linux/drivers/block/cciss.c

2974 lines
83 KiB
C
Raw Normal View History

/*
* Disk Array driver for HP SA 5xxx and 6xxx Controllers
* Copyright 2000, 2005 Hewlett-Packard Development Company, L.P.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Questions/Comments/Bugfixes to iss_storagedev@hp.com
*
*/
#include <linux/config.h> /* CONFIG_PROC_FS */
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/major.h>
#include <linux/fs.h>
#include <linux/bio.h>
#include <linux/blkpg.h>
#include <linux/timer.h>
#include <linux/proc_fs.h>
#include <linux/init.h>
#include <linux/hdreg.h>
#include <linux/spinlock.h>
#include <linux/compat.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <linux/dma-mapping.h>
#include <linux/blkdev.h>
#include <linux/genhd.h>
#include <linux/completion.h>
#define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
#define DRIVER_NAME "HP CISS Driver (v 2.6.6)"
#define DRIVER_VERSION CCISS_DRIVER_VERSION(2,6,6)
/* Embedded module documentation macros - see modules.h */
MODULE_AUTHOR("Hewlett-Packard Company");
MODULE_DESCRIPTION("Driver for HP Controller SA5xxx SA6xxx version 2.6.6");
MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
" SA6i P600 P800 E400 E300");
MODULE_LICENSE("GPL");
#include "cciss_cmd.h"
#include "cciss.h"
#include <linux/cciss_ioctl.h>
/* define the PCI info for the cards we can control */
static const struct pci_device_id cciss_pci_device_id[] = {
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS,
0x0E11, 0x4070, 0, 0, 0},
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB,
0x0E11, 0x4080, 0, 0, 0},
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB,
0x0E11, 0x4082, 0, 0, 0},
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB,
0x0E11, 0x4083, 0, 0, 0},
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC,
0x0E11, 0x409A, 0, 0, 0},
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC,
0x0E11, 0x409B, 0, 0, 0},
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC,
0x0E11, 0x409C, 0, 0, 0},
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC,
0x0E11, 0x409D, 0, 0, 0},
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC,
0x0E11, 0x4091, 0, 0, 0},
{ PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA,
0x103C, 0x3225, 0, 0, 0},
{ PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSB,
0x103c, 0x3223, 0, 0, 0},
{ PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC,
0x103c, 0x3231, 0, 0, 0},
{ PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC,
0x103c, 0x3233, 0, 0, 0},
{0,}
};
MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
#define NR_PRODUCTS (sizeof(products)/sizeof(struct board_type))
/* board_id = Subsystem Device ID & Vendor ID
* product = Marketing Name for the board
* access = Address of the struct of function pointers
*/
static struct board_type products[] = {
{ 0x40700E11, "Smart Array 5300", &SA5_access },
{ 0x40800E11, "Smart Array 5i", &SA5B_access},
{ 0x40820E11, "Smart Array 532", &SA5B_access},
{ 0x40830E11, "Smart Array 5312", &SA5B_access},
{ 0x409A0E11, "Smart Array 641", &SA5_access},
{ 0x409B0E11, "Smart Array 642", &SA5_access},
{ 0x409C0E11, "Smart Array 6400", &SA5_access},
{ 0x409D0E11, "Smart Array 6400 EM", &SA5_access},
{ 0x40910E11, "Smart Array 6i", &SA5_access},
{ 0x3225103C, "Smart Array P600", &SA5_access},
{ 0x3223103C, "Smart Array P800", &SA5_access},
{ 0x3231103C, "Smart Array E400", &SA5_access},
{ 0x3233103C, "Smart Array E300", &SA5_access},
};
/* How long to wait (in millesconds) for board to go into simple mode */
#define MAX_CONFIG_WAIT 30000
#define MAX_IOCTL_CONFIG_WAIT 1000
/*define how many times we will try a command because of bus resets */
#define MAX_CMD_RETRIES 3
#define READ_AHEAD 1024
#define NR_CMDS 384 /* #commands that can be outstanding */
#define MAX_CTLR 32
/* Originally cciss driver only supports 8 major numbers */
#define MAX_CTLR_ORIG 8
static ctlr_info_t *hba[MAX_CTLR];
static void do_cciss_request(request_queue_t *q);
static int cciss_open(struct inode *inode, struct file *filep);
static int cciss_release(struct inode *inode, struct file *filep);
static int cciss_ioctl(struct inode *inode, struct file *filep,
unsigned int cmd, unsigned long arg);
static int revalidate_allvol(ctlr_info_t *host);
static int cciss_revalidate(struct gendisk *disk);
static int deregister_disk(struct gendisk *disk);
static int register_new_disk(ctlr_info_t *h);
static void cciss_getgeometry(int cntl_num);
static void start_io( ctlr_info_t *h);
static int sendcmd( __u8 cmd, int ctlr, void *buff, size_t size,
unsigned int use_unit_num, unsigned int log_unit, __u8 page_code,
unsigned char *scsi3addr, int cmd_type);
#ifdef CONFIG_PROC_FS
static int cciss_proc_get_info(char *buffer, char **start, off_t offset,
int length, int *eof, void *data);
static void cciss_procinit(int i);
#else
static void cciss_procinit(int i) {}
#endif /* CONFIG_PROC_FS */
#ifdef CONFIG_COMPAT
static long cciss_compat_ioctl(struct file *f, unsigned cmd, unsigned long arg);
#endif
static struct block_device_operations cciss_fops = {
.owner = THIS_MODULE,
.open = cciss_open,
.release = cciss_release,
.ioctl = cciss_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = cciss_compat_ioctl,
#endif
.revalidate_disk= cciss_revalidate,
};
/*
* Enqueuing and dequeuing functions for cmdlists.
*/
static inline void addQ(CommandList_struct **Qptr, CommandList_struct *c)
{
if (*Qptr == NULL) {
*Qptr = c;
c->next = c->prev = c;
} else {
c->prev = (*Qptr)->prev;
c->next = (*Qptr);
(*Qptr)->prev->next = c;
(*Qptr)->prev = c;
}
}
static inline CommandList_struct *removeQ(CommandList_struct **Qptr,
CommandList_struct *c)
{
if (c && c->next != c) {
if (*Qptr == c) *Qptr = c->next;
c->prev->next = c->next;
c->next->prev = c->prev;
} else {
*Qptr = NULL;
}
return c;
}
#include "cciss_scsi.c" /* For SCSI tape support */
#ifdef CONFIG_PROC_FS
/*
* Report information about this controller.
*/
#define ENG_GIG 1000000000
#define ENG_GIG_FACTOR (ENG_GIG/512)
#define RAID_UNKNOWN 6
static const char *raid_label[] = {"0","4","1(1+0)","5","5+1","ADG",
"UNKNOWN"};
static struct proc_dir_entry *proc_cciss;
static int cciss_proc_get_info(char *buffer, char **start, off_t offset,
int length, int *eof, void *data)
{
off_t pos = 0;
off_t len = 0;
int size, i, ctlr;
ctlr_info_t *h = (ctlr_info_t*)data;
drive_info_struct *drv;
unsigned long flags;
sector_t vol_sz, vol_sz_frac;
ctlr = h->ctlr;
/* prevent displaying bogus info during configuration
* or deconfiguration of a logical volume
*/
spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
if (h->busy_configuring) {
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
return -EBUSY;
}
h->busy_configuring = 1;
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
size = sprintf(buffer, "%s: HP %s Controller\n"
"Board ID: 0x%08lx\n"
"Firmware Version: %c%c%c%c\n"
"IRQ: %d\n"
"Logical drives: %d\n"
"Current Q depth: %d\n"
"Current # commands on controller: %d\n"
"Max Q depth since init: %d\n"
"Max # commands on controller since init: %d\n"
"Max SG entries since init: %d\n\n",
h->devname,
h->product_name,
(unsigned long)h->board_id,
h->firm_ver[0], h->firm_ver[1], h->firm_ver[2], h->firm_ver[3],
(unsigned int)h->intr,
h->num_luns,
h->Qdepth, h->commands_outstanding,
h->maxQsinceinit, h->max_outstanding, h->maxSG);
pos += size; len += size;
cciss_proc_tape_report(ctlr, buffer, &pos, &len);
for(i=0; i<=h->highest_lun; i++) {
drv = &h->drv[i];
if (drv->block_size == 0)
continue;
vol_sz = drv->nr_blocks;
vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
vol_sz_frac *= 100;
sector_div(vol_sz_frac, ENG_GIG_FACTOR);
if (drv->raid_level > 5)
drv->raid_level = RAID_UNKNOWN;
size = sprintf(buffer+len, "cciss/c%dd%d:"
"\t%4u.%02uGB\tRAID %s\n",
ctlr, i, (int)vol_sz, (int)vol_sz_frac,
raid_label[drv->raid_level]);
pos += size; len += size;
}
*eof = 1;
*start = buffer+offset;
len -= offset;
if (len>length)
len = length;
h->busy_configuring = 0;
return len;
}
static int
cciss_proc_write(struct file *file, const char __user *buffer,
unsigned long count, void *data)
{
unsigned char cmd[80];
int len;
#ifdef CONFIG_CISS_SCSI_TAPE
ctlr_info_t *h = (ctlr_info_t *) data;
int rc;
#endif
if (count > sizeof(cmd)-1) return -EINVAL;
if (copy_from_user(cmd, buffer, count)) return -EFAULT;
cmd[count] = '\0';
len = strlen(cmd); // above 3 lines ensure safety
if (len && cmd[len-1] == '\n')
cmd[--len] = '\0';
# ifdef CONFIG_CISS_SCSI_TAPE
if (strcmp("engage scsi", cmd)==0) {
rc = cciss_engage_scsi(h->ctlr);
if (rc != 0) return -rc;
return count;
}
/* might be nice to have "disengage" too, but it's not
safely possible. (only 1 module use count, lock issues.) */
# endif
return -EINVAL;
}
/*
* Get us a file in /proc/cciss that says something about each controller.
* Create /proc/cciss if it doesn't exist yet.
*/
static void __devinit cciss_procinit(int i)
{
struct proc_dir_entry *pde;
if (proc_cciss == NULL) {
proc_cciss = proc_mkdir("cciss", proc_root_driver);
if (!proc_cciss)
return;
}
pde = create_proc_read_entry(hba[i]->devname,
S_IWUSR | S_IRUSR | S_IRGRP | S_IROTH,
proc_cciss, cciss_proc_get_info, hba[i]);
pde->write_proc = cciss_proc_write;
}
#endif /* CONFIG_PROC_FS */
/*
* For operations that cannot sleep, a command block is allocated at init,
* and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
* which ones are free or in use. For operations that can wait for kmalloc
* to possible sleep, this routine can be called with get_from_pool set to 0.
* cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
*/
static CommandList_struct * cmd_alloc(ctlr_info_t *h, int get_from_pool)
{
CommandList_struct *c;
int i;
u64bit temp64;
dma_addr_t cmd_dma_handle, err_dma_handle;
if (!get_from_pool)
{
c = (CommandList_struct *) pci_alloc_consistent(
h->pdev, sizeof(CommandList_struct), &cmd_dma_handle);
if(c==NULL)
return NULL;
memset(c, 0, sizeof(CommandList_struct));
c->err_info = (ErrorInfo_struct *)pci_alloc_consistent(
h->pdev, sizeof(ErrorInfo_struct),
&err_dma_handle);
if (c->err_info == NULL)
{
pci_free_consistent(h->pdev,
sizeof(CommandList_struct), c, cmd_dma_handle);
return NULL;
}
memset(c->err_info, 0, sizeof(ErrorInfo_struct));
} else /* get it out of the controllers pool */
{
do {
i = find_first_zero_bit(h->cmd_pool_bits, NR_CMDS);
if (i == NR_CMDS)
return NULL;
} while(test_and_set_bit(i & (BITS_PER_LONG - 1), h->cmd_pool_bits+(i/BITS_PER_LONG)) != 0);
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
#endif
c = h->cmd_pool + i;
memset(c, 0, sizeof(CommandList_struct));
cmd_dma_handle = h->cmd_pool_dhandle
+ i*sizeof(CommandList_struct);
c->err_info = h->errinfo_pool + i;
memset(c->err_info, 0, sizeof(ErrorInfo_struct));
err_dma_handle = h->errinfo_pool_dhandle
+ i*sizeof(ErrorInfo_struct);
h->nr_allocs++;
}
c->busaddr = (__u32) cmd_dma_handle;
temp64.val = (__u64) err_dma_handle;
c->ErrDesc.Addr.lower = temp64.val32.lower;
c->ErrDesc.Addr.upper = temp64.val32.upper;
c->ErrDesc.Len = sizeof(ErrorInfo_struct);
c->ctlr = h->ctlr;
return c;
}
/*
* Frees a command block that was previously allocated with cmd_alloc().
*/
static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
{
int i;
u64bit temp64;
if( !got_from_pool)
{
temp64.val32.lower = c->ErrDesc.Addr.lower;
temp64.val32.upper = c->ErrDesc.Addr.upper;
pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
c->err_info, (dma_addr_t) temp64.val);
pci_free_consistent(h->pdev, sizeof(CommandList_struct),
c, (dma_addr_t) c->busaddr);
} else
{
i = c - h->cmd_pool;
clear_bit(i&(BITS_PER_LONG-1), h->cmd_pool_bits+(i/BITS_PER_LONG));
h->nr_frees++;
}
}
static inline ctlr_info_t *get_host(struct gendisk *disk)
{
return disk->queue->queuedata;
}
static inline drive_info_struct *get_drv(struct gendisk *disk)
{
return disk->private_data;
}
/*
* Open. Make sure the device is really there.
*/
static int cciss_open(struct inode *inode, struct file *filep)
{
ctlr_info_t *host = get_host(inode->i_bdev->bd_disk);
drive_info_struct *drv = get_drv(inode->i_bdev->bd_disk);
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "cciss_open %s\n", inode->i_bdev->bd_disk->disk_name);
#endif /* CCISS_DEBUG */
/*
* Root is allowed to open raw volume zero even if it's not configured
* so array config can still work. Root is also allowed to open any
* volume that has a LUN ID, so it can issue IOCTL to reread the
* disk information. I don't think I really like this
* but I'm already using way to many device nodes to claim another one
* for "raw controller".
*/
if (drv->nr_blocks == 0) {
if (iminor(inode) != 0) { /* not node 0? */
/* if not node 0 make sure it is a partition = 0 */
if (iminor(inode) & 0x0f) {
return -ENXIO;
/* if it is, make sure we have a LUN ID */
} else if (drv->LunID == 0) {
return -ENXIO;
}
}
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
}
drv->usage_count++;
host->usage_count++;
return 0;
}
/*
* Close. Sync first.
*/
static int cciss_release(struct inode *inode, struct file *filep)
{
ctlr_info_t *host = get_host(inode->i_bdev->bd_disk);
drive_info_struct *drv = get_drv(inode->i_bdev->bd_disk);
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "cciss_release %s\n", inode->i_bdev->bd_disk->disk_name);
#endif /* CCISS_DEBUG */
drv->usage_count--;
host->usage_count--;
return 0;
}
#ifdef CONFIG_COMPAT
static int do_ioctl(struct file *f, unsigned cmd, unsigned long arg)
{
int ret;
lock_kernel();
ret = cciss_ioctl(f->f_dentry->d_inode, f, cmd, arg);
unlock_kernel();
return ret;
}
static int cciss_ioctl32_passthru(struct file *f, unsigned cmd, unsigned long arg);
static int cciss_ioctl32_big_passthru(struct file *f, unsigned cmd, unsigned long arg);
static long cciss_compat_ioctl(struct file *f, unsigned cmd, unsigned long arg)
{
switch (cmd) {
case CCISS_GETPCIINFO:
case CCISS_GETINTINFO:
case CCISS_SETINTINFO:
case CCISS_GETNODENAME:
case CCISS_SETNODENAME:
case CCISS_GETHEARTBEAT:
case CCISS_GETBUSTYPES:
case CCISS_GETFIRMVER:
case CCISS_GETDRIVVER:
case CCISS_REVALIDVOLS:
case CCISS_DEREGDISK:
case CCISS_REGNEWDISK:
case CCISS_REGNEWD:
case CCISS_RESCANDISK:
case CCISS_GETLUNINFO:
return do_ioctl(f, cmd, arg);
case CCISS_PASSTHRU32:
return cciss_ioctl32_passthru(f, cmd, arg);
case CCISS_BIG_PASSTHRU32:
return cciss_ioctl32_big_passthru(f, cmd, arg);
default:
return -ENOIOCTLCMD;
}
}
static int cciss_ioctl32_passthru(struct file *f, unsigned cmd, unsigned long arg)
{
IOCTL32_Command_struct __user *arg32 =
(IOCTL32_Command_struct __user *) arg;
IOCTL_Command_struct arg64;
IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
int err;
u32 cp;
err = 0;
err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, sizeof(arg64.LUN_info));
err |= copy_from_user(&arg64.Request, &arg32->Request, sizeof(arg64.Request));
err |= copy_from_user(&arg64.error_info, &arg32->error_info, sizeof(arg64.error_info));
err |= get_user(arg64.buf_size, &arg32->buf_size);
err |= get_user(cp, &arg32->buf);
arg64.buf = compat_ptr(cp);
err |= copy_to_user(p, &arg64, sizeof(arg64));
if (err)
return -EFAULT;
err = do_ioctl(f, CCISS_PASSTHRU, (unsigned long) p);
if (err)
return err;
err |= copy_in_user(&arg32->error_info, &p->error_info, sizeof(arg32->error_info));
if (err)
return -EFAULT;
return err;
}
static int cciss_ioctl32_big_passthru(struct file *file, unsigned cmd, unsigned long arg)
{
BIG_IOCTL32_Command_struct __user *arg32 =
(BIG_IOCTL32_Command_struct __user *) arg;
BIG_IOCTL_Command_struct arg64;
BIG_IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
int err;
u32 cp;
err = 0;
err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, sizeof(arg64.LUN_info));
err |= copy_from_user(&arg64.Request, &arg32->Request, sizeof(arg64.Request));
err |= copy_from_user(&arg64.error_info, &arg32->error_info, sizeof(arg64.error_info));
err |= get_user(arg64.buf_size, &arg32->buf_size);
err |= get_user(arg64.malloc_size, &arg32->malloc_size);
err |= get_user(cp, &arg32->buf);
arg64.buf = compat_ptr(cp);
err |= copy_to_user(p, &arg64, sizeof(arg64));
if (err)
return -EFAULT;
err = do_ioctl(file, CCISS_BIG_PASSTHRU, (unsigned long) p);
if (err)
return err;
err |= copy_in_user(&arg32->error_info, &p->error_info, sizeof(arg32->error_info));
if (err)
return -EFAULT;
return err;
}
#endif
/*
* ioctl
*/
static int cciss_ioctl(struct inode *inode, struct file *filep,
unsigned int cmd, unsigned long arg)
{
struct block_device *bdev = inode->i_bdev;
struct gendisk *disk = bdev->bd_disk;
ctlr_info_t *host = get_host(disk);
drive_info_struct *drv = get_drv(disk);
int ctlr = host->ctlr;
void __user *argp = (void __user *)arg;
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
#endif /* CCISS_DEBUG */
switch(cmd) {
case HDIO_GETGEO:
{
struct hd_geometry driver_geo;
if (drv->cylinders) {
driver_geo.heads = drv->heads;
driver_geo.sectors = drv->sectors;
driver_geo.cylinders = drv->cylinders;
} else
return -ENXIO;
driver_geo.start= get_start_sect(inode->i_bdev);
if (copy_to_user(argp, &driver_geo, sizeof(struct hd_geometry)))
return -EFAULT;
return(0);
}
case CCISS_GETPCIINFO:
{
cciss_pci_info_struct pciinfo;
if (!arg) return -EINVAL;
pciinfo.bus = host->pdev->bus->number;
pciinfo.dev_fn = host->pdev->devfn;
pciinfo.board_id = host->board_id;
if (copy_to_user(argp, &pciinfo, sizeof( cciss_pci_info_struct )))
return -EFAULT;
return(0);
}
case CCISS_GETINTINFO:
{
cciss_coalint_struct intinfo;
if (!arg) return -EINVAL;
intinfo.delay = readl(&host->cfgtable->HostWrite.CoalIntDelay);
intinfo.count = readl(&host->cfgtable->HostWrite.CoalIntCount);
if (copy_to_user(argp, &intinfo, sizeof( cciss_coalint_struct )))
return -EFAULT;
return(0);
}
case CCISS_SETINTINFO:
{
cciss_coalint_struct intinfo;
unsigned long flags;
int i;
if (!arg) return -EINVAL;
if (!capable(CAP_SYS_ADMIN)) return -EPERM;
if (copy_from_user(&intinfo, argp, sizeof( cciss_coalint_struct)))
return -EFAULT;
if ( (intinfo.delay == 0 ) && (intinfo.count == 0))
{
// printk("cciss_ioctl: delay and count cannot be 0\n");
return( -EINVAL);
}
spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
/* Update the field, and then ring the doorbell */
writel( intinfo.delay,
&(host->cfgtable->HostWrite.CoalIntDelay));
writel( intinfo.count,
&(host->cfgtable->HostWrite.CoalIntCount));
writel( CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
for(i=0;i<MAX_IOCTL_CONFIG_WAIT;i++) {
if (!(readl(host->vaddr + SA5_DOORBELL)
& CFGTBL_ChangeReq))
break;
/* delay and try again */
udelay(1000);
}
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
if (i >= MAX_IOCTL_CONFIG_WAIT)
return -EAGAIN;
return(0);
}
case CCISS_GETNODENAME:
{
NodeName_type NodeName;
int i;
if (!arg) return -EINVAL;
for(i=0;i<16;i++)
NodeName[i] = readb(&host->cfgtable->ServerName[i]);
if (copy_to_user(argp, NodeName, sizeof( NodeName_type)))
return -EFAULT;
return(0);
}
case CCISS_SETNODENAME:
{
NodeName_type NodeName;
unsigned long flags;
int i;
if (!arg) return -EINVAL;
if (!capable(CAP_SYS_ADMIN)) return -EPERM;
if (copy_from_user(NodeName, argp, sizeof( NodeName_type)))
return -EFAULT;
spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
/* Update the field, and then ring the doorbell */
for(i=0;i<16;i++)
writeb( NodeName[i], &host->cfgtable->ServerName[i]);
writel( CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
for(i=0;i<MAX_IOCTL_CONFIG_WAIT;i++) {
if (!(readl(host->vaddr + SA5_DOORBELL)
& CFGTBL_ChangeReq))
break;
/* delay and try again */
udelay(1000);
}
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
if (i >= MAX_IOCTL_CONFIG_WAIT)
return -EAGAIN;
return(0);
}
case CCISS_GETHEARTBEAT:
{
Heartbeat_type heartbeat;
if (!arg) return -EINVAL;
heartbeat = readl(&host->cfgtable->HeartBeat);
if (copy_to_user(argp, &heartbeat, sizeof( Heartbeat_type)))
return -EFAULT;
return(0);
}
case CCISS_GETBUSTYPES:
{
BusTypes_type BusTypes;
if (!arg) return -EINVAL;
BusTypes = readl(&host->cfgtable->BusTypes);
if (copy_to_user(argp, &BusTypes, sizeof( BusTypes_type) ))
return -EFAULT;
return(0);
}
case CCISS_GETFIRMVER:
{
FirmwareVer_type firmware;
if (!arg) return -EINVAL;
memcpy(firmware, host->firm_ver, 4);
if (copy_to_user(argp, firmware, sizeof( FirmwareVer_type)))
return -EFAULT;
return(0);
}
case CCISS_GETDRIVVER:
{
DriverVer_type DriverVer = DRIVER_VERSION;
if (!arg) return -EINVAL;
if (copy_to_user(argp, &DriverVer, sizeof( DriverVer_type) ))
return -EFAULT;
return(0);
}
case CCISS_REVALIDVOLS:
if (bdev != bdev->bd_contains || drv != host->drv)
return -ENXIO;
return revalidate_allvol(host);
case CCISS_GETLUNINFO: {
LogvolInfo_struct luninfo;
int i;
luninfo.LunID = drv->LunID;
luninfo.num_opens = drv->usage_count;
luninfo.num_parts = 0;
/* count partitions 1 to 15 with sizes > 0 */
for (i = 0; i < MAX_PART - 1; i++) {
if (!disk->part[i])
continue;
if (disk->part[i]->nr_sects != 0)
luninfo.num_parts++;
}
if (copy_to_user(argp, &luninfo,
sizeof(LogvolInfo_struct)))
return -EFAULT;
return(0);
}
case CCISS_DEREGDISK:
return deregister_disk(disk);
case CCISS_REGNEWD:
return register_new_disk(host);
case CCISS_PASSTHRU:
{
IOCTL_Command_struct iocommand;
CommandList_struct *c;
char *buff = NULL;
u64bit temp64;
unsigned long flags;
DECLARE_COMPLETION(wait);
if (!arg) return -EINVAL;
if (!capable(CAP_SYS_RAWIO)) return -EPERM;
if (copy_from_user(&iocommand, argp, sizeof( IOCTL_Command_struct) ))
return -EFAULT;
if((iocommand.buf_size < 1) &&
(iocommand.Request.Type.Direction != XFER_NONE))
{
return -EINVAL;
}
#if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
/* Check kmalloc limits */
if(iocommand.buf_size > 128000)
return -EINVAL;
#endif
if(iocommand.buf_size > 0)
{
buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
if( buff == NULL)
return -EFAULT;
}
if (iocommand.Request.Type.Direction == XFER_WRITE)
{
/* Copy the data into the buffer we created */
if (copy_from_user(buff, iocommand.buf, iocommand.buf_size))
{
kfree(buff);
return -EFAULT;
}
} else {
memset(buff, 0, iocommand.buf_size);
}
if ((c = cmd_alloc(host , 0)) == NULL)
{
kfree(buff);
return -ENOMEM;
}
// Fill in the command type
c->cmd_type = CMD_IOCTL_PEND;
// Fill in Command Header
c->Header.ReplyQueue = 0; // unused in simple mode
if( iocommand.buf_size > 0) // buffer to fill
{
c->Header.SGList = 1;
c->Header.SGTotal= 1;
} else // no buffers to fill
{
c->Header.SGList = 0;
c->Header.SGTotal= 0;
}
c->Header.LUN = iocommand.LUN_info;
c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
// Fill in Request block
c->Request = iocommand.Request;
// Fill in the scatter gather information
if (iocommand.buf_size > 0 )
{
temp64.val = pci_map_single( host->pdev, buff,
iocommand.buf_size,
PCI_DMA_BIDIRECTIONAL);
c->SG[0].Addr.lower = temp64.val32.lower;
c->SG[0].Addr.upper = temp64.val32.upper;
c->SG[0].Len = iocommand.buf_size;
c->SG[0].Ext = 0; // we are not chaining
}
c->waiting = &wait;
/* Put the request on the tail of the request queue */
spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
addQ(&host->reqQ, c);
host->Qdepth++;
start_io(host);
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
wait_for_completion(&wait);
/* unlock the buffers from DMA */
temp64.val32.lower = c->SG[0].Addr.lower;
temp64.val32.upper = c->SG[0].Addr.upper;
pci_unmap_single( host->pdev, (dma_addr_t) temp64.val,
iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
/* Copy the error information out */
iocommand.error_info = *(c->err_info);
if ( copy_to_user(argp, &iocommand, sizeof( IOCTL_Command_struct) ) )
{
kfree(buff);
cmd_free(host, c, 0);
return( -EFAULT);
}
if (iocommand.Request.Type.Direction == XFER_READ)
{
/* Copy the data out of the buffer we created */
if (copy_to_user(iocommand.buf, buff, iocommand.buf_size))
{
kfree(buff);
cmd_free(host, c, 0);
return -EFAULT;
}
}
kfree(buff);
cmd_free(host, c, 0);
return(0);
}
case CCISS_BIG_PASSTHRU: {
BIG_IOCTL_Command_struct *ioc;
CommandList_struct *c;
unsigned char **buff = NULL;
int *buff_size = NULL;
u64bit temp64;
unsigned long flags;
BYTE sg_used = 0;
int status = 0;
int i;
DECLARE_COMPLETION(wait);
__u32 left;
__u32 sz;
BYTE __user *data_ptr;
if (!arg)
return -EINVAL;
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
ioc = (BIG_IOCTL_Command_struct *)
kmalloc(sizeof(*ioc), GFP_KERNEL);
if (!ioc) {
status = -ENOMEM;
goto cleanup1;
}
if (copy_from_user(ioc, argp, sizeof(*ioc))) {
status = -EFAULT;
goto cleanup1;
}
if ((ioc->buf_size < 1) &&
(ioc->Request.Type.Direction != XFER_NONE)) {
status = -EINVAL;
goto cleanup1;
}
/* Check kmalloc limits using all SGs */
if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
status = -EINVAL;
goto cleanup1;
}
if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
status = -EINVAL;
goto cleanup1;
}
buff = (unsigned char **) kmalloc(MAXSGENTRIES *
sizeof(char *), GFP_KERNEL);
if (!buff) {
status = -ENOMEM;
goto cleanup1;
}
memset(buff, 0, MAXSGENTRIES);
buff_size = (int *) kmalloc(MAXSGENTRIES * sizeof(int),
GFP_KERNEL);
if (!buff_size) {
status = -ENOMEM;
goto cleanup1;
}
left = ioc->buf_size;
data_ptr = ioc->buf;
while (left) {
sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
buff_size[sg_used] = sz;
buff[sg_used] = kmalloc(sz, GFP_KERNEL);
if (buff[sg_used] == NULL) {
status = -ENOMEM;
goto cleanup1;
}
if (ioc->Request.Type.Direction == XFER_WRITE &&
copy_from_user(buff[sg_used], data_ptr, sz)) {
status = -ENOMEM;
goto cleanup1;
} else {
memset(buff[sg_used], 0, sz);
}
left -= sz;
data_ptr += sz;
sg_used++;
}
if ((c = cmd_alloc(host , 0)) == NULL) {
status = -ENOMEM;
goto cleanup1;
}
c->cmd_type = CMD_IOCTL_PEND;
c->Header.ReplyQueue = 0;
if( ioc->buf_size > 0) {
c->Header.SGList = sg_used;
c->Header.SGTotal= sg_used;
} else {
c->Header.SGList = 0;
c->Header.SGTotal= 0;
}
c->Header.LUN = ioc->LUN_info;
c->Header.Tag.lower = c->busaddr;
c->Request = ioc->Request;
if (ioc->buf_size > 0 ) {
int i;
for(i=0; i<sg_used; i++) {
temp64.val = pci_map_single( host->pdev, buff[i],
buff_size[i],
PCI_DMA_BIDIRECTIONAL);
c->SG[i].Addr.lower = temp64.val32.lower;
c->SG[i].Addr.upper = temp64.val32.upper;
c->SG[i].Len = buff_size[i];
c->SG[i].Ext = 0; /* we are not chaining */
}
}
c->waiting = &wait;
/* Put the request on the tail of the request queue */
spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
addQ(&host->reqQ, c);
host->Qdepth++;
start_io(host);
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
wait_for_completion(&wait);
/* unlock the buffers from DMA */
for(i=0; i<sg_used; i++) {
temp64.val32.lower = c->SG[i].Addr.lower;
temp64.val32.upper = c->SG[i].Addr.upper;
pci_unmap_single( host->pdev, (dma_addr_t) temp64.val,
buff_size[i], PCI_DMA_BIDIRECTIONAL);
}
/* Copy the error information out */
ioc->error_info = *(c->err_info);
if (copy_to_user(argp, ioc, sizeof(*ioc))) {
cmd_free(host, c, 0);
status = -EFAULT;
goto cleanup1;
}
if (ioc->Request.Type.Direction == XFER_READ) {
/* Copy the data out of the buffer we created */
BYTE __user *ptr = ioc->buf;
for(i=0; i< sg_used; i++) {
if (copy_to_user(ptr, buff[i], buff_size[i])) {
cmd_free(host, c, 0);
status = -EFAULT;
goto cleanup1;
}
ptr += buff_size[i];
}
}
cmd_free(host, c, 0);
status = 0;
cleanup1:
if (buff) {
for(i=0; i<sg_used; i++)
if(buff[i] != NULL)
kfree(buff[i]);
kfree(buff);
}
if (buff_size)
kfree(buff_size);
if (ioc)
kfree(ioc);
return(status);
}
default:
return -ENOTTY;
}
}
/*
* revalidate_allvol is for online array config utilities. After a
* utility reconfigures the drives in the array, it can use this function
* (through an ioctl) to make the driver zap any previous disk structs for
* that controller and get new ones.
*
* Right now I'm using the getgeometry() function to do this, but this
* function should probably be finer grained and allow you to revalidate one
* particualar logical volume (instead of all of them on a particular
* controller).
*/
static int revalidate_allvol(ctlr_info_t *host)
{
int ctlr = host->ctlr, i;
unsigned long flags;
spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
if (host->usage_count > 1) {
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
printk(KERN_WARNING "cciss: Device busy for volume"
" revalidation (usage=%d)\n", host->usage_count);
return -EBUSY;
}
host->usage_count++;
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
for(i=0; i< NWD; i++) {
struct gendisk *disk = host->gendisk[i];
if (disk->flags & GENHD_FL_UP)
del_gendisk(disk);
}
/*
* Set the partition and block size structures for all volumes
* on this controller to zero. We will reread all of this data
*/
memset(host->drv, 0, sizeof(drive_info_struct)
* CISS_MAX_LUN);
/*
* Tell the array controller not to give us any interrupts while
* we check the new geometry. Then turn interrupts back on when
* we're done.
*/
host->access.set_intr_mask(host, CCISS_INTR_OFF);
cciss_getgeometry(ctlr);
host->access.set_intr_mask(host, CCISS_INTR_ON);
/* Loop through each real device */
for (i = 0; i < NWD; i++) {
struct gendisk *disk = host->gendisk[i];
drive_info_struct *drv = &(host->drv[i]);
/* we must register the controller even if no disks exist */
/* this is for the online array utilities */
if (!drv->heads && i)
continue;
blk_queue_hardsect_size(host->queue, drv->block_size);
set_capacity(disk, drv->nr_blocks);
add_disk(disk);
}
host->usage_count--;
return 0;
}
static int deregister_disk(struct gendisk *disk)
{
unsigned long flags;
ctlr_info_t *h = get_host(disk);
drive_info_struct *drv = get_drv(disk);
int ctlr = h->ctlr;
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
/* make sure logical volume is NOT is use */
if( drv->usage_count > 1) {
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
return -EBUSY;
}
drv->usage_count++;
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
/* invalidate the devices and deregister the disk */
if (disk->flags & GENHD_FL_UP)
del_gendisk(disk);
/* check to see if it was the last disk */
if (drv == h->drv + h->highest_lun) {
/* if so, find the new hightest lun */
int i, newhighest =-1;
for(i=0; i<h->highest_lun; i++) {
/* if the disk has size > 0, it is available */
if (h->drv[i].nr_blocks)
newhighest = i;
}
h->highest_lun = newhighest;
}
--h->num_luns;
/* zero out the disk size info */
drv->nr_blocks = 0;
drv->block_size = 0;
drv->cylinders = 0;
drv->LunID = 0;
return(0);
}
static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff,
size_t size,
unsigned int use_unit_num, /* 0: address the controller,
1: address logical volume log_unit,
2: periph device address is scsi3addr */
unsigned int log_unit, __u8 page_code, unsigned char *scsi3addr,
int cmd_type)
{
ctlr_info_t *h= hba[ctlr];
u64bit buff_dma_handle;
int status = IO_OK;
c->cmd_type = CMD_IOCTL_PEND;
c->Header.ReplyQueue = 0;
if( buff != NULL) {
c->Header.SGList = 1;
c->Header.SGTotal= 1;
} else {
c->Header.SGList = 0;
c->Header.SGTotal= 0;
}
c->Header.Tag.lower = c->busaddr;
c->Request.Type.Type = cmd_type;
if (cmd_type == TYPE_CMD) {
switch(cmd) {
case CISS_INQUIRY:
/* If the logical unit number is 0 then, this is going
to controller so It's a physical command
mode = 0 target = 0. So we have nothing to write.
otherwise, if use_unit_num == 1,
mode = 1(volume set addressing) target = LUNID
otherwise, if use_unit_num == 2,
mode = 0(periph dev addr) target = scsi3addr */
if (use_unit_num == 1) {
c->Header.LUN.LogDev.VolId=
h->drv[log_unit].LunID;
c->Header.LUN.LogDev.Mode = 1;
} else if (use_unit_num == 2) {
memcpy(c->Header.LUN.LunAddrBytes,scsi3addr,8);
c->Header.LUN.LogDev.Mode = 0;
}
/* are we trying to read a vital product page */
if(page_code != 0) {
c->Request.CDB[1] = 0x01;
c->Request.CDB[2] = page_code;
}
c->Request.CDBLen = 6;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_READ;
c->Request.Timeout = 0;
c->Request.CDB[0] = CISS_INQUIRY;
c->Request.CDB[4] = size & 0xFF;
break;
case CISS_REPORT_LOG:
case CISS_REPORT_PHYS:
/* Talking to controller so It's a physical command
mode = 00 target = 0. Nothing to write.
*/
c->Request.CDBLen = 12;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_READ;
c->Request.Timeout = 0;
c->Request.CDB[0] = cmd;
c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB
c->Request.CDB[7] = (size >> 16) & 0xFF;
c->Request.CDB[8] = (size >> 8) & 0xFF;
c->Request.CDB[9] = size & 0xFF;
break;
case CCISS_READ_CAPACITY:
c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
c->Header.LUN.LogDev.Mode = 1;
c->Request.CDBLen = 10;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_READ;
c->Request.Timeout = 0;
c->Request.CDB[0] = cmd;
break;
case CCISS_CACHE_FLUSH:
c->Request.CDBLen = 12;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_WRITE;
c->Request.Timeout = 0;
c->Request.CDB[0] = BMIC_WRITE;
c->Request.CDB[6] = BMIC_CACHE_FLUSH;
break;
default:
printk(KERN_WARNING
"cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
return(IO_ERROR);
}
} else if (cmd_type == TYPE_MSG) {
switch (cmd) {
case 3: /* No-Op message */
c->Request.CDBLen = 1;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_WRITE;
c->Request.Timeout = 0;
c->Request.CDB[0] = cmd;
break;
default:
printk(KERN_WARNING
"cciss%d: unknown message type %d\n",
ctlr, cmd);
return IO_ERROR;
}
} else {
printk(KERN_WARNING
"cciss%d: unknown command type %d\n", ctlr, cmd_type);
return IO_ERROR;
}
/* Fill in the scatter gather information */
if (size > 0) {
buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
buff, size, PCI_DMA_BIDIRECTIONAL);
c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
c->SG[0].Len = size;
c->SG[0].Ext = 0; /* we are not chaining */
}
return status;
}
static int sendcmd_withirq(__u8 cmd,
int ctlr,
void *buff,
size_t size,
unsigned int use_unit_num,
unsigned int log_unit,
__u8 page_code,
int cmd_type)
{
ctlr_info_t *h = hba[ctlr];
CommandList_struct *c;
u64bit buff_dma_handle;
unsigned long flags;
int return_status;
DECLARE_COMPLETION(wait);
if ((c = cmd_alloc(h , 0)) == NULL)
return -ENOMEM;
return_status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
log_unit, page_code, NULL, cmd_type);
if (return_status != IO_OK) {
cmd_free(h, c, 0);
return return_status;
}
resend_cmd2:
c->waiting = &wait;
/* Put the request on the tail of the queue and send it */
spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
addQ(&h->reqQ, c);
h->Qdepth++;
start_io(h);
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
wait_for_completion(&wait);
if(c->err_info->CommandStatus != 0)
{ /* an error has occurred */
switch(c->err_info->CommandStatus)
{
case CMD_TARGET_STATUS:
printk(KERN_WARNING "cciss: cmd %p has "
" completed with errors\n", c);
if( c->err_info->ScsiStatus)
{
printk(KERN_WARNING "cciss: cmd %p "
"has SCSI Status = %x\n",
c,
c->err_info->ScsiStatus);
}
break;
case CMD_DATA_UNDERRUN:
case CMD_DATA_OVERRUN:
/* expected for inquire and report lun commands */
break;
case CMD_INVALID:
printk(KERN_WARNING "cciss: Cmd %p is "
"reported invalid\n", c);
return_status = IO_ERROR;
break;
case CMD_PROTOCOL_ERR:
printk(KERN_WARNING "cciss: cmd %p has "
"protocol error \n", c);
return_status = IO_ERROR;
break;
case CMD_HARDWARE_ERR:
printk(KERN_WARNING "cciss: cmd %p had "
" hardware error\n", c);
return_status = IO_ERROR;
break;
case CMD_CONNECTION_LOST:
printk(KERN_WARNING "cciss: cmd %p had "
"connection lost\n", c);
return_status = IO_ERROR;
break;
case CMD_ABORTED:
printk(KERN_WARNING "cciss: cmd %p was "
"aborted\n", c);
return_status = IO_ERROR;
break;
case CMD_ABORT_FAILED:
printk(KERN_WARNING "cciss: cmd %p reports "
"abort failed\n", c);
return_status = IO_ERROR;
break;
case CMD_UNSOLICITED_ABORT:
printk(KERN_WARNING
"cciss%d: unsolicited abort %p\n",
ctlr, c);
if (c->retry_count < MAX_CMD_RETRIES) {
printk(KERN_WARNING
"cciss%d: retrying %p\n",
ctlr, c);
c->retry_count++;
/* erase the old error information */
memset(c->err_info, 0,
sizeof(ErrorInfo_struct));
return_status = IO_OK;
INIT_COMPLETION(wait);
goto resend_cmd2;
}
return_status = IO_ERROR;
break;
default:
printk(KERN_WARNING "cciss: cmd %p returned "
"unknown status %x\n", c,
c->err_info->CommandStatus);
return_status = IO_ERROR;
}
}
/* unlock the buffers from DMA */
pci_unmap_single( h->pdev, (dma_addr_t) buff_dma_handle.val,
size, PCI_DMA_BIDIRECTIONAL);
cmd_free(h, c, 0);
return(return_status);
}
static void cciss_geometry_inquiry(int ctlr, int logvol,
int withirq, unsigned int total_size,
unsigned int block_size, InquiryData_struct *inq_buff,
drive_info_struct *drv)
{
int return_code;
memset(inq_buff, 0, sizeof(InquiryData_struct));
if (withirq)
return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
inq_buff, sizeof(*inq_buff), 1, logvol ,0xC1, TYPE_CMD);
else
return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
sizeof(*inq_buff), 1, logvol ,0xC1, NULL, TYPE_CMD);
if (return_code == IO_OK) {
if(inq_buff->data_byte[8] == 0xFF) {
printk(KERN_WARNING
"cciss: reading geometry failed, volume "
"does not support reading geometry\n");
drv->block_size = block_size;
drv->nr_blocks = total_size;
drv->heads = 255;
drv->sectors = 32; // Sectors per track
drv->cylinders = total_size / 255 / 32;
} else {
unsigned int t;
drv->block_size = block_size;
drv->nr_blocks = total_size;
drv->heads = inq_buff->data_byte[6];
drv->sectors = inq_buff->data_byte[7];
drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
drv->cylinders += inq_buff->data_byte[5];
drv->raid_level = inq_buff->data_byte[8];
t = drv->heads * drv->sectors;
if (t > 1) {
drv->cylinders = total_size/t;
}
}
} else { /* Get geometry failed */
printk(KERN_WARNING "cciss: reading geometry failed\n");
}
printk(KERN_INFO " heads= %d, sectors= %d, cylinders= %d\n\n",
drv->heads, drv->sectors, drv->cylinders);
}
static void
cciss_read_capacity(int ctlr, int logvol, ReadCapdata_struct *buf,
int withirq, unsigned int *total_size, unsigned int *block_size)
{
int return_code;
memset(buf, 0, sizeof(*buf));
if (withirq)
return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
ctlr, buf, sizeof(*buf), 1, logvol, 0, TYPE_CMD);
else
return_code = sendcmd(CCISS_READ_CAPACITY,
ctlr, buf, sizeof(*buf), 1, logvol, 0, NULL, TYPE_CMD);
if (return_code == IO_OK) {
*total_size = be32_to_cpu(*((__be32 *) &buf->total_size[0]))+1;
*block_size = be32_to_cpu(*((__be32 *) &buf->block_size[0]));
} else { /* read capacity command failed */
printk(KERN_WARNING "cciss: read capacity failed\n");
*total_size = 0;
*block_size = BLOCK_SIZE;
}
printk(KERN_INFO " blocks= %u block_size= %d\n",
*total_size, *block_size);
return;
}
static int register_new_disk(ctlr_info_t *h)
{
struct gendisk *disk;
int ctlr = h->ctlr;
int i;
int num_luns;
int logvol;
int new_lun_found = 0;
int new_lun_index = 0;
int free_index_found = 0;
int free_index = 0;
ReportLunData_struct *ld_buff = NULL;
ReadCapdata_struct *size_buff = NULL;
InquiryData_struct *inq_buff = NULL;
int return_code;
int listlength = 0;
__u32 lunid = 0;
unsigned int block_size;
unsigned int total_size;
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
/* if we have no space in our disk array left to add anything */
if( h->num_luns >= CISS_MAX_LUN)
return -EINVAL;
ld_buff = kmalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
if (ld_buff == NULL)
goto mem_msg;
memset(ld_buff, 0, sizeof(ReportLunData_struct));
size_buff = kmalloc(sizeof( ReadCapdata_struct), GFP_KERNEL);
if (size_buff == NULL)
goto mem_msg;
inq_buff = kmalloc(sizeof( InquiryData_struct), GFP_KERNEL);
if (inq_buff == NULL)
goto mem_msg;
return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
sizeof(ReportLunData_struct), 0, 0, 0, TYPE_CMD);
if( return_code == IO_OK)
{
// printk("LUN Data\n--------------------------\n");
listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[0])) << 24;
listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[1])) << 16;
listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[2])) << 8;
listlength |= 0xff & (unsigned int)(ld_buff->LUNListLength[3]);
} else /* reading number of logical volumes failed */
{
printk(KERN_WARNING "cciss: report logical volume"
" command failed\n");
listlength = 0;
goto free_err;
}
num_luns = listlength / 8; // 8 bytes pre entry
if (num_luns > CISS_MAX_LUN)
{
num_luns = CISS_MAX_LUN;
}
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "Length = %x %x %x %x = %d\n", ld_buff->LUNListLength[0],
ld_buff->LUNListLength[1], ld_buff->LUNListLength[2],
ld_buff->LUNListLength[3], num_luns);
#endif
for(i=0; i< num_luns; i++)
{
int j;
int lunID_found = 0;
lunid = (0xff & (unsigned int)(ld_buff->LUN[i][3])) << 24;
lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][2])) << 16;
lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][1])) << 8;
lunid |= 0xff & (unsigned int)(ld_buff->LUN[i][0]);
/* check to see if this is a new lun */
for(j=0; j <= h->highest_lun; j++)
{
#ifdef CCISS_DEBUG
printk("Checking %d %x against %x\n", j,h->drv[j].LunID,
lunid);
#endif /* CCISS_DEBUG */
if (h->drv[j].LunID == lunid)
{
lunID_found = 1;
break;
}
}
if( lunID_found == 1)
continue;
else
{ /* It is the new lun we have been looking for */
#ifdef CCISS_DEBUG
printk("new lun found at %d\n", i);
#endif /* CCISS_DEBUG */
new_lun_index = i;
new_lun_found = 1;
break;
}
}
if (!new_lun_found)
{
printk(KERN_WARNING "cciss: New Logical Volume not found\n");
goto free_err;
}
/* Now find the free index */
for(i=0; i <CISS_MAX_LUN; i++)
{
#ifdef CCISS_DEBUG
printk("Checking Index %d\n", i);
#endif /* CCISS_DEBUG */
if(h->drv[i].LunID == 0)
{
#ifdef CCISS_DEBUG
printk("free index found at %d\n", i);
#endif /* CCISS_DEBUG */
free_index_found = 1;
free_index = i;
break;
}
}
if (!free_index_found)
{
printk(KERN_WARNING "cciss: unable to find free slot for disk\n");
goto free_err;
}
logvol = free_index;
h->drv[logvol].LunID = lunid;
/* there could be gaps in lun numbers, track hightest */
if(h->highest_lun < lunid)
h->highest_lun = logvol;
cciss_read_capacity(ctlr, logvol, size_buff, 1,
&total_size, &block_size);
cciss_geometry_inquiry(ctlr, logvol, 1, total_size, block_size,
inq_buff, &h->drv[logvol]);
h->drv[logvol].usage_count = 0;
++h->num_luns;
/* setup partitions per disk */
disk = h->gendisk[logvol];
set_capacity(disk, h->drv[logvol].nr_blocks);
/* if it's the controller it's already added */
if(logvol)
add_disk(disk);
freeret:
kfree(ld_buff);
kfree(size_buff);
kfree(inq_buff);
return (logvol);
mem_msg:
printk(KERN_ERR "cciss: out of memory\n");
free_err:
logvol = -1;
goto freeret;
}
static int cciss_revalidate(struct gendisk *disk)
{
ctlr_info_t *h = get_host(disk);
drive_info_struct *drv = get_drv(disk);
int logvol;
int FOUND=0;
unsigned int block_size;
unsigned int total_size;
ReadCapdata_struct *size_buff = NULL;
InquiryData_struct *inq_buff = NULL;
for(logvol=0; logvol < CISS_MAX_LUN; logvol++)
{
if(h->drv[logvol].LunID == drv->LunID) {
FOUND=1;
break;
}
}
if (!FOUND) return 1;
size_buff = kmalloc(sizeof( ReadCapdata_struct), GFP_KERNEL);
if (size_buff == NULL)
{
printk(KERN_WARNING "cciss: out of memory\n");
return 1;
}
inq_buff = kmalloc(sizeof( InquiryData_struct), GFP_KERNEL);
if (inq_buff == NULL)
{
printk(KERN_WARNING "cciss: out of memory\n");
kfree(size_buff);
return 1;
}
cciss_read_capacity(h->ctlr, logvol, size_buff, 1, &total_size, &block_size);
cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size, inq_buff, drv);
blk_queue_hardsect_size(h->queue, drv->block_size);
set_capacity(disk, drv->nr_blocks);
kfree(size_buff);
kfree(inq_buff);
return 0;
}
/*
* Wait polling for a command to complete.
* The memory mapped FIFO is polled for the completion.
* Used only at init time, interrupts from the HBA are disabled.
*/
static unsigned long pollcomplete(int ctlr)
{
unsigned long done;
int i;
/* Wait (up to 20 seconds) for a command to complete */
for (i = 20 * HZ; i > 0; i--) {
done = hba[ctlr]->access.command_completed(hba[ctlr]);
if (done == FIFO_EMPTY) {
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(1);
} else
return (done);
}
/* Invalid address to tell caller we ran out of time */
return 1;
}
/*
* Send a command to the controller, and wait for it to complete.
* Only used at init time.
*/
static int sendcmd(
__u8 cmd,
int ctlr,
void *buff,
size_t size,
unsigned int use_unit_num, /* 0: address the controller,
1: address logical volume log_unit,
2: periph device address is scsi3addr */
unsigned int log_unit,
__u8 page_code,
unsigned char *scsi3addr,
int cmd_type)
{
CommandList_struct *c;
int i;
unsigned long complete;
ctlr_info_t *info_p= hba[ctlr];
u64bit buff_dma_handle;
int status;
if ((c = cmd_alloc(info_p, 1)) == NULL) {
printk(KERN_WARNING "cciss: unable to get memory");
return(IO_ERROR);
}
status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
log_unit, page_code, scsi3addr, cmd_type);
if (status != IO_OK) {
cmd_free(info_p, c, 1);
return status;
}
resend_cmd1:
/*
* Disable interrupt
*/
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "cciss: turning intr off\n");
#endif /* CCISS_DEBUG */
info_p->access.set_intr_mask(info_p, CCISS_INTR_OFF);
/* Make sure there is room in the command FIFO */
/* Actually it should be completely empty at this time. */
for (i = 200000; i > 0; i--)
{
/* if fifo isn't full go */
if (!(info_p->access.fifo_full(info_p)))
{
break;
}
udelay(10);
printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
" waiting!\n", ctlr);
}
/*
* Send the cmd
*/
info_p->access.submit_command(info_p, c);
complete = pollcomplete(ctlr);
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "cciss: command completed\n");
#endif /* CCISS_DEBUG */
if (complete != 1) {
if ( (complete & CISS_ERROR_BIT)
&& (complete & ~CISS_ERROR_BIT) == c->busaddr)
{
/* if data overrun or underun on Report command
ignore it
*/
if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
(c->Request.CDB[0] == CISS_REPORT_PHYS) ||
(c->Request.CDB[0] == CISS_INQUIRY)) &&
((c->err_info->CommandStatus ==
CMD_DATA_OVERRUN) ||
(c->err_info->CommandStatus ==
CMD_DATA_UNDERRUN)
))
{
complete = c->busaddr;
} else {
if (c->err_info->CommandStatus ==
CMD_UNSOLICITED_ABORT) {
printk(KERN_WARNING "cciss%d: "
"unsolicited abort %p\n",
ctlr, c);
if (c->retry_count < MAX_CMD_RETRIES) {
printk(KERN_WARNING
"cciss%d: retrying %p\n",
ctlr, c);
c->retry_count++;
/* erase the old error */
/* information */
memset(c->err_info, 0,
sizeof(ErrorInfo_struct));
goto resend_cmd1;
} else {
printk(KERN_WARNING
"cciss%d: retried %p too "
"many times\n", ctlr, c);
status = IO_ERROR;
goto cleanup1;
}
}
printk(KERN_WARNING "ciss ciss%d: sendcmd"
" Error %x \n", ctlr,
c->err_info->CommandStatus);
printk(KERN_WARNING "ciss ciss%d: sendcmd"
" offensive info\n"
" size %x\n num %x value %x\n", ctlr,
c->err_info->MoreErrInfo.Invalid_Cmd.offense_size,
c->err_info->MoreErrInfo.Invalid_Cmd.offense_num,
c->err_info->MoreErrInfo.Invalid_Cmd.offense_value);
status = IO_ERROR;
goto cleanup1;
}
}
if (complete != c->busaddr) {
printk( KERN_WARNING "cciss cciss%d: SendCmd "
"Invalid command list address returned! (%lx)\n",
ctlr, complete);
status = IO_ERROR;
goto cleanup1;
}
} else {
printk( KERN_WARNING
"cciss cciss%d: SendCmd Timeout out, "
"No command list address returned!\n",
ctlr);
status = IO_ERROR;
}
cleanup1:
/* unlock the data buffer from DMA */
pci_unmap_single(info_p->pdev, (dma_addr_t) buff_dma_handle.val,
size, PCI_DMA_BIDIRECTIONAL);
cmd_free(info_p, c, 1);
return (status);
}
/*
* Map (physical) PCI mem into (virtual) kernel space
*/
static void __iomem *remap_pci_mem(ulong base, ulong size)
{
ulong page_base = ((ulong) base) & PAGE_MASK;
ulong page_offs = ((ulong) base) - page_base;
void __iomem *page_remapped = ioremap(page_base, page_offs+size);
return page_remapped ? (page_remapped + page_offs) : NULL;
}
/*
* Takes jobs of the Q and sends them to the hardware, then puts it on
* the Q to wait for completion.
*/
static void start_io( ctlr_info_t *h)
{
CommandList_struct *c;
while(( c = h->reqQ) != NULL )
{
/* can't do anything if fifo is full */
if ((h->access.fifo_full(h))) {
printk(KERN_WARNING "cciss: fifo full\n");
break;
}
/* Get the frist entry from the Request Q */
removeQ(&(h->reqQ), c);
h->Qdepth--;
/* Tell the controller execute command */
h->access.submit_command(h, c);
/* Put job onto the completed Q */
addQ (&(h->cmpQ), c);
}
}
static inline void complete_buffers(struct bio *bio, int status)
{
while (bio) {
struct bio *xbh = bio->bi_next;
int nr_sectors = bio_sectors(bio);
bio->bi_next = NULL;
blk_finished_io(len);
bio_endio(bio, nr_sectors << 9, status ? 0 : -EIO);
bio = xbh;
}
}
/* Assumes that CCISS_LOCK(h->ctlr) is held. */
/* Zeros out the error record and then resends the command back */
/* to the controller */
static inline void resend_cciss_cmd( ctlr_info_t *h, CommandList_struct *c)
{
/* erase the old error information */
memset(c->err_info, 0, sizeof(ErrorInfo_struct));
/* add it to software queue and then send it to the controller */
addQ(&(h->reqQ),c);
h->Qdepth++;
if(h->Qdepth > h->maxQsinceinit)
h->maxQsinceinit = h->Qdepth;
start_io(h);
}
/* checks the status of the job and calls complete buffers to mark all
* buffers for the completed job.
*/
static inline void complete_command( ctlr_info_t *h, CommandList_struct *cmd,
int timeout)
{
int status = 1;
int i;
int retry_cmd = 0;
u64bit temp64;
if (timeout)
status = 0;
if(cmd->err_info->CommandStatus != 0)
{ /* an error has occurred */
switch(cmd->err_info->CommandStatus)
{
unsigned char sense_key;
case CMD_TARGET_STATUS:
status = 0;
if( cmd->err_info->ScsiStatus == 0x02)
{
printk(KERN_WARNING "cciss: cmd %p "
"has CHECK CONDITION "
" byte 2 = 0x%x\n", cmd,
cmd->err_info->SenseInfo[2]
);
/* check the sense key */
sense_key = 0xf &
cmd->err_info->SenseInfo[2];
/* no status or recovered error */
if((sense_key == 0x0) ||
(sense_key == 0x1))
{
status = 1;
}
} else
{
printk(KERN_WARNING "cciss: cmd %p "
"has SCSI Status 0x%x\n",
cmd, cmd->err_info->ScsiStatus);
}
break;
case CMD_DATA_UNDERRUN:
printk(KERN_WARNING "cciss: cmd %p has"
" completed with data underrun "
"reported\n", cmd);
break;
case CMD_DATA_OVERRUN:
printk(KERN_WARNING "cciss: cmd %p has"
" completed with data overrun "
"reported\n", cmd);
break;
case CMD_INVALID:
printk(KERN_WARNING "cciss: cmd %p is "
"reported invalid\n", cmd);
status = 0;
break;
case CMD_PROTOCOL_ERR:
printk(KERN_WARNING "cciss: cmd %p has "
"protocol error \n", cmd);
status = 0;
break;
case CMD_HARDWARE_ERR:
printk(KERN_WARNING "cciss: cmd %p had "
" hardware error\n", cmd);
status = 0;
break;
case CMD_CONNECTION_LOST:
printk(KERN_WARNING "cciss: cmd %p had "
"connection lost\n", cmd);
status=0;
break;
case CMD_ABORTED:
printk(KERN_WARNING "cciss: cmd %p was "
"aborted\n", cmd);
status=0;
break;
case CMD_ABORT_FAILED:
printk(KERN_WARNING "cciss: cmd %p reports "
"abort failed\n", cmd);
status=0;
break;
case CMD_UNSOLICITED_ABORT:
printk(KERN_WARNING "cciss%d: unsolicited "
"abort %p\n", h->ctlr, cmd);
if (cmd->retry_count < MAX_CMD_RETRIES) {
retry_cmd=1;
printk(KERN_WARNING
"cciss%d: retrying %p\n",
h->ctlr, cmd);
cmd->retry_count++;
} else
printk(KERN_WARNING
"cciss%d: %p retried too "
"many times\n", h->ctlr, cmd);
status=0;
break;
case CMD_TIMEOUT:
printk(KERN_WARNING "cciss: cmd %p timedout\n",
cmd);
status=0;
break;
default:
printk(KERN_WARNING "cciss: cmd %p returned "
"unknown status %x\n", cmd,
cmd->err_info->CommandStatus);
status=0;
}
}
/* We need to return this command */
if(retry_cmd) {
resend_cciss_cmd(h,cmd);
return;
}
/* command did not need to be retried */
/* unmap the DMA mapping for all the scatter gather elements */
for(i=0; i<cmd->Header.SGList; i++) {
temp64.val32.lower = cmd->SG[i].Addr.lower;
temp64.val32.upper = cmd->SG[i].Addr.upper;
pci_unmap_page(hba[cmd->ctlr]->pdev,
temp64.val, cmd->SG[i].Len,
(cmd->Request.Type.Direction == XFER_READ) ?
PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
}
complete_buffers(cmd->rq->bio, status);
#ifdef CCISS_DEBUG
printk("Done with %p\n", cmd->rq);
#endif /* CCISS_DEBUG */
end_that_request_last(cmd->rq);
cmd_free(h,cmd,1);
}
/*
* Get a request and submit it to the controller.
*/
static void do_cciss_request(request_queue_t *q)
{
ctlr_info_t *h= q->queuedata;
CommandList_struct *c;
int start_blk, seg;
struct request *creq;
u64bit temp64;
struct scatterlist tmp_sg[MAXSGENTRIES];
drive_info_struct *drv;
int i, dir;
/* We call start_io here in case there is a command waiting on the
* queue that has not been sent.
*/
if (blk_queue_plugged(q))
goto startio;
queue:
creq = elv_next_request(q);
if (!creq)
goto startio;
if (creq->nr_phys_segments > MAXSGENTRIES)
BUG();
if (( c = cmd_alloc(h, 1)) == NULL)
goto full;
blkdev_dequeue_request(creq);
spin_unlock_irq(q->queue_lock);
c->cmd_type = CMD_RWREQ;
c->rq = creq;
/* fill in the request */
drv = creq->rq_disk->private_data;
c->Header.ReplyQueue = 0; // unused in simple mode
c->Header.Tag.lower = c->busaddr; // use the physical address the cmd block for tag
c->Header.LUN.LogDev.VolId= drv->LunID;
c->Header.LUN.LogDev.Mode = 1;
c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
c->Request.Type.Type = TYPE_CMD; // It is a command.
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction =
(rq_data_dir(creq) == READ) ? XFER_READ: XFER_WRITE;
c->Request.Timeout = 0; // Don't time out
c->Request.CDB[0] = (rq_data_dir(creq) == READ) ? CCISS_READ : CCISS_WRITE;
start_blk = creq->sector;
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",(int) creq->sector,
(int) creq->nr_sectors);
#endif /* CCISS_DEBUG */
seg = blk_rq_map_sg(q, creq, tmp_sg);
/* get the DMA records for the setup */
if (c->Request.Type.Direction == XFER_READ)
dir = PCI_DMA_FROMDEVICE;
else
dir = PCI_DMA_TODEVICE;
for (i=0; i<seg; i++)
{
c->SG[i].Len = tmp_sg[i].length;
temp64.val = (__u64) pci_map_page(h->pdev, tmp_sg[i].page,
tmp_sg[i].offset, tmp_sg[i].length,
dir);
c->SG[i].Addr.lower = temp64.val32.lower;
c->SG[i].Addr.upper = temp64.val32.upper;
c->SG[i].Ext = 0; // we are not chaining
}
/* track how many SG entries we are using */
if( seg > h->maxSG)
h->maxSG = seg;
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "cciss: Submitting %d sectors in %d segments\n", creq->nr_sectors, seg);
#endif /* CCISS_DEBUG */
c->Header.SGList = c->Header.SGTotal = seg;
c->Request.CDB[1]= 0;
c->Request.CDB[2]= (start_blk >> 24) & 0xff; //MSB
c->Request.CDB[3]= (start_blk >> 16) & 0xff;
c->Request.CDB[4]= (start_blk >> 8) & 0xff;
c->Request.CDB[5]= start_blk & 0xff;
c->Request.CDB[6]= 0; // (sect >> 24) & 0xff; MSB
c->Request.CDB[7]= (creq->nr_sectors >> 8) & 0xff;
c->Request.CDB[8]= creq->nr_sectors & 0xff;
c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
spin_lock_irq(q->queue_lock);
addQ(&(h->reqQ),c);
h->Qdepth++;
if(h->Qdepth > h->maxQsinceinit)
h->maxQsinceinit = h->Qdepth;
goto queue;
full:
blk_stop_queue(q);
startio:
/* We will already have the driver lock here so not need
* to lock it.
*/
start_io(h);
}
static irqreturn_t do_cciss_intr(int irq, void *dev_id, struct pt_regs *regs)
{
ctlr_info_t *h = dev_id;
CommandList_struct *c;
unsigned long flags;
__u32 a, a1;
int j;
int start_queue = h->next_to_run;
/* Is this interrupt for us? */
if (( h->access.intr_pending(h) == 0) || (h->interrupts_enabled == 0))
return IRQ_NONE;
/*
* If there are completed commands in the completion queue,
* we had better do something about it.
*/
spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
while( h->access.intr_pending(h))
{
while((a = h->access.command_completed(h)) != FIFO_EMPTY)
{
a1 = a;
a &= ~3;
if ((c = h->cmpQ) == NULL)
{
printk(KERN_WARNING "cciss: Completion of %08lx ignored\n", (unsigned long)a1);
continue;
}
while(c->busaddr != a) {
c = c->next;
if (c == h->cmpQ)
break;
}
/*
* If we've found the command, take it off the
* completion Q and free it
*/
if (c->busaddr == a) {
removeQ(&h->cmpQ, c);
if (c->cmd_type == CMD_RWREQ) {
complete_command(h, c, 0);
} else if (c->cmd_type == CMD_IOCTL_PEND) {
complete(c->waiting);
}
# ifdef CONFIG_CISS_SCSI_TAPE
else if (c->cmd_type == CMD_SCSI)
complete_scsi_command(c, 0, a1);
# endif
continue;
}
}
}
/* check to see if we have maxed out the number of commands that can
* be placed on the queue. If so then exit. We do this check here
* in case the interrupt we serviced was from an ioctl and did not
* free any new commands.
*/
if ((find_first_zero_bit(h->cmd_pool_bits, NR_CMDS)) == NR_CMDS)
goto cleanup;
/* We have room on the queue for more commands. Now we need to queue
* them up. We will also keep track of the next queue to run so
* that every queue gets a chance to be started first.
*/
for (j=0; j < NWD; j++){
int curr_queue = (start_queue + j) % NWD;
/* make sure the disk has been added and the drive is real
* because this can be called from the middle of init_one.
*/
if(!(h->gendisk[curr_queue]->queue) ||
!(h->drv[curr_queue].heads))
continue;
blk_start_queue(h->gendisk[curr_queue]->queue);
/* check to see if we have maxed out the number of commands
* that can be placed on the queue.
*/
if ((find_first_zero_bit(h->cmd_pool_bits, NR_CMDS)) == NR_CMDS)
{
if (curr_queue == start_queue){
h->next_to_run = (start_queue + 1) % NWD;
goto cleanup;
} else {
h->next_to_run = curr_queue;
goto cleanup;
}
} else {
curr_queue = (curr_queue + 1) % NWD;
}
}
cleanup:
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
return IRQ_HANDLED;
}
/*
* We cannot read the structure directly, for portablity we must use
* the io functions.
* This is for debug only.
*/
#ifdef CCISS_DEBUG
static void print_cfg_table( CfgTable_struct *tb)
{
int i;
char temp_name[17];
printk("Controller Configuration information\n");
printk("------------------------------------\n");
for(i=0;i<4;i++)
temp_name[i] = readb(&(tb->Signature[i]));
temp_name[4]='\0';
printk(" Signature = %s\n", temp_name);
printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
printk(" Transport methods supported = 0x%x\n",
readl(&(tb-> TransportSupport)));
printk(" Transport methods active = 0x%x\n",
readl(&(tb->TransportActive)));
printk(" Requested transport Method = 0x%x\n",
readl(&(tb->HostWrite.TransportRequest)));
printk(" Coalese Interrupt Delay = 0x%x\n",
readl(&(tb->HostWrite.CoalIntDelay)));
printk(" Coalese Interrupt Count = 0x%x\n",
readl(&(tb->HostWrite.CoalIntCount)));
printk(" Max outstanding commands = 0x%d\n",
readl(&(tb->CmdsOutMax)));
printk(" Bus Types = 0x%x\n", readl(&(tb-> BusTypes)));
for(i=0;i<16;i++)
temp_name[i] = readb(&(tb->ServerName[i]));
temp_name[16] = '\0';
printk(" Server Name = %s\n", temp_name);
printk(" Heartbeat Counter = 0x%x\n\n\n",
readl(&(tb->HeartBeat)));
}
#endif /* CCISS_DEBUG */
static void release_io_mem(ctlr_info_t *c)
{
/* if IO mem was not protected do nothing */
if( c->io_mem_addr == 0)
return;
release_region(c->io_mem_addr, c->io_mem_length);
c->io_mem_addr = 0;
c->io_mem_length = 0;
}
static int find_PCI_BAR_index(struct pci_dev *pdev,
unsigned long pci_bar_addr)
{
int i, offset, mem_type, bar_type;
if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
return 0;
offset = 0;
for (i=0; i<DEVICE_COUNT_RESOURCE; i++) {
bar_type = pci_resource_flags(pdev, i) &
PCI_BASE_ADDRESS_SPACE;
if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
offset += 4;
else {
mem_type = pci_resource_flags(pdev, i) &
PCI_BASE_ADDRESS_MEM_TYPE_MASK;
switch (mem_type) {
case PCI_BASE_ADDRESS_MEM_TYPE_32:
case PCI_BASE_ADDRESS_MEM_TYPE_1M:
offset += 4; /* 32 bit */
break;
case PCI_BASE_ADDRESS_MEM_TYPE_64:
offset += 8;
break;
default: /* reserved in PCI 2.2 */
printk(KERN_WARNING "Base address is invalid\n");
return -1;
break;
}
}
if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
return i+1;
}
return -1;
}
static int cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
{
ushort subsystem_vendor_id, subsystem_device_id, command;
__u32 board_id, scratchpad = 0;
__u64 cfg_offset;
__u32 cfg_base_addr;
__u64 cfg_base_addr_index;
int i;
/* check to see if controller has been disabled */
/* BEFORE trying to enable it */
(void) pci_read_config_word(pdev, PCI_COMMAND,&command);
if(!(command & 0x02))
{
printk(KERN_WARNING "cciss: controller appears to be disabled\n");
return(-1);
}
if (pci_enable_device(pdev))
{
printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
return( -1);
}
subsystem_vendor_id = pdev->subsystem_vendor;
subsystem_device_id = pdev->subsystem_device;
board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
subsystem_vendor_id);
/* search for our IO range so we can protect it */
for(i=0; i<DEVICE_COUNT_RESOURCE; i++)
{
/* is this an IO range */
if( pci_resource_flags(pdev, i) & 0x01 ) {
c->io_mem_addr = pci_resource_start(pdev, i);
c->io_mem_length = pci_resource_end(pdev, i) -
pci_resource_start(pdev, i) +1;
#ifdef CCISS_DEBUG
printk("IO value found base_addr[%d] %lx %lx\n", i,
c->io_mem_addr, c->io_mem_length);
#endif /* CCISS_DEBUG */
/* register the IO range */
if(!request_region( c->io_mem_addr,
c->io_mem_length, "cciss"))
{
printk(KERN_WARNING "cciss I/O memory range already in use addr=%lx length=%ld\n",
c->io_mem_addr, c->io_mem_length);
c->io_mem_addr= 0;
c->io_mem_length = 0;
}
break;
}
}
#ifdef CCISS_DEBUG
printk("command = %x\n", command);
printk("irq = %x\n", pdev->irq);
printk("board_id = %x\n", board_id);
#endif /* CCISS_DEBUG */
c->intr = pdev->irq;
/*
* Memory base addr is first addr , the second points to the config
* table
*/
c->paddr = pci_resource_start(pdev, 0); /* addressing mode bits already removed */
#ifdef CCISS_DEBUG
printk("address 0 = %x\n", c->paddr);
#endif /* CCISS_DEBUG */
c->vaddr = remap_pci_mem(c->paddr, 200);
/* Wait for the board to become ready. (PCI hotplug needs this.)
* We poll for up to 120 secs, once per 100ms. */
for (i=0; i < 1200; i++) {
scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
if (scratchpad == CCISS_FIRMWARE_READY)
break;
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(HZ / 10); /* wait 100ms */
}
if (scratchpad != CCISS_FIRMWARE_READY) {
printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
return -1;
}
/* get the address index number */
cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
cfg_base_addr &= (__u32) 0x0000ffff;
#ifdef CCISS_DEBUG
printk("cfg base address = %x\n", cfg_base_addr);
#endif /* CCISS_DEBUG */
cfg_base_addr_index =
find_PCI_BAR_index(pdev, cfg_base_addr);
#ifdef CCISS_DEBUG
printk("cfg base address index = %x\n", cfg_base_addr_index);
#endif /* CCISS_DEBUG */
if (cfg_base_addr_index == -1) {
printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
release_io_mem(c);
return -1;
}
cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
#ifdef CCISS_DEBUG
printk("cfg offset = %x\n", cfg_offset);
#endif /* CCISS_DEBUG */
c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
cfg_base_addr_index) + cfg_offset,
sizeof(CfgTable_struct));
c->board_id = board_id;
#ifdef CCISS_DEBUG
print_cfg_table(c->cfgtable);
#endif /* CCISS_DEBUG */
for(i=0; i<NR_PRODUCTS; i++) {
if (board_id == products[i].board_id) {
c->product_name = products[i].product_name;
c->access = *(products[i].access);
break;
}
}
if (i == NR_PRODUCTS) {
printk(KERN_WARNING "cciss: Sorry, I don't know how"
" to access the Smart Array controller %08lx\n",
(unsigned long)board_id);
return -1;
}
if ( (readb(&c->cfgtable->Signature[0]) != 'C') ||
(readb(&c->cfgtable->Signature[1]) != 'I') ||
(readb(&c->cfgtable->Signature[2]) != 'S') ||
(readb(&c->cfgtable->Signature[3]) != 'S') )
{
printk("Does not appear to be a valid CISS config table\n");
return -1;
}
#ifdef CONFIG_X86
{
/* Need to enable prefetch in the SCSI core for 6400 in x86 */
__u32 prefetch;
prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
prefetch |= 0x100;
writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
}
#endif
#ifdef CCISS_DEBUG
printk("Trying to put board into Simple mode\n");
#endif /* CCISS_DEBUG */
c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
/* Update the field, and then ring the doorbell */
writel( CFGTBL_Trans_Simple,
&(c->cfgtable->HostWrite.TransportRequest));
writel( CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
/* under certain very rare conditions, this can take awhile.
* (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
* as we enter this code.) */
for(i=0;i<MAX_CONFIG_WAIT;i++) {
if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
break;
/* delay and try again */
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(10);
}
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "I counter got to %d %x\n", i, readl(c->vaddr + SA5_DOORBELL));
#endif /* CCISS_DEBUG */
#ifdef CCISS_DEBUG
print_cfg_table(c->cfgtable);
#endif /* CCISS_DEBUG */
if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
{
printk(KERN_WARNING "cciss: unable to get board into"
" simple mode\n");
return -1;
}
return 0;
}
/*
* Gets information about the local volumes attached to the controller.
*/
static void cciss_getgeometry(int cntl_num)
{
ReportLunData_struct *ld_buff;
ReadCapdata_struct *size_buff;
InquiryData_struct *inq_buff;
int return_code;
int i;
int listlength = 0;
__u32 lunid = 0;
int block_size;
int total_size;
ld_buff = kmalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
if (ld_buff == NULL)
{
printk(KERN_ERR "cciss: out of memory\n");
return;
}
memset(ld_buff, 0, sizeof(ReportLunData_struct));
size_buff = kmalloc(sizeof( ReadCapdata_struct), GFP_KERNEL);
if (size_buff == NULL)
{
printk(KERN_ERR "cciss: out of memory\n");
kfree(ld_buff);
return;
}
inq_buff = kmalloc(sizeof( InquiryData_struct), GFP_KERNEL);
if (inq_buff == NULL)
{
printk(KERN_ERR "cciss: out of memory\n");
kfree(ld_buff);
kfree(size_buff);
return;
}
/* Get the firmware version */
return_code = sendcmd(CISS_INQUIRY, cntl_num, inq_buff,
sizeof(InquiryData_struct), 0, 0 ,0, NULL, TYPE_CMD);
if (return_code == IO_OK)
{
hba[cntl_num]->firm_ver[0] = inq_buff->data_byte[32];
hba[cntl_num]->firm_ver[1] = inq_buff->data_byte[33];
hba[cntl_num]->firm_ver[2] = inq_buff->data_byte[34];
hba[cntl_num]->firm_ver[3] = inq_buff->data_byte[35];
} else /* send command failed */
{
printk(KERN_WARNING "cciss: unable to determine firmware"
" version of controller\n");
}
/* Get the number of logical volumes */
return_code = sendcmd(CISS_REPORT_LOG, cntl_num, ld_buff,
sizeof(ReportLunData_struct), 0, 0, 0, NULL, TYPE_CMD);
if( return_code == IO_OK)
{
#ifdef CCISS_DEBUG
printk("LUN Data\n--------------------------\n");
#endif /* CCISS_DEBUG */
listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[0])) << 24;
listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[1])) << 16;
listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[2])) << 8;
listlength |= 0xff & (unsigned int)(ld_buff->LUNListLength[3]);
} else /* reading number of logical volumes failed */
{
printk(KERN_WARNING "cciss: report logical volume"
" command failed\n");
listlength = 0;
}
hba[cntl_num]->num_luns = listlength / 8; // 8 bytes pre entry
if (hba[cntl_num]->num_luns > CISS_MAX_LUN)
{
printk(KERN_ERR "ciss: only %d number of logical volumes supported\n",
CISS_MAX_LUN);
hba[cntl_num]->num_luns = CISS_MAX_LUN;
}
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "Length = %x %x %x %x = %d\n", ld_buff->LUNListLength[0],
ld_buff->LUNListLength[1], ld_buff->LUNListLength[2],
ld_buff->LUNListLength[3], hba[cntl_num]->num_luns);
#endif /* CCISS_DEBUG */
hba[cntl_num]->highest_lun = hba[cntl_num]->num_luns-1;
for(i=0; i< hba[cntl_num]->num_luns; i++)
{
lunid = (0xff & (unsigned int)(ld_buff->LUN[i][3])) << 24;
lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][2])) << 16;
lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][1])) << 8;
lunid |= 0xff & (unsigned int)(ld_buff->LUN[i][0]);
hba[cntl_num]->drv[i].LunID = lunid;
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "LUN[%d]: %x %x %x %x = %x\n", i,
ld_buff->LUN[i][0], ld_buff->LUN[i][1],ld_buff->LUN[i][2],
ld_buff->LUN[i][3], hba[cntl_num]->drv[i].LunID);
#endif /* CCISS_DEBUG */
cciss_read_capacity(cntl_num, i, size_buff, 0,
&total_size, &block_size);
cciss_geometry_inquiry(cntl_num, i, 0, total_size, block_size,
inq_buff, &hba[cntl_num]->drv[i]);
}
kfree(ld_buff);
kfree(size_buff);
kfree(inq_buff);
}
/* Function to find the first free pointer into our hba[] array */
/* Returns -1 if no free entries are left. */
static int alloc_cciss_hba(void)
{
struct gendisk *disk[NWD];
int i, n;
for (n = 0; n < NWD; n++) {
disk[n] = alloc_disk(1 << NWD_SHIFT);
if (!disk[n])
goto out;
}
for(i=0; i< MAX_CTLR; i++) {
if (!hba[i]) {
ctlr_info_t *p;
p = kmalloc(sizeof(ctlr_info_t), GFP_KERNEL);
if (!p)
goto Enomem;
memset(p, 0, sizeof(ctlr_info_t));
for (n = 0; n < NWD; n++)
p->gendisk[n] = disk[n];
hba[i] = p;
return i;
}
}
printk(KERN_WARNING "cciss: This driver supports a maximum"
" of %d controllers.\n", MAX_CTLR);
goto out;
Enomem:
printk(KERN_ERR "cciss: out of memory.\n");
out:
while (n--)
put_disk(disk[n]);
return -1;
}
static void free_hba(int i)
{
ctlr_info_t *p = hba[i];
int n;
hba[i] = NULL;
for (n = 0; n < NWD; n++)
put_disk(p->gendisk[n]);
kfree(p);
}
/*
* This is it. Find all the controllers and register them. I really hate
* stealing all these major device numbers.
* returns the number of block devices registered.
*/
static int __devinit cciss_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
request_queue_t *q;
int i;
int j;
int rc;
printk(KERN_DEBUG "cciss: Device 0x%x has been found at"
" bus %d dev %d func %d\n",
pdev->device, pdev->bus->number, PCI_SLOT(pdev->devfn),
PCI_FUNC(pdev->devfn));
i = alloc_cciss_hba();
if(i < 0)
return (-1);
if (cciss_pci_init(hba[i], pdev) != 0)
goto clean1;
sprintf(hba[i]->devname, "cciss%d", i);
hba[i]->ctlr = i;
hba[i]->pdev = pdev;
/* configure PCI DMA stuff */
if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK))
printk("cciss: using DAC cycles\n");
else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK))
printk("cciss: not using DAC cycles\n");
else {
printk("cciss: no suitable DMA available\n");
goto clean1;
}
/*
* register with the major number, or get a dynamic major number
* by passing 0 as argument. This is done for greater than
* 8 controller support.
*/
if (i < MAX_CTLR_ORIG)
hba[i]->major = MAJOR_NR + i;
rc = register_blkdev(hba[i]->major, hba[i]->devname);
if(rc == -EBUSY || rc == -EINVAL) {
printk(KERN_ERR
"cciss: Unable to get major number %d for %s "
"on hba %d\n", hba[i]->major, hba[i]->devname, i);
goto clean1;
}
else {
if (i >= MAX_CTLR_ORIG)
hba[i]->major = rc;
}
/* make sure the board interrupts are off */
hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
if( request_irq(hba[i]->intr, do_cciss_intr,
SA_INTERRUPT | SA_SHIRQ | SA_SAMPLE_RANDOM,
hba[i]->devname, hba[i])) {
printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
hba[i]->intr, hba[i]->devname);
goto clean2;
}
hba[i]->cmd_pool_bits = kmalloc(((NR_CMDS+BITS_PER_LONG-1)/BITS_PER_LONG)*sizeof(unsigned long), GFP_KERNEL);
hba[i]->cmd_pool = (CommandList_struct *)pci_alloc_consistent(
hba[i]->pdev, NR_CMDS * sizeof(CommandList_struct),
&(hba[i]->cmd_pool_dhandle));
hba[i]->errinfo_pool = (ErrorInfo_struct *)pci_alloc_consistent(
hba[i]->pdev, NR_CMDS * sizeof( ErrorInfo_struct),
&(hba[i]->errinfo_pool_dhandle));
if((hba[i]->cmd_pool_bits == NULL)
|| (hba[i]->cmd_pool == NULL)
|| (hba[i]->errinfo_pool == NULL)) {
printk( KERN_ERR "cciss: out of memory");
goto clean4;
}
spin_lock_init(&hba[i]->lock);
q = blk_init_queue(do_cciss_request, &hba[i]->lock);
if (!q)
goto clean4;
q->backing_dev_info.ra_pages = READ_AHEAD;
hba[i]->queue = q;
q->queuedata = hba[i];
/* Initialize the pdev driver private data.
have it point to hba[i]. */
pci_set_drvdata(pdev, hba[i]);
/* command and error info recs zeroed out before
they are used */
memset(hba[i]->cmd_pool_bits, 0, ((NR_CMDS+BITS_PER_LONG-1)/BITS_PER_LONG)*sizeof(unsigned long));
#ifdef CCISS_DEBUG
printk(KERN_DEBUG "Scanning for drives on controller cciss%d\n",i);
#endif /* CCISS_DEBUG */
cciss_getgeometry(i);
cciss_scsi_setup(i);
/* Turn the interrupts on so we can service requests */
hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
cciss_procinit(i);
blk_queue_bounce_limit(q, hba[i]->pdev->dma_mask);
/* This is a hardware imposed limit. */
blk_queue_max_hw_segments(q, MAXSGENTRIES);
/* This is a limit in the driver and could be eliminated. */
blk_queue_max_phys_segments(q, MAXSGENTRIES);
blk_queue_max_sectors(q, 512);
for(j=0; j<NWD; j++) {
drive_info_struct *drv = &(hba[i]->drv[j]);
struct gendisk *disk = hba[i]->gendisk[j];
sprintf(disk->disk_name, "cciss/c%dd%d", i, j);
sprintf(disk->devfs_name, "cciss/host%d/target%d", i, j);
disk->major = hba[i]->major;
disk->first_minor = j << NWD_SHIFT;
disk->fops = &cciss_fops;
disk->queue = hba[i]->queue;
disk->private_data = drv;
/* we must register the controller even if no disks exist */
/* this is for the online array utilities */
if(!drv->heads && j)
continue;
blk_queue_hardsect_size(hba[i]->queue, drv->block_size);
set_capacity(disk, drv->nr_blocks);
add_disk(disk);
}
return(1);
clean4:
if(hba[i]->cmd_pool_bits)
kfree(hba[i]->cmd_pool_bits);
if(hba[i]->cmd_pool)
pci_free_consistent(hba[i]->pdev,
NR_CMDS * sizeof(CommandList_struct),
hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
if(hba[i]->errinfo_pool)
pci_free_consistent(hba[i]->pdev,
NR_CMDS * sizeof( ErrorInfo_struct),
hba[i]->errinfo_pool,
hba[i]->errinfo_pool_dhandle);
free_irq(hba[i]->intr, hba[i]);
clean2:
unregister_blkdev(hba[i]->major, hba[i]->devname);
clean1:
release_io_mem(hba[i]);
free_hba(i);
return(-1);
}
static void __devexit cciss_remove_one (struct pci_dev *pdev)
{
ctlr_info_t *tmp_ptr;
int i, j;
char flush_buf[4];
int return_code;
if (pci_get_drvdata(pdev) == NULL)
{
printk( KERN_ERR "cciss: Unable to remove device \n");
return;
}
tmp_ptr = pci_get_drvdata(pdev);
i = tmp_ptr->ctlr;
if (hba[i] == NULL)
{
printk(KERN_ERR "cciss: device appears to "
"already be removed \n");
return;
}
/* Turn board interrupts off and send the flush cache command */
/* sendcmd will turn off interrupt, and send the flush...
* To write all data in the battery backed cache to disks */
memset(flush_buf, 0, 4);
return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0, 0, 0, NULL,
TYPE_CMD);
if(return_code != IO_OK)
{
printk(KERN_WARNING "Error Flushing cache on controller %d\n",
i);
}
free_irq(hba[i]->intr, hba[i]);
pci_set_drvdata(pdev, NULL);
iounmap(hba[i]->vaddr);
cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
unregister_blkdev(hba[i]->major, hba[i]->devname);
remove_proc_entry(hba[i]->devname, proc_cciss);
/* remove it from the disk list */
for (j = 0; j < NWD; j++) {
struct gendisk *disk = hba[i]->gendisk[j];
if (disk->flags & GENHD_FL_UP)
del_gendisk(disk);
}
blk_cleanup_queue(hba[i]->queue);
pci_free_consistent(hba[i]->pdev, NR_CMDS * sizeof(CommandList_struct),
hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
pci_free_consistent(hba[i]->pdev, NR_CMDS * sizeof( ErrorInfo_struct),
hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
kfree(hba[i]->cmd_pool_bits);
release_io_mem(hba[i]);
free_hba(i);
}
static struct pci_driver cciss_pci_driver = {
.name = "cciss",
.probe = cciss_init_one,
.remove = __devexit_p(cciss_remove_one),
.id_table = cciss_pci_device_id, /* id_table */
};
/*
* This is it. Register the PCI driver information for the cards we control
* the OS will call our registered routines when it finds one of our cards.
*/
static int __init cciss_init(void)
{
printk(KERN_INFO DRIVER_NAME "\n");
/* Register for our PCI devices */
return pci_module_init(&cciss_pci_driver);
}
static void __exit cciss_cleanup(void)
{
int i;
pci_unregister_driver(&cciss_pci_driver);
/* double check that all controller entrys have been removed */
for (i=0; i< MAX_CTLR; i++)
{
if (hba[i] != NULL)
{
printk(KERN_WARNING "cciss: had to remove"
" controller %d\n", i);
cciss_remove_one(hba[i]->pdev);
}
}
remove_proc_entry("cciss", proc_root_driver);
}
module_init(cciss_init);
module_exit(cciss_cleanup);