_peekBA0(chip, BA0_CFLR);
if (tmp != BA0_CFLR_DEFAULT) {
snd_printk(KERN_ERR "CFLR setup failed (0x%x)\n", tmp);
return -EIO;
}
}
/* Set the 'Configuration Write Protect' register
* to 4281h. Allows vendor-defined configuration
* space between 0e4h and 0ffh to be written. */
snd_cs4281_pokeBA0(chip, BA0_CWPR, 0x4281);
if ((tmp = snd_cs4281_peekBA0(chip, BA0_SERC1)) != (BA0_SERC1_SO1EN | BA0_SERC1_AC97)) {
snd_printk(KERN_ERR "SERC1 AC'97 check failed (0x%x)\n", tmp);
return -EIO;
}
if ((tmp = snd_cs4281_peekBA0(chip, BA0_SERC2)) != (BA0_SERC2_SI1EN | BA0_SERC2_AC97)) {
snd_printk(KERN_ERR "SERC2 AC'97 check failed (0x%x)\n", tmp);
return -EIO;
}
/* Sound System Power Management */
snd_cs4281_pokeBA0(chip, BA0_SSPM, BA0_SSPM_MIXEN | BA0_SSPM_CSRCEN |
BA0_SSPM_PSRCEN | BA0_SSPM_JSEN |
BA0_SSPM_ACLEN | BA0_SSPM_FMEN);
/* Serial Port Power Management */
/* Blast the clock control register to zero so that the
* PLL starts out in a known state, and blast the master serial
* port control register to zero so that the serial ports also
* start out in a known state. */
snd_cs4281_pokeBA0(chip, BA0_CLKCR1, 0);
snd_cs4281_pokeBA0(chip, BA0_SERMC, 0);
/* Make ESYN go to zero to turn off
* the Sync pulse on the AC97 link. */
snd_cs4281_pokeBA0(chip, BA0_ACCTL, 0);
udelay(50);
/* Drive the ARST# pin low for a minimum of 1uS (as defined in the AC97
* spec) and then drive it high. This is done for non AC97 modes since
* there might be logic external to the CS4281 that uses the ARST# line
* for a reset. */
snd_cs4281_pokeBA0(chip, BA0_SPMC, 0);
udelay(50);
snd_cs4281_pokeBA0(chip, BA0_SPMC, BA0_SPMC_RSTN);
msleep(50);
if (chip->dual_codec)
snd_cs4281_pokeBA0(chip, BA0_SPMC, BA0_SPMC_RSTN | BA0_SPMC_ASDI2E);
/*
* Set the serial port timing configuration.
*/
snd_cs4281_pokeBA0(chip, BA0_SERMC,
(chip->dual_codec ? BA0_SERMC_TCID(chip->dual_codec) : BA0_SERMC_TCID(1)) |
BA0_SERMC_PTC_AC97 | BA0_SERMC_MSPE);
/*
* Start the DLL Clock logic.
*/
snd_cs4281_pokeBA0(chip, BA0_CLKCR1, BA0_CLKCR1_DLLP);
msleep(50);
snd_cs4281_pokeBA0(chip, BA0_CLKCR1, BA0_CLKCR1_SWCE | BA0_CLKCR1_DLLP);
/*
* Wait for the DLL ready signal from the clock logic.
*/
end_time = jiffies + HZ;
do {
/*
* Read the AC97 status register to see if we've seen a CODEC
* signal from the AC97 codec.
*/
if (snd_cs4281_peekBA0(chip, BA0_CLKCR1) & BA0_CLKCR1_DLLRDY)
goto __ok0;
schedule_timeout_uninterruptible(1);
} while (time_after_eq(end_time, jiffies));
snd_printk(KERN_ERR "DLLRDY not seen\n");
return -EIO;
__ok0:
/*
* The first thing we do here is to enable sync generation. As soon
* as we start receiving bit clock, we'll start producing the SYNC
* signal.
*/
snd_cs4281_pokeBA0(chip, BA0_ACCTL, BA0_ACCTL_ESYN);
/*
* Wait for the codec ready signal from the AC97 codec.
*/
end_time = jiffies + HZ;
do {
/*
* Read the AC97 status register to see if we've seen a CODEC
* signal from the AC97 codec.
*/
if (snd_cs4281_peekBA0(chip, BA0_ACSTS) & BA0_ACSTS_CRDY)
goto __ok1;
schedule_timeout_uninterruptible(1);
} while (time_after_eq(end_time, jiffies));
snd_printk(KERN_ERR "never read codec ready from AC'97 (0x%x)\n", snd_cs4281_peekBA0(chip, BA0_ACSTS));
return -EIO;
__ok1:
if (chip->dual_codec) {
end_time = jiffies + HZ;
do {
if (snd_cs4281_peekBA0(chip, BA0_ACSTS2) & BA0_ACSTS_CRDY)
goto __codec2_ok;
schedule_timeout_uninterruptible(1);
} while (time_after_eq(end_time, jiffies));
snd_printk(KERN_INFO "secondary codec doesn't respond. disable it...\n");
chip->dual_codec = 0;
__codec2_ok: ;
}
/*
* Assert the valid frame signal so that we can start sending commands
* to the AC97 codec.
*/
snd_cs4281_pokeBA0(chip, BA0_ACCTL, BA0_ACCTL_VFRM | BA0_ACCTL_ESYN);
/*
* Wait until we've sampled input slots 3 and 4 as valid, meaning that
* the codec is pumping ADC data across the AC-link.
*/
end_time = jiffies + HZ;
do {
/*
* Read the input slot valid register and see if input slots 3
* 4 are valid yet.
*/
if ((snd_cs4281_peekBA0(chip, BA0_ACISV) & (BA0_ACISV_SLV(3) | BA0_ACISV_SLV(4))) == (BA0_ACISV_SLV(3) | BA0_ACISV_SLV(4)))
goto __ok2;
schedule_timeout_uninterruptible(1);
} while (time_after_eq(end_time, jiffies));
if (--retry_count > 0)
goto __retry;
snd_printk(KERN_ERR "never read ISV3 and ISV4 from AC'97\n");
return -EIO;
__ok2:
/*
* Now, assert valid frame and the slot 3 and 4 valid bits. This will
* commense the transfer of digital audio data to the AC97 codec.
*/
snd_cs4281_pokeBA0(chip, BA0_ACOSV, BA0_ACOSV_SLV(3) | BA0_ACOSV_SLV(4));
/*
* Initialize DMA structures
*/
for (tmp = 0; tmp < 4; tmp++) {
struct cs4281_dma *dma = &chip->dma[tmp];
dma->regDBA = BA0_DBA0 + (tmp * 0x10);
dma->regDCA = BA0_DCA0 + (tmp * 0x10);
dma->regDBC = BA0_DBC0 + (tmp * 0x10);
dma->regDCC = BA0_DCC0 + (tmp * 0x10);
dma->regDMR = BA0_DMR0 + (tmp * 8);
dma->regDCR = BA0_DCR0 + (tmp * 8);
dma->regHDSR = BA0_HDSR0 + (tmp * 4);
dma->regFCR = BA0_FCR0 + (tmp * 4);
dma->regFSIC = BA0_FSIC0 + (tmp * 4);
dma->fifo_offset = tmp * CS4281_FIFO_SIZE;
snd_cs4281_pokeBA0(chip, dma->regFCR,
BA0_FCR_LS(31) |
BA0_FCR_RS(31) |
BA0_FCR_SZ(CS4281_FIFO_SIZE) |
BA0_FCR_OF(dma->fifo_offset));
}
chip->src_left_play_slot = 0; /* AC'97 left PCM playback (3) */
chip->src_right_play_slot = 1; /* AC'97 right PCM playback (4) */
chip->src_left_rec_slot = 10; /* AC'97 left PCM record (3) */
chip->src_right_rec_slot = 11; /* AC'97 right PCM record (4) */
/* Activate wave playback FIFO for FM playback */
chip->dma[0].valFCR = BA0_FCR_FEN | BA0_FCR_LS(0) |
BA0_FCR_RS(1) |
BA0_FCR_SZ(CS4281_FIFO_SIZE) |
BA0_FCR_OF(chip->dma[0].fifo_offset);
snd_cs4281_pokeBA0(chip, chip->dma[0].regFCR, chip->dma[0].valFCR);
snd_cs4281_pokeBA0(chip, BA0_SRCSA, (chip->src_left_play_slot << 0) |
(chip->src_right_play_slot << 8) |
(chip->src_left_rec_slot << 16) |
(chip->src_right_rec_slot << 24));
/* Initialize digital volume */
snd_cs4281_pokeBA0(chip, BA0_PPLVC, 0);
snd_cs4281_pokeBA0(chip, BA0_PPRVC, 0);
/* Enable IRQs */
snd_cs4281_pokeBA0(chip, BA0_HICR, BA0_HICR_EOI);
/* Unmask interrupts */
snd_cs4281_pokeBA0(chip, BA0_HIMR, 0x7fffffff & ~(
BA0_HISR_MIDI |
BA0_HISR_DMAI |
BA0_HISR_DMA(0) |
BA0_HISR_DMA(1) |
BA0_HISR_DMA(2) |
BA0_HISR_DMA(3)));
synchronize_irq(chip->irq);
return 0;
}
/*
* MIDI section
*/
static void snd_cs4281_midi_reset(struct cs4281 *chip)
{
snd_cs4281_pokeBA0(chip, BA0_MIDCR, chip->midcr | BA0_MIDCR_MRST);
udelay(100);
snd_cs4281_pokeBA0(chip, BA0_MIDCR, chip->midcr);
}
static int snd_cs4281_midi_input_open(struct snd_rawmidi_substream *substream)
{
struct cs4281 *chip = substream->rmidi->private_data;
spin_lock_irq(&chip->reg_lock);
chip->midcr |= BA0_MIDCR_RXE;
chip->midi_input = substream;
if (!(chip->uartm & CS4281_MODE_OUTPUT)) {
snd_cs4281_midi_reset(chip);
} else {
snd_cs4281_pokeBA0(chip, BA0_MIDCR, chip->midcr);
}
spin_unlock_irq(&chip->reg_lock);
return 0;
}
static int snd_cs4281_midi_input_close(struct snd_rawmidi_substream *substream)
{
struct cs4281 *chip = substream->rmidi->private_data;
spin_lock_irq(&chip->reg_lock);
chip->midcr &= ~(BA0_MIDCR_RXE | BA0_MIDCR_RIE);
chip->midi_input = NULL;
if (!(chip->uartm & CS4281_MODE_OUTPUT)) {
snd_cs4281_midi_reset(chip);
} else {
snd_cs4281_pokeBA0(chip, BA0_MIDCR, chip->midcr);
}
chip->uartm &= ~CS4281_MODE_INPUT;
spin_unlock_irq(&chip->reg_lock);
return 0;
}
static int snd_cs4281_midi_output_open(struct snd_rawmidi_substream *substream)
{
struct cs4281 *chip = substream->rmidi->private_data;
spin_lock_irq(&chip->reg_lock);
chip->uartm |= CS4281_MODE_OUTPUT;
chip->midcr |= BA0_MIDCR_TXE;
chip->midi_output = substream;
if (!(chip->uartm & CS4281_MODE_INPUT)) {
snd_cs4281_midi_reset(chip);
} else {
snd_cs4281_pokeBA0(chip, BA0_MIDCR, chip->midcr);
}
spin_unlock_irq(&chip->reg_lock);
return 0;
}
static int snd_cs4281_midi_output_close(struct snd_rawmidi_substream *substream)
{
struct cs4281 *chip = substream->rmidi->private_data;
spin_lock_irq(&chip->reg_lock);
chip->midcr &= ~(BA0_MIDCR_TXE | BA0_MIDCR_TIE);
chip->midi_output = NULL;
if (!(chip->uartm & CS4281_MODE_INPUT)) {
snd_cs4281_midi_reset(chip);
} else {
snd_cs4281_pokeBA0(chip, BA0_MIDCR, chip->midcr);
}
chip->uartm &= ~CS4281_MODE_OUTPUT;
spin_unlock_irq(&chip->reg_lock);
return 0;
}
static void snd_cs4281_midi_input_trigger(struct snd_rawmidi_substream *substream, int up)
{
unsigned long flags;
struct cs4281 *chip = substream->rmidi->private_data;
spin_lock_irqsave(&chip->reg_lock, flags);
if (up) {
if ((chip->midcr & BA0_MIDCR_RIE) == 0) {
chip->midcr |= BA0_MIDCR_RIE;
snd_cs4281_pokeBA0(chip, BA0_MIDCR, chip->midcr);
}
} else {
if (chip->midcr & BA0_MIDCR_RIE) {
chip->midcr &= ~BA0_MIDCR_RIE;
snd_cs4281_pokeBA0(chip, BA0_MIDCR, chip->midcr);
}
}
spin_unlock_irqrestore(&chip->reg_lock, flags);
}
static void snd_cs4281_midi_output_trigger(struct snd_rawmidi_substream *substream, int up)
{
unsigned long flags;
struct cs4281 *chip = substream->rmidi->private_data;
unsigned char byte;
spin_lock_irqsave(&chip->reg_lock, flags);
if (up) {
if ((chip->midcr & BA0_MIDCR_TIE) == 0) {
chip->midcr |= BA0_MIDCR_TIE;
/* fill UART FIFO buffer at first, and turn Tx interrupts only if necessary */
while ((chip->midcr & BA0_MIDCR_TIE) &&
(snd_cs4281_peekBA0(chip, BA0_MIDSR) & BA0_MIDSR_TBF) == 0) {
if (snd_rawmidi_transmit(substream, &byte, 1) != 1) {
chip->midcr &= ~BA0_MIDCR_TIE;
} else {
snd_cs4281_pokeBA0(chip, BA0_MIDWP, byte);
}
}
snd_cs4281_pokeBA0(chip, BA0_MIDCR, chip->midcr);
}
} else {
if (chip->midcr & BA0_MIDCR_TIE) {
chip->midcr &= ~BA0_MIDCR_TIE;
snd_cs4281_pokeBA0(chip, BA0_MIDCR, chip->midcr);
}
}
spin_unlock_irqrestore(&chip->reg_lock, flags);
}
static struct snd_rawmidi_ops snd_cs4281_midi_output =
{
.open = snd_cs4281_midi_output_open,
.close = snd_cs4281_midi_output_close,
.trigger = snd_cs4281_midi_output_trigger,
};
static struct snd_rawmidi_ops snd_cs4281_midi_input =
{
.open = snd_cs4281_midi_input_open,
.close = snd_cs4281_midi_input_close,
.trigger = snd_cs4281_midi_input_trigger,
};
static int __devinit snd_cs4281_midi(struct cs4281 * chip, int device,
struct snd_rawmidi **rrawmidi)
{
struct snd_rawmidi *rmidi;
int err;
if (rrawmidi)
*rrawmidi = NULL;
if ((err = snd_rawmidi_new(chip->card, "CS4281", device, 1, 1, &rmidi)) < 0)
return err;
strcpy(rmidi->name, "CS4281");
snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_cs4281_midi_output);
snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_cs4281_midi_input);
rmidi->info_flags |= SNDRV_RAWMIDI_INFO_OUTPUT | SNDRV_RAWMIDI_INFO_INPUT | SNDRV_RAWMIDI_INFO_DUPLEX;
rmidi->private_data = chip;
chip->rmidi = rmidi;
if (rrawmidi)
*rrawmidi = rmidi;
return 0;
}
/*
* Interrupt handler
*/
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
static irqreturn_t snd_cs4281_interrupt(int irq, void *dev_id)
{
struct cs4281 *chip = dev_id;
unsigned int status, dma, val;
struct cs4281_dma *cdma;
if (chip == NULL)
return IRQ_NONE;
status = snd_cs4281_peekBA0(chip, BA0_HISR);
if ((status & 0x7fffffff) == 0) {
snd_cs4281_pokeBA0(chip, BA0_HICR, BA0_HICR_EOI);
return IRQ_NONE;
}
if (status & (BA0_HISR_DMA(0)|BA0_HISR_DMA(1)|BA0_HISR_DMA(2)|BA0_HISR_DMA(3))) {
for (dma = 0; dma < 4; dma++)
if (status & BA0_HISR_DMA(dma)) {
cdma = &chip->dma[dma];
spin_lock(&chip->reg_lock);
/* ack DMA IRQ */
val = snd_cs4281_peekBA0(chip, cdma->regHDSR);
/* workaround, sometimes CS4281 acknowledges */
/* end or middle transfer position twice */
cdma->frag++;
if ((val & BA0_HDSR_DHTC) && !(cdma->frag & 1)) {
cdma->frag--;
chip->spurious_dhtc_irq++;
spin_unlock(&chip->reg_lock);
continue;
}
if ((val & BA0_HDSR_DTC) && (cdma->frag & 1)) {
cdma->frag--;
chip->spurious_dtc_irq++;
spin_unlock(&chip->reg_lock);
continue;
}
spin_unlock(&chip->reg_lock);
snd_pcm_period_elapsed(cdma->substream);
}
}
if ((status & BA0_HISR_MIDI) && chip->rmidi) {
unsigned char c;
spin_lock(&chip->reg_lock);
while ((snd_cs4281_peekBA0(chip, BA0_MIDSR) & BA0_MIDSR_RBE) == 0) {
c = snd_cs4281_peekBA0(chip, BA0_MIDRP);
if ((chip->midcr & BA0_MIDCR_RIE) == 0)
continue;
snd_rawmidi_receive(chip->midi_input, &c, 1);
}
while ((snd_cs4281_peekBA0(chip, BA0_MIDSR) & BA0_MIDSR_TBF) == 0) {
if ((chip->midcr & BA0_MIDCR_TIE) == 0)
break;
if (snd_rawmidi_transmit(chip->midi_output, &c, 1) != 1) {
chip->midcr &= ~BA0_MIDCR_TIE;
snd_cs4281_pokeBA0(chip, BA0_MIDCR, chip->midcr);
break;
}
snd_cs4281_pokeBA0(chip, BA0_MIDWP, c);
}
spin_unlock(&chip->reg_lock);
}
/* EOI to the PCI part... reenables interrupts */
snd_cs4281_pokeBA0(chip, BA0_HICR, BA0_HICR_EOI);
return IRQ_HANDLED;
}
/*
* OPL3 command
*/
static void snd_cs4281_opl3_command(struct snd_opl3 *opl3, unsigned short cmd,
unsigned char val)
{
unsigned long flags;
struct cs4281 *chip = opl3->private_data;
void __iomem *port;
if (cmd & OPL3_RIGHT)
port = chip->ba0 + BA0_B1AP; /* right port */
else
port = chip->ba0 + BA0_B0AP; /* left port */
spin_lock_irqsave(&opl3->reg_lock, flags);
writel((unsigned int)cmd, port);
udelay(10);
writel((unsigned int)val, port + 4);
udelay(30);
spin_unlock_irqrestore(&opl3->reg_lock, flags);
}
static int __devinit snd_cs4281_probe(struct pci_dev *pci,
const struct pci_device_id *pci_id)
{
static int dev;
struct snd_card *card;
struct cs4281 *chip;
struct snd_opl3 *opl3;
int err;
if (dev >= SNDRV_CARDS)
return -ENODEV;
if (!enable[dev]) {
dev++;
return -ENOENT;
}
err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
if (err < 0)
return err;
if ((err = snd_cs4281_create(card, pci, &chip, dual_codec[dev])) < 0) {
snd_card_free(card);
return err;
}
card->private_data = chip;
if ((err = snd_cs4281_mixer(chip)) < 0) {
snd_card_free(card);
return err;
}
if ((err = snd_cs4281_pcm(chip, 0, NULL)) < 0) {
snd_card_free(card);
return err;
}
if ((err = snd_cs4281_midi(chip, 0, NULL)) < 0) {
snd_card_free(card);
return err;
}
if ((err = snd_opl3_new(card, OPL3_HW_OPL3_CS4281, &opl3)) < 0) {
snd_card_free(card);
return err;
}
opl3->private_data = chip;
opl3->command = snd_cs4281_opl3_command;
snd_opl3_init(opl3);
if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
snd_card_free(card);
return err;
}
snd_cs4281_create_gameport(chip);
strcpy(card->driver, "CS4281");
strcpy(card->shortname, "Cirrus Logic CS4281");
sprintf(card->longname, "%s at 0x%lx, irq %d",
card->shortname,
chip->ba0_addr,
chip->irq);
if ((err = snd_card_register(card)) < 0) {
snd_card_free(card);
return err;
}
pci_set_drvdata(pci, card);
dev++;
return 0;
}
static void __devexit snd_cs4281_remove(struct pci_dev *pci)
{
snd_card_free(pci_get_drvdata(pci));
pci_set_drvdata(pci, NULL);
}
/*
* Power Management
*/
#ifdef CONFIG_PM
static int saved_regs[SUSPEND_REGISTERS] = {
BA0_JSCTL,
BA0_GPIOR,
BA0_SSCR,
BA0_MIDCR,
BA0_SRCSA,
BA0_PASR,
BA0_CASR,
BA0_DACSR,
BA0_ADCSR,
BA0_FMLVC,
BA0_FMRVC,
BA0_PPLVC,
BA0_PPRVC,
};
#define CLKCR1_CKRA 0x00010000L
static int cs4281_suspend(struct pci_dev *pci, pm_message_t state)
{
struct snd_card *card = pci_get_drvdata(pci);
struct cs4281 *chip = card->private_data;
u32 ulCLK;
unsigned int i;
snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
snd_pcm_suspend_all(chip->pcm);
snd_ac97_suspend(chip->ac97);
snd_ac97_suspend(chip->ac97_secondary);
ulCLK = snd_cs4281_peekBA0(chip, BA0_CLKCR1);
ulCLK |= CLKCR1_CKRA;
snd_cs4281_pokeBA0(chip, BA0_CLKCR1, ulCLK);
/* Disable interrupts. */
snd_cs4281_pokeBA0(chip, BA0_HICR, BA0_HICR_CHGM);
/* remember the status registers */
for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
if (saved_regs[i])
chip->suspend_regs[i] = snd_cs4281_peekBA0(chip, saved_regs[i]);
/* Turn off the serial ports. */
snd_cs4281_pokeBA0(chip, BA0_SERMC, 0);
/* Power off FM, Joystick, AC link, */
snd_cs4281_pokeBA0(chip, BA0_SSPM, 0);
/* DLL off. */
snd_cs4281_pokeBA0(chip, BA0_CLKCR1, 0);
/* AC link off. */
snd_cs4281_pokeBA0(chip, BA0_SPMC, 0);
ulCLK = snd_cs4281_peekBA0(chip, BA0_CLKCR1);
ulCLK &= ~CLKCR1_CKRA;
snd_cs4281_pokeBA0(chip, BA0_CLKCR1, ulCLK);
pci_disable_device(pci);
pci_save_state(pci);
pci_set_power_state(pci, pci_choose_state(pci, state));
return 0;
}
static int cs4281_resume(struct pci_dev *pci)
{
struct snd_card *card = pci_get_drvdata(pci);
struct cs4281 *chip = card->private_data;
unsigned int i;
u32 ulCLK;
pci_set_power_state(pci, PCI_D0);
pci_restore_state(pci);
if (pci_enable_device(pci) < 0) {
printk(KERN_ERR "cs4281: pci_enable_device failed, "
"disabling device\n");
snd_card_disconnect(card);
return -EIO;
}
pci_set_master(pci);
ulCLK = snd_cs4281_peekBA0(chip, BA0_CLKCR1);
ulCLK |= CLKCR1_CKRA;
snd_cs4281_pokeBA0(chip, BA0_CLKCR1, ulCLK);
snd_cs4281_chip_init(chip);
/* restore the status registers */
for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
if (saved_regs[i])
snd_cs4281_pokeBA0(chip, saved_regs[i], chip->suspend_regs[i]);
snd_ac97_resume(chip->ac97);
snd_ac97_resume(chip->ac97_secondary);
ulCLK = snd_cs4281_peekBA0(chip, BA0_CLKCR1);
ulCLK &= ~CLKCR1_CKRA;
snd_cs4281_pokeBA0(chip, BA0_CLKCR1, ulCLK);
snd_power_change_state(card, SNDRV_CTL_POWER_D0);
return 0;
}
#endif /* CONFIG_PM */
static struct pci_driver driver = {
.name = KBUILD_MODNAME,
.id_table = snd_cs4281_ids,
.probe = snd_cs4281_probe,
.remove = __devexit_p(snd_cs4281_remove),
#ifdef CONFIG_PM
.suspend = cs4281_suspend,
.resume = cs4281_resume,
#endif
};
static int __init alsa_card_cs4281_init(void)
{
return pci_register_driver(&driver);
}
static void __exit alsa_card_cs4281_exit(void)
{
pci_unregister_driver(&driver);
}
module_init(alsa_card_cs4281_init)
module_exit(alsa_card_cs4281_exit)