linux/drivers/net/sis190.c

1947 lines
46 KiB
C
Raw Normal View History

/*
sis190.c: Silicon Integrated Systems SiS190 ethernet driver
Copyright (c) 2003 K.M. Liu <kmliu@sis.com>
Copyright (c) 2003, 2004 Jeff Garzik <jgarzik@pobox.com>
Copyright (c) 2003, 2004, 2005 Francois Romieu <romieu@fr.zoreil.com>
Based on r8169.c, tg3.c, 8139cp.c, skge.c, epic100.c and SiS 190/191
genuine driver.
This software may be used and distributed according to the terms of
the GNU General Public License (GPL), incorporated herein by reference.
Drivers based on or derived from this code fall under the GPL and must
retain the authorship, copyright and license notice. This file is not
a complete program and may only be used when the entire operating
system is licensed under the GPL.
See the file COPYING in this distribution for more information.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/netdevice.h>
#include <linux/rtnetlink.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/pci.h>
#include <linux/mii.h>
#include <linux/delay.h>
#include <linux/crc32.h>
#include <linux/dma-mapping.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <asm/irq.h>
#define PHY_MAX_ADDR 32
#define PHY_ID_ANY 0x1f
#define MII_REG_ANY 0x1f
#define DRV_VERSION "1.4"
#define DRV_NAME "sis190"
#define SIS190_DRIVER_NAME DRV_NAME " Gigabit Ethernet driver " DRV_VERSION
#define sis190_rx_skb netif_rx
#define sis190_rx_quota(count, quota) count
#define MAC_ADDR_LEN 6
#define NUM_TX_DESC 64 /* [8..1024] */
#define NUM_RX_DESC 64 /* [8..8192] */
#define TX_RING_BYTES (NUM_TX_DESC * sizeof(struct TxDesc))
#define RX_RING_BYTES (NUM_RX_DESC * sizeof(struct RxDesc))
#define RX_BUF_SIZE 1536
#define RX_BUF_MASK 0xfff8
#define SIS190_REGS_SIZE 0x80
#define SIS190_TX_TIMEOUT (6*HZ)
#define SIS190_PHY_TIMEOUT (10*HZ)
#define SIS190_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
NETIF_MSG_LINK | NETIF_MSG_IFUP | \
NETIF_MSG_IFDOWN)
/* Enhanced PHY access register bit definitions */
#define EhnMIIread 0x0000
#define EhnMIIwrite 0x0020
#define EhnMIIdataShift 16
#define EhnMIIpmdShift 6 /* 7016 only */
#define EhnMIIregShift 11
#define EhnMIIreq 0x0010
#define EhnMIInotDone 0x0010
/* Write/read MMIO register */
#define SIS_W8(reg, val) writeb ((val), ioaddr + (reg))
#define SIS_W16(reg, val) writew ((val), ioaddr + (reg))
#define SIS_W32(reg, val) writel ((val), ioaddr + (reg))
#define SIS_R8(reg) readb (ioaddr + (reg))
#define SIS_R16(reg) readw (ioaddr + (reg))
#define SIS_R32(reg) readl (ioaddr + (reg))
#define SIS_PCI_COMMIT() SIS_R32(IntrControl)
enum sis190_registers {
TxControl = 0x00,
TxDescStartAddr = 0x04,
rsv0 = 0x08, // reserved
TxSts = 0x0c, // unused (Control/Status)
RxControl = 0x10,
RxDescStartAddr = 0x14,
rsv1 = 0x18, // reserved
RxSts = 0x1c, // unused
IntrStatus = 0x20,
IntrMask = 0x24,
IntrControl = 0x28,
IntrTimer = 0x2c, // unused (Interrupt Timer)
PMControl = 0x30, // unused (Power Mgmt Control/Status)
rsv2 = 0x34, // reserved
ROMControl = 0x38,
ROMInterface = 0x3c,
StationControl = 0x40,
GMIIControl = 0x44,
GIoCR = 0x48, // unused (GMAC IO Compensation)
GIoCtrl = 0x4c, // unused (GMAC IO Control)
TxMacControl = 0x50,
TxLimit = 0x54, // unused (Tx MAC Timer/TryLimit)
RGDelay = 0x58, // unused (RGMII Tx Internal Delay)
rsv3 = 0x5c, // reserved
RxMacControl = 0x60,
RxMacAddr = 0x62,
RxHashTable = 0x68,
// Undocumented = 0x6c,
RxWolCtrl = 0x70,
RxWolData = 0x74, // unused (Rx WOL Data Access)
RxMPSControl = 0x78, // unused (Rx MPS Control)
rsv4 = 0x7c, // reserved
};
enum sis190_register_content {
/* IntrStatus */
SoftInt = 0x40000000, // unused
Timeup = 0x20000000, // unused
PauseFrame = 0x00080000, // unused
MagicPacket = 0x00040000, // unused
WakeupFrame = 0x00020000, // unused
LinkChange = 0x00010000,
RxQEmpty = 0x00000080,
RxQInt = 0x00000040,
TxQ1Empty = 0x00000020, // unused
TxQ1Int = 0x00000010,
TxQ0Empty = 0x00000008, // unused
TxQ0Int = 0x00000004,
RxHalt = 0x00000002,
TxHalt = 0x00000001,
/* {Rx/Tx}CmdBits */
CmdReset = 0x10,
CmdRxEnb = 0x08, // unused
CmdTxEnb = 0x01,
RxBufEmpty = 0x01, // unused
/* Cfg9346Bits */
Cfg9346_Lock = 0x00, // unused
Cfg9346_Unlock = 0xc0, // unused
/* RxMacControl */
AcceptErr = 0x20, // unused
AcceptRunt = 0x10, // unused
AcceptBroadcast = 0x0800,
AcceptMulticast = 0x0400,
AcceptMyPhys = 0x0200,
AcceptAllPhys = 0x0100,
/* RxConfigBits */
RxCfgFIFOShift = 13,
RxCfgDMAShift = 8, // 0x1a in RxControl ?
/* TxConfigBits */
TxInterFrameGapShift = 24,
TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */
LinkStatus = 0x02, // unused
FullDup = 0x01, // unused
/* TBICSRBit */
TBILinkOK = 0x02000000, // unused
};
struct TxDesc {
__le32 PSize;
__le32 status;
__le32 addr;
__le32 size;
};
struct RxDesc {
__le32 PSize;
__le32 status;
__le32 addr;
__le32 size;
};
enum _DescStatusBit {
/* _Desc.status */
OWNbit = 0x80000000, // RXOWN/TXOWN
INTbit = 0x40000000, // RXINT/TXINT
CRCbit = 0x00020000, // CRCOFF/CRCEN
PADbit = 0x00010000, // PREADD/PADEN
/* _Desc.size */
RingEnd = 0x80000000,
/* TxDesc.status */
LSEN = 0x08000000, // TSO ? -- FR
IPCS = 0x04000000,
TCPCS = 0x02000000,
UDPCS = 0x01000000,
BSTEN = 0x00800000,
EXTEN = 0x00400000,
DEFEN = 0x00200000,
BKFEN = 0x00100000,
CRSEN = 0x00080000,
COLEN = 0x00040000,
THOL3 = 0x30000000,
THOL2 = 0x20000000,
THOL1 = 0x10000000,
THOL0 = 0x00000000,
WND = 0x00080000,
TABRT = 0x00040000,
FIFO = 0x00020000,
LINK = 0x00010000,
ColCountMask = 0x0000ffff,
/* RxDesc.status */
IPON = 0x20000000,
TCPON = 0x10000000,
UDPON = 0x08000000,
Wakup = 0x00400000,
Magic = 0x00200000,
Pause = 0x00100000,
DEFbit = 0x00200000,
BCAST = 0x000c0000,
MCAST = 0x00080000,
UCAST = 0x00040000,
/* RxDesc.PSize */
TAGON = 0x80000000,
RxDescCountMask = 0x7f000000, // multi-desc pkt when > 1 ? -- FR
ABORT = 0x00800000,
SHORT = 0x00400000,
LIMIT = 0x00200000,
MIIER = 0x00100000,
OVRUN = 0x00080000,
NIBON = 0x00040000,
COLON = 0x00020000,
CRCOK = 0x00010000,
RxSizeMask = 0x0000ffff
/*
* The asic could apparently do vlan, TSO, jumbo (sis191 only) and
* provide two (unused with Linux) Tx queues. No publicly
* available documentation alas.
*/
};
enum sis190_eeprom_access_register_bits {
EECS = 0x00000001, // unused
EECLK = 0x00000002, // unused
EEDO = 0x00000008, // unused
EEDI = 0x00000004, // unused
EEREQ = 0x00000080,
EEROP = 0x00000200,
EEWOP = 0x00000100 // unused
};
/* EEPROM Addresses */
enum sis190_eeprom_address {
EEPROMSignature = 0x00,
EEPROMCLK = 0x01, // unused
EEPROMInfo = 0x02,
EEPROMMACAddr = 0x03
};
enum sis190_feature {
F_HAS_RGMII = 1,
F_PHY_88E1111 = 2,
F_PHY_BCM5461 = 4
};
struct sis190_private {
void __iomem *mmio_addr;
struct pci_dev *pci_dev;
struct net_device *dev;
spinlock_t lock;
u32 rx_buf_sz;
u32 cur_rx;
u32 cur_tx;
u32 dirty_rx;
u32 dirty_tx;
dma_addr_t rx_dma;
dma_addr_t tx_dma;
struct RxDesc *RxDescRing;
struct TxDesc *TxDescRing;
struct sk_buff *Rx_skbuff[NUM_RX_DESC];
struct sk_buff *Tx_skbuff[NUM_TX_DESC];
struct work_struct phy_task;
struct timer_list timer;
u32 msg_enable;
struct mii_if_info mii_if;
struct list_head first_phy;
u32 features;
u32 negotiated_lpa;
enum {
LNK_OFF,
LNK_ON,
LNK_AUTONEG,
} link_status;
};
struct sis190_phy {
struct list_head list;
int phy_id;
u16 id[2];
u16 status;
u8 type;
};
enum sis190_phy_type {
UNKNOWN = 0x00,
HOME = 0x01,
LAN = 0x02,
MIX = 0x03
};
static struct mii_chip_info {
const char *name;
u16 id[2];
unsigned int type;
u32 feature;
} mii_chip_table[] = {
{ "Atheros PHY", { 0x004d, 0xd010 }, LAN, 0 },
{ "Atheros PHY AR8012", { 0x004d, 0xd020 }, LAN, 0 },
{ "Broadcom PHY BCM5461", { 0x0020, 0x60c0 }, LAN, F_PHY_BCM5461 },
{ "Broadcom PHY AC131", { 0x0143, 0xbc70 }, LAN, 0 },
{ "Agere PHY ET1101B", { 0x0282, 0xf010 }, LAN, 0 },
{ "Marvell PHY 88E1111", { 0x0141, 0x0cc0 }, LAN, F_PHY_88E1111 },
{ "Realtek PHY RTL8201", { 0x0000, 0x8200 }, LAN, 0 },
{ NULL, }
};
static const struct {
const char *name;
} sis_chip_info[] = {
{ "SiS 190 PCI Fast Ethernet adapter" },
{ "SiS 191 PCI Gigabit Ethernet adapter" },
};
static DEFINE_PCI_DEVICE_TABLE(sis190_pci_tbl) = {
{ PCI_DEVICE(PCI_VENDOR_ID_SI, 0x0190), 0, 0, 0 },
{ PCI_DEVICE(PCI_VENDOR_ID_SI, 0x0191), 0, 0, 1 },
{ 0, },
};
MODULE_DEVICE_TABLE(pci, sis190_pci_tbl);
static int rx_copybreak = 200;
static struct {
u32 msg_enable;
} debug = { -1 };
MODULE_DESCRIPTION("SiS sis190/191 Gigabit Ethernet driver");
module_param(rx_copybreak, int, 0);
MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
module_param_named(debug, debug.msg_enable, int, 0);
MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., 16=all)");
MODULE_AUTHOR("K.M. Liu <kmliu@sis.com>, Ueimor <romieu@fr.zoreil.com>");
MODULE_VERSION(DRV_VERSION);
MODULE_LICENSE("GPL");
static const u32 sis190_intr_mask =
RxQEmpty | RxQInt | TxQ1Int | TxQ0Int | RxHalt | TxHalt | LinkChange;
/*
* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
* The chips use a 64 element hash table based on the Ethernet CRC.
*/
2006-03-04 02:33:57 +00:00
static const int multicast_filter_limit = 32;
static void __mdio_cmd(void __iomem *ioaddr, u32 ctl)
{
unsigned int i;
SIS_W32(GMIIControl, ctl);
msleep(1);
for (i = 0; i < 100; i++) {
if (!(SIS_R32(GMIIControl) & EhnMIInotDone))
break;
msleep(1);
}
if (i > 99)
pr_err("PHY command failed !\n");
}
static void mdio_write(void __iomem *ioaddr, int phy_id, int reg, int val)
{
__mdio_cmd(ioaddr, EhnMIIreq | EhnMIIwrite |
(((u32) reg) << EhnMIIregShift) | (phy_id << EhnMIIpmdShift) |
(((u32) val) << EhnMIIdataShift));
}
static int mdio_read(void __iomem *ioaddr, int phy_id, int reg)
{
__mdio_cmd(ioaddr, EhnMIIreq | EhnMIIread |
(((u32) reg) << EhnMIIregShift) | (phy_id << EhnMIIpmdShift));
return (u16) (SIS_R32(GMIIControl) >> EhnMIIdataShift);
}
static void __mdio_write(struct net_device *dev, int phy_id, int reg, int val)
{
struct sis190_private *tp = netdev_priv(dev);
mdio_write(tp->mmio_addr, phy_id, reg, val);
}
static int __mdio_read(struct net_device *dev, int phy_id, int reg)
{
struct sis190_private *tp = netdev_priv(dev);
return mdio_read(tp->mmio_addr, phy_id, reg);
}
static u16 mdio_read_latched(void __iomem *ioaddr, int phy_id, int reg)
{
mdio_read(ioaddr, phy_id, reg);
return mdio_read(ioaddr, phy_id, reg);
}
static u16 __devinit sis190_read_eeprom(void __iomem *ioaddr, u32 reg)
{
u16 data = 0xffff;
unsigned int i;
if (!(SIS_R32(ROMControl) & 0x0002))
return 0;
SIS_W32(ROMInterface, EEREQ | EEROP | (reg << 10));
for (i = 0; i < 200; i++) {
if (!(SIS_R32(ROMInterface) & EEREQ)) {
data = (SIS_R32(ROMInterface) & 0xffff0000) >> 16;
break;
}
msleep(1);
}
return data;
}
static void sis190_irq_mask_and_ack(void __iomem *ioaddr)
{
SIS_W32(IntrMask, 0x00);
SIS_W32(IntrStatus, 0xffffffff);
SIS_PCI_COMMIT();
}
static void sis190_asic_down(void __iomem *ioaddr)
{
/* Stop the chip's Tx and Rx DMA processes. */
SIS_W32(TxControl, 0x1a00);
SIS_W32(RxControl, 0x1a00);
sis190_irq_mask_and_ack(ioaddr);
}
static void sis190_mark_as_last_descriptor(struct RxDesc *desc)
{
desc->size |= cpu_to_le32(RingEnd);
}
static inline void sis190_give_to_asic(struct RxDesc *desc, u32 rx_buf_sz)
{
u32 eor = le32_to_cpu(desc->size) & RingEnd;
desc->PSize = 0x0;
desc->size = cpu_to_le32((rx_buf_sz & RX_BUF_MASK) | eor);
wmb();
desc->status = cpu_to_le32(OWNbit | INTbit);
}
static inline void sis190_map_to_asic(struct RxDesc *desc, dma_addr_t mapping,
u32 rx_buf_sz)
{
desc->addr = cpu_to_le32(mapping);
sis190_give_to_asic(desc, rx_buf_sz);
}
static inline void sis190_make_unusable_by_asic(struct RxDesc *desc)
{
desc->PSize = 0x0;
desc->addr = cpu_to_le32(0xdeadbeef);
desc->size &= cpu_to_le32(RingEnd);
wmb();
desc->status = 0x0;
}
static struct sk_buff *sis190_alloc_rx_skb(struct sis190_private *tp,
struct RxDesc *desc)
{
u32 rx_buf_sz = tp->rx_buf_sz;
struct sk_buff *skb;
dma_addr_t mapping;
skb = netdev_alloc_skb(tp->dev, rx_buf_sz);
if (unlikely(!skb))
goto skb_alloc_failed;
mapping = pci_map_single(tp->pci_dev, skb->data, tp->rx_buf_sz,
PCI_DMA_FROMDEVICE);
if (pci_dma_mapping_error(tp->pci_dev, mapping))
goto out;
sis190_map_to_asic(desc, mapping, rx_buf_sz);
return skb;
out:
dev_kfree_skb_any(skb);
skb_alloc_failed:
sis190_make_unusable_by_asic(desc);
return NULL;
}
static u32 sis190_rx_fill(struct sis190_private *tp, struct net_device *dev,
u32 start, u32 end)
{
u32 cur;
for (cur = start; cur < end; cur++) {
unsigned int i = cur % NUM_RX_DESC;
if (tp->Rx_skbuff[i])
continue;
tp->Rx_skbuff[i] = sis190_alloc_rx_skb(tp, tp->RxDescRing + i);
if (!tp->Rx_skbuff[i])
break;
}
return cur - start;
}
static bool sis190_try_rx_copy(struct sis190_private *tp,
struct sk_buff **sk_buff, int pkt_size,
dma_addr_t addr)
{
struct sk_buff *skb;
bool done = false;
if (pkt_size >= rx_copybreak)
goto out;
skb = netdev_alloc_skb_ip_align(tp->dev, pkt_size);
if (!skb)
goto out;
pci_dma_sync_single_for_cpu(tp->pci_dev, addr, tp->rx_buf_sz,
PCI_DMA_FROMDEVICE);
skb_copy_to_linear_data(skb, sk_buff[0]->data, pkt_size);
*sk_buff = skb;
done = true;
out:
return done;
}
static inline int sis190_rx_pkt_err(u32 status, struct net_device_stats *stats)
{
#define ErrMask (OVRUN | SHORT | LIMIT | MIIER | NIBON | COLON | ABORT)
if ((status & CRCOK) && !(status & ErrMask))
return 0;
if (!(status & CRCOK))
stats->rx_crc_errors++;
else if (status & OVRUN)
stats->rx_over_errors++;
else if (status & (SHORT | LIMIT))
stats->rx_length_errors++;
else if (status & (MIIER | NIBON | COLON))
stats->rx_frame_errors++;
stats->rx_errors++;
return -1;
}
static int sis190_rx_interrupt(struct net_device *dev,
struct sis190_private *tp, void __iomem *ioaddr)
{
struct net_device_stats *stats = &dev->stats;
u32 rx_left, cur_rx = tp->cur_rx;
u32 delta, count;
rx_left = NUM_RX_DESC + tp->dirty_rx - cur_rx;
rx_left = sis190_rx_quota(rx_left, (u32) dev->quota);
for (; rx_left > 0; rx_left--, cur_rx++) {
unsigned int entry = cur_rx % NUM_RX_DESC;
struct RxDesc *desc = tp->RxDescRing + entry;
u32 status;
if (le32_to_cpu(desc->status) & OWNbit)
break;
status = le32_to_cpu(desc->PSize);
//netif_info(tp, intr, dev, "Rx PSize = %08x\n", status);
if (sis190_rx_pkt_err(status, stats) < 0)
sis190_give_to_asic(desc, tp->rx_buf_sz);
else {
struct sk_buff *skb = tp->Rx_skbuff[entry];
dma_addr_t addr = le32_to_cpu(desc->addr);
int pkt_size = (status & RxSizeMask) - 4;
struct pci_dev *pdev = tp->pci_dev;
if (unlikely(pkt_size > tp->rx_buf_sz)) {
netif_info(tp, intr, dev,
"(frag) status = %08x\n", status);
stats->rx_dropped++;
stats->rx_length_errors++;
sis190_give_to_asic(desc, tp->rx_buf_sz);
continue;
}
if (sis190_try_rx_copy(tp, &skb, pkt_size, addr)) {
pci_dma_sync_single_for_device(pdev, addr,
tp->rx_buf_sz, PCI_DMA_FROMDEVICE);
sis190_give_to_asic(desc, tp->rx_buf_sz);
} else {
pci_unmap_single(pdev, addr, tp->rx_buf_sz,
PCI_DMA_FROMDEVICE);
tp->Rx_skbuff[entry] = NULL;
sis190_make_unusable_by_asic(desc);
}
skb_put(skb, pkt_size);
skb->protocol = eth_type_trans(skb, dev);
sis190_rx_skb(skb);
stats->rx_packets++;
stats->rx_bytes += pkt_size;
if ((status & BCAST) == MCAST)
stats->multicast++;
}
}
count = cur_rx - tp->cur_rx;
tp->cur_rx = cur_rx;
delta = sis190_rx_fill(tp, dev, tp->dirty_rx, tp->cur_rx);
if (!delta && count)
netif_info(tp, intr, dev, "no Rx buffer allocated\n");
tp->dirty_rx += delta;
if ((tp->dirty_rx + NUM_RX_DESC) == tp->cur_rx)
netif_emerg(tp, intr, dev, "Rx buffers exhausted\n");
return count;
}
static void sis190_unmap_tx_skb(struct pci_dev *pdev, struct sk_buff *skb,
struct TxDesc *desc)
{
unsigned int len;
len = skb->len < ETH_ZLEN ? ETH_ZLEN : skb->len;
pci_unmap_single(pdev, le32_to_cpu(desc->addr), len, PCI_DMA_TODEVICE);
memset(desc, 0x00, sizeof(*desc));
}
static inline int sis190_tx_pkt_err(u32 status, struct net_device_stats *stats)
{
#define TxErrMask (WND | TABRT | FIFO | LINK)
if (!unlikely(status & TxErrMask))
return 0;
if (status & WND)
stats->tx_window_errors++;
if (status & TABRT)
stats->tx_aborted_errors++;
if (status & FIFO)
stats->tx_fifo_errors++;
if (status & LINK)
stats->tx_carrier_errors++;
stats->tx_errors++;
return -1;
}
static void sis190_tx_interrupt(struct net_device *dev,
struct sis190_private *tp, void __iomem *ioaddr)
{
struct net_device_stats *stats = &dev->stats;
u32 pending, dirty_tx = tp->dirty_tx;
/*
* It would not be needed if queueing was allowed to be enabled
* again too early (hint: think preempt and unclocked smp systems).
*/
unsigned int queue_stopped;
smp_rmb();
pending = tp->cur_tx - dirty_tx;
queue_stopped = (pending == NUM_TX_DESC);
for (; pending; pending--, dirty_tx++) {
unsigned int entry = dirty_tx % NUM_TX_DESC;
struct TxDesc *txd = tp->TxDescRing + entry;
u32 status = le32_to_cpu(txd->status);
struct sk_buff *skb;
if (status & OWNbit)
break;
skb = tp->Tx_skbuff[entry];
if (likely(sis190_tx_pkt_err(status, stats) == 0)) {
stats->tx_packets++;
stats->tx_bytes += skb->len;
stats->collisions += ((status & ColCountMask) - 1);
}
sis190_unmap_tx_skb(tp->pci_dev, skb, txd);
tp->Tx_skbuff[entry] = NULL;
dev_kfree_skb_irq(skb);
}
if (tp->dirty_tx != dirty_tx) {
tp->dirty_tx = dirty_tx;
smp_wmb();
if (queue_stopped)
netif_wake_queue(dev);
}
}
/*
* The interrupt handler does all of the Rx thread work and cleans up after
* the Tx thread.
*/
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
static irqreturn_t sis190_interrupt(int irq, void *__dev)
{
struct net_device *dev = __dev;
struct sis190_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->mmio_addr;
unsigned int handled = 0;
u32 status;
status = SIS_R32(IntrStatus);
if ((status == 0xffffffff) || !status)
goto out;
handled = 1;
if (unlikely(!netif_running(dev))) {
sis190_asic_down(ioaddr);
goto out;
}
SIS_W32(IntrStatus, status);
// netif_info(tp, intr, dev, "status = %08x\n", status);
if (status & LinkChange) {
netif_info(tp, intr, dev, "link change\n");
del_timer(&tp->timer);
schedule_work(&tp->phy_task);
}
if (status & RxQInt)
sis190_rx_interrupt(dev, tp, ioaddr);
if (status & TxQ0Int)
sis190_tx_interrupt(dev, tp, ioaddr);
out:
return IRQ_RETVAL(handled);
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void sis190_netpoll(struct net_device *dev)
{
struct sis190_private *tp = netdev_priv(dev);
struct pci_dev *pdev = tp->pci_dev;
disable_irq(pdev->irq);
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
sis190_interrupt(pdev->irq, dev);
enable_irq(pdev->irq);
}
#endif
static void sis190_free_rx_skb(struct sis190_private *tp,
struct sk_buff **sk_buff, struct RxDesc *desc)
{
struct pci_dev *pdev = tp->pci_dev;
pci_unmap_single(pdev, le32_to_cpu(desc->addr), tp->rx_buf_sz,
PCI_DMA_FROMDEVICE);
dev_kfree_skb(*sk_buff);
*sk_buff = NULL;
sis190_make_unusable_by_asic(desc);
}
static void sis190_rx_clear(struct sis190_private *tp)
{
unsigned int i;
for (i = 0; i < NUM_RX_DESC; i++) {
if (!tp->Rx_skbuff[i])
continue;
sis190_free_rx_skb(tp, tp->Rx_skbuff + i, tp->RxDescRing + i);
}
}
static void sis190_init_ring_indexes(struct sis190_private *tp)
{
tp->dirty_tx = tp->dirty_rx = tp->cur_tx = tp->cur_rx = 0;
}
static int sis190_init_ring(struct net_device *dev)
{
struct sis190_private *tp = netdev_priv(dev);
sis190_init_ring_indexes(tp);
memset(tp->Tx_skbuff, 0x0, NUM_TX_DESC * sizeof(struct sk_buff *));
memset(tp->Rx_skbuff, 0x0, NUM_RX_DESC * sizeof(struct sk_buff *));
if (sis190_rx_fill(tp, dev, 0, NUM_RX_DESC) != NUM_RX_DESC)
goto err_rx_clear;
sis190_mark_as_last_descriptor(tp->RxDescRing + NUM_RX_DESC - 1);
return 0;
err_rx_clear:
sis190_rx_clear(tp);
return -ENOMEM;
}
static void sis190_set_rx_mode(struct net_device *dev)
{
struct sis190_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->mmio_addr;
unsigned long flags;
u32 mc_filter[2]; /* Multicast hash filter */
u16 rx_mode;
if (dev->flags & IFF_PROMISC) {
rx_mode =
AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
AcceptAllPhys;
mc_filter[1] = mc_filter[0] = 0xffffffff;
} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
(dev->flags & IFF_ALLMULTI)) {
/* Too many to filter perfectly -- accept all multicasts. */
rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
mc_filter[1] = mc_filter[0] = 0xffffffff;
} else {
struct netdev_hw_addr *ha;
rx_mode = AcceptBroadcast | AcceptMyPhys;
mc_filter[1] = mc_filter[0] = 0;
netdev_for_each_mc_addr(ha, dev) {
int bit_nr =
ether_crc(ETH_ALEN, ha->addr) & 0x3f;
mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
rx_mode |= AcceptMulticast;
}
}
spin_lock_irqsave(&tp->lock, flags);
SIS_W16(RxMacControl, rx_mode | 0x2);
SIS_W32(RxHashTable, mc_filter[0]);
SIS_W32(RxHashTable + 4, mc_filter[1]);
spin_unlock_irqrestore(&tp->lock, flags);
}
static void sis190_soft_reset(void __iomem *ioaddr)
{
SIS_W32(IntrControl, 0x8000);
SIS_PCI_COMMIT();
SIS_W32(IntrControl, 0x0);
sis190_asic_down(ioaddr);
}
static void sis190_hw_start(struct net_device *dev)
{
struct sis190_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->mmio_addr;
sis190_soft_reset(ioaddr);
SIS_W32(TxDescStartAddr, tp->tx_dma);
SIS_W32(RxDescStartAddr, tp->rx_dma);
SIS_W32(IntrStatus, 0xffffffff);
SIS_W32(IntrMask, 0x0);
SIS_W32(GMIIControl, 0x0);
SIS_W32(TxMacControl, 0x60);
SIS_W16(RxMacControl, 0x02);
SIS_W32(RxHashTable, 0x0);
SIS_W32(0x6c, 0x0);
SIS_W32(RxWolCtrl, 0x0);
SIS_W32(RxWolData, 0x0);
SIS_PCI_COMMIT();
sis190_set_rx_mode(dev);
/* Enable all known interrupts by setting the interrupt mask. */
SIS_W32(IntrMask, sis190_intr_mask);
SIS_W32(TxControl, 0x1a00 | CmdTxEnb);
SIS_W32(RxControl, 0x1a1d);
netif_start_queue(dev);
}
static void sis190_phy_task(struct work_struct *work)
{
struct sis190_private *tp =
container_of(work, struct sis190_private, phy_task);
struct net_device *dev = tp->dev;
void __iomem *ioaddr = tp->mmio_addr;
int phy_id = tp->mii_if.phy_id;
u16 val;
rtnl_lock();
if (!netif_running(dev))
goto out_unlock;
val = mdio_read(ioaddr, phy_id, MII_BMCR);
if (val & BMCR_RESET) {
// FIXME: needlessly high ? -- FR 02/07/2005
mod_timer(&tp->timer, jiffies + HZ/10);
goto out_unlock;
}
val = mdio_read_latched(ioaddr, phy_id, MII_BMSR);
if (!(val & BMSR_ANEGCOMPLETE) && tp->link_status != LNK_AUTONEG) {
netif_carrier_off(dev);
netif_warn(tp, link, dev, "auto-negotiating...\n");
tp->link_status = LNK_AUTONEG;
} else if ((val & BMSR_LSTATUS) && tp->link_status != LNK_ON) {
/* Rejoice ! */
struct {
int val;
u32 ctl;
const char *msg;
} reg31[] = {
{ LPA_1000FULL, 0x07000c00 | 0x00001000,
"1000 Mbps Full Duplex" },
{ LPA_1000HALF, 0x07000c00,
"1000 Mbps Half Duplex" },
{ LPA_100FULL, 0x04000800 | 0x00001000,
"100 Mbps Full Duplex" },
{ LPA_100HALF, 0x04000800,
"100 Mbps Half Duplex" },
{ LPA_10FULL, 0x04000400 | 0x00001000,
"10 Mbps Full Duplex" },
{ LPA_10HALF, 0x04000400,
"10 Mbps Half Duplex" },
{ 0, 0x04000400, "unknown" }
}, *p = NULL;
u16 adv, autoexp, gigadv, gigrec;
val = mdio_read(ioaddr, phy_id, 0x1f);
netif_info(tp, link, dev, "mii ext = %04x\n", val);
val = mdio_read(ioaddr, phy_id, MII_LPA);
adv = mdio_read(ioaddr, phy_id, MII_ADVERTISE);
autoexp = mdio_read(ioaddr, phy_id, MII_EXPANSION);
netif_info(tp, link, dev, "mii lpa=%04x adv=%04x exp=%04x\n",
val, adv, autoexp);
if (val & LPA_NPAGE && autoexp & EXPANSION_NWAY) {
/* check for gigabit speed */
gigadv = mdio_read(ioaddr, phy_id, MII_CTRL1000);
gigrec = mdio_read(ioaddr, phy_id, MII_STAT1000);
val = (gigadv & (gigrec >> 2));
if (val & ADVERTISE_1000FULL)
p = reg31;
else if (val & ADVERTISE_1000HALF)
p = reg31 + 1;
}
if (!p) {
val &= adv;
for (p = reg31; p->val; p++) {
if ((val & p->val) == p->val)
break;
}
}
p->ctl |= SIS_R32(StationControl) & ~0x0f001c00;
if ((tp->features & F_HAS_RGMII) &&
(tp->features & F_PHY_BCM5461)) {
// Set Tx Delay in RGMII mode.
mdio_write(ioaddr, phy_id, 0x18, 0xf1c7);
udelay(200);
mdio_write(ioaddr, phy_id, 0x1c, 0x8c00);
p->ctl |= 0x03000000;
}
SIS_W32(StationControl, p->ctl);
if (tp->features & F_HAS_RGMII) {
SIS_W32(RGDelay, 0x0441);
SIS_W32(RGDelay, 0x0440);
}
tp->negotiated_lpa = p->val;
netif_info(tp, link, dev, "link on %s mode\n", p->msg);
netif_carrier_on(dev);
tp->link_status = LNK_ON;
} else if (!(val & BMSR_LSTATUS) && tp->link_status != LNK_AUTONEG)
tp->link_status = LNK_OFF;
mod_timer(&tp->timer, jiffies + SIS190_PHY_TIMEOUT);
out_unlock:
rtnl_unlock();
}
static void sis190_phy_timer(unsigned long __opaque)
{
struct net_device *dev = (struct net_device *)__opaque;
struct sis190_private *tp = netdev_priv(dev);
if (likely(netif_running(dev)))
schedule_work(&tp->phy_task);
}
static inline void sis190_delete_timer(struct net_device *dev)
{
struct sis190_private *tp = netdev_priv(dev);
del_timer_sync(&tp->timer);
}
static inline void sis190_request_timer(struct net_device *dev)
{
struct sis190_private *tp = netdev_priv(dev);
struct timer_list *timer = &tp->timer;
init_timer(timer);
timer->expires = jiffies + SIS190_PHY_TIMEOUT;
timer->data = (unsigned long)dev;
timer->function = sis190_phy_timer;
add_timer(timer);
}
static void sis190_set_rxbufsize(struct sis190_private *tp,
struct net_device *dev)
{
unsigned int mtu = dev->mtu;
tp->rx_buf_sz = (mtu > RX_BUF_SIZE) ? mtu + ETH_HLEN + 8 : RX_BUF_SIZE;
/* RxDesc->size has a licence to kill the lower bits */
if (tp->rx_buf_sz & 0x07) {
tp->rx_buf_sz += 8;
tp->rx_buf_sz &= RX_BUF_MASK;
}
}
static int sis190_open(struct net_device *dev)
{
struct sis190_private *tp = netdev_priv(dev);
struct pci_dev *pdev = tp->pci_dev;
int rc = -ENOMEM;
sis190_set_rxbufsize(tp, dev);
/*
* Rx and Tx descriptors need 256 bytes alignment.
* pci_alloc_consistent() guarantees a stronger alignment.
*/
tp->TxDescRing = pci_alloc_consistent(pdev, TX_RING_BYTES, &tp->tx_dma);
if (!tp->TxDescRing)
goto out;
tp->RxDescRing = pci_alloc_consistent(pdev, RX_RING_BYTES, &tp->rx_dma);
if (!tp->RxDescRing)
goto err_free_tx_0;
rc = sis190_init_ring(dev);
if (rc < 0)
goto err_free_rx_1;
sis190_request_timer(dev);
rc = request_irq(dev->irq, sis190_interrupt, IRQF_SHARED, dev->name, dev);
if (rc < 0)
goto err_release_timer_2;
sis190_hw_start(dev);
out:
return rc;
err_release_timer_2:
sis190_delete_timer(dev);
sis190_rx_clear(tp);
err_free_rx_1:
pci_free_consistent(tp->pci_dev, RX_RING_BYTES, tp->RxDescRing,
tp->rx_dma);
err_free_tx_0:
pci_free_consistent(tp->pci_dev, TX_RING_BYTES, tp->TxDescRing,
tp->tx_dma);
goto out;
}
static void sis190_tx_clear(struct sis190_private *tp)
{
unsigned int i;
for (i = 0; i < NUM_TX_DESC; i++) {
struct sk_buff *skb = tp->Tx_skbuff[i];
if (!skb)
continue;
sis190_unmap_tx_skb(tp->pci_dev, skb, tp->TxDescRing + i);
tp->Tx_skbuff[i] = NULL;
dev_kfree_skb(skb);
tp->dev->stats.tx_dropped++;
}
tp->cur_tx = tp->dirty_tx = 0;
}
static void sis190_down(struct net_device *dev)
{
struct sis190_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->mmio_addr;
unsigned int poll_locked = 0;
sis190_delete_timer(dev);
netif_stop_queue(dev);
do {
spin_lock_irq(&tp->lock);
sis190_asic_down(ioaddr);
spin_unlock_irq(&tp->lock);
synchronize_irq(dev->irq);
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
if (!poll_locked)
poll_locked++;
synchronize_sched();
} while (SIS_R32(IntrMask));
sis190_tx_clear(tp);
sis190_rx_clear(tp);
}
static int sis190_close(struct net_device *dev)
{
struct sis190_private *tp = netdev_priv(dev);
struct pci_dev *pdev = tp->pci_dev;
sis190_down(dev);
free_irq(dev->irq, dev);
pci_free_consistent(pdev, TX_RING_BYTES, tp->TxDescRing, tp->tx_dma);
pci_free_consistent(pdev, RX_RING_BYTES, tp->RxDescRing, tp->rx_dma);
tp->TxDescRing = NULL;
tp->RxDescRing = NULL;
return 0;
}
static netdev_tx_t sis190_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct sis190_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->mmio_addr;
u32 len, entry, dirty_tx;
struct TxDesc *desc;
dma_addr_t mapping;
if (unlikely(skb->len < ETH_ZLEN)) {
if (skb_padto(skb, ETH_ZLEN)) {
dev->stats.tx_dropped++;
goto out;
}
len = ETH_ZLEN;
} else {
len = skb->len;
}
entry = tp->cur_tx % NUM_TX_DESC;
desc = tp->TxDescRing + entry;
if (unlikely(le32_to_cpu(desc->status) & OWNbit)) {
netif_stop_queue(dev);
netif_err(tp, tx_err, dev,
"BUG! Tx Ring full when queue awake!\n");
return NETDEV_TX_BUSY;
}
mapping = pci_map_single(tp->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
if (pci_dma_mapping_error(tp->pci_dev, mapping)) {
netif_err(tp, tx_err, dev,
"PCI mapping failed, dropping packet");
return NETDEV_TX_BUSY;
}
tp->Tx_skbuff[entry] = skb;
desc->PSize = cpu_to_le32(len);
desc->addr = cpu_to_le32(mapping);
desc->size = cpu_to_le32(len);
if (entry == (NUM_TX_DESC - 1))
desc->size |= cpu_to_le32(RingEnd);
wmb();
desc->status = cpu_to_le32(OWNbit | INTbit | DEFbit | CRCbit | PADbit);
if (tp->negotiated_lpa & (LPA_1000HALF | LPA_100HALF | LPA_10HALF)) {
/* Half Duplex */
desc->status |= cpu_to_le32(COLEN | CRSEN | BKFEN);
if (tp->negotiated_lpa & (LPA_1000HALF | LPA_1000FULL))
desc->status |= cpu_to_le32(EXTEN | BSTEN); /* gigabit HD */
}
tp->cur_tx++;
smp_wmb();
SIS_W32(TxControl, 0x1a00 | CmdReset | CmdTxEnb);
dirty_tx = tp->dirty_tx;
if ((tp->cur_tx - NUM_TX_DESC) == dirty_tx) {
netif_stop_queue(dev);
smp_rmb();
if (dirty_tx != tp->dirty_tx)
netif_wake_queue(dev);
}
out:
return NETDEV_TX_OK;
}
static void sis190_free_phy(struct list_head *first_phy)
{
struct sis190_phy *cur, *next;
list_for_each_entry_safe(cur, next, first_phy, list) {
kfree(cur);
}
}
/**
* sis190_default_phy - Select default PHY for sis190 mac.
* @dev: the net device to probe for
*
* Select first detected PHY with link as default.
* If no one is link on, select PHY whose types is HOME as default.
* If HOME doesn't exist, select LAN.
*/
static u16 sis190_default_phy(struct net_device *dev)
{
struct sis190_phy *phy, *phy_home, *phy_default, *phy_lan;
struct sis190_private *tp = netdev_priv(dev);
struct mii_if_info *mii_if = &tp->mii_if;
void __iomem *ioaddr = tp->mmio_addr;
u16 status;
phy_home = phy_default = phy_lan = NULL;
list_for_each_entry(phy, &tp->first_phy, list) {
status = mdio_read_latched(ioaddr, phy->phy_id, MII_BMSR);
// Link ON & Not select default PHY & not ghost PHY.
if ((status & BMSR_LSTATUS) &&
!phy_default &&
(phy->type != UNKNOWN)) {
phy_default = phy;
} else {
status = mdio_read(ioaddr, phy->phy_id, MII_BMCR);
mdio_write(ioaddr, phy->phy_id, MII_BMCR,
status | BMCR_ANENABLE | BMCR_ISOLATE);
if (phy->type == HOME)
phy_home = phy;
else if (phy->type == LAN)
phy_lan = phy;
}
}
if (!phy_default) {
if (phy_home)
phy_default = phy_home;
else if (phy_lan)
phy_default = phy_lan;
else
phy_default = list_first_entry(&tp->first_phy,
struct sis190_phy, list);
}
if (mii_if->phy_id != phy_default->phy_id) {
mii_if->phy_id = phy_default->phy_id;
if (netif_msg_probe(tp))
pr_info("%s: Using transceiver at address %d as default\n",
pci_name(tp->pci_dev), mii_if->phy_id);
}
status = mdio_read(ioaddr, mii_if->phy_id, MII_BMCR);
status &= (~BMCR_ISOLATE);
mdio_write(ioaddr, mii_if->phy_id, MII_BMCR, status);
status = mdio_read_latched(ioaddr, mii_if->phy_id, MII_BMSR);
return status;
}
static void sis190_init_phy(struct net_device *dev, struct sis190_private *tp,
struct sis190_phy *phy, unsigned int phy_id,
u16 mii_status)
{
void __iomem *ioaddr = tp->mmio_addr;
struct mii_chip_info *p;
INIT_LIST_HEAD(&phy->list);
phy->status = mii_status;
phy->phy_id = phy_id;
phy->id[0] = mdio_read(ioaddr, phy_id, MII_PHYSID1);
phy->id[1] = mdio_read(ioaddr, phy_id, MII_PHYSID2);
for (p = mii_chip_table; p->type; p++) {
if ((p->id[0] == phy->id[0]) &&
(p->id[1] == (phy->id[1] & 0xfff0))) {
break;
}
}
if (p->id[1]) {
phy->type = (p->type == MIX) ?
((mii_status & (BMSR_100FULL | BMSR_100HALF)) ?
LAN : HOME) : p->type;
tp->features |= p->feature;
if (netif_msg_probe(tp))
pr_info("%s: %s transceiver at address %d\n",
pci_name(tp->pci_dev), p->name, phy_id);
} else {
phy->type = UNKNOWN;
if (netif_msg_probe(tp))
pr_info("%s: unknown PHY 0x%x:0x%x transceiver at address %d\n",
pci_name(tp->pci_dev),
phy->id[0], (phy->id[1] & 0xfff0), phy_id);
}
}
static void sis190_mii_probe_88e1111_fixup(struct sis190_private *tp)
{
if (tp->features & F_PHY_88E1111) {
void __iomem *ioaddr = tp->mmio_addr;
int phy_id = tp->mii_if.phy_id;
u16 reg[2][2] = {
{ 0x808b, 0x0ce1 },
{ 0x808f, 0x0c60 }
}, *p;
p = (tp->features & F_HAS_RGMII) ? reg[0] : reg[1];
mdio_write(ioaddr, phy_id, 0x1b, p[0]);
udelay(200);
mdio_write(ioaddr, phy_id, 0x14, p[1]);
udelay(200);
}
}
/**
* sis190_mii_probe - Probe MII PHY for sis190
* @dev: the net device to probe for
*
* Search for total of 32 possible mii phy addresses.
* Identify and set current phy if found one,
* return error if it failed to found.
*/
static int __devinit sis190_mii_probe(struct net_device *dev)
{
struct sis190_private *tp = netdev_priv(dev);
struct mii_if_info *mii_if = &tp->mii_if;
void __iomem *ioaddr = tp->mmio_addr;
int phy_id;
int rc = 0;
INIT_LIST_HEAD(&tp->first_phy);
for (phy_id = 0; phy_id < PHY_MAX_ADDR; phy_id++) {
struct sis190_phy *phy;
u16 status;
status = mdio_read_latched(ioaddr, phy_id, MII_BMSR);
// Try next mii if the current one is not accessible.
if (status == 0xffff || status == 0x0000)
continue;
phy = kmalloc(sizeof(*phy), GFP_KERNEL);
if (!phy) {
sis190_free_phy(&tp->first_phy);
rc = -ENOMEM;
goto out;
}
sis190_init_phy(dev, tp, phy, phy_id, status);
list_add(&tp->first_phy, &phy->list);
}
if (list_empty(&tp->first_phy)) {
if (netif_msg_probe(tp))
pr_info("%s: No MII transceivers found!\n",
pci_name(tp->pci_dev));
rc = -EIO;
goto out;
}
/* Select default PHY for mac */
sis190_default_phy(dev);
sis190_mii_probe_88e1111_fixup(tp);
mii_if->dev = dev;
mii_if->mdio_read = __mdio_read;
mii_if->mdio_write = __mdio_write;
mii_if->phy_id_mask = PHY_ID_ANY;
mii_if->reg_num_mask = MII_REG_ANY;
out:
return rc;
}
static void sis190_mii_remove(struct net_device *dev)
{
struct sis190_private *tp = netdev_priv(dev);
sis190_free_phy(&tp->first_phy);
}
static void sis190_release_board(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct sis190_private *tp = netdev_priv(dev);
iounmap(tp->mmio_addr);
pci_release_regions(pdev);
pci_disable_device(pdev);
free_netdev(dev);
}
static struct net_device * __devinit sis190_init_board(struct pci_dev *pdev)
{
struct sis190_private *tp;
struct net_device *dev;
void __iomem *ioaddr;
int rc;
dev = alloc_etherdev(sizeof(*tp));
if (!dev) {
if (netif_msg_drv(&debug))
pr_err("unable to alloc new ethernet\n");
rc = -ENOMEM;
goto err_out_0;
}
SET_NETDEV_DEV(dev, &pdev->dev);
tp = netdev_priv(dev);
tp->dev = dev;
tp->msg_enable = netif_msg_init(debug.msg_enable, SIS190_MSG_DEFAULT);
rc = pci_enable_device(pdev);
if (rc < 0) {
if (netif_msg_probe(tp))
pr_err("%s: enable failure\n", pci_name(pdev));
goto err_free_dev_1;
}
rc = -ENODEV;
if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
if (netif_msg_probe(tp))
pr_err("%s: region #0 is no MMIO resource\n",
pci_name(pdev));
goto err_pci_disable_2;
}
if (pci_resource_len(pdev, 0) < SIS190_REGS_SIZE) {
if (netif_msg_probe(tp))
pr_err("%s: invalid PCI region size(s)\n",
pci_name(pdev));
goto err_pci_disable_2;
}
rc = pci_request_regions(pdev, DRV_NAME);
if (rc < 0) {
if (netif_msg_probe(tp))
pr_err("%s: could not request regions\n",
pci_name(pdev));
goto err_pci_disable_2;
}
rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (rc < 0) {
if (netif_msg_probe(tp))
pr_err("%s: DMA configuration failed\n",
pci_name(pdev));
goto err_free_res_3;
}
pci_set_master(pdev);
ioaddr = ioremap(pci_resource_start(pdev, 0), SIS190_REGS_SIZE);
if (!ioaddr) {
if (netif_msg_probe(tp))
pr_err("%s: cannot remap MMIO, aborting\n",
pci_name(pdev));
rc = -EIO;
goto err_free_res_3;
}
tp->pci_dev = pdev;
tp->mmio_addr = ioaddr;
tp->link_status = LNK_OFF;
sis190_irq_mask_and_ack(ioaddr);
sis190_soft_reset(ioaddr);
out:
return dev;
err_free_res_3:
pci_release_regions(pdev);
err_pci_disable_2:
pci_disable_device(pdev);
err_free_dev_1:
free_netdev(dev);
err_out_0:
dev = ERR_PTR(rc);
goto out;
}
static void sis190_tx_timeout(struct net_device *dev)
{
struct sis190_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->mmio_addr;
u8 tmp8;
/* Disable Tx, if not already */
tmp8 = SIS_R8(TxControl);
if (tmp8 & CmdTxEnb)
SIS_W8(TxControl, tmp8 & ~CmdTxEnb);
netif_info(tp, tx_err, dev, "Transmit timeout, status %08x %08x\n",
SIS_R32(TxControl), SIS_R32(TxSts));
/* Disable interrupts by clearing the interrupt mask. */
SIS_W32(IntrMask, 0x0000);
/* Stop a shared interrupt from scavenging while we are. */
spin_lock_irq(&tp->lock);
sis190_tx_clear(tp);
spin_unlock_irq(&tp->lock);
/* ...and finally, reset everything. */
sis190_hw_start(dev);
netif_wake_queue(dev);
}
static void sis190_set_rgmii(struct sis190_private *tp, u8 reg)
{
tp->features |= (reg & 0x80) ? F_HAS_RGMII : 0;
}
static int __devinit sis190_get_mac_addr_from_eeprom(struct pci_dev *pdev,
struct net_device *dev)
{
struct sis190_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->mmio_addr;
u16 sig;
int i;
if (netif_msg_probe(tp))
pr_info("%s: Read MAC address from EEPROM\n", pci_name(pdev));
/* Check to see if there is a sane EEPROM */
sig = (u16) sis190_read_eeprom(ioaddr, EEPROMSignature);
if ((sig == 0xffff) || (sig == 0x0000)) {
if (netif_msg_probe(tp))
pr_info("%s: Error EEPROM read %x\n",
pci_name(pdev), sig);
return -EIO;
}
/* Get MAC address from EEPROM */
for (i = 0; i < MAC_ADDR_LEN / 2; i++) {
u16 w = sis190_read_eeprom(ioaddr, EEPROMMACAddr + i);
((__le16 *)dev->dev_addr)[i] = cpu_to_le16(w);
}
sis190_set_rgmii(tp, sis190_read_eeprom(ioaddr, EEPROMInfo));
return 0;
}
/**
* sis190_get_mac_addr_from_apc - Get MAC address for SiS96x model
* @pdev: PCI device
* @dev: network device to get address for
*
* SiS96x model, use APC CMOS RAM to store MAC address.
* APC CMOS RAM is accessed through ISA bridge.
* MAC address is read into @net_dev->dev_addr.
*/
static int __devinit sis190_get_mac_addr_from_apc(struct pci_dev *pdev,
struct net_device *dev)
{
static const u16 __devinitdata ids[] = { 0x0965, 0x0966, 0x0968 };
struct sis190_private *tp = netdev_priv(dev);
struct pci_dev *isa_bridge;
u8 reg, tmp8;
unsigned int i;
if (netif_msg_probe(tp))
pr_info("%s: Read MAC address from APC\n", pci_name(pdev));
for (i = 0; i < ARRAY_SIZE(ids); i++) {
isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, ids[i], NULL);
if (isa_bridge)
break;
}
if (!isa_bridge) {
if (netif_msg_probe(tp))
pr_info("%s: Can not find ISA bridge\n",
pci_name(pdev));
return -EIO;
}
/* Enable port 78h & 79h to access APC Registers. */
pci_read_config_byte(isa_bridge, 0x48, &tmp8);
reg = (tmp8 & ~0x02);
pci_write_config_byte(isa_bridge, 0x48, reg);
udelay(50);
pci_read_config_byte(isa_bridge, 0x48, &reg);
for (i = 0; i < MAC_ADDR_LEN; i++) {
outb(0x9 + i, 0x78);
dev->dev_addr[i] = inb(0x79);
}
outb(0x12, 0x78);
reg = inb(0x79);
sis190_set_rgmii(tp, reg);
/* Restore the value to ISA Bridge */
pci_write_config_byte(isa_bridge, 0x48, tmp8);
pci_dev_put(isa_bridge);
return 0;
}
/**
* sis190_init_rxfilter - Initialize the Rx filter
* @dev: network device to initialize
*
* Set receive filter address to our MAC address
* and enable packet filtering.
*/
static inline void sis190_init_rxfilter(struct net_device *dev)
{
struct sis190_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->mmio_addr;
u16 ctl;
int i;
ctl = SIS_R16(RxMacControl);
/*
* Disable packet filtering before setting filter.
* Note: SiS's driver writes 32 bits but RxMacControl is 16 bits
* only and followed by RxMacAddr (6 bytes). Strange. -- FR
*/
SIS_W16(RxMacControl, ctl & ~0x0f00);
for (i = 0; i < MAC_ADDR_LEN; i++)
SIS_W8(RxMacAddr + i, dev->dev_addr[i]);
SIS_W16(RxMacControl, ctl);
SIS_PCI_COMMIT();
}
static int __devinit sis190_get_mac_addr(struct pci_dev *pdev,
struct net_device *dev)
{
int rc;
rc = sis190_get_mac_addr_from_eeprom(pdev, dev);
if (rc < 0) {
u8 reg;
pci_read_config_byte(pdev, 0x73, &reg);
if (reg & 0x00000001)
rc = sis190_get_mac_addr_from_apc(pdev, dev);
}
return rc;
}
static void sis190_set_speed_auto(struct net_device *dev)
{
struct sis190_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->mmio_addr;
int phy_id = tp->mii_if.phy_id;
int val;
netif_info(tp, link, dev, "Enabling Auto-negotiation\n");
val = mdio_read(ioaddr, phy_id, MII_ADVERTISE);
// Enable 10/100 Full/Half Mode, leave MII_ADVERTISE bit4:0
// unchanged.
mdio_write(ioaddr, phy_id, MII_ADVERTISE, (val & ADVERTISE_SLCT) |
ADVERTISE_100FULL | ADVERTISE_10FULL |
ADVERTISE_100HALF | ADVERTISE_10HALF);
// Enable 1000 Full Mode.
mdio_write(ioaddr, phy_id, MII_CTRL1000, ADVERTISE_1000FULL);
// Enable auto-negotiation and restart auto-negotiation.
mdio_write(ioaddr, phy_id, MII_BMCR,
BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET);
}
static int sis190_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct sis190_private *tp = netdev_priv(dev);
return mii_ethtool_gset(&tp->mii_if, cmd);
}
static int sis190_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct sis190_private *tp = netdev_priv(dev);
return mii_ethtool_sset(&tp->mii_if, cmd);
}
static void sis190_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct sis190_private *tp = netdev_priv(dev);
strcpy(info->driver, DRV_NAME);
strcpy(info->version, DRV_VERSION);
strcpy(info->bus_info, pci_name(tp->pci_dev));
}
static int sis190_get_regs_len(struct net_device *dev)
{
return SIS190_REGS_SIZE;
}
static void sis190_get_regs(struct net_device *dev, struct ethtool_regs *regs,
void *p)
{
struct sis190_private *tp = netdev_priv(dev);
unsigned long flags;
if (regs->len > SIS190_REGS_SIZE)
regs->len = SIS190_REGS_SIZE;
spin_lock_irqsave(&tp->lock, flags);
memcpy_fromio(p, tp->mmio_addr, regs->len);
spin_unlock_irqrestore(&tp->lock, flags);
}
static int sis190_nway_reset(struct net_device *dev)
{
struct sis190_private *tp = netdev_priv(dev);
return mii_nway_restart(&tp->mii_if);
}
static u32 sis190_get_msglevel(struct net_device *dev)
{
struct sis190_private *tp = netdev_priv(dev);
return tp->msg_enable;
}
static void sis190_set_msglevel(struct net_device *dev, u32 value)
{
struct sis190_private *tp = netdev_priv(dev);
tp->msg_enable = value;
}
static const struct ethtool_ops sis190_ethtool_ops = {
.get_settings = sis190_get_settings,
.set_settings = sis190_set_settings,
.get_drvinfo = sis190_get_drvinfo,
.get_regs_len = sis190_get_regs_len,
.get_regs = sis190_get_regs,
.get_link = ethtool_op_get_link,
.get_msglevel = sis190_get_msglevel,
.set_msglevel = sis190_set_msglevel,
.nway_reset = sis190_nway_reset,
};
static int sis190_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct sis190_private *tp = netdev_priv(dev);
return !netif_running(dev) ? -EINVAL :
generic_mii_ioctl(&tp->mii_if, if_mii(ifr), cmd, NULL);
}
static const struct net_device_ops sis190_netdev_ops = {
.ndo_open = sis190_open,
.ndo_stop = sis190_close,
.ndo_do_ioctl = sis190_ioctl,
.ndo_start_xmit = sis190_start_xmit,
.ndo_tx_timeout = sis190_tx_timeout,
.ndo_set_multicast_list = sis190_set_rx_mode,
.ndo_change_mtu = eth_change_mtu,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = sis190_netpoll,
#endif
};
static int __devinit sis190_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
static int printed_version = 0;
struct sis190_private *tp;
struct net_device *dev;
void __iomem *ioaddr;
int rc;
if (!printed_version) {
if (netif_msg_drv(&debug))
pr_info(SIS190_DRIVER_NAME " loaded\n");
printed_version = 1;
}
dev = sis190_init_board(pdev);
if (IS_ERR(dev)) {
rc = PTR_ERR(dev);
goto out;
}
pci_set_drvdata(pdev, dev);
tp = netdev_priv(dev);
ioaddr = tp->mmio_addr;
rc = sis190_get_mac_addr(pdev, dev);
if (rc < 0)
goto err_release_board;
sis190_init_rxfilter(dev);
INIT_WORK(&tp->phy_task, sis190_phy_task);
dev->netdev_ops = &sis190_netdev_ops;
SET_ETHTOOL_OPS(dev, &sis190_ethtool_ops);
dev->irq = pdev->irq;
dev->base_addr = (unsigned long) 0xdead;
dev->watchdog_timeo = SIS190_TX_TIMEOUT;
spin_lock_init(&tp->lock);
rc = sis190_mii_probe(dev);
if (rc < 0)
goto err_release_board;
rc = register_netdev(dev);
if (rc < 0)
goto err_remove_mii;
if (netif_msg_probe(tp)) {
netdev_info(dev, "%s: %s at %p (IRQ: %d), %pM\n",
pci_name(pdev),
sis_chip_info[ent->driver_data].name,
ioaddr, dev->irq, dev->dev_addr);
netdev_info(dev, "%s mode.\n",
(tp->features & F_HAS_RGMII) ? "RGMII" : "GMII");
}
netif_carrier_off(dev);
sis190_set_speed_auto(dev);
out:
return rc;
err_remove_mii:
sis190_mii_remove(dev);
err_release_board:
sis190_release_board(pdev);
goto out;
}
static void __devexit sis190_remove_one(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct sis190_private *tp = netdev_priv(dev);
sis190_mii_remove(dev);
cancel_work_sync(&tp->phy_task);
unregister_netdev(dev);
sis190_release_board(pdev);
pci_set_drvdata(pdev, NULL);
}
static struct pci_driver sis190_pci_driver = {
.name = DRV_NAME,
.id_table = sis190_pci_tbl,
.probe = sis190_init_one,
.remove = __devexit_p(sis190_remove_one),
};
static int __init sis190_init_module(void)
{
return pci_register_driver(&sis190_pci_driver);
}
static void __exit sis190_cleanup_module(void)
{
pci_unregister_driver(&sis190_pci_driver);
}
module_init(sis190_init_module);
module_exit(sis190_cleanup_module);