linux/fs/netfs/buffered_write.c

563 lines
16 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/* Network filesystem high-level buffered write support.
*
* Copyright (C) 2023 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*/
#include <linux/export.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/slab.h>
#include <linux/pagevec.h>
#include "internal.h"
static void __netfs_set_group(struct folio *folio, struct netfs_group *netfs_group)
{
if (netfs_group)
netfs: Replace PG_fscache by setting folio->private and marking dirty When dirty data is being written to the cache, setting/waiting on/clearing the fscache flag is always done in tandem with setting/waiting on/clearing the writeback flag. The netfslib buffered write routines wait on and set both flags and the write request cleanup clears both flags, so the fscache flag is almost superfluous. The reason it isn't superfluous is because the fscache flag is also used to indicate that data just read from the server is being written to the cache. The flag is used to prevent a race involving overlapping direct-I/O writes to the cache. Change this to indicate that a page is in need of being copied to the cache by placing a magic value in folio->private and marking the folios dirty. Then when the writeback code sees a folio marked in this way, it only writes it to the cache and not to the server. If a folio that has this magic value set is modified, the value is just replaced and the folio will then be uplodaded too. With this, PG_fscache is no longer required by the netfslib core, 9p and afs. Ceph and nfs, however, still need to use the old PG_fscache-based tracking. To deal with this, a flag, NETFS_ICTX_USE_PGPRIV2, now has to be set on the flags in the netfs_inode struct for those filesystems. This reenables the use of PG_fscache in that inode. 9p and afs use the netfslib write helpers so get switched over; cifs, for the moment, does page-by-page manual access to the cache, so doesn't use PG_fscache and is unaffected. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> cc: Matthew Wilcox (Oracle) <willy@infradead.org> cc: Eric Van Hensbergen <ericvh@kernel.org> cc: Latchesar Ionkov <lucho@ionkov.net> cc: Dominique Martinet <asmadeus@codewreck.org> cc: Christian Schoenebeck <linux_oss@crudebyte.com> cc: Marc Dionne <marc.dionne@auristor.com> cc: Ilya Dryomov <idryomov@gmail.com> cc: Xiubo Li <xiubli@redhat.com> cc: Steve French <sfrench@samba.org> cc: Paulo Alcantara <pc@manguebit.com> cc: Ronnie Sahlberg <ronniesahlberg@gmail.com> cc: Shyam Prasad N <sprasad@microsoft.com> cc: Tom Talpey <tom@talpey.com> cc: Bharath SM <bharathsm@microsoft.com> cc: Trond Myklebust <trond.myklebust@hammerspace.com> cc: Anna Schumaker <anna@kernel.org> cc: netfs@lists.linux.dev cc: v9fs@lists.linux.dev cc: linux-afs@lists.infradead.org cc: ceph-devel@vger.kernel.org cc: linux-cifs@vger.kernel.org cc: linux-nfs@vger.kernel.org cc: linux-fsdevel@vger.kernel.org cc: linux-mm@kvack.org
2024-03-19 10:00:09 +00:00
folio_attach_private(folio, netfs_get_group(netfs_group));
}
static void netfs_set_group(struct folio *folio, struct netfs_group *netfs_group)
{
void *priv = folio_get_private(folio);
if (unlikely(priv != netfs_group)) {
if (netfs_group && (!priv || priv == NETFS_FOLIO_COPY_TO_CACHE))
folio_attach_private(folio, netfs_get_group(netfs_group));
else if (!netfs_group && priv == NETFS_FOLIO_COPY_TO_CACHE)
folio_detach_private(folio);
netfs: Fix interaction between write-streaming and cachefiles culling An issue can occur between write-streaming (storing dirty data in partial non-uptodate pages) and a cachefiles object being culled to make space. The problem occurs because the cache object is only marked in use while there are files open using it. Once it has been released, it can be culled and the cookie marked disabled. At this point, a streaming write is permitted to occur (if the cache is active, we require pages to be prefetched and cached), but the cache can become active again before this gets flushed out - and then two effects can occur: (1) The cache may be asked to write out a region that's less than its DIO block size (assumed by cachefiles to be PAGE_SIZE) - and this causes one of two debugging statements to be emitted. (2) netfs_how_to_modify() gets confused because it sees a page that isn't allowed to be non-uptodate being uptodate and tries to prefetch it - leading to a warning that PG_fscache is set twice. Fix this by the following means: (1) Add a netfs_inode flag to disallow write-streaming to an inode and set it if we ever do local caching of that inode. It remains set for the lifetime of that inode - even if the cookie becomes disabled. (2) If the no-write-streaming flag is set, then make netfs_how_to_modify() always want to prefetch instead. (3) If netfs_how_to_modify() decides it wants to prefetch a folio, but that folio has write-streamed data in it, then it requires the folio be flushed first. (4) Export a counter of the number of times we wanted to prefetch a non-uptodate page, but found it had write-streamed data in it. (5) Export a counter of the number of times we cancelled a write to the cache because it didn't DIO align and remove the debug statements. Reported-by: Marc Dionne <marc.dionne@auristor.com> Signed-off-by: David Howells <dhowells@redhat.com> cc: Jeff Layton <jlayton@kernel.org> cc: linux-cachefs@redhat.com cc: linux-erofs@lists.ozlabs.org cc: linux-fsdevel@vger.kernel.org cc: linux-mm@kvack.org
2024-01-04 15:52:11 +00:00
}
}
/*
* Grab a folio for writing and lock it. Attempt to allocate as large a folio
* as possible to hold as much of the remaining length as possible in one go.
*/
static struct folio *netfs_grab_folio_for_write(struct address_space *mapping,
loff_t pos, size_t part)
{
pgoff_t index = pos / PAGE_SIZE;
fgf_t fgp_flags = FGP_WRITEBEGIN;
if (mapping_large_folio_support(mapping))
fgp_flags |= fgf_set_order(pos % PAGE_SIZE + part);
return __filemap_get_folio(mapping, index, fgp_flags,
mapping_gfp_mask(mapping));
}
/*
* Update i_size and estimate the update to i_blocks to reflect the additional
* data written into the pagecache until we can find out from the server what
* the values actually are.
*/
static void netfs_update_i_size(struct netfs_inode *ctx, struct inode *inode,
loff_t i_size, loff_t pos, size_t copied)
{
blkcnt_t add;
size_t gap;
if (ctx->ops->update_i_size) {
ctx->ops->update_i_size(inode, pos);
return;
}
i_size_write(inode, pos);
#if IS_ENABLED(CONFIG_FSCACHE)
fscache_update_cookie(ctx->cache, NULL, &pos);
#endif
gap = SECTOR_SIZE - (i_size & (SECTOR_SIZE - 1));
if (copied > gap) {
add = DIV_ROUND_UP(copied - gap, SECTOR_SIZE);
inode->i_blocks = min_t(blkcnt_t,
DIV_ROUND_UP(pos, SECTOR_SIZE),
inode->i_blocks + add);
}
}
/**
* netfs_perform_write - Copy data into the pagecache.
* @iocb: The operation parameters
* @iter: The source buffer
* @netfs_group: Grouping for dirty folios (eg. ceph snaps).
*
* Copy data into pagecache folios attached to the inode specified by @iocb.
* The caller must hold appropriate inode locks.
*
* Dirty folios are tagged with a netfs_folio struct if they're not up to date
* to indicate the range modified. Dirty folios may also be tagged with a
* netfs-specific grouping such that data from an old group gets flushed before
* a new one is started.
*/
ssize_t netfs_perform_write(struct kiocb *iocb, struct iov_iter *iter,
struct netfs_group *netfs_group)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file_inode(file);
struct address_space *mapping = inode->i_mapping;
struct netfs_inode *ctx = netfs_inode(inode);
struct writeback_control wbc = {
.sync_mode = WB_SYNC_NONE,
.for_sync = true,
.nr_to_write = LONG_MAX,
.range_start = iocb->ki_pos,
.range_end = iocb->ki_pos + iter->count,
};
struct netfs_io_request *wreq = NULL;
struct folio *folio = NULL, *writethrough = NULL;
unsigned int bdp_flags = (iocb->ki_flags & IOCB_NOWAIT) ? BDP_ASYNC : 0;
ssize_t written = 0, ret, ret2;
loff_t i_size, pos = iocb->ki_pos;
size_t max_chunk = mapping_max_folio_size(mapping);
bool maybe_trouble = false;
if (unlikely(test_bit(NETFS_ICTX_WRITETHROUGH, &ctx->flags) ||
iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC))
) {
wbc_attach_fdatawrite_inode(&wbc, mapping->host);
netfs: Fix the pre-flush when appending to a file in writethrough mode In netfs_perform_write(), when the file is marked NETFS_ICTX_WRITETHROUGH or O_*SYNC or RWF_*SYNC was specified, write-through caching is performed on a buffered file. When setting up for write-through, we flush any conflicting writes in the region and wait for the write to complete, failing if there's a write error to return. The issue arises if we're writing at or above the EOF position because we skip the flush and - more importantly - the wait. This becomes a problem if there's a partial folio at the end of the file that is being written out and we want to make a write to it too. Both the already-running write and the write we start both want to clear the writeback mark, but whoever is second causes a warning looking something like: ------------[ cut here ]------------ R=00000012: folio 11 is not under writeback WARNING: CPU: 34 PID: 654 at fs/netfs/write_collect.c:105 ... CPU: 34 PID: 654 Comm: kworker/u386:27 Tainted: G S ... ... Workqueue: events_unbound netfs_write_collection_worker ... RIP: 0010:netfs_writeback_lookup_folio Fix this by making the flush-and-wait unconditional. It will do nothing if there are no folios in the pagecache and will return quickly if there are no folios in the region specified. Further, move the WBC attachment above the flush call as the flush is going to attach a WBC and detach it again if it is not present - and since we need one anyway we might as well share it. Fixes: 41d8e7673a77 ("netfs: Implement a write-through caching option") Reported-by: kernel test robot <oliver.sang@intel.com> Closes: https://lore.kernel.org/oe-lkp/202404161031.468b84f-oliver.sang@intel.com Signed-off-by: David Howells <dhowells@redhat.com> Link: https://lore.kernel.org/r/2150448.1714130115@warthog.procyon.org.uk Reviewed-by: Jeffrey Layton <jlayton@kernel.org> cc: Eric Van Hensbergen <ericvh@kernel.org> cc: Latchesar Ionkov <lucho@ionkov.net> cc: Dominique Martinet <asmadeus@codewreck.org> cc: Christian Schoenebeck <linux_oss@crudebyte.com> cc: Marc Dionne <marc.dionne@auristor.com> cc: netfs@lists.linux.dev cc: linux-fsdevel@vger.kernel.org cc: linux-mm@kvack.org cc: v9fs@lists.linux.dev cc: linux-afs@lists.infradead.org cc: linux-cifs@vger.kernel.org Signed-off-by: Christian Brauner <brauner@kernel.org>
2024-04-26 11:15:15 +00:00
ret = filemap_write_and_wait_range(mapping, pos, pos + iter->count);
if (ret < 0) {
wbc_detach_inode(&wbc);
goto out;
}
wreq = netfs_begin_writethrough(iocb, iter->count);
if (IS_ERR(wreq)) {
wbc_detach_inode(&wbc);
ret = PTR_ERR(wreq);
wreq = NULL;
goto out;
}
if (!is_sync_kiocb(iocb))
wreq->iocb = iocb;
netfs_stat(&netfs_n_wh_writethrough);
} else {
netfs_stat(&netfs_n_wh_buffered_write);
}
do {
struct netfs_folio *finfo;
struct netfs_group *group;
unsigned long long fpos;
size_t flen;
size_t offset; /* Offset into pagecache folio */
size_t part; /* Bytes to write to folio */
size_t copied; /* Bytes copied from user */
offset = pos & (max_chunk - 1);
part = min(max_chunk - offset, iov_iter_count(iter));
/* Bring in the user pages that we will copy from _first_ lest
* we hit a nasty deadlock on copying from the same page as
* we're writing to, without it being marked uptodate.
*
* Not only is this an optimisation, but it is also required to
* check that the address is actually valid, when atomic
* usercopies are used below.
*
* We rely on the page being held onto long enough by the LRU
* that we can grab it below if this causes it to be read.
*/
ret = -EFAULT;
if (unlikely(fault_in_iov_iter_readable(iter, part) == part))
break;
folio = netfs_grab_folio_for_write(mapping, pos, part);
if (IS_ERR(folio)) {
ret = PTR_ERR(folio);
break;
}
flen = folio_size(folio);
fpos = folio_pos(folio);
offset = pos - fpos;
part = min_t(size_t, flen - offset, part);
/* Wait for writeback to complete. The writeback engine owns
* the info in folio->private and may change it until it
* removes the WB mark.
*/
if (folio_get_private(folio) &&
folio_wait_writeback_killable(folio)) {
ret = written ? -EINTR : -ERESTARTSYS;
goto error_folio_unlock;
}
if (signal_pending(current)) {
ret = written ? -EINTR : -ERESTARTSYS;
goto error_folio_unlock;
}
/* Decide how we should modify a folio. We might be attempting
* to do write-streaming, in which case we don't want to a
* local RMW cycle if we can avoid it. If we're doing local
* caching or content crypto, we award that priority over
* avoiding RMW. If the file is open readably, then we also
* assume that we may want to read what we wrote.
*/
finfo = netfs_folio_info(folio);
group = netfs_folio_group(folio);
if (unlikely(group != netfs_group) &&
group != NETFS_FOLIO_COPY_TO_CACHE)
goto flush_content;
if (folio_test_uptodate(folio)) {
if (mapping_writably_mapped(mapping))
flush_dcache_folio(folio);
copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
if (unlikely(copied == 0))
goto copy_failed;
netfs_set_group(folio, netfs_group);
trace_netfs_folio(folio, netfs_folio_is_uptodate);
goto copied;
}
/* If the page is above the zero-point then we assume that the
* server would just return a block of zeros or a short read if
* we try to read it.
*/
if (fpos >= ctx->zero_point) {
folio_zero_segment(folio, 0, offset);
copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
if (unlikely(copied == 0))
goto copy_failed;
folio_zero_segment(folio, offset + copied, flen);
__netfs_set_group(folio, netfs_group);
folio_mark_uptodate(folio);
trace_netfs_folio(folio, netfs_modify_and_clear);
goto copied;
}
/* See if we can write a whole folio in one go. */
if (!maybe_trouble && offset == 0 && part >= flen) {
copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
if (unlikely(copied == 0))
goto copy_failed;
if (unlikely(copied < part)) {
maybe_trouble = true;
iov_iter_revert(iter, copied);
copied = 0;
folio_unlock(folio);
goto retry;
}
__netfs_set_group(folio, netfs_group);
folio_mark_uptodate(folio);
trace_netfs_folio(folio, netfs_whole_folio_modify);
goto copied;
}
/* We don't want to do a streaming write on a file that loses
* caching service temporarily because the backing store got
* culled and we don't really want to get a streaming write on
* a file that's open for reading as ->read_folio() then has to
* be able to flush it.
*/
if ((file->f_mode & FMODE_READ) ||
netfs_is_cache_enabled(ctx)) {
if (finfo) {
netfs_stat(&netfs_n_wh_wstream_conflict);
goto flush_content;
}
ret = netfs_prefetch_for_write(file, folio, offset, part);
if (ret < 0) {
_debug("prefetch = %zd", ret);
goto error_folio_unlock;
}
/* Note that copy-to-cache may have been set. */
copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
if (unlikely(copied == 0))
goto copy_failed;
netfs_set_group(folio, netfs_group);
trace_netfs_folio(folio, netfs_just_prefetch);
goto copied;
}
if (!finfo) {
ret = -EIO;
if (WARN_ON(folio_get_private(folio)))
goto error_folio_unlock;
copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
if (unlikely(copied == 0))
goto copy_failed;
if (offset == 0 && copied == flen) {
__netfs_set_group(folio, netfs_group);
folio_mark_uptodate(folio);
trace_netfs_folio(folio, netfs_streaming_filled_page);
goto copied;
}
finfo = kzalloc(sizeof(*finfo), GFP_KERNEL);
if (!finfo) {
iov_iter_revert(iter, copied);
ret = -ENOMEM;
goto error_folio_unlock;
}
finfo->netfs_group = netfs_get_group(netfs_group);
finfo->dirty_offset = offset;
finfo->dirty_len = copied;
folio_attach_private(folio, (void *)((unsigned long)finfo |
NETFS_FOLIO_INFO));
trace_netfs_folio(folio, netfs_streaming_write);
goto copied;
}
/* We can continue a streaming write only if it continues on
* from the previous. If it overlaps, we must flush lest we
* suffer a partial copy and disjoint dirty regions.
*/
if (offset == finfo->dirty_offset + finfo->dirty_len) {
copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
if (unlikely(copied == 0))
goto copy_failed;
finfo->dirty_len += copied;
if (finfo->dirty_offset == 0 && finfo->dirty_len == flen) {
if (finfo->netfs_group)
folio_change_private(folio, finfo->netfs_group);
else
folio_detach_private(folio);
folio_mark_uptodate(folio);
kfree(finfo);
trace_netfs_folio(folio, netfs_streaming_cont_filled_page);
} else {
trace_netfs_folio(folio, netfs_streaming_write_cont);
}
goto copied;
}
/* Incompatible write; flush the folio and try again. */
flush_content:
trace_netfs_folio(folio, netfs_flush_content);
folio_unlock(folio);
folio_put(folio);
ret = filemap_write_and_wait_range(mapping, fpos, fpos + flen - 1);
if (ret < 0)
goto error_folio_unlock;
continue;
copied:
flush_dcache_folio(folio);
/* Update the inode size if we moved the EOF marker */
pos += copied;
i_size = i_size_read(inode);
if (pos > i_size)
netfs_update_i_size(ctx, inode, i_size, pos, copied);
written += copied;
if (likely(!wreq)) {
folio_mark_dirty(folio);
folio_unlock(folio);
} else {
netfs_advance_writethrough(wreq, &wbc, folio, copied,
offset + copied == flen,
&writethrough);
/* Folio unlocked */
}
retry:
folio_put(folio);
folio = NULL;
ret = balance_dirty_pages_ratelimited_flags(mapping, bdp_flags);
if (unlikely(ret < 0))
break;
cond_resched();
} while (iov_iter_count(iter));
out:
if (likely(written)) {
/* Set indication that ctime and mtime got updated in case
* close is deferred.
*/
set_bit(NETFS_ICTX_MODIFIED_ATTR, &ctx->flags);
if (unlikely(ctx->ops->post_modify))
ctx->ops->post_modify(inode);
}
cifs: Implement netfslib hooks Provide implementation of the netfslib hooks that will be used by netfslib to ask cifs to set up and perform operations. Of particular note are (*) cifs_clamp_length() - This is used to negotiate the size of the next subrequest in a read request, taking into account the credit available and the rsize. The credits are attached to the subrequest. (*) cifs_req_issue_read() - This is used to issue a subrequest that has been set up and clamped. (*) cifs_prepare_write() - This prepares to fill a subrequest by picking a channel, reopening the file and requesting credits so that we can set the maximum size of the subrequest and also sets the maximum number of segments if we're doing RDMA. (*) cifs_issue_write() - This releases any unneeded credits and issues an asynchronous data write for the contiguous slice of file covered by the subrequest. This should possibly be folded in to all ->async_writev() ops and that called directly. (*) cifs_begin_writeback() - This gets the cached writable handle through which we do writeback (this does not affect writethrough, unbuffered or direct writes). At this point, cifs is not wired up to actually *use* netfslib; that will be done in a subsequent patch. Signed-off-by: David Howells <dhowells@redhat.com> cc: Steve French <sfrench@samba.org> cc: Shyam Prasad N <nspmangalore@gmail.com> cc: Rohith Surabattula <rohiths.msft@gmail.com> cc: Jeff Layton <jlayton@kernel.org> cc: linux-cifs@vger.kernel.org cc: netfs@lists.linux.dev cc: linux-fsdevel@vger.kernel.org cc: linux-mm@kvack.org
2023-10-06 17:16:15 +00:00
if (unlikely(wreq)) {
ret2 = netfs_end_writethrough(wreq, &wbc, writethrough);
wbc_detach_inode(&wbc);
if (ret2 == -EIOCBQUEUED)
return ret2;
if (ret == 0)
ret = ret2;
}
iocb->ki_pos += written;
_leave(" = %zd [%zd]", written, ret);
return written ? written : ret;
copy_failed:
ret = -EFAULT;
error_folio_unlock:
folio_unlock(folio);
folio_put(folio);
goto out;
}
EXPORT_SYMBOL(netfs_perform_write);
/**
* netfs_buffered_write_iter_locked - write data to a file
* @iocb: IO state structure (file, offset, etc.)
* @from: iov_iter with data to write
* @netfs_group: Grouping for dirty folios (eg. ceph snaps).
*
* This function does all the work needed for actually writing data to a
* file. It does all basic checks, removes SUID from the file, updates
* modification times and calls proper subroutines depending on whether we
* do direct IO or a standard buffered write.
*
* The caller must hold appropriate locks around this function and have called
* generic_write_checks() already. The caller is also responsible for doing
* any necessary syncing afterwards.
*
* This function does *not* take care of syncing data in case of O_SYNC write.
* A caller has to handle it. This is mainly due to the fact that we want to
* avoid syncing under i_rwsem.
*
* Return:
* * number of bytes written, even for truncated writes
* * negative error code if no data has been written at all
*/
ssize_t netfs_buffered_write_iter_locked(struct kiocb *iocb, struct iov_iter *from,
struct netfs_group *netfs_group)
{
struct file *file = iocb->ki_filp;
ssize_t ret;
trace_netfs_write_iter(iocb, from);
ret = file_remove_privs(file);
if (ret)
return ret;
ret = file_update_time(file);
if (ret)
return ret;
return netfs_perform_write(iocb, from, netfs_group);
}
EXPORT_SYMBOL(netfs_buffered_write_iter_locked);
/**
* netfs_file_write_iter - write data to a file
* @iocb: IO state structure
* @from: iov_iter with data to write
*
* Perform a write to a file, writing into the pagecache if possible and doing
* an unbuffered write instead if not.
*
* Return:
* * Negative error code if no data has been written at all of
* vfs_fsync_range() failed for a synchronous write
* * Number of bytes written, even for truncated writes
*/
ssize_t netfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file->f_mapping->host;
struct netfs_inode *ictx = netfs_inode(inode);
ssize_t ret;
_enter("%llx,%zx,%llx", iocb->ki_pos, iov_iter_count(from), i_size_read(inode));
if (!iov_iter_count(from))
return 0;
if ((iocb->ki_flags & IOCB_DIRECT) ||
test_bit(NETFS_ICTX_UNBUFFERED, &ictx->flags))
return netfs_unbuffered_write_iter(iocb, from);
ret = netfs_start_io_write(inode);
if (ret < 0)
return ret;
ret = generic_write_checks(iocb, from);
if (ret > 0)
ret = netfs_buffered_write_iter_locked(iocb, from, NULL);
netfs_end_io_write(inode);
if (ret > 0)
ret = generic_write_sync(iocb, ret);
return ret;
}
EXPORT_SYMBOL(netfs_file_write_iter);
/*
* Notification that a previously read-only page is about to become writable.
* The caller indicates the precise page that needs to be written to, but
* we only track group on a per-folio basis, so we block more often than
* we might otherwise.
*/
vm_fault_t netfs_page_mkwrite(struct vm_fault *vmf, struct netfs_group *netfs_group)
{
netfs: Replace PG_fscache by setting folio->private and marking dirty When dirty data is being written to the cache, setting/waiting on/clearing the fscache flag is always done in tandem with setting/waiting on/clearing the writeback flag. The netfslib buffered write routines wait on and set both flags and the write request cleanup clears both flags, so the fscache flag is almost superfluous. The reason it isn't superfluous is because the fscache flag is also used to indicate that data just read from the server is being written to the cache. The flag is used to prevent a race involving overlapping direct-I/O writes to the cache. Change this to indicate that a page is in need of being copied to the cache by placing a magic value in folio->private and marking the folios dirty. Then when the writeback code sees a folio marked in this way, it only writes it to the cache and not to the server. If a folio that has this magic value set is modified, the value is just replaced and the folio will then be uplodaded too. With this, PG_fscache is no longer required by the netfslib core, 9p and afs. Ceph and nfs, however, still need to use the old PG_fscache-based tracking. To deal with this, a flag, NETFS_ICTX_USE_PGPRIV2, now has to be set on the flags in the netfs_inode struct for those filesystems. This reenables the use of PG_fscache in that inode. 9p and afs use the netfslib write helpers so get switched over; cifs, for the moment, does page-by-page manual access to the cache, so doesn't use PG_fscache and is unaffected. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> cc: Matthew Wilcox (Oracle) <willy@infradead.org> cc: Eric Van Hensbergen <ericvh@kernel.org> cc: Latchesar Ionkov <lucho@ionkov.net> cc: Dominique Martinet <asmadeus@codewreck.org> cc: Christian Schoenebeck <linux_oss@crudebyte.com> cc: Marc Dionne <marc.dionne@auristor.com> cc: Ilya Dryomov <idryomov@gmail.com> cc: Xiubo Li <xiubli@redhat.com> cc: Steve French <sfrench@samba.org> cc: Paulo Alcantara <pc@manguebit.com> cc: Ronnie Sahlberg <ronniesahlberg@gmail.com> cc: Shyam Prasad N <sprasad@microsoft.com> cc: Tom Talpey <tom@talpey.com> cc: Bharath SM <bharathsm@microsoft.com> cc: Trond Myklebust <trond.myklebust@hammerspace.com> cc: Anna Schumaker <anna@kernel.org> cc: netfs@lists.linux.dev cc: v9fs@lists.linux.dev cc: linux-afs@lists.infradead.org cc: ceph-devel@vger.kernel.org cc: linux-cifs@vger.kernel.org cc: linux-nfs@vger.kernel.org cc: linux-fsdevel@vger.kernel.org cc: linux-mm@kvack.org
2024-03-19 10:00:09 +00:00
struct netfs_group *group;
struct folio *folio = page_folio(vmf->page);
struct file *file = vmf->vma->vm_file;
netfs: Fix netfs_page_mkwrite() to check folio->mapping is valid Fix netfs_page_mkwrite() to check that folio->mapping is valid once it has taken the folio lock (as filemap_page_mkwrite() does). Without this, generic/247 occasionally oopses with something like the following: BUG: kernel NULL pointer dereference, address: 0000000000000000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page RIP: 0010:trace_event_raw_event_netfs_folio+0x61/0xc0 ... Call Trace: <TASK> ? __die_body+0x1a/0x60 ? page_fault_oops+0x6e/0xa0 ? exc_page_fault+0xc2/0xe0 ? asm_exc_page_fault+0x22/0x30 ? trace_event_raw_event_netfs_folio+0x61/0xc0 trace_netfs_folio+0x39/0x40 netfs_page_mkwrite+0x14c/0x1d0 do_page_mkwrite+0x50/0x90 do_pte_missing+0x184/0x200 __handle_mm_fault+0x42d/0x500 handle_mm_fault+0x121/0x1f0 do_user_addr_fault+0x23e/0x3c0 exc_page_fault+0xc2/0xe0 asm_exc_page_fault+0x22/0x30 This is due to the invalidate_inode_pages2_range() issued at the end of the DIO write interfering with the mmap'd writes. Fixes: 102a7e2c598c ("netfs: Allow buffered shared-writeable mmap through netfs_page_mkwrite()") Signed-off-by: David Howells <dhowells@redhat.com> Link: https://lore.kernel.org/r/780211.1719318546@warthog.procyon.org.uk Reviewed-by: Jeff Layton <jlayton@kernel.org> cc: Matthew Wilcox <willy@infradead.org> cc: Jeff Layton <jlayton@kernel.org> cc: netfs@lists.linux.dev cc: v9fs@lists.linux.dev cc: linux-afs@lists.infradead.org cc: linux-cifs@vger.kernel.org cc: linux-mm@kvack.org cc: linux-fsdevel@vger.kernel.org Signed-off-by: Christian Brauner <brauner@kernel.org>
2024-06-25 12:29:06 +00:00
struct address_space *mapping = file->f_mapping;
struct inode *inode = file_inode(file);
cifs: Implement netfslib hooks Provide implementation of the netfslib hooks that will be used by netfslib to ask cifs to set up and perform operations. Of particular note are (*) cifs_clamp_length() - This is used to negotiate the size of the next subrequest in a read request, taking into account the credit available and the rsize. The credits are attached to the subrequest. (*) cifs_req_issue_read() - This is used to issue a subrequest that has been set up and clamped. (*) cifs_prepare_write() - This prepares to fill a subrequest by picking a channel, reopening the file and requesting credits so that we can set the maximum size of the subrequest and also sets the maximum number of segments if we're doing RDMA. (*) cifs_issue_write() - This releases any unneeded credits and issues an asynchronous data write for the contiguous slice of file covered by the subrequest. This should possibly be folded in to all ->async_writev() ops and that called directly. (*) cifs_begin_writeback() - This gets the cached writable handle through which we do writeback (this does not affect writethrough, unbuffered or direct writes). At this point, cifs is not wired up to actually *use* netfslib; that will be done in a subsequent patch. Signed-off-by: David Howells <dhowells@redhat.com> cc: Steve French <sfrench@samba.org> cc: Shyam Prasad N <nspmangalore@gmail.com> cc: Rohith Surabattula <rohiths.msft@gmail.com> cc: Jeff Layton <jlayton@kernel.org> cc: linux-cifs@vger.kernel.org cc: netfs@lists.linux.dev cc: linux-fsdevel@vger.kernel.org cc: linux-mm@kvack.org
2023-10-06 17:16:15 +00:00
struct netfs_inode *ictx = netfs_inode(inode);
vm_fault_t ret = VM_FAULT_NOPAGE;
int err;
_enter("%lx", folio->index);
sb_start_pagefault(inode->i_sb);
if (folio_lock_killable(folio) < 0)
goto out;
if (folio->mapping != mapping)
goto unlock;
if (folio_wait_writeback_killable(folio) < 0)
goto unlock;
/* Can we see a streaming write here? */
if (WARN_ON(!folio_test_uptodate(folio))) {
ret = VM_FAULT_SIGBUS;
goto unlock;
}
netfs: Replace PG_fscache by setting folio->private and marking dirty When dirty data is being written to the cache, setting/waiting on/clearing the fscache flag is always done in tandem with setting/waiting on/clearing the writeback flag. The netfslib buffered write routines wait on and set both flags and the write request cleanup clears both flags, so the fscache flag is almost superfluous. The reason it isn't superfluous is because the fscache flag is also used to indicate that data just read from the server is being written to the cache. The flag is used to prevent a race involving overlapping direct-I/O writes to the cache. Change this to indicate that a page is in need of being copied to the cache by placing a magic value in folio->private and marking the folios dirty. Then when the writeback code sees a folio marked in this way, it only writes it to the cache and not to the server. If a folio that has this magic value set is modified, the value is just replaced and the folio will then be uplodaded too. With this, PG_fscache is no longer required by the netfslib core, 9p and afs. Ceph and nfs, however, still need to use the old PG_fscache-based tracking. To deal with this, a flag, NETFS_ICTX_USE_PGPRIV2, now has to be set on the flags in the netfs_inode struct for those filesystems. This reenables the use of PG_fscache in that inode. 9p and afs use the netfslib write helpers so get switched over; cifs, for the moment, does page-by-page manual access to the cache, so doesn't use PG_fscache and is unaffected. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> cc: Matthew Wilcox (Oracle) <willy@infradead.org> cc: Eric Van Hensbergen <ericvh@kernel.org> cc: Latchesar Ionkov <lucho@ionkov.net> cc: Dominique Martinet <asmadeus@codewreck.org> cc: Christian Schoenebeck <linux_oss@crudebyte.com> cc: Marc Dionne <marc.dionne@auristor.com> cc: Ilya Dryomov <idryomov@gmail.com> cc: Xiubo Li <xiubli@redhat.com> cc: Steve French <sfrench@samba.org> cc: Paulo Alcantara <pc@manguebit.com> cc: Ronnie Sahlberg <ronniesahlberg@gmail.com> cc: Shyam Prasad N <sprasad@microsoft.com> cc: Tom Talpey <tom@talpey.com> cc: Bharath SM <bharathsm@microsoft.com> cc: Trond Myklebust <trond.myklebust@hammerspace.com> cc: Anna Schumaker <anna@kernel.org> cc: netfs@lists.linux.dev cc: v9fs@lists.linux.dev cc: linux-afs@lists.infradead.org cc: ceph-devel@vger.kernel.org cc: linux-cifs@vger.kernel.org cc: linux-nfs@vger.kernel.org cc: linux-fsdevel@vger.kernel.org cc: linux-mm@kvack.org
2024-03-19 10:00:09 +00:00
group = netfs_folio_group(folio);
if (group != netfs_group && group != NETFS_FOLIO_COPY_TO_CACHE) {
folio_unlock(folio);
err = filemap_fdatawrite_range(mapping,
folio_pos(folio),
folio_pos(folio) + folio_size(folio));
switch (err) {
case 0:
ret = VM_FAULT_RETRY;
goto out;
case -ENOMEM:
ret = VM_FAULT_OOM;
goto out;
default:
ret = VM_FAULT_SIGBUS;
goto out;
}
}
if (folio_test_dirty(folio))
trace_netfs_folio(folio, netfs_folio_trace_mkwrite_plus);
else
trace_netfs_folio(folio, netfs_folio_trace_mkwrite);
netfs_set_group(folio, netfs_group);
file_update_time(file);
set_bit(NETFS_ICTX_MODIFIED_ATTR, &ictx->flags);
cifs: Implement netfslib hooks Provide implementation of the netfslib hooks that will be used by netfslib to ask cifs to set up and perform operations. Of particular note are (*) cifs_clamp_length() - This is used to negotiate the size of the next subrequest in a read request, taking into account the credit available and the rsize. The credits are attached to the subrequest. (*) cifs_req_issue_read() - This is used to issue a subrequest that has been set up and clamped. (*) cifs_prepare_write() - This prepares to fill a subrequest by picking a channel, reopening the file and requesting credits so that we can set the maximum size of the subrequest and also sets the maximum number of segments if we're doing RDMA. (*) cifs_issue_write() - This releases any unneeded credits and issues an asynchronous data write for the contiguous slice of file covered by the subrequest. This should possibly be folded in to all ->async_writev() ops and that called directly. (*) cifs_begin_writeback() - This gets the cached writable handle through which we do writeback (this does not affect writethrough, unbuffered or direct writes). At this point, cifs is not wired up to actually *use* netfslib; that will be done in a subsequent patch. Signed-off-by: David Howells <dhowells@redhat.com> cc: Steve French <sfrench@samba.org> cc: Shyam Prasad N <nspmangalore@gmail.com> cc: Rohith Surabattula <rohiths.msft@gmail.com> cc: Jeff Layton <jlayton@kernel.org> cc: linux-cifs@vger.kernel.org cc: netfs@lists.linux.dev cc: linux-fsdevel@vger.kernel.org cc: linux-mm@kvack.org
2023-10-06 17:16:15 +00:00
if (ictx->ops->post_modify)
ictx->ops->post_modify(inode);
ret = VM_FAULT_LOCKED;
out:
sb_end_pagefault(inode->i_sb);
return ret;
unlock:
folio_unlock(folio);
goto out;
}
EXPORT_SYMBOL(netfs_page_mkwrite);