linux/drivers/dax/dax-private.h

62 lines
1.7 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright(c) 2016 Intel Corporation. All rights reserved.
*/
#ifndef __DAX_PRIVATE_H__
#define __DAX_PRIVATE_H__
#include <linux/device.h>
#include <linux/cdev.h>
/* private routines between core files */
struct dax_device;
struct dax_device *inode_dax(struct inode *inode);
struct inode *dax_inode(struct dax_device *dax_dev);
int dax_bus_init(void);
void dax_bus_exit(void);
/**
* struct dax_region - mapping infrastructure for dax devices
* @id: kernel-wide unique region for a memory range
acpi/nfit, device-dax: Identify differentiated memory with a unique numa-node Persistent memory, as described by the ACPI NFIT (NVDIMM Firmware Interface Table), is the first known instance of a memory range described by a unique "target" proximity domain. Where "initiator" and "target" proximity domains is an approach that the ACPI HMAT (Heterogeneous Memory Attributes Table) uses to described the unique performance properties of a memory range relative to a given initiator (e.g. CPU or DMA device). Currently the numa-node for a /dev/pmemX block-device or /dev/daxX.Y char-device follows the traditional notion of 'numa-node' where the attribute conveys the closest online numa-node. That numa-node attribute is useful for cpu-binding and memory-binding processes *near* the device. However, when the memory range backing a 'pmem', or 'dax' device is onlined (memory hot-add) the memory-only-numa-node representing that address needs to be differentiated from the set of online nodes. In other words, the numa-node association of the device depends on whether you can bind processes *near* the cpu-numa-node in the offline device-case, or bind process *on* the memory-range directly after the backing address range is onlined. Allow for the case that platform firmware describes persistent memory with a unique proximity domain, i.e. when it is distinct from the proximity of DRAM and CPUs that are on the same socket. Plumb the Linux numa-node translation of that proximity through the libnvdimm region device to namespaces that are in device-dax mode. With this in place the proposed kmem driver [1] can optionally discover a unique numa-node number for the address range as it transitions the memory from an offline state managed by a device-driver to an online memory range managed by the core-mm. [1]: https://lore.kernel.org/lkml/20181022201317.8558C1D8@viggo.jf.intel.com Reported-by: Fan Du <fan.du@intel.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Oliver O'Halloran" <oohall@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2018-11-09 20:43:07 +00:00
* @target_node: effective numa node if this memory range is onlined
* @kref: to pin while other agents have a need to do lookups
* @dev: parent device backing this region
* @align: allocation and mapping alignment for child dax devices
* @res: physical address range of the region
* @pfn_flags: identify whether the pfns are paged back or not
*/
struct dax_region {
int id;
acpi/nfit, device-dax: Identify differentiated memory with a unique numa-node Persistent memory, as described by the ACPI NFIT (NVDIMM Firmware Interface Table), is the first known instance of a memory range described by a unique "target" proximity domain. Where "initiator" and "target" proximity domains is an approach that the ACPI HMAT (Heterogeneous Memory Attributes Table) uses to described the unique performance properties of a memory range relative to a given initiator (e.g. CPU or DMA device). Currently the numa-node for a /dev/pmemX block-device or /dev/daxX.Y char-device follows the traditional notion of 'numa-node' where the attribute conveys the closest online numa-node. That numa-node attribute is useful for cpu-binding and memory-binding processes *near* the device. However, when the memory range backing a 'pmem', or 'dax' device is onlined (memory hot-add) the memory-only-numa-node representing that address needs to be differentiated from the set of online nodes. In other words, the numa-node association of the device depends on whether you can bind processes *near* the cpu-numa-node in the offline device-case, or bind process *on* the memory-range directly after the backing address range is onlined. Allow for the case that platform firmware describes persistent memory with a unique proximity domain, i.e. when it is distinct from the proximity of DRAM and CPUs that are on the same socket. Plumb the Linux numa-node translation of that proximity through the libnvdimm region device to namespaces that are in device-dax mode. With this in place the proposed kmem driver [1] can optionally discover a unique numa-node number for the address range as it transitions the memory from an offline state managed by a device-driver to an online memory range managed by the core-mm. [1]: https://lore.kernel.org/lkml/20181022201317.8558C1D8@viggo.jf.intel.com Reported-by: Fan Du <fan.du@intel.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Oliver O'Halloran" <oohall@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2018-11-09 20:43:07 +00:00
int target_node;
struct kref kref;
struct device *dev;
unsigned int align;
struct resource res;
unsigned long pfn_flags;
};
/**
* struct dev_dax - instance data for a subdivision of a dax region, and
* data while the device is activated in the driver.
* @region - parent region
* @dax_dev - core dax functionality
acpi/nfit, device-dax: Identify differentiated memory with a unique numa-node Persistent memory, as described by the ACPI NFIT (NVDIMM Firmware Interface Table), is the first known instance of a memory range described by a unique "target" proximity domain. Where "initiator" and "target" proximity domains is an approach that the ACPI HMAT (Heterogeneous Memory Attributes Table) uses to described the unique performance properties of a memory range relative to a given initiator (e.g. CPU or DMA device). Currently the numa-node for a /dev/pmemX block-device or /dev/daxX.Y char-device follows the traditional notion of 'numa-node' where the attribute conveys the closest online numa-node. That numa-node attribute is useful for cpu-binding and memory-binding processes *near* the device. However, when the memory range backing a 'pmem', or 'dax' device is onlined (memory hot-add) the memory-only-numa-node representing that address needs to be differentiated from the set of online nodes. In other words, the numa-node association of the device depends on whether you can bind processes *near* the cpu-numa-node in the offline device-case, or bind process *on* the memory-range directly after the backing address range is onlined. Allow for the case that platform firmware describes persistent memory with a unique proximity domain, i.e. when it is distinct from the proximity of DRAM and CPUs that are on the same socket. Plumb the Linux numa-node translation of that proximity through the libnvdimm region device to namespaces that are in device-dax mode. With this in place the proposed kmem driver [1] can optionally discover a unique numa-node number for the address range as it transitions the memory from an offline state managed by a device-driver to an online memory range managed by the core-mm. [1]: https://lore.kernel.org/lkml/20181022201317.8558C1D8@viggo.jf.intel.com Reported-by: Fan Du <fan.du@intel.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Oliver O'Halloran" <oohall@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2018-11-09 20:43:07 +00:00
* @target_node: effective numa node if dev_dax memory range is onlined
* @dev - device core
* @pgmap - pgmap for memmap setup / lifetime (driver owned)
device-dax: "Hotremove" persistent memory that is used like normal RAM It is now allowed to use persistent memory like a regular RAM, but currently there is no way to remove this memory until machine is rebooted. This work expands the functionality to also allows hotremoving previously hotplugged persistent memory, and recover the device for use for other purposes. To hotremove persistent memory, the management software must first offline all memory blocks of dax region, and than unbind it from device-dax/kmem driver. So, operations should look like this: echo offline > /sys/devices/system/memory/memoryN/state ... echo dax0.0 > /sys/bus/dax/drivers/kmem/unbind Note: if unbind is done without offlining memory beforehand, it won't be possible to do dax0.0 hotremove, and dax's memory is going to be part of System RAM until reboot. Link: http://lkml.kernel.org/r/20190517215438.6487-4-pasha.tatashin@soleen.com Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: James Morris <jmorris@namei.org> Cc: Sasha Levin <sashal@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Borislav Petkov <bp@suse.de> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com> Cc: Takashi Iwai <tiwai@suse.de> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-16 23:30:35 +00:00
* @dax_mem_res: physical address range of hotadded DAX memory
*/
struct dev_dax {
struct dax_region *region;
struct dax_device *dax_dev;
acpi/nfit, device-dax: Identify differentiated memory with a unique numa-node Persistent memory, as described by the ACPI NFIT (NVDIMM Firmware Interface Table), is the first known instance of a memory range described by a unique "target" proximity domain. Where "initiator" and "target" proximity domains is an approach that the ACPI HMAT (Heterogeneous Memory Attributes Table) uses to described the unique performance properties of a memory range relative to a given initiator (e.g. CPU or DMA device). Currently the numa-node for a /dev/pmemX block-device or /dev/daxX.Y char-device follows the traditional notion of 'numa-node' where the attribute conveys the closest online numa-node. That numa-node attribute is useful for cpu-binding and memory-binding processes *near* the device. However, when the memory range backing a 'pmem', or 'dax' device is onlined (memory hot-add) the memory-only-numa-node representing that address needs to be differentiated from the set of online nodes. In other words, the numa-node association of the device depends on whether you can bind processes *near* the cpu-numa-node in the offline device-case, or bind process *on* the memory-range directly after the backing address range is onlined. Allow for the case that platform firmware describes persistent memory with a unique proximity domain, i.e. when it is distinct from the proximity of DRAM and CPUs that are on the same socket. Plumb the Linux numa-node translation of that proximity through the libnvdimm region device to namespaces that are in device-dax mode. With this in place the proposed kmem driver [1] can optionally discover a unique numa-node number for the address range as it transitions the memory from an offline state managed by a device-driver to an online memory range managed by the core-mm. [1]: https://lore.kernel.org/lkml/20181022201317.8558C1D8@viggo.jf.intel.com Reported-by: Fan Du <fan.du@intel.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Oliver O'Halloran" <oohall@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2018-11-09 20:43:07 +00:00
int target_node;
struct device dev;
struct dev_pagemap pgmap;
device-dax: "Hotremove" persistent memory that is used like normal RAM It is now allowed to use persistent memory like a regular RAM, but currently there is no way to remove this memory until machine is rebooted. This work expands the functionality to also allows hotremoving previously hotplugged persistent memory, and recover the device for use for other purposes. To hotremove persistent memory, the management software must first offline all memory blocks of dax region, and than unbind it from device-dax/kmem driver. So, operations should look like this: echo offline > /sys/devices/system/memory/memoryN/state ... echo dax0.0 > /sys/bus/dax/drivers/kmem/unbind Note: if unbind is done without offlining memory beforehand, it won't be possible to do dax0.0 hotremove, and dax's memory is going to be part of System RAM until reboot. Link: http://lkml.kernel.org/r/20190517215438.6487-4-pasha.tatashin@soleen.com Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: James Morris <jmorris@namei.org> Cc: Sasha Levin <sashal@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Borislav Petkov <bp@suse.de> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com> Cc: Takashi Iwai <tiwai@suse.de> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-16 23:30:35 +00:00
struct resource *dax_kmem_res;
};
static inline struct dev_dax *to_dev_dax(struct device *dev)
{
return container_of(dev, struct dev_dax, dev);
}
#endif