linux/arch/parisc/kernel/kprobes.c

292 lines
7.4 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* arch/parisc/kernel/kprobes.c
*
* PA-RISC kprobes implementation
*
* Copyright (c) 2019 Sven Schnelle <svens@stackframe.org>
*/
#include <linux/types.h>
#include <linux/kprobes.h>
#include <linux/slab.h>
#include <asm/cacheflush.h>
#include <asm/patch.h>
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
int __kprobes arch_prepare_kprobe(struct kprobe *p)
{
if ((unsigned long)p->addr & 3UL)
return -EINVAL;
p->ainsn.insn = get_insn_slot();
if (!p->ainsn.insn)
return -ENOMEM;
memcpy(p->ainsn.insn, p->addr,
MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
p->opcode = *p->addr;
flush_insn_slot(p);
return 0;
}
void __kprobes arch_remove_kprobe(struct kprobe *p)
{
if (!p->ainsn.insn)
return;
free_insn_slot(p->ainsn.insn, 0);
p->ainsn.insn = NULL;
}
void __kprobes arch_arm_kprobe(struct kprobe *p)
{
patch_text(p->addr, PARISC_KPROBES_BREAK_INSN);
}
void __kprobes arch_disarm_kprobe(struct kprobe *p)
{
patch_text(p->addr, p->opcode);
}
static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
{
kcb->prev_kprobe.kp = kprobe_running();
kcb->prev_kprobe.status = kcb->kprobe_status;
}
static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
{
__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
kcb->kprobe_status = kcb->prev_kprobe.status;
}
static inline void __kprobes set_current_kprobe(struct kprobe *p)
{
__this_cpu_write(current_kprobe, p);
}
static void __kprobes setup_singlestep(struct kprobe *p,
struct kprobe_ctlblk *kcb, struct pt_regs *regs)
{
kcb->iaoq[0] = regs->iaoq[0];
kcb->iaoq[1] = regs->iaoq[1];
regs->iaoq[0] = (unsigned long)p->ainsn.insn;
mtctl(0, 0);
regs->gr[0] |= PSW_R;
}
int __kprobes parisc_kprobe_break_handler(struct pt_regs *regs)
{
struct kprobe *p;
struct kprobe_ctlblk *kcb;
preempt_disable();
kcb = get_kprobe_ctlblk();
p = get_kprobe((unsigned long *)regs->iaoq[0]);
if (!p) {
preempt_enable_no_resched();
return 0;
}
if (kprobe_running()) {
/*
* We have reentered the kprobe_handler, since another kprobe
* was hit while within the handler, we save the original
* kprobes and single step on the instruction of the new probe
* without calling any user handlers to avoid recursive
* kprobes.
*/
save_previous_kprobe(kcb);
set_current_kprobe(p);
kprobes_inc_nmissed_count(p);
setup_singlestep(p, kcb, regs);
kcb->kprobe_status = KPROBE_REENTER;
return 1;
}
set_current_kprobe(p);
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
/* If we have no pre-handler or it returned 0, we continue with
* normal processing. If we have a pre-handler and it returned
* non-zero - which means user handler setup registers to exit
* to another instruction, we must skip the single stepping.
*/
if (!p->pre_handler || !p->pre_handler(p, regs)) {
setup_singlestep(p, kcb, regs);
kcb->kprobe_status = KPROBE_HIT_SS;
} else {
reset_current_kprobe();
preempt_enable_no_resched();
}
return 1;
}
int __kprobes parisc_kprobe_ss_handler(struct pt_regs *regs)
{
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
struct kprobe *p = kprobe_running();
if (regs->iaoq[0] != (unsigned long)p->ainsn.insn+4)
return 0;
/* restore back original saved kprobe variables and continue */
if (kcb->kprobe_status == KPROBE_REENTER) {
restore_previous_kprobe(kcb);
return 1;
}
/* for absolute branch instructions we can copy iaoq_b. for relative
* branch instructions we need to calculate the new address based on the
* difference between iaoq_f and iaoq_b. We cannot use iaoq_b without
* modificationt because it's based on our ainsn.insn address.
*/
if (p->post_handler)
p->post_handler(p, regs, 0);
switch (regs->iir >> 26) {
case 0x38: /* BE */
case 0x39: /* BE,L */
case 0x3a: /* BV */
case 0x3b: /* BVE */
/* for absolute branches, regs->iaoq[1] has already the right
* address
*/
regs->iaoq[0] = kcb->iaoq[1];
break;
default:
regs->iaoq[1] = kcb->iaoq[0];
regs->iaoq[1] += (regs->iaoq[1] - regs->iaoq[0]) + 4;
regs->iaoq[0] = kcb->iaoq[1];
break;
}
kcb->kprobe_status = KPROBE_HIT_SSDONE;
reset_current_kprobe();
return 1;
}
static inline void kretprobe_trampoline(void)
{
asm volatile("nop");
asm volatile("nop");
}
static int __kprobes trampoline_probe_handler(struct kprobe *p,
struct pt_regs *regs);
static struct kprobe trampoline_p = {
.pre_handler = trampoline_probe_handler
};
static int __kprobes trampoline_probe_handler(struct kprobe *p,
struct pt_regs *regs)
{
struct kretprobe_instance *ri = NULL;
struct hlist_head *head, empty_rp;
struct hlist_node *tmp;
unsigned long flags, orig_ret_address = 0;
unsigned long trampoline_address = (unsigned long)trampoline_p.addr;
kprobe_opcode_t *correct_ret_addr = NULL;
INIT_HLIST_HEAD(&empty_rp);
kretprobe_hash_lock(current, &head, &flags);
/*
* It is possible to have multiple instances associated with a given
* task either because multiple functions in the call path have
* a return probe installed on them, and/or more than one return
* probe was registered for a target function.
*
* We can handle this because:
* - instances are always inserted at the head of the list
* - when multiple return probes are registered for the same
* function, the first instance's ret_addr will point to the
* real return address, and all the rest will point to
* kretprobe_trampoline
*/
hlist_for_each_entry_safe(ri, tmp, head, hlist) {
if (ri->task != current)
/* another task is sharing our hash bucket */
continue;
orig_ret_address = (unsigned long)ri->ret_addr;
if (orig_ret_address != trampoline_address)
/*
* This is the real return address. Any other
* instances associated with this task are for
* other calls deeper on the call stack
*/
break;
}
kretprobe_assert(ri, orig_ret_address, trampoline_address);
correct_ret_addr = ri->ret_addr;
hlist_for_each_entry_safe(ri, tmp, head, hlist) {
if (ri->task != current)
/* another task is sharing our hash bucket */
continue;
orig_ret_address = (unsigned long)ri->ret_addr;
if (ri->rp && ri->rp->handler) {
__this_cpu_write(current_kprobe, &ri->rp->kp);
get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
ri->ret_addr = correct_ret_addr;
ri->rp->handler(ri, regs);
__this_cpu_write(current_kprobe, NULL);
}
recycle_rp_inst(ri, &empty_rp);
if (orig_ret_address != trampoline_address)
/*
* This is the real return address. Any other
* instances associated with this task are for
* other calls deeper on the call stack
*/
break;
}
kretprobe_hash_unlock(current, &flags);
hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
hlist_del(&ri->hlist);
kfree(ri);
}
instruction_pointer_set(regs, orig_ret_address);
return 1;
}
void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
struct pt_regs *regs)
{
ri->ret_addr = (kprobe_opcode_t *)regs->gr[2];
/* Replace the return addr with trampoline addr. */
regs->gr[2] = (unsigned long)trampoline_p.addr;
}
int __kprobes arch_trampoline_kprobe(struct kprobe *p)
{
return p->addr == trampoline_p.addr;
}
bool arch_kprobe_on_func_entry(unsigned long offset)
{
return !offset;
}
int __init arch_init_kprobes(void)
{
trampoline_p.addr = (kprobe_opcode_t *)
dereference_function_descriptor(kretprobe_trampoline);
return register_kprobe(&trampoline_p);
}