2018-12-11 17:43:03 +00:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
2012-03-16 06:11:19 +00:00
|
|
|
/*
|
|
|
|
* Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
|
|
|
|
* Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
|
|
|
|
*
|
2018-05-08 18:14:57 +00:00
|
|
|
* Standard functionality for the common clock API. See Documentation/driver-api/clk.rst
|
2012-03-16 06:11:19 +00:00
|
|
|
*/
|
|
|
|
|
2015-06-19 22:00:46 +00:00
|
|
|
#include <linux/clk.h>
|
2015-01-29 22:22:50 +00:00
|
|
|
#include <linux/clk-provider.h>
|
2014-06-18 15:29:32 +00:00
|
|
|
#include <linux/clk/clk-conf.h>
|
2012-03-16 06:11:19 +00:00
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/mutex.h>
|
|
|
|
#include <linux/spinlock.h>
|
|
|
|
#include <linux/err.h>
|
|
|
|
#include <linux/list.h>
|
|
|
|
#include <linux/slab.h>
|
2012-04-09 19:50:06 +00:00
|
|
|
#include <linux/of.h>
|
2012-09-24 20:38:04 +00:00
|
|
|
#include <linux/device.h>
|
2013-01-04 07:00:52 +00:00
|
|
|
#include <linux/init.h>
|
2017-08-21 08:04:59 +00:00
|
|
|
#include <linux/pm_runtime.h>
|
2013-03-28 20:59:02 +00:00
|
|
|
#include <linux/sched.h>
|
2015-05-01 19:16:14 +00:00
|
|
|
#include <linux/clkdev.h>
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2013-08-23 15:03:43 +00:00
|
|
|
#include "clk.h"
|
|
|
|
|
2012-03-16 06:11:19 +00:00
|
|
|
static DEFINE_SPINLOCK(enable_lock);
|
|
|
|
static DEFINE_MUTEX(prepare_lock);
|
|
|
|
|
2013-03-28 20:59:02 +00:00
|
|
|
static struct task_struct *prepare_owner;
|
|
|
|
static struct task_struct *enable_owner;
|
|
|
|
|
|
|
|
static int prepare_refcnt;
|
|
|
|
static int enable_refcnt;
|
|
|
|
|
2012-03-16 06:11:19 +00:00
|
|
|
static HLIST_HEAD(clk_root_list);
|
|
|
|
static HLIST_HEAD(clk_orphan_list);
|
|
|
|
static LIST_HEAD(clk_notifier_list);
|
|
|
|
|
2022-02-17 22:05:53 +00:00
|
|
|
static const struct hlist_head *all_lists[] = {
|
2019-08-28 18:19:59 +00:00
|
|
|
&clk_root_list,
|
|
|
|
&clk_orphan_list,
|
|
|
|
NULL,
|
|
|
|
};
|
|
|
|
|
2015-01-29 22:22:50 +00:00
|
|
|
/*** private data structures ***/
|
|
|
|
|
2019-04-12 18:31:47 +00:00
|
|
|
struct clk_parent_map {
|
|
|
|
const struct clk_hw *hw;
|
|
|
|
struct clk_core *core;
|
|
|
|
const char *fw_name;
|
|
|
|
const char *name;
|
2019-04-12 18:31:49 +00:00
|
|
|
int index;
|
2019-04-12 18:31:47 +00:00
|
|
|
};
|
|
|
|
|
2015-01-29 22:22:50 +00:00
|
|
|
struct clk_core {
|
|
|
|
const char *name;
|
|
|
|
const struct clk_ops *ops;
|
|
|
|
struct clk_hw *hw;
|
|
|
|
struct module *owner;
|
2017-08-21 08:04:59 +00:00
|
|
|
struct device *dev;
|
2019-04-12 18:31:46 +00:00
|
|
|
struct device_node *of_node;
|
2015-01-29 22:22:50 +00:00
|
|
|
struct clk_core *parent;
|
2019-04-12 18:31:47 +00:00
|
|
|
struct clk_parent_map *parents;
|
2015-01-29 22:22:50 +00:00
|
|
|
u8 num_parents;
|
|
|
|
u8 new_parent_index;
|
|
|
|
unsigned long rate;
|
2015-01-23 11:03:31 +00:00
|
|
|
unsigned long req_rate;
|
2015-01-29 22:22:50 +00:00
|
|
|
unsigned long new_rate;
|
|
|
|
struct clk_core *new_parent;
|
|
|
|
struct clk_core *new_child;
|
|
|
|
unsigned long flags;
|
2015-04-22 20:53:05 +00:00
|
|
|
bool orphan;
|
2018-12-04 19:24:37 +00:00
|
|
|
bool rpm_enabled;
|
2015-01-29 22:22:50 +00:00
|
|
|
unsigned int enable_count;
|
|
|
|
unsigned int prepare_count;
|
2017-12-01 21:51:56 +00:00
|
|
|
unsigned int protect_count;
|
2015-07-16 19:50:27 +00:00
|
|
|
unsigned long min_rate;
|
|
|
|
unsigned long max_rate;
|
2015-01-29 22:22:50 +00:00
|
|
|
unsigned long accuracy;
|
|
|
|
int phase;
|
clk: add duty cycle support
Add the possibility to apply and query the clock signal duty cycle ratio.
This is useful when the duty cycle of the clock signal depends on some
other parameters controlled by the clock framework.
For example, the duty cycle of a divider may depends on the raw divider
setting (ratio = N / div) , which is controlled by the CCF. In such case,
going through the pwm framework to control the duty cycle ratio of this
clock would be a burden.
A clock provider is not required to implement the operation to set and get
the duty cycle. If it does not implement .get_duty_cycle(), the ratio is
assumed to be 50%.
This change also adds a new flag, CLK_DUTY_CYCLE_PARENT. This flag should
be used to indicate that a clock, such as gates and muxes, may inherit
the duty cycle ratio of its parent clock. If a clock does not provide a
get_duty_cycle() callback and has CLK_DUTY_CYCLE_PARENT, then the call
will be directly forwarded to its parent clock, if any. For
set_duty_cycle(), the clock should also have CLK_SET_RATE_PARENT for the
call to be forwarded
Signed-off-by: Jerome Brunet <jbrunet@baylibre.com>
Signed-off-by: Michael Turquette <mturquette@baylibre.com>
Link: lkml.kernel.org/r/20180619144141.8506-1-jbrunet@baylibre.com
2018-06-19 14:41:41 +00:00
|
|
|
struct clk_duty duty;
|
2015-01-29 22:22:50 +00:00
|
|
|
struct hlist_head children;
|
|
|
|
struct hlist_node child_node;
|
2015-01-23 11:03:31 +00:00
|
|
|
struct hlist_head clks;
|
2015-01-29 22:22:50 +00:00
|
|
|
unsigned int notifier_count;
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
|
|
struct dentry *dentry;
|
2015-06-10 11:28:27 +00:00
|
|
|
struct hlist_node debug_node;
|
2015-01-29 22:22:50 +00:00
|
|
|
#endif
|
|
|
|
struct kref ref;
|
|
|
|
};
|
|
|
|
|
2015-02-02 22:37:41 +00:00
|
|
|
#define CREATE_TRACE_POINTS
|
|
|
|
#include <trace/events/clk.h>
|
|
|
|
|
2015-01-29 22:22:50 +00:00
|
|
|
struct clk {
|
|
|
|
struct clk_core *core;
|
2018-12-11 16:34:16 +00:00
|
|
|
struct device *dev;
|
2015-01-29 22:22:50 +00:00
|
|
|
const char *dev_id;
|
|
|
|
const char *con_id;
|
2015-01-23 11:03:31 +00:00
|
|
|
unsigned long min_rate;
|
|
|
|
unsigned long max_rate;
|
2017-12-01 21:51:59 +00:00
|
|
|
unsigned int exclusive_count;
|
2015-02-06 19:42:44 +00:00
|
|
|
struct hlist_node clks_node;
|
2015-01-29 22:22:50 +00:00
|
|
|
};
|
|
|
|
|
2017-08-21 08:04:59 +00:00
|
|
|
/*** runtime pm ***/
|
|
|
|
static int clk_pm_runtime_get(struct clk_core *core)
|
|
|
|
{
|
2018-12-04 19:24:37 +00:00
|
|
|
if (!core->rpm_enabled)
|
2017-08-21 08:04:59 +00:00
|
|
|
return 0;
|
|
|
|
|
2022-04-18 11:04:55 +00:00
|
|
|
return pm_runtime_resume_and_get(core->dev);
|
2017-08-21 08:04:59 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void clk_pm_runtime_put(struct clk_core *core)
|
|
|
|
{
|
2018-12-04 19:24:37 +00:00
|
|
|
if (!core->rpm_enabled)
|
2017-08-21 08:04:59 +00:00
|
|
|
return;
|
|
|
|
|
|
|
|
pm_runtime_put_sync(core->dev);
|
|
|
|
}
|
|
|
|
|
2013-03-28 20:59:01 +00:00
|
|
|
/*** locking ***/
|
|
|
|
static void clk_prepare_lock(void)
|
|
|
|
{
|
2013-03-28 20:59:02 +00:00
|
|
|
if (!mutex_trylock(&prepare_lock)) {
|
|
|
|
if (prepare_owner == current) {
|
|
|
|
prepare_refcnt++;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
mutex_lock(&prepare_lock);
|
|
|
|
}
|
|
|
|
WARN_ON_ONCE(prepare_owner != NULL);
|
|
|
|
WARN_ON_ONCE(prepare_refcnt != 0);
|
|
|
|
prepare_owner = current;
|
|
|
|
prepare_refcnt = 1;
|
2013-03-28 20:59:01 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void clk_prepare_unlock(void)
|
|
|
|
{
|
2013-03-28 20:59:02 +00:00
|
|
|
WARN_ON_ONCE(prepare_owner != current);
|
|
|
|
WARN_ON_ONCE(prepare_refcnt == 0);
|
|
|
|
|
|
|
|
if (--prepare_refcnt)
|
|
|
|
return;
|
|
|
|
prepare_owner = NULL;
|
2013-03-28 20:59:01 +00:00
|
|
|
mutex_unlock(&prepare_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
static unsigned long clk_enable_lock(void)
|
2015-07-24 19:24:48 +00:00
|
|
|
__acquires(enable_lock)
|
2013-03-28 20:59:01 +00:00
|
|
|
{
|
|
|
|
unsigned long flags;
|
2013-03-28 20:59:02 +00:00
|
|
|
|
2018-01-05 01:46:08 +00:00
|
|
|
/*
|
|
|
|
* On UP systems, spin_trylock_irqsave() always returns true, even if
|
|
|
|
* we already hold the lock. So, in that case, we rely only on
|
|
|
|
* reference counting.
|
|
|
|
*/
|
|
|
|
if (!IS_ENABLED(CONFIG_SMP) ||
|
|
|
|
!spin_trylock_irqsave(&enable_lock, flags)) {
|
2013-03-28 20:59:02 +00:00
|
|
|
if (enable_owner == current) {
|
|
|
|
enable_refcnt++;
|
2015-07-24 19:24:48 +00:00
|
|
|
__acquire(enable_lock);
|
2018-01-05 01:46:08 +00:00
|
|
|
if (!IS_ENABLED(CONFIG_SMP))
|
|
|
|
local_save_flags(flags);
|
2013-03-28 20:59:02 +00:00
|
|
|
return flags;
|
|
|
|
}
|
|
|
|
spin_lock_irqsave(&enable_lock, flags);
|
|
|
|
}
|
|
|
|
WARN_ON_ONCE(enable_owner != NULL);
|
|
|
|
WARN_ON_ONCE(enable_refcnt != 0);
|
|
|
|
enable_owner = current;
|
|
|
|
enable_refcnt = 1;
|
2013-03-28 20:59:01 +00:00
|
|
|
return flags;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void clk_enable_unlock(unsigned long flags)
|
2015-07-24 19:24:48 +00:00
|
|
|
__releases(enable_lock)
|
2013-03-28 20:59:01 +00:00
|
|
|
{
|
2013-03-28 20:59:02 +00:00
|
|
|
WARN_ON_ONCE(enable_owner != current);
|
|
|
|
WARN_ON_ONCE(enable_refcnt == 0);
|
|
|
|
|
2015-07-24 19:24:48 +00:00
|
|
|
if (--enable_refcnt) {
|
|
|
|
__release(enable_lock);
|
2013-03-28 20:59:02 +00:00
|
|
|
return;
|
2015-07-24 19:24:48 +00:00
|
|
|
}
|
2013-03-28 20:59:02 +00:00
|
|
|
enable_owner = NULL;
|
2013-03-28 20:59:01 +00:00
|
|
|
spin_unlock_irqrestore(&enable_lock, flags);
|
|
|
|
}
|
|
|
|
|
2017-12-01 21:51:56 +00:00
|
|
|
static bool clk_core_rate_is_protected(struct clk_core *core)
|
|
|
|
{
|
|
|
|
return core->protect_count;
|
|
|
|
}
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
static bool clk_core_is_prepared(struct clk_core *core)
|
|
|
|
{
|
2017-08-21 08:04:59 +00:00
|
|
|
bool ret = false;
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/*
|
|
|
|
* .is_prepared is optional for clocks that can prepare
|
|
|
|
* fall back to software usage counter if it is missing
|
|
|
|
*/
|
|
|
|
if (!core->ops->is_prepared)
|
|
|
|
return core->prepare_count;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2017-08-21 08:04:59 +00:00
|
|
|
if (!clk_pm_runtime_get(core)) {
|
|
|
|
ret = core->ops->is_prepared(core->hw);
|
|
|
|
clk_pm_runtime_put(core);
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
2015-04-30 21:43:22 +00:00
|
|
|
}
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
static bool clk_core_is_enabled(struct clk_core *core)
|
|
|
|
{
|
2017-08-21 08:04:59 +00:00
|
|
|
bool ret = false;
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/*
|
|
|
|
* .is_enabled is only mandatory for clocks that gate
|
|
|
|
* fall back to software usage counter if .is_enabled is missing
|
|
|
|
*/
|
|
|
|
if (!core->ops->is_enabled)
|
|
|
|
return core->enable_count;
|
2014-07-01 06:26:34 +00:00
|
|
|
|
2017-08-21 08:04:59 +00:00
|
|
|
/*
|
|
|
|
* Check if clock controller's device is runtime active before
|
|
|
|
* calling .is_enabled callback. If not, assume that clock is
|
|
|
|
* disabled, because we might be called from atomic context, from
|
|
|
|
* which pm_runtime_get() is not allowed.
|
|
|
|
* This function is called mainly from clk_disable_unused_subtree,
|
|
|
|
* which ensures proper runtime pm activation of controller before
|
|
|
|
* taking enable spinlock, but the below check is needed if one tries
|
|
|
|
* to call it from other places.
|
|
|
|
*/
|
2018-12-04 19:24:37 +00:00
|
|
|
if (core->rpm_enabled) {
|
2017-08-21 08:04:59 +00:00
|
|
|
pm_runtime_get_noresume(core->dev);
|
|
|
|
if (!pm_runtime_active(core->dev)) {
|
|
|
|
ret = false;
|
|
|
|
goto done;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-01-03 09:23:30 +00:00
|
|
|
/*
|
|
|
|
* This could be called with the enable lock held, or from atomic
|
|
|
|
* context. If the parent isn't enabled already, we can't do
|
|
|
|
* anything here. We can also assume this clock isn't enabled.
|
|
|
|
*/
|
|
|
|
if ((core->flags & CLK_OPS_PARENT_ENABLE) && core->parent)
|
|
|
|
if (!clk_core_is_enabled(core->parent)) {
|
|
|
|
ret = false;
|
|
|
|
goto done;
|
|
|
|
}
|
|
|
|
|
2017-08-21 08:04:59 +00:00
|
|
|
ret = core->ops->is_enabled(core->hw);
|
|
|
|
done:
|
2018-12-04 19:24:37 +00:00
|
|
|
if (core->rpm_enabled)
|
2017-12-22 09:46:04 +00:00
|
|
|
pm_runtime_put(core->dev);
|
2017-08-21 08:04:59 +00:00
|
|
|
|
|
|
|
return ret;
|
2015-04-30 21:43:22 +00:00
|
|
|
}
|
2014-07-01 06:26:34 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/*** helper functions ***/
|
2012-12-26 13:46:22 +00:00
|
|
|
|
2015-10-16 12:35:21 +00:00
|
|
|
const char *__clk_get_name(const struct clk *clk)
|
2012-12-26 13:46:22 +00:00
|
|
|
{
|
2015-04-30 21:43:22 +00:00
|
|
|
return !clk ? NULL : clk->core->name;
|
2012-12-26 13:46:22 +00:00
|
|
|
}
|
2015-04-30 21:43:22 +00:00
|
|
|
EXPORT_SYMBOL_GPL(__clk_get_name);
|
2012-12-26 13:46:22 +00:00
|
|
|
|
2015-08-12 20:04:56 +00:00
|
|
|
const char *clk_hw_get_name(const struct clk_hw *hw)
|
2015-06-25 22:55:14 +00:00
|
|
|
{
|
|
|
|
return hw->core->name;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(clk_hw_get_name);
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
struct clk_hw *__clk_get_hw(struct clk *clk)
|
|
|
|
{
|
|
|
|
return !clk ? NULL : clk->core->hw;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(__clk_get_hw);
|
2012-12-26 13:46:22 +00:00
|
|
|
|
2015-08-12 20:04:56 +00:00
|
|
|
unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
|
2015-06-25 22:55:14 +00:00
|
|
|
{
|
|
|
|
return hw->core->num_parents;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
|
|
|
|
|
2015-08-12 20:04:56 +00:00
|
|
|
struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
|
2015-06-25 22:55:14 +00:00
|
|
|
{
|
|
|
|
return hw->core->parent ? hw->core->parent->hw : NULL;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(clk_hw_get_parent);
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
static struct clk_core *__clk_lookup_subtree(const char *name,
|
|
|
|
struct clk_core *core)
|
2012-12-26 13:46:23 +00:00
|
|
|
{
|
2015-01-23 11:03:30 +00:00
|
|
|
struct clk_core *child;
|
2015-04-30 21:43:22 +00:00
|
|
|
struct clk_core *ret;
|
2012-12-26 13:46:23 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if (!strcmp(core->name, name))
|
|
|
|
return core;
|
2012-12-26 13:46:23 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
hlist_for_each_entry(child, &core->children, child_node) {
|
|
|
|
ret = __clk_lookup_subtree(name, child);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2012-12-26 13:46:23 +00:00
|
|
|
}
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
return NULL;
|
2012-12-26 13:46:23 +00:00
|
|
|
}
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
static struct clk_core *clk_core_lookup(const char *name)
|
2012-12-26 13:46:23 +00:00
|
|
|
{
|
2015-04-30 21:43:22 +00:00
|
|
|
struct clk_core *root_clk;
|
|
|
|
struct clk_core *ret;
|
2012-12-26 13:46:23 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if (!name)
|
|
|
|
return NULL;
|
2012-12-26 13:46:23 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/* search the 'proper' clk tree first */
|
|
|
|
hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
|
|
|
|
ret = __clk_lookup_subtree(name, root_clk);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2012-12-26 13:46:23 +00:00
|
|
|
}
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/* if not found, then search the orphan tree */
|
|
|
|
hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
|
|
|
|
ret = __clk_lookup_subtree(name, root_clk);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
}
|
2012-12-26 13:46:23 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
return NULL;
|
2012-12-26 13:46:23 +00:00
|
|
|
}
|
|
|
|
|
2019-08-13 21:41:47 +00:00
|
|
|
#ifdef CONFIG_OF
|
|
|
|
static int of_parse_clkspec(const struct device_node *np, int index,
|
|
|
|
const char *name, struct of_phandle_args *out_args);
|
|
|
|
static struct clk_hw *
|
|
|
|
of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
|
|
|
|
#else
|
|
|
|
static inline int of_parse_clkspec(const struct device_node *np, int index,
|
|
|
|
const char *name,
|
|
|
|
struct of_phandle_args *out_args)
|
|
|
|
{
|
|
|
|
return -ENOENT;
|
|
|
|
}
|
|
|
|
static inline struct clk_hw *
|
|
|
|
of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
|
|
|
|
{
|
|
|
|
return ERR_PTR(-ENOENT);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2019-04-12 18:31:47 +00:00
|
|
|
/**
|
2019-04-12 18:31:48 +00:00
|
|
|
* clk_core_get - Find the clk_core parent of a clk
|
2019-04-12 18:31:47 +00:00
|
|
|
* @core: clk to find parent of
|
2019-04-30 17:22:30 +00:00
|
|
|
* @p_index: parent index to search for
|
2019-04-12 18:31:47 +00:00
|
|
|
*
|
|
|
|
* This is the preferred method for clk providers to find the parent of a
|
|
|
|
* clk when that parent is external to the clk controller. The parent_names
|
|
|
|
* array is indexed and treated as a local name matching a string in the device
|
2019-04-12 18:31:48 +00:00
|
|
|
* node's 'clock-names' property or as the 'con_id' matching the device's
|
|
|
|
* dev_name() in a clk_lookup. This allows clk providers to use their own
|
2019-04-12 18:31:47 +00:00
|
|
|
* namespace instead of looking for a globally unique parent string.
|
|
|
|
*
|
|
|
|
* For example the following DT snippet would allow a clock registered by the
|
|
|
|
* clock-controller@c001 that has a clk_init_data::parent_data array
|
|
|
|
* with 'xtal' in the 'name' member to find the clock provided by the
|
|
|
|
* clock-controller@f00abcd without needing to get the globally unique name of
|
|
|
|
* the xtal clk.
|
|
|
|
*
|
|
|
|
* parent: clock-controller@f00abcd {
|
|
|
|
* reg = <0xf00abcd 0xabcd>;
|
|
|
|
* #clock-cells = <0>;
|
|
|
|
* };
|
|
|
|
*
|
|
|
|
* clock-controller@c001 {
|
|
|
|
* reg = <0xc001 0xf00d>;
|
|
|
|
* clocks = <&parent>;
|
|
|
|
* clock-names = "xtal";
|
|
|
|
* #clock-cells = <1>;
|
|
|
|
* };
|
|
|
|
*
|
|
|
|
* Returns: -ENOENT when the provider can't be found or the clk doesn't
|
2019-08-13 21:41:47 +00:00
|
|
|
* exist in the provider or the name can't be found in the DT node or
|
|
|
|
* in a clkdev lookup. NULL when the provider knows about the clk but it
|
|
|
|
* isn't provided on this system.
|
2019-04-12 18:31:47 +00:00
|
|
|
* A valid clk_core pointer when the clk can be found in the provider.
|
|
|
|
*/
|
2019-04-30 17:22:30 +00:00
|
|
|
static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
|
2019-04-12 18:31:47 +00:00
|
|
|
{
|
2019-04-30 17:22:30 +00:00
|
|
|
const char *name = core->parents[p_index].fw_name;
|
|
|
|
int index = core->parents[p_index].index;
|
2019-04-12 18:31:48 +00:00
|
|
|
struct clk_hw *hw = ERR_PTR(-ENOENT);
|
|
|
|
struct device *dev = core->dev;
|
|
|
|
const char *dev_id = dev ? dev_name(dev) : NULL;
|
2019-04-12 18:31:47 +00:00
|
|
|
struct device_node *np = core->of_node;
|
2019-08-13 21:41:47 +00:00
|
|
|
struct of_phandle_args clkspec;
|
2019-04-12 18:31:47 +00:00
|
|
|
|
2019-08-13 21:41:47 +00:00
|
|
|
if (np && (name || index >= 0) &&
|
|
|
|
!of_parse_clkspec(np, index, name, &clkspec)) {
|
|
|
|
hw = of_clk_get_hw_from_clkspec(&clkspec);
|
|
|
|
of_node_put(clkspec.np);
|
|
|
|
} else if (name) {
|
|
|
|
/*
|
|
|
|
* If the DT search above couldn't find the provider fallback to
|
|
|
|
* looking up via clkdev based clk_lookups.
|
|
|
|
*/
|
2019-04-12 18:31:48 +00:00
|
|
|
hw = clk_find_hw(dev_id, name);
|
2019-08-13 21:41:47 +00:00
|
|
|
}
|
2019-04-12 18:31:48 +00:00
|
|
|
|
|
|
|
if (IS_ERR(hw))
|
2019-04-12 18:31:47 +00:00
|
|
|
return ERR_CAST(hw);
|
|
|
|
|
|
|
|
return hw->core;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
|
|
|
|
{
|
|
|
|
struct clk_parent_map *entry = &core->parents[index];
|
2020-11-06 09:48:20 +00:00
|
|
|
struct clk_core *parent;
|
2019-04-12 18:31:47 +00:00
|
|
|
|
|
|
|
if (entry->hw) {
|
|
|
|
parent = entry->hw->core;
|
|
|
|
} else {
|
2019-04-30 17:22:30 +00:00
|
|
|
parent = clk_core_get(core, index);
|
2020-02-04 01:37:45 +00:00
|
|
|
if (PTR_ERR(parent) == -ENOENT && entry->name)
|
2019-04-12 18:31:47 +00:00
|
|
|
parent = clk_core_lookup(entry->name);
|
|
|
|
}
|
|
|
|
|
2021-12-08 04:15:33 +00:00
|
|
|
/*
|
|
|
|
* We have a direct reference but it isn't registered yet?
|
|
|
|
* Orphan it and let clk_reparent() update the orphan status
|
|
|
|
* when the parent is registered.
|
|
|
|
*/
|
|
|
|
if (!parent)
|
|
|
|
parent = ERR_PTR(-EPROBE_DEFER);
|
|
|
|
|
2019-04-12 18:31:47 +00:00
|
|
|
/* Only cache it if it's not an error */
|
|
|
|
if (!IS_ERR(parent))
|
|
|
|
entry->core = parent;
|
|
|
|
}
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
|
|
|
|
u8 index)
|
2012-12-26 13:46:23 +00:00
|
|
|
{
|
2019-04-12 18:31:47 +00:00
|
|
|
if (!core || index >= core->num_parents || !core->parents)
|
2015-04-30 21:43:22 +00:00
|
|
|
return NULL;
|
2015-12-28 10:23:01 +00:00
|
|
|
|
2019-04-12 18:31:47 +00:00
|
|
|
if (!core->parents[index].core)
|
|
|
|
clk_core_fill_parent_index(core, index);
|
2015-12-28 10:23:01 +00:00
|
|
|
|
2019-04-12 18:31:47 +00:00
|
|
|
return core->parents[index].core;
|
2012-12-26 13:46:23 +00:00
|
|
|
}
|
|
|
|
|
2015-08-12 20:04:56 +00:00
|
|
|
struct clk_hw *
|
|
|
|
clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
|
2015-06-25 22:55:14 +00:00
|
|
|
{
|
|
|
|
struct clk_core *parent;
|
|
|
|
|
|
|
|
parent = clk_core_get_parent_by_index(hw->core, index);
|
|
|
|
|
|
|
|
return !parent ? NULL : parent->hw;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
unsigned int __clk_get_enable_count(struct clk *clk)
|
|
|
|
{
|
|
|
|
return !clk ? 0 : clk->core->enable_count;
|
|
|
|
}
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
|
|
|
|
{
|
2019-02-01 23:39:50 +00:00
|
|
|
if (!core)
|
|
|
|
return 0;
|
2014-03-21 11:43:56 +00:00
|
|
|
|
2019-02-01 23:39:50 +00:00
|
|
|
if (!core->num_parents || core->parent)
|
|
|
|
return core->rate;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2019-02-01 23:39:50 +00:00
|
|
|
/*
|
|
|
|
* Clk must have a parent because num_parents > 0 but the parent isn't
|
|
|
|
* known yet. Best to return 0 as the rate of this clk until we can
|
|
|
|
* properly recalc the rate based on the parent's rate.
|
|
|
|
*/
|
|
|
|
return 0;
|
2012-03-16 06:11:19 +00:00
|
|
|
}
|
|
|
|
|
2015-08-12 20:04:56 +00:00
|
|
|
unsigned long clk_hw_get_rate(const struct clk_hw *hw)
|
2015-06-25 22:55:14 +00:00
|
|
|
{
|
|
|
|
return clk_core_get_rate_nolock(hw->core);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(clk_hw_get_rate);
|
|
|
|
|
2020-02-05 23:28:01 +00:00
|
|
|
static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
|
2015-04-30 21:43:22 +00:00
|
|
|
{
|
|
|
|
if (!core)
|
|
|
|
return 0;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
return core->accuracy;
|
2012-03-16 06:11:19 +00:00
|
|
|
}
|
|
|
|
|
2015-08-12 20:04:56 +00:00
|
|
|
unsigned long clk_hw_get_flags(const struct clk_hw *hw)
|
2015-06-25 22:55:14 +00:00
|
|
|
{
|
|
|
|
return hw->core->flags;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(clk_hw_get_flags);
|
|
|
|
|
2015-08-12 20:04:56 +00:00
|
|
|
bool clk_hw_is_prepared(const struct clk_hw *hw)
|
2015-06-25 22:55:14 +00:00
|
|
|
{
|
|
|
|
return clk_core_is_prepared(hw->core);
|
|
|
|
}
|
2019-02-01 12:58:38 +00:00
|
|
|
EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
|
2015-06-25 22:55:14 +00:00
|
|
|
|
2017-12-01 21:51:56 +00:00
|
|
|
bool clk_hw_rate_is_protected(const struct clk_hw *hw)
|
|
|
|
{
|
|
|
|
return clk_core_rate_is_protected(hw->core);
|
|
|
|
}
|
2019-02-01 12:58:38 +00:00
|
|
|
EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
|
2017-12-01 21:51:56 +00:00
|
|
|
|
2015-10-24 16:55:22 +00:00
|
|
|
bool clk_hw_is_enabled(const struct clk_hw *hw)
|
|
|
|
{
|
|
|
|
return clk_core_is_enabled(hw->core);
|
|
|
|
}
|
2019-02-01 12:58:38 +00:00
|
|
|
EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
|
2015-10-24 16:55:22 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
bool __clk_is_enabled(struct clk *clk)
|
2012-03-16 06:11:19 +00:00
|
|
|
{
|
2015-04-30 21:43:22 +00:00
|
|
|
if (!clk)
|
|
|
|
return false;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
return clk_core_is_enabled(clk->core);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(__clk_is_enabled);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
static bool mux_is_better_rate(unsigned long rate, unsigned long now,
|
|
|
|
unsigned long best, unsigned long flags)
|
|
|
|
{
|
|
|
|
if (flags & CLK_MUX_ROUND_CLOSEST)
|
|
|
|
return abs(now - rate) < abs(best - rate);
|
2012-12-26 13:46:22 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
return now <= rate && now > best;
|
|
|
|
}
|
2012-12-26 13:46:23 +00:00
|
|
|
|
clk: Stop forwarding clk_rate_requests to the parent
If the clock cannot modify its rate and has CLK_SET_RATE_PARENT,
clk_mux_determine_rate_flags(), clk_core_round_rate_nolock() and a
number of drivers will forward the clk_rate_request to the parent clock.
clk_core_round_rate_nolock() will pass the pointer directly, which means
that we pass a clk_rate_request to the parent that has the rate,
min_rate and max_rate of the child, and the best_parent_rate and
best_parent_hw fields will be relative to the child as well, so will
point to our current clock and its rate. The most common case for
CLK_SET_RATE_PARENT is that the child and parent clock rates will be
equal, so the rate field isn't a worry, but the other fields are.
Similarly, if the parent clock driver ever modifies the best_parent_rate
or best_parent_hw, this will be applied to the child once the call to
clk_core_round_rate_nolock() is done. best_parent_hw is probably not
going to be a valid parent, and best_parent_rate might lead to a parent
rate change different to the one that was initially computed.
clk_mux_determine_rate_flags() and the affected drivers will copy the
request before forwarding it to the parents, so they won't be affected
by the latter issue, but the former is still going to be there and will
lead to erroneous data and context being passed to the various clock
drivers in the same sub-tree.
Let's create two new functions, clk_core_forward_rate_req() and
clk_hw_forward_rate_request() for the framework and the clock providers
that will copy a request from a child clock and update the context to
match the parent's. We also update the relevant call sites in the
framework and drivers to use that new function.
Let's also add a test to make sure we avoid regressions there.
Tested-by: Alexander Stein <alexander.stein@ew.tq-group.com> # imx8mp
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com> # exynos4210, meson g12b
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
Link: https://lore.kernel.org/r/20220816112530.1837489-22-maxime@cerno.tech
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-08-16 11:25:26 +00:00
|
|
|
static void clk_core_init_rate_req(struct clk_core * const core,
|
|
|
|
struct clk_rate_request *req,
|
|
|
|
unsigned long rate);
|
|
|
|
|
2022-08-16 11:25:23 +00:00
|
|
|
static int clk_core_round_rate_nolock(struct clk_core *core,
|
|
|
|
struct clk_rate_request *req);
|
|
|
|
|
2022-08-16 11:25:24 +00:00
|
|
|
static bool clk_core_has_parent(struct clk_core *core, const struct clk_core *parent)
|
|
|
|
{
|
|
|
|
struct clk_core *tmp;
|
|
|
|
unsigned int i;
|
|
|
|
|
|
|
|
/* Optimize for the case where the parent is already the parent. */
|
|
|
|
if (core->parent == parent)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
for (i = 0; i < core->num_parents; i++) {
|
|
|
|
tmp = clk_core_get_parent_by_index(core, i);
|
|
|
|
if (!tmp)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (tmp == parent)
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
clk: Stop forwarding clk_rate_requests to the parent
If the clock cannot modify its rate and has CLK_SET_RATE_PARENT,
clk_mux_determine_rate_flags(), clk_core_round_rate_nolock() and a
number of drivers will forward the clk_rate_request to the parent clock.
clk_core_round_rate_nolock() will pass the pointer directly, which means
that we pass a clk_rate_request to the parent that has the rate,
min_rate and max_rate of the child, and the best_parent_rate and
best_parent_hw fields will be relative to the child as well, so will
point to our current clock and its rate. The most common case for
CLK_SET_RATE_PARENT is that the child and parent clock rates will be
equal, so the rate field isn't a worry, but the other fields are.
Similarly, if the parent clock driver ever modifies the best_parent_rate
or best_parent_hw, this will be applied to the child once the call to
clk_core_round_rate_nolock() is done. best_parent_hw is probably not
going to be a valid parent, and best_parent_rate might lead to a parent
rate change different to the one that was initially computed.
clk_mux_determine_rate_flags() and the affected drivers will copy the
request before forwarding it to the parents, so they won't be affected
by the latter issue, but the former is still going to be there and will
lead to erroneous data and context being passed to the various clock
drivers in the same sub-tree.
Let's create two new functions, clk_core_forward_rate_req() and
clk_hw_forward_rate_request() for the framework and the clock providers
that will copy a request from a child clock and update the context to
match the parent's. We also update the relevant call sites in the
framework and drivers to use that new function.
Let's also add a test to make sure we avoid regressions there.
Tested-by: Alexander Stein <alexander.stein@ew.tq-group.com> # imx8mp
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com> # exynos4210, meson g12b
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
Link: https://lore.kernel.org/r/20220816112530.1837489-22-maxime@cerno.tech
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-08-16 11:25:26 +00:00
|
|
|
static void
|
|
|
|
clk_core_forward_rate_req(struct clk_core *core,
|
|
|
|
const struct clk_rate_request *old_req,
|
|
|
|
struct clk_core *parent,
|
|
|
|
struct clk_rate_request *req,
|
|
|
|
unsigned long parent_rate)
|
|
|
|
{
|
|
|
|
if (WARN_ON(!clk_core_has_parent(core, parent)))
|
|
|
|
return;
|
|
|
|
|
|
|
|
clk_core_init_rate_req(parent, req, parent_rate);
|
|
|
|
|
|
|
|
if (req->min_rate < old_req->min_rate)
|
|
|
|
req->min_rate = old_req->min_rate;
|
|
|
|
|
|
|
|
if (req->max_rate > old_req->max_rate)
|
|
|
|
req->max_rate = old_req->max_rate;
|
|
|
|
}
|
|
|
|
|
2023-05-05 11:25:05 +00:00
|
|
|
static int
|
|
|
|
clk_core_determine_rate_no_reparent(struct clk_hw *hw,
|
|
|
|
struct clk_rate_request *req)
|
2015-04-30 21:43:22 +00:00
|
|
|
{
|
2023-05-05 11:25:05 +00:00
|
|
|
struct clk_core *core = hw->core;
|
|
|
|
struct clk_core *parent = core->parent;
|
|
|
|
unsigned long best;
|
|
|
|
int ret;
|
clk: Stop forwarding clk_rate_requests to the parent
If the clock cannot modify its rate and has CLK_SET_RATE_PARENT,
clk_mux_determine_rate_flags(), clk_core_round_rate_nolock() and a
number of drivers will forward the clk_rate_request to the parent clock.
clk_core_round_rate_nolock() will pass the pointer directly, which means
that we pass a clk_rate_request to the parent that has the rate,
min_rate and max_rate of the child, and the best_parent_rate and
best_parent_hw fields will be relative to the child as well, so will
point to our current clock and its rate. The most common case for
CLK_SET_RATE_PARENT is that the child and parent clock rates will be
equal, so the rate field isn't a worry, but the other fields are.
Similarly, if the parent clock driver ever modifies the best_parent_rate
or best_parent_hw, this will be applied to the child once the call to
clk_core_round_rate_nolock() is done. best_parent_hw is probably not
going to be a valid parent, and best_parent_rate might lead to a parent
rate change different to the one that was initially computed.
clk_mux_determine_rate_flags() and the affected drivers will copy the
request before forwarding it to the parents, so they won't be affected
by the latter issue, but the former is still going to be there and will
lead to erroneous data and context being passed to the various clock
drivers in the same sub-tree.
Let's create two new functions, clk_core_forward_rate_req() and
clk_hw_forward_rate_request() for the framework and the clock providers
that will copy a request from a child clock and update the context to
match the parent's. We also update the relevant call sites in the
framework and drivers to use that new function.
Let's also add a test to make sure we avoid regressions there.
Tested-by: Alexander Stein <alexander.stein@ew.tq-group.com> # imx8mp
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com> # exynos4210, meson g12b
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
Link: https://lore.kernel.org/r/20220816112530.1837489-22-maxime@cerno.tech
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-08-16 11:25:26 +00:00
|
|
|
|
2023-05-05 11:25:05 +00:00
|
|
|
if (core->flags & CLK_SET_RATE_PARENT) {
|
|
|
|
struct clk_rate_request parent_req;
|
2022-08-16 11:25:23 +00:00
|
|
|
|
2023-05-05 11:25:05 +00:00
|
|
|
if (!parent) {
|
|
|
|
req->rate = 0;
|
|
|
|
return 0;
|
|
|
|
}
|
2022-10-26 13:46:59 +00:00
|
|
|
|
2023-05-05 11:25:05 +00:00
|
|
|
clk_core_forward_rate_req(core, req, parent, &parent_req,
|
|
|
|
req->rate);
|
2022-10-26 13:46:59 +00:00
|
|
|
|
2023-05-05 11:25:05 +00:00
|
|
|
trace_clk_rate_request_start(&parent_req);
|
2015-07-07 18:48:08 +00:00
|
|
|
|
2023-05-05 11:25:05 +00:00
|
|
|
ret = clk_core_round_rate_nolock(parent, &parent_req);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2022-10-26 13:46:59 +00:00
|
|
|
|
2023-05-05 11:25:05 +00:00
|
|
|
trace_clk_rate_request_done(&parent_req);
|
2015-07-07 18:48:08 +00:00
|
|
|
|
2023-05-05 11:25:05 +00:00
|
|
|
best = parent_req.rate;
|
|
|
|
} else if (parent) {
|
|
|
|
best = clk_core_get_rate_nolock(parent);
|
|
|
|
} else {
|
|
|
|
best = clk_core_get_rate_nolock(core);
|
2015-04-30 21:43:22 +00:00
|
|
|
}
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2023-06-13 13:16:31 +00:00
|
|
|
req->best_parent_rate = best;
|
2023-05-05 11:25:05 +00:00
|
|
|
req->rate = best;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int clk_mux_determine_rate_flags(struct clk_hw *hw,
|
|
|
|
struct clk_rate_request *req,
|
|
|
|
unsigned long flags)
|
|
|
|
{
|
|
|
|
struct clk_core *core = hw->core, *parent, *best_parent = NULL;
|
|
|
|
int i, num_parents, ret;
|
|
|
|
unsigned long best = 0;
|
|
|
|
|
|
|
|
/* if NO_REPARENT flag set, pass through to current parent */
|
|
|
|
if (core->flags & CLK_SET_RATE_NO_REPARENT)
|
|
|
|
return clk_core_determine_rate_no_reparent(hw, req);
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/* find the parent that can provide the fastest rate <= rate */
|
|
|
|
num_parents = core->num_parents;
|
|
|
|
for (i = 0; i < num_parents; i++) {
|
clk: Stop forwarding clk_rate_requests to the parent
If the clock cannot modify its rate and has CLK_SET_RATE_PARENT,
clk_mux_determine_rate_flags(), clk_core_round_rate_nolock() and a
number of drivers will forward the clk_rate_request to the parent clock.
clk_core_round_rate_nolock() will pass the pointer directly, which means
that we pass a clk_rate_request to the parent that has the rate,
min_rate and max_rate of the child, and the best_parent_rate and
best_parent_hw fields will be relative to the child as well, so will
point to our current clock and its rate. The most common case for
CLK_SET_RATE_PARENT is that the child and parent clock rates will be
equal, so the rate field isn't a worry, but the other fields are.
Similarly, if the parent clock driver ever modifies the best_parent_rate
or best_parent_hw, this will be applied to the child once the call to
clk_core_round_rate_nolock() is done. best_parent_hw is probably not
going to be a valid parent, and best_parent_rate might lead to a parent
rate change different to the one that was initially computed.
clk_mux_determine_rate_flags() and the affected drivers will copy the
request before forwarding it to the parents, so they won't be affected
by the latter issue, but the former is still going to be there and will
lead to erroneous data and context being passed to the various clock
drivers in the same sub-tree.
Let's create two new functions, clk_core_forward_rate_req() and
clk_hw_forward_rate_request() for the framework and the clock providers
that will copy a request from a child clock and update the context to
match the parent's. We also update the relevant call sites in the
framework and drivers to use that new function.
Let's also add a test to make sure we avoid regressions there.
Tested-by: Alexander Stein <alexander.stein@ew.tq-group.com> # imx8mp
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com> # exynos4210, meson g12b
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
Link: https://lore.kernel.org/r/20220816112530.1837489-22-maxime@cerno.tech
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-08-16 11:25:26 +00:00
|
|
|
unsigned long parent_rate;
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
parent = clk_core_get_parent_by_index(core, i);
|
|
|
|
if (!parent)
|
|
|
|
continue;
|
2015-07-07 18:48:08 +00:00
|
|
|
|
|
|
|
if (core->flags & CLK_SET_RATE_PARENT) {
|
clk: Stop forwarding clk_rate_requests to the parent
If the clock cannot modify its rate and has CLK_SET_RATE_PARENT,
clk_mux_determine_rate_flags(), clk_core_round_rate_nolock() and a
number of drivers will forward the clk_rate_request to the parent clock.
clk_core_round_rate_nolock() will pass the pointer directly, which means
that we pass a clk_rate_request to the parent that has the rate,
min_rate and max_rate of the child, and the best_parent_rate and
best_parent_hw fields will be relative to the child as well, so will
point to our current clock and its rate. The most common case for
CLK_SET_RATE_PARENT is that the child and parent clock rates will be
equal, so the rate field isn't a worry, but the other fields are.
Similarly, if the parent clock driver ever modifies the best_parent_rate
or best_parent_hw, this will be applied to the child once the call to
clk_core_round_rate_nolock() is done. best_parent_hw is probably not
going to be a valid parent, and best_parent_rate might lead to a parent
rate change different to the one that was initially computed.
clk_mux_determine_rate_flags() and the affected drivers will copy the
request before forwarding it to the parents, so they won't be affected
by the latter issue, but the former is still going to be there and will
lead to erroneous data and context being passed to the various clock
drivers in the same sub-tree.
Let's create two new functions, clk_core_forward_rate_req() and
clk_hw_forward_rate_request() for the framework and the clock providers
that will copy a request from a child clock and update the context to
match the parent's. We also update the relevant call sites in the
framework and drivers to use that new function.
Let's also add a test to make sure we avoid regressions there.
Tested-by: Alexander Stein <alexander.stein@ew.tq-group.com> # imx8mp
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com> # exynos4210, meson g12b
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
Link: https://lore.kernel.org/r/20220816112530.1837489-22-maxime@cerno.tech
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-08-16 11:25:26 +00:00
|
|
|
struct clk_rate_request parent_req;
|
|
|
|
|
|
|
|
clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate);
|
2022-10-26 13:46:59 +00:00
|
|
|
|
|
|
|
trace_clk_rate_request_start(&parent_req);
|
|
|
|
|
2022-08-16 11:25:23 +00:00
|
|
|
ret = clk_core_round_rate_nolock(parent, &parent_req);
|
2015-07-07 18:48:08 +00:00
|
|
|
if (ret)
|
|
|
|
continue;
|
clk: Stop forwarding clk_rate_requests to the parent
If the clock cannot modify its rate and has CLK_SET_RATE_PARENT,
clk_mux_determine_rate_flags(), clk_core_round_rate_nolock() and a
number of drivers will forward the clk_rate_request to the parent clock.
clk_core_round_rate_nolock() will pass the pointer directly, which means
that we pass a clk_rate_request to the parent that has the rate,
min_rate and max_rate of the child, and the best_parent_rate and
best_parent_hw fields will be relative to the child as well, so will
point to our current clock and its rate. The most common case for
CLK_SET_RATE_PARENT is that the child and parent clock rates will be
equal, so the rate field isn't a worry, but the other fields are.
Similarly, if the parent clock driver ever modifies the best_parent_rate
or best_parent_hw, this will be applied to the child once the call to
clk_core_round_rate_nolock() is done. best_parent_hw is probably not
going to be a valid parent, and best_parent_rate might lead to a parent
rate change different to the one that was initially computed.
clk_mux_determine_rate_flags() and the affected drivers will copy the
request before forwarding it to the parents, so they won't be affected
by the latter issue, but the former is still going to be there and will
lead to erroneous data and context being passed to the various clock
drivers in the same sub-tree.
Let's create two new functions, clk_core_forward_rate_req() and
clk_hw_forward_rate_request() for the framework and the clock providers
that will copy a request from a child clock and update the context to
match the parent's. We also update the relevant call sites in the
framework and drivers to use that new function.
Let's also add a test to make sure we avoid regressions there.
Tested-by: Alexander Stein <alexander.stein@ew.tq-group.com> # imx8mp
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com> # exynos4210, meson g12b
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
Link: https://lore.kernel.org/r/20220816112530.1837489-22-maxime@cerno.tech
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-08-16 11:25:26 +00:00
|
|
|
|
2022-10-26 13:46:59 +00:00
|
|
|
trace_clk_rate_request_done(&parent_req);
|
|
|
|
|
clk: Stop forwarding clk_rate_requests to the parent
If the clock cannot modify its rate and has CLK_SET_RATE_PARENT,
clk_mux_determine_rate_flags(), clk_core_round_rate_nolock() and a
number of drivers will forward the clk_rate_request to the parent clock.
clk_core_round_rate_nolock() will pass the pointer directly, which means
that we pass a clk_rate_request to the parent that has the rate,
min_rate and max_rate of the child, and the best_parent_rate and
best_parent_hw fields will be relative to the child as well, so will
point to our current clock and its rate. The most common case for
CLK_SET_RATE_PARENT is that the child and parent clock rates will be
equal, so the rate field isn't a worry, but the other fields are.
Similarly, if the parent clock driver ever modifies the best_parent_rate
or best_parent_hw, this will be applied to the child once the call to
clk_core_round_rate_nolock() is done. best_parent_hw is probably not
going to be a valid parent, and best_parent_rate might lead to a parent
rate change different to the one that was initially computed.
clk_mux_determine_rate_flags() and the affected drivers will copy the
request before forwarding it to the parents, so they won't be affected
by the latter issue, but the former is still going to be there and will
lead to erroneous data and context being passed to the various clock
drivers in the same sub-tree.
Let's create two new functions, clk_core_forward_rate_req() and
clk_hw_forward_rate_request() for the framework and the clock providers
that will copy a request from a child clock and update the context to
match the parent's. We also update the relevant call sites in the
framework and drivers to use that new function.
Let's also add a test to make sure we avoid regressions there.
Tested-by: Alexander Stein <alexander.stein@ew.tq-group.com> # imx8mp
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com> # exynos4210, meson g12b
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
Link: https://lore.kernel.org/r/20220816112530.1837489-22-maxime@cerno.tech
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-08-16 11:25:26 +00:00
|
|
|
parent_rate = parent_req.rate;
|
2015-07-07 18:48:08 +00:00
|
|
|
} else {
|
clk: Stop forwarding clk_rate_requests to the parent
If the clock cannot modify its rate and has CLK_SET_RATE_PARENT,
clk_mux_determine_rate_flags(), clk_core_round_rate_nolock() and a
number of drivers will forward the clk_rate_request to the parent clock.
clk_core_round_rate_nolock() will pass the pointer directly, which means
that we pass a clk_rate_request to the parent that has the rate,
min_rate and max_rate of the child, and the best_parent_rate and
best_parent_hw fields will be relative to the child as well, so will
point to our current clock and its rate. The most common case for
CLK_SET_RATE_PARENT is that the child and parent clock rates will be
equal, so the rate field isn't a worry, but the other fields are.
Similarly, if the parent clock driver ever modifies the best_parent_rate
or best_parent_hw, this will be applied to the child once the call to
clk_core_round_rate_nolock() is done. best_parent_hw is probably not
going to be a valid parent, and best_parent_rate might lead to a parent
rate change different to the one that was initially computed.
clk_mux_determine_rate_flags() and the affected drivers will copy the
request before forwarding it to the parents, so they won't be affected
by the latter issue, but the former is still going to be there and will
lead to erroneous data and context being passed to the various clock
drivers in the same sub-tree.
Let's create two new functions, clk_core_forward_rate_req() and
clk_hw_forward_rate_request() for the framework and the clock providers
that will copy a request from a child clock and update the context to
match the parent's. We also update the relevant call sites in the
framework and drivers to use that new function.
Let's also add a test to make sure we avoid regressions there.
Tested-by: Alexander Stein <alexander.stein@ew.tq-group.com> # imx8mp
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com> # exynos4210, meson g12b
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
Link: https://lore.kernel.org/r/20220816112530.1837489-22-maxime@cerno.tech
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-08-16 11:25:26 +00:00
|
|
|
parent_rate = clk_core_get_rate_nolock(parent);
|
2015-07-07 18:48:08 +00:00
|
|
|
}
|
|
|
|
|
clk: Stop forwarding clk_rate_requests to the parent
If the clock cannot modify its rate and has CLK_SET_RATE_PARENT,
clk_mux_determine_rate_flags(), clk_core_round_rate_nolock() and a
number of drivers will forward the clk_rate_request to the parent clock.
clk_core_round_rate_nolock() will pass the pointer directly, which means
that we pass a clk_rate_request to the parent that has the rate,
min_rate and max_rate of the child, and the best_parent_rate and
best_parent_hw fields will be relative to the child as well, so will
point to our current clock and its rate. The most common case for
CLK_SET_RATE_PARENT is that the child and parent clock rates will be
equal, so the rate field isn't a worry, but the other fields are.
Similarly, if the parent clock driver ever modifies the best_parent_rate
or best_parent_hw, this will be applied to the child once the call to
clk_core_round_rate_nolock() is done. best_parent_hw is probably not
going to be a valid parent, and best_parent_rate might lead to a parent
rate change different to the one that was initially computed.
clk_mux_determine_rate_flags() and the affected drivers will copy the
request before forwarding it to the parents, so they won't be affected
by the latter issue, but the former is still going to be there and will
lead to erroneous data and context being passed to the various clock
drivers in the same sub-tree.
Let's create two new functions, clk_core_forward_rate_req() and
clk_hw_forward_rate_request() for the framework and the clock providers
that will copy a request from a child clock and update the context to
match the parent's. We also update the relevant call sites in the
framework and drivers to use that new function.
Let's also add a test to make sure we avoid regressions there.
Tested-by: Alexander Stein <alexander.stein@ew.tq-group.com> # imx8mp
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com> # exynos4210, meson g12b
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
Link: https://lore.kernel.org/r/20220816112530.1837489-22-maxime@cerno.tech
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-08-16 11:25:26 +00:00
|
|
|
if (mux_is_better_rate(req->rate, parent_rate,
|
2015-07-07 18:48:08 +00:00
|
|
|
best, flags)) {
|
2015-04-30 21:43:22 +00:00
|
|
|
best_parent = parent;
|
clk: Stop forwarding clk_rate_requests to the parent
If the clock cannot modify its rate and has CLK_SET_RATE_PARENT,
clk_mux_determine_rate_flags(), clk_core_round_rate_nolock() and a
number of drivers will forward the clk_rate_request to the parent clock.
clk_core_round_rate_nolock() will pass the pointer directly, which means
that we pass a clk_rate_request to the parent that has the rate,
min_rate and max_rate of the child, and the best_parent_rate and
best_parent_hw fields will be relative to the child as well, so will
point to our current clock and its rate. The most common case for
CLK_SET_RATE_PARENT is that the child and parent clock rates will be
equal, so the rate field isn't a worry, but the other fields are.
Similarly, if the parent clock driver ever modifies the best_parent_rate
or best_parent_hw, this will be applied to the child once the call to
clk_core_round_rate_nolock() is done. best_parent_hw is probably not
going to be a valid parent, and best_parent_rate might lead to a parent
rate change different to the one that was initially computed.
clk_mux_determine_rate_flags() and the affected drivers will copy the
request before forwarding it to the parents, so they won't be affected
by the latter issue, but the former is still going to be there and will
lead to erroneous data and context being passed to the various clock
drivers in the same sub-tree.
Let's create two new functions, clk_core_forward_rate_req() and
clk_hw_forward_rate_request() for the framework and the clock providers
that will copy a request from a child clock and update the context to
match the parent's. We also update the relevant call sites in the
framework and drivers to use that new function.
Let's also add a test to make sure we avoid regressions there.
Tested-by: Alexander Stein <alexander.stein@ew.tq-group.com> # imx8mp
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com> # exynos4210, meson g12b
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
Link: https://lore.kernel.org/r/20220816112530.1837489-22-maxime@cerno.tech
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-08-16 11:25:26 +00:00
|
|
|
best = parent_rate;
|
2015-04-30 21:43:22 +00:00
|
|
|
}
|
|
|
|
}
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-07-09 20:39:38 +00:00
|
|
|
if (!best_parent)
|
|
|
|
return -EINVAL;
|
|
|
|
|
2023-05-05 11:25:05 +00:00
|
|
|
req->best_parent_hw = best_parent->hw;
|
2015-07-07 18:48:08 +00:00
|
|
|
req->best_parent_rate = best;
|
|
|
|
req->rate = best;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-07-07 18:48:08 +00:00
|
|
|
return 0;
|
2013-04-02 21:09:37 +00:00
|
|
|
}
|
2018-04-09 13:59:20 +00:00
|
|
|
EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
|
2015-04-30 21:43:22 +00:00
|
|
|
|
|
|
|
struct clk *__clk_lookup(const char *name)
|
2013-08-24 13:00:10 +00:00
|
|
|
{
|
2015-04-30 21:43:22 +00:00
|
|
|
struct clk_core *core = clk_core_lookup(name);
|
|
|
|
|
|
|
|
return !core ? NULL : core->hw->clk;
|
2013-08-24 13:00:10 +00:00
|
|
|
}
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
static void clk_core_get_boundaries(struct clk_core *core,
|
|
|
|
unsigned long *min_rate,
|
|
|
|
unsigned long *max_rate)
|
2013-03-12 19:26:03 +00:00
|
|
|
{
|
2015-04-30 21:43:22 +00:00
|
|
|
struct clk *clk_user;
|
2013-03-12 19:26:03 +00:00
|
|
|
|
2019-07-02 13:27:10 +00:00
|
|
|
lockdep_assert_held(&prepare_lock);
|
|
|
|
|
2015-07-16 19:50:27 +00:00
|
|
|
*min_rate = core->min_rate;
|
|
|
|
*max_rate = core->max_rate;
|
2015-01-09 08:28:10 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
hlist_for_each_entry(clk_user, &core->clks, clks_node)
|
|
|
|
*min_rate = max(*min_rate, clk_user->min_rate);
|
2013-03-12 19:26:03 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
hlist_for_each_entry(clk_user, &core->clks, clks_node)
|
|
|
|
*max_rate = min(*max_rate, clk_user->max_rate);
|
|
|
|
}
|
2013-03-12 19:26:03 +00:00
|
|
|
|
2022-08-16 11:25:28 +00:00
|
|
|
/*
|
|
|
|
* clk_hw_get_rate_range() - returns the clock rate range for a hw clk
|
|
|
|
* @hw: the hw clk we want to get the range from
|
|
|
|
* @min_rate: pointer to the variable that will hold the minimum
|
|
|
|
* @max_rate: pointer to the variable that will hold the maximum
|
|
|
|
*
|
|
|
|
* Fills the @min_rate and @max_rate variables with the minimum and
|
|
|
|
* maximum that clock can reach.
|
|
|
|
*/
|
|
|
|
void clk_hw_get_rate_range(struct clk_hw *hw, unsigned long *min_rate,
|
|
|
|
unsigned long *max_rate)
|
|
|
|
{
|
|
|
|
clk_core_get_boundaries(hw->core, min_rate, max_rate);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(clk_hw_get_rate_range);
|
|
|
|
|
clk: Enforce that disjoints limits are invalid
If we were to have two users of the same clock, doing something like:
clk_set_rate_range(user1, 1000, 2000);
clk_set_rate_range(user2, 3000, 4000);
The second call would fail with -EINVAL, preventing from getting in a
situation where we end up with impossible limits.
However, this is never explicitly checked against and enforced, and
works by relying on an undocumented behaviour of clk_set_rate().
Indeed, on the first clk_set_rate_range will make sure the current clock
rate is within the new range, so it will be between 1000 and 2000Hz. On
the second clk_set_rate_range(), it will consider (rightfully), that our
current clock is outside of the 3000-4000Hz range, and will call
clk_core_set_rate_nolock() to set it to 3000Hz.
clk_core_set_rate_nolock() will then call clk_calc_new_rates() that will
eventually check that our rate 3000Hz rate is outside the min 3000Hz max
2000Hz range, will bail out, the error will propagate and we'll
eventually return -EINVAL.
This solely relies on the fact that clk_calc_new_rates(), and in
particular clk_core_determine_round_nolock(), won't modify the new rate
allowing the error to be reported. That assumption won't be true for all
drivers, and most importantly we'll break that assumption in a later
patch.
It can also be argued that we shouldn't even reach the point where we're
calling clk_core_set_rate_nolock().
Let's make an explicit check for disjoints range before we're doing
anything.
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
Link: https://lore.kernel.org/r/20220225143534.405820-4-maxime@cerno.tech
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-02-25 14:35:25 +00:00
|
|
|
static bool clk_core_check_boundaries(struct clk_core *core,
|
|
|
|
unsigned long min_rate,
|
|
|
|
unsigned long max_rate)
|
|
|
|
{
|
|
|
|
struct clk *user;
|
|
|
|
|
|
|
|
lockdep_assert_held(&prepare_lock);
|
|
|
|
|
|
|
|
if (min_rate > core->max_rate || max_rate < core->min_rate)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
hlist_for_each_entry(user, &core->clks, clks_node)
|
|
|
|
if (min_rate > user->max_rate || max_rate < user->min_rate)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2015-07-16 19:50:27 +00:00
|
|
|
void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
|
|
|
|
unsigned long max_rate)
|
|
|
|
{
|
|
|
|
hw->core->min_rate = min_rate;
|
|
|
|
hw->core->max_rate = max_rate;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/*
|
2018-12-11 21:24:50 +00:00
|
|
|
* __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
|
|
|
|
* @hw: mux type clk to determine rate on
|
|
|
|
* @req: rate request, also used to return preferred parent and frequencies
|
|
|
|
*
|
2015-04-30 21:43:22 +00:00
|
|
|
* Helper for finding best parent to provide a given frequency. This can be used
|
|
|
|
* directly as a determine_rate callback (e.g. for a mux), or from a more
|
|
|
|
* complex clock that may combine a mux with other operations.
|
2018-12-11 21:24:50 +00:00
|
|
|
*
|
|
|
|
* Returns: 0 on success, -EERROR value on error
|
2015-04-30 21:43:22 +00:00
|
|
|
*/
|
2015-07-07 18:48:08 +00:00
|
|
|
int __clk_mux_determine_rate(struct clk_hw *hw,
|
|
|
|
struct clk_rate_request *req)
|
2015-04-30 21:43:22 +00:00
|
|
|
{
|
2015-07-07 18:48:08 +00:00
|
|
|
return clk_mux_determine_rate_flags(hw, req, 0);
|
2013-03-12 19:26:03 +00:00
|
|
|
}
|
2015-04-30 21:43:22 +00:00
|
|
|
EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
|
2013-03-12 19:26:03 +00:00
|
|
|
|
2015-07-07 18:48:08 +00:00
|
|
|
int __clk_mux_determine_rate_closest(struct clk_hw *hw,
|
|
|
|
struct clk_rate_request *req)
|
2012-03-16 06:11:19 +00:00
|
|
|
{
|
2015-07-07 18:48:08 +00:00
|
|
|
return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
|
2015-04-30 21:43:22 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2023-05-05 11:25:06 +00:00
|
|
|
/*
|
|
|
|
* clk_hw_determine_rate_no_reparent - clk_ops::determine_rate implementation for a clk that doesn't reparent
|
|
|
|
* @hw: mux type clk to determine rate on
|
|
|
|
* @req: rate request, also used to return preferred frequency
|
|
|
|
*
|
|
|
|
* Helper for finding best parent rate to provide a given frequency.
|
|
|
|
* This can be used directly as a determine_rate callback (e.g. for a
|
|
|
|
* mux), or from a more complex clock that may combine a mux with other
|
|
|
|
* operations.
|
|
|
|
*
|
|
|
|
* Returns: 0 on success, -EERROR value on error
|
|
|
|
*/
|
|
|
|
int clk_hw_determine_rate_no_reparent(struct clk_hw *hw,
|
|
|
|
struct clk_rate_request *req)
|
|
|
|
{
|
|
|
|
return clk_core_determine_rate_no_reparent(hw, req);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(clk_hw_determine_rate_no_reparent);
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/*** clk api ***/
|
2015-01-09 08:28:10 +00:00
|
|
|
|
2017-12-01 21:51:56 +00:00
|
|
|
static void clk_core_rate_unprotect(struct clk_core *core)
|
|
|
|
{
|
|
|
|
lockdep_assert_held(&prepare_lock);
|
|
|
|
|
|
|
|
if (!core)
|
|
|
|
return;
|
|
|
|
|
2018-01-16 12:50:34 +00:00
|
|
|
if (WARN(core->protect_count == 0,
|
|
|
|
"%s already unprotected\n", core->name))
|
2017-12-01 21:51:56 +00:00
|
|
|
return;
|
|
|
|
|
|
|
|
if (--core->protect_count > 0)
|
|
|
|
return;
|
|
|
|
|
|
|
|
clk_core_rate_unprotect(core->parent);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int clk_core_rate_nuke_protect(struct clk_core *core)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
lockdep_assert_held(&prepare_lock);
|
|
|
|
|
|
|
|
if (!core)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (core->protect_count == 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
ret = core->protect_count;
|
|
|
|
core->protect_count = 1;
|
|
|
|
clk_core_rate_unprotect(core);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2017-12-01 21:51:59 +00:00
|
|
|
/**
|
|
|
|
* clk_rate_exclusive_put - release exclusivity over clock rate control
|
|
|
|
* @clk: the clk over which the exclusivity is released
|
|
|
|
*
|
|
|
|
* clk_rate_exclusive_put() completes a critical section during which a clock
|
|
|
|
* consumer cannot tolerate any other consumer making any operation on the
|
|
|
|
* clock which could result in a rate change or rate glitch. Exclusive clocks
|
|
|
|
* cannot have their rate changed, either directly or indirectly due to changes
|
|
|
|
* further up the parent chain of clocks. As a result, clocks up parent chain
|
|
|
|
* also get under exclusive control of the calling consumer.
|
|
|
|
*
|
|
|
|
* If exlusivity is claimed more than once on clock, even by the same consumer,
|
|
|
|
* the rate effectively gets locked as exclusivity can't be preempted.
|
|
|
|
*
|
|
|
|
* Calls to clk_rate_exclusive_put() must be balanced with calls to
|
|
|
|
* clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
|
|
|
|
* error status.
|
|
|
|
*/
|
|
|
|
void clk_rate_exclusive_put(struct clk *clk)
|
|
|
|
{
|
|
|
|
if (!clk)
|
|
|
|
return;
|
|
|
|
|
|
|
|
clk_prepare_lock();
|
|
|
|
|
|
|
|
/*
|
|
|
|
* if there is something wrong with this consumer protect count, stop
|
|
|
|
* here before messing with the provider
|
|
|
|
*/
|
|
|
|
if (WARN_ON(clk->exclusive_count <= 0))
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
clk_core_rate_unprotect(clk->core);
|
|
|
|
clk->exclusive_count--;
|
|
|
|
out:
|
|
|
|
clk_prepare_unlock();
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
|
|
|
|
|
2017-12-01 21:51:56 +00:00
|
|
|
static void clk_core_rate_protect(struct clk_core *core)
|
|
|
|
{
|
|
|
|
lockdep_assert_held(&prepare_lock);
|
|
|
|
|
|
|
|
if (!core)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (core->protect_count == 0)
|
|
|
|
clk_core_rate_protect(core->parent);
|
|
|
|
|
|
|
|
core->protect_count++;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void clk_core_rate_restore_protect(struct clk_core *core, int count)
|
|
|
|
{
|
|
|
|
lockdep_assert_held(&prepare_lock);
|
|
|
|
|
|
|
|
if (!core)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (count == 0)
|
|
|
|
return;
|
|
|
|
|
|
|
|
clk_core_rate_protect(core);
|
|
|
|
core->protect_count = count;
|
|
|
|
}
|
|
|
|
|
2017-12-01 21:51:59 +00:00
|
|
|
/**
|
|
|
|
* clk_rate_exclusive_get - get exclusivity over the clk rate control
|
|
|
|
* @clk: the clk over which the exclusity of rate control is requested
|
|
|
|
*
|
2020-03-10 13:55:07 +00:00
|
|
|
* clk_rate_exclusive_get() begins a critical section during which a clock
|
2017-12-01 21:51:59 +00:00
|
|
|
* consumer cannot tolerate any other consumer making any operation on the
|
|
|
|
* clock which could result in a rate change or rate glitch. Exclusive clocks
|
|
|
|
* cannot have their rate changed, either directly or indirectly due to changes
|
|
|
|
* further up the parent chain of clocks. As a result, clocks up parent chain
|
|
|
|
* also get under exclusive control of the calling consumer.
|
|
|
|
*
|
|
|
|
* If exlusivity is claimed more than once on clock, even by the same consumer,
|
|
|
|
* the rate effectively gets locked as exclusivity can't be preempted.
|
|
|
|
*
|
|
|
|
* Calls to clk_rate_exclusive_get() should be balanced with calls to
|
|
|
|
* clk_rate_exclusive_put(). Calls to this function may sleep.
|
|
|
|
* Returns 0 on success, -EERROR otherwise
|
|
|
|
*/
|
|
|
|
int clk_rate_exclusive_get(struct clk *clk)
|
|
|
|
{
|
|
|
|
if (!clk)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
clk_prepare_lock();
|
|
|
|
clk_core_rate_protect(clk->core);
|
|
|
|
clk->exclusive_count++;
|
|
|
|
clk_prepare_unlock();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
static void clk_core_unprepare(struct clk_core *core)
|
|
|
|
{
|
2015-05-07 00:00:54 +00:00
|
|
|
lockdep_assert_held(&prepare_lock);
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if (!core)
|
|
|
|
return;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2018-01-16 12:50:34 +00:00
|
|
|
if (WARN(core->prepare_count == 0,
|
|
|
|
"%s already unprepared\n", core->name))
|
2015-04-30 21:43:22 +00:00
|
|
|
return;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2018-01-16 12:50:34 +00:00
|
|
|
if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
|
|
|
|
"Unpreparing critical %s\n", core->name))
|
2016-02-11 21:19:10 +00:00
|
|
|
return;
|
|
|
|
|
2018-06-19 13:40:51 +00:00
|
|
|
if (core->flags & CLK_SET_RATE_GATE)
|
|
|
|
clk_core_rate_unprotect(core);
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if (--core->prepare_count > 0)
|
|
|
|
return;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2018-01-16 12:50:34 +00:00
|
|
|
WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
trace_clk_unprepare(core);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if (core->ops->unprepare)
|
|
|
|
core->ops->unprepare(core->hw);
|
|
|
|
|
|
|
|
trace_clk_unprepare_complete(core);
|
|
|
|
clk_core_unprepare(core->parent);
|
2022-08-22 08:14:24 +00:00
|
|
|
clk_pm_runtime_put(core);
|
2012-03-16 06:11:19 +00:00
|
|
|
}
|
|
|
|
|
2016-06-30 09:31:11 +00:00
|
|
|
static void clk_core_unprepare_lock(struct clk_core *core)
|
|
|
|
{
|
|
|
|
clk_prepare_lock();
|
|
|
|
clk_core_unprepare(core);
|
|
|
|
clk_prepare_unlock();
|
|
|
|
}
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/**
|
|
|
|
* clk_unprepare - undo preparation of a clock source
|
|
|
|
* @clk: the clk being unprepared
|
|
|
|
*
|
|
|
|
* clk_unprepare may sleep, which differentiates it from clk_disable. In a
|
|
|
|
* simple case, clk_unprepare can be used instead of clk_disable to gate a clk
|
|
|
|
* if the operation may sleep. One example is a clk which is accessed over
|
|
|
|
* I2c. In the complex case a clk gate operation may require a fast and a slow
|
|
|
|
* part. It is this reason that clk_unprepare and clk_disable are not mutually
|
|
|
|
* exclusive. In fact clk_disable must be called before clk_unprepare.
|
|
|
|
*/
|
|
|
|
void clk_unprepare(struct clk *clk)
|
2013-04-27 21:10:18 +00:00
|
|
|
{
|
2015-04-30 21:43:22 +00:00
|
|
|
if (IS_ERR_OR_NULL(clk))
|
|
|
|
return;
|
|
|
|
|
2016-06-30 09:31:11 +00:00
|
|
|
clk_core_unprepare_lock(clk->core);
|
2013-04-27 21:10:18 +00:00
|
|
|
}
|
2015-04-30 21:43:22 +00:00
|
|
|
EXPORT_SYMBOL_GPL(clk_unprepare);
|
2013-04-27 21:10:18 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
static int clk_core_prepare(struct clk_core *core)
|
2012-03-16 06:11:19 +00:00
|
|
|
{
|
2015-04-30 21:43:22 +00:00
|
|
|
int ret = 0;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-05-07 00:00:54 +00:00
|
|
|
lockdep_assert_held(&prepare_lock);
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if (!core)
|
2013-04-27 21:10:18 +00:00
|
|
|
return 0;
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if (core->prepare_count == 0) {
|
2017-08-21 08:04:59 +00:00
|
|
|
ret = clk_pm_runtime_get(core);
|
2015-04-30 21:43:22 +00:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2017-08-21 08:04:59 +00:00
|
|
|
ret = clk_core_prepare(core->parent);
|
|
|
|
if (ret)
|
|
|
|
goto runtime_put;
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
trace_clk_prepare(core);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if (core->ops->prepare)
|
|
|
|
ret = core->ops->prepare(core->hw);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
trace_clk_prepare_complete(core);
|
2013-03-12 19:26:03 +00:00
|
|
|
|
2017-08-21 08:04:59 +00:00
|
|
|
if (ret)
|
|
|
|
goto unprepare;
|
2015-04-30 21:43:22 +00:00
|
|
|
}
|
2013-03-12 19:26:03 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
core->prepare_count++;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2018-06-19 13:40:51 +00:00
|
|
|
/*
|
|
|
|
* CLK_SET_RATE_GATE is a special case of clock protection
|
|
|
|
* Instead of a consumer claiming exclusive rate control, it is
|
|
|
|
* actually the provider which prevents any consumer from making any
|
|
|
|
* operation which could result in a rate change or rate glitch while
|
|
|
|
* the clock is prepared.
|
|
|
|
*/
|
|
|
|
if (core->flags & CLK_SET_RATE_GATE)
|
|
|
|
clk_core_rate_protect(core);
|
|
|
|
|
2012-03-16 06:11:19 +00:00
|
|
|
return 0;
|
2017-08-21 08:04:59 +00:00
|
|
|
unprepare:
|
|
|
|
clk_core_unprepare(core->parent);
|
|
|
|
runtime_put:
|
|
|
|
clk_pm_runtime_put(core);
|
|
|
|
return ret;
|
2012-03-16 06:11:19 +00:00
|
|
|
}
|
|
|
|
|
2016-06-30 09:31:11 +00:00
|
|
|
static int clk_core_prepare_lock(struct clk_core *core)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
clk_prepare_lock();
|
|
|
|
ret = clk_core_prepare(core);
|
|
|
|
clk_prepare_unlock();
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/**
|
|
|
|
* clk_prepare - prepare a clock source
|
|
|
|
* @clk: the clk being prepared
|
|
|
|
*
|
|
|
|
* clk_prepare may sleep, which differentiates it from clk_enable. In a simple
|
|
|
|
* case, clk_prepare can be used instead of clk_enable to ungate a clk if the
|
|
|
|
* operation may sleep. One example is a clk which is accessed over I2c. In
|
|
|
|
* the complex case a clk ungate operation may require a fast and a slow part.
|
|
|
|
* It is this reason that clk_prepare and clk_enable are not mutually
|
|
|
|
* exclusive. In fact clk_prepare must be called before clk_enable.
|
|
|
|
* Returns 0 on success, -EERROR otherwise.
|
|
|
|
*/
|
|
|
|
int clk_prepare(struct clk *clk)
|
2012-03-16 06:11:19 +00:00
|
|
|
{
|
2015-04-30 21:43:22 +00:00
|
|
|
if (!clk)
|
|
|
|
return 0;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2016-06-30 09:31:11 +00:00
|
|
|
return clk_core_prepare_lock(clk->core);
|
2012-03-16 06:11:19 +00:00
|
|
|
}
|
2015-04-30 21:43:22 +00:00
|
|
|
EXPORT_SYMBOL_GPL(clk_prepare);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
static void clk_core_disable(struct clk_core *core)
|
2012-03-16 06:11:19 +00:00
|
|
|
{
|
2015-05-07 00:00:54 +00:00
|
|
|
lockdep_assert_held(&enable_lock);
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if (!core)
|
|
|
|
return;
|
2015-01-23 11:03:30 +00:00
|
|
|
|
2018-01-16 12:50:34 +00:00
|
|
|
if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
|
2015-04-30 21:43:22 +00:00
|
|
|
return;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2018-01-16 12:50:34 +00:00
|
|
|
if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
|
|
|
|
"Disabling critical %s\n", core->name))
|
2016-02-11 21:19:10 +00:00
|
|
|
return;
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if (--core->enable_count > 0)
|
|
|
|
return;
|
2015-01-23 11:03:30 +00:00
|
|
|
|
2023-01-12 19:43:55 +00:00
|
|
|
trace_clk_disable(core);
|
2015-01-23 11:03:30 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if (core->ops->disable)
|
|
|
|
core->ops->disable(core->hw);
|
2015-01-23 11:03:30 +00:00
|
|
|
|
2023-01-12 19:43:55 +00:00
|
|
|
trace_clk_disable_complete(core);
|
2015-01-23 11:03:30 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
clk_core_disable(core->parent);
|
2015-01-23 11:03:30 +00:00
|
|
|
}
|
2013-07-29 11:24:58 +00:00
|
|
|
|
2016-06-30 09:31:11 +00:00
|
|
|
static void clk_core_disable_lock(struct clk_core *core)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
flags = clk_enable_lock();
|
|
|
|
clk_core_disable(core);
|
|
|
|
clk_enable_unlock(flags);
|
|
|
|
}
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/**
|
|
|
|
* clk_disable - gate a clock
|
|
|
|
* @clk: the clk being gated
|
|
|
|
*
|
|
|
|
* clk_disable must not sleep, which differentiates it from clk_unprepare. In
|
|
|
|
* a simple case, clk_disable can be used instead of clk_unprepare to gate a
|
|
|
|
* clk if the operation is fast and will never sleep. One example is a
|
|
|
|
* SoC-internal clk which is controlled via simple register writes. In the
|
|
|
|
* complex case a clk gate operation may require a fast and a slow part. It is
|
|
|
|
* this reason that clk_unprepare and clk_disable are not mutually exclusive.
|
|
|
|
* In fact clk_disable must be called before clk_unprepare.
|
|
|
|
*/
|
|
|
|
void clk_disable(struct clk *clk)
|
2012-03-16 06:11:19 +00:00
|
|
|
{
|
2015-04-30 21:43:22 +00:00
|
|
|
if (IS_ERR_OR_NULL(clk))
|
|
|
|
return;
|
|
|
|
|
2016-06-30 09:31:11 +00:00
|
|
|
clk_core_disable_lock(clk->core);
|
2012-03-16 06:11:19 +00:00
|
|
|
}
|
2015-04-30 21:43:22 +00:00
|
|
|
EXPORT_SYMBOL_GPL(clk_disable);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
static int clk_core_enable(struct clk_core *core)
|
2012-03-16 06:11:19 +00:00
|
|
|
{
|
2015-04-30 21:43:22 +00:00
|
|
|
int ret = 0;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-05-07 00:00:54 +00:00
|
|
|
lockdep_assert_held(&enable_lock);
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if (!core)
|
|
|
|
return 0;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2018-01-16 12:50:34 +00:00
|
|
|
if (WARN(core->prepare_count == 0,
|
|
|
|
"Enabling unprepared %s\n", core->name))
|
2015-04-30 21:43:22 +00:00
|
|
|
return -ESHUTDOWN;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if (core->enable_count == 0) {
|
|
|
|
ret = clk_core_enable(core->parent);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2023-01-12 19:43:55 +00:00
|
|
|
trace_clk_enable(core);
|
2015-01-23 11:03:30 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if (core->ops->enable)
|
|
|
|
ret = core->ops->enable(core->hw);
|
2015-01-23 11:03:30 +00:00
|
|
|
|
2023-01-12 19:43:55 +00:00
|
|
|
trace_clk_enable_complete(core);
|
2015-04-30 21:43:22 +00:00
|
|
|
|
|
|
|
if (ret) {
|
|
|
|
clk_core_disable(core->parent);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
core->enable_count++;
|
|
|
|
return 0;
|
2015-01-23 11:03:30 +00:00
|
|
|
}
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2016-06-30 09:31:11 +00:00
|
|
|
static int clk_core_enable_lock(struct clk_core *core)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
flags = clk_enable_lock();
|
|
|
|
ret = clk_core_enable(core);
|
|
|
|
clk_enable_unlock(flags);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2018-09-04 06:49:36 +00:00
|
|
|
/**
|
|
|
|
* clk_gate_restore_context - restore context for poweroff
|
|
|
|
* @hw: the clk_hw pointer of clock whose state is to be restored
|
|
|
|
*
|
|
|
|
* The clock gate restore context function enables or disables
|
|
|
|
* the gate clocks based on the enable_count. This is done in cases
|
|
|
|
* where the clock context is lost and based on the enable_count
|
|
|
|
* the clock either needs to be enabled/disabled. This
|
|
|
|
* helps restore the state of gate clocks.
|
|
|
|
*/
|
|
|
|
void clk_gate_restore_context(struct clk_hw *hw)
|
|
|
|
{
|
2018-10-11 16:28:13 +00:00
|
|
|
struct clk_core *core = hw->core;
|
|
|
|
|
|
|
|
if (core->enable_count)
|
|
|
|
core->ops->enable(hw);
|
2018-09-04 06:49:36 +00:00
|
|
|
else
|
2018-10-11 16:28:13 +00:00
|
|
|
core->ops->disable(hw);
|
2018-09-04 06:49:36 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(clk_gate_restore_context);
|
|
|
|
|
2018-10-11 16:28:13 +00:00
|
|
|
static int clk_core_save_context(struct clk_core *core)
|
2018-09-04 06:49:35 +00:00
|
|
|
{
|
|
|
|
struct clk_core *child;
|
|
|
|
int ret = 0;
|
|
|
|
|
2018-10-11 16:28:13 +00:00
|
|
|
hlist_for_each_entry(child, &core->children, child_node) {
|
|
|
|
ret = clk_core_save_context(child);
|
2018-09-04 06:49:35 +00:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2018-10-11 16:28:13 +00:00
|
|
|
if (core->ops && core->ops->save_context)
|
|
|
|
ret = core->ops->save_context(core->hw);
|
2018-09-04 06:49:35 +00:00
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2018-10-11 16:28:13 +00:00
|
|
|
static void clk_core_restore_context(struct clk_core *core)
|
2018-09-04 06:49:35 +00:00
|
|
|
{
|
|
|
|
struct clk_core *child;
|
|
|
|
|
2018-10-11 16:28:13 +00:00
|
|
|
if (core->ops && core->ops->restore_context)
|
|
|
|
core->ops->restore_context(core->hw);
|
2018-09-04 06:49:35 +00:00
|
|
|
|
2018-10-11 16:28:13 +00:00
|
|
|
hlist_for_each_entry(child, &core->children, child_node)
|
|
|
|
clk_core_restore_context(child);
|
2018-09-04 06:49:35 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* clk_save_context - save clock context for poweroff
|
|
|
|
*
|
|
|
|
* Saves the context of the clock register for powerstates in which the
|
|
|
|
* contents of the registers will be lost. Occurs deep within the suspend
|
|
|
|
* code. Returns 0 on success.
|
|
|
|
*/
|
|
|
|
int clk_save_context(void)
|
|
|
|
{
|
|
|
|
struct clk_core *clk;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
hlist_for_each_entry(clk, &clk_root_list, child_node) {
|
2018-10-11 16:28:13 +00:00
|
|
|
ret = clk_core_save_context(clk);
|
2018-09-04 06:49:35 +00:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
|
2018-10-11 16:28:13 +00:00
|
|
|
ret = clk_core_save_context(clk);
|
2018-09-04 06:49:35 +00:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(clk_save_context);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* clk_restore_context - restore clock context after poweroff
|
|
|
|
*
|
|
|
|
* Restore the saved clock context upon resume.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
void clk_restore_context(void)
|
|
|
|
{
|
2018-10-11 16:28:13 +00:00
|
|
|
struct clk_core *core;
|
2018-09-04 06:49:35 +00:00
|
|
|
|
2018-10-11 16:28:13 +00:00
|
|
|
hlist_for_each_entry(core, &clk_root_list, child_node)
|
|
|
|
clk_core_restore_context(core);
|
2018-09-04 06:49:35 +00:00
|
|
|
|
2018-10-11 16:28:13 +00:00
|
|
|
hlist_for_each_entry(core, &clk_orphan_list, child_node)
|
|
|
|
clk_core_restore_context(core);
|
2018-09-04 06:49:35 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(clk_restore_context);
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/**
|
|
|
|
* clk_enable - ungate a clock
|
|
|
|
* @clk: the clk being ungated
|
|
|
|
*
|
|
|
|
* clk_enable must not sleep, which differentiates it from clk_prepare. In a
|
|
|
|
* simple case, clk_enable can be used instead of clk_prepare to ungate a clk
|
|
|
|
* if the operation will never sleep. One example is a SoC-internal clk which
|
|
|
|
* is controlled via simple register writes. In the complex case a clk ungate
|
|
|
|
* operation may require a fast and a slow part. It is this reason that
|
|
|
|
* clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare
|
|
|
|
* must be called before clk_enable. Returns 0 on success, -EERROR
|
|
|
|
* otherwise.
|
|
|
|
*/
|
|
|
|
int clk_enable(struct clk *clk)
|
2013-12-21 09:34:47 +00:00
|
|
|
{
|
2015-04-30 21:43:22 +00:00
|
|
|
if (!clk)
|
2013-12-21 09:34:47 +00:00
|
|
|
return 0;
|
|
|
|
|
2016-06-30 09:31:11 +00:00
|
|
|
return clk_core_enable_lock(clk->core);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(clk_enable);
|
|
|
|
|
2021-01-25 19:29:18 +00:00
|
|
|
/**
|
|
|
|
* clk_is_enabled_when_prepared - indicate if preparing a clock also enables it.
|
|
|
|
* @clk: clock source
|
|
|
|
*
|
|
|
|
* Returns true if clk_prepare() implicitly enables the clock, effectively
|
|
|
|
* making clk_enable()/clk_disable() no-ops, false otherwise.
|
|
|
|
*
|
|
|
|
* This is of interest mainly to power management code where actually
|
|
|
|
* disabling the clock also requires unpreparing it to have any material
|
|
|
|
* effect.
|
|
|
|
*
|
|
|
|
* Regardless of the value returned here, the caller must always invoke
|
|
|
|
* clk_enable() or clk_prepare_enable() and counterparts for usage counts
|
|
|
|
* to be right.
|
|
|
|
*/
|
|
|
|
bool clk_is_enabled_when_prepared(struct clk *clk)
|
|
|
|
{
|
|
|
|
return clk && !(clk->core->ops->enable && clk->core->ops->disable);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared);
|
|
|
|
|
2016-06-30 09:31:11 +00:00
|
|
|
static int clk_core_prepare_enable(struct clk_core *core)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = clk_core_prepare_lock(core);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
ret = clk_core_enable_lock(core);
|
|
|
|
if (ret)
|
|
|
|
clk_core_unprepare_lock(core);
|
2013-12-21 09:34:47 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
return ret;
|
2012-03-16 06:11:19 +00:00
|
|
|
}
|
2016-06-30 09:31:11 +00:00
|
|
|
|
|
|
|
static void clk_core_disable_unprepare(struct clk_core *core)
|
|
|
|
{
|
|
|
|
clk_core_disable_lock(core);
|
|
|
|
clk_core_unprepare_lock(core);
|
|
|
|
}
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2019-10-04 09:48:25 +00:00
|
|
|
static void __init clk_unprepare_unused_subtree(struct clk_core *core)
|
2016-06-30 09:31:12 +00:00
|
|
|
{
|
|
|
|
struct clk_core *child;
|
|
|
|
|
|
|
|
lockdep_assert_held(&prepare_lock);
|
|
|
|
|
|
|
|
hlist_for_each_entry(child, &core->children, child_node)
|
|
|
|
clk_unprepare_unused_subtree(child);
|
|
|
|
|
|
|
|
if (core->prepare_count)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (core->flags & CLK_IGNORE_UNUSED)
|
|
|
|
return;
|
|
|
|
|
2017-08-21 08:04:59 +00:00
|
|
|
if (clk_pm_runtime_get(core))
|
|
|
|
return;
|
|
|
|
|
2016-06-30 09:31:12 +00:00
|
|
|
if (clk_core_is_prepared(core)) {
|
|
|
|
trace_clk_unprepare(core);
|
|
|
|
if (core->ops->unprepare_unused)
|
|
|
|
core->ops->unprepare_unused(core->hw);
|
|
|
|
else if (core->ops->unprepare)
|
|
|
|
core->ops->unprepare(core->hw);
|
|
|
|
trace_clk_unprepare_complete(core);
|
|
|
|
}
|
2017-08-21 08:04:59 +00:00
|
|
|
|
|
|
|
clk_pm_runtime_put(core);
|
2016-06-30 09:31:12 +00:00
|
|
|
}
|
|
|
|
|
2019-10-04 09:48:25 +00:00
|
|
|
static void __init clk_disable_unused_subtree(struct clk_core *core)
|
2016-06-30 09:31:12 +00:00
|
|
|
{
|
|
|
|
struct clk_core *child;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
lockdep_assert_held(&prepare_lock);
|
|
|
|
|
|
|
|
hlist_for_each_entry(child, &core->children, child_node)
|
|
|
|
clk_disable_unused_subtree(child);
|
|
|
|
|
clk: core: support clocks which requires parents enable (part 1)
On Freescale i.MX7D platform, all clocks operations, including
enable/disable, rate change and re-parent, requires its parent
clock enable. Current clock core can not support it well.
This patch introduce a new flag CLK_OPS_PARENT_ENABLE to handle this
special case in clock core that enable its parent clock firstly for
each operation and disable it later after operation complete.
The patch part 1 fixes the possible disabling clocks while its parent
is off during kernel booting phase in clk_disable_unused_subtree().
Before the completion of kernel booting, clock tree is still not built
completely, there may be a case that the child clock is on but its
parent is off which could be caused by either HW initial reset state
or bootloader initialization.
Taking bootloader as an example, we may enable all clocks in HW by default.
And during kernel booting time, the parent clock could be disabled in its
driver probe due to calling clk_prepare_enable and clk_disable_unprepare.
Because it's child clock is only enabled in HW while its SW usecount
in clock tree is still 0, so clk_disable of parent clock will gate
the parent clock in both HW and SW usecount ultimately. Then there will
be a child clock is still on in HW but its parent is already off.
Later in clk_disable_unused(), this clock disable accessing while its
parent off will cause system hang due to the limitation of HW which
must require its parent on.
This patch simply enables the parent clock first before disabling
if flag CLK_OPS_PARENT_ENABLE is set in clk_disable_unused_subtree().
This is a simple solution and only affects booting time.
After kernel booting up the clock tree is already created, there will
be no case that child is off but its parent is off.
So no need do this checking for normal clk_disable() later.
Cc: Michael Turquette <mturquette@baylibre.com>
Cc: Stephen Boyd <sboyd@codeaurora.org>
Cc: Shawn Guo <shawnguo@kernel.org>
Signed-off-by: Dong Aisheng <aisheng.dong@nxp.com>
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
2016-06-30 09:31:13 +00:00
|
|
|
if (core->flags & CLK_OPS_PARENT_ENABLE)
|
|
|
|
clk_core_prepare_enable(core->parent);
|
|
|
|
|
2017-08-21 08:04:59 +00:00
|
|
|
if (clk_pm_runtime_get(core))
|
|
|
|
goto unprepare_out;
|
|
|
|
|
2016-06-30 09:31:12 +00:00
|
|
|
flags = clk_enable_lock();
|
|
|
|
|
|
|
|
if (core->enable_count)
|
|
|
|
goto unlock_out;
|
|
|
|
|
|
|
|
if (core->flags & CLK_IGNORE_UNUSED)
|
|
|
|
goto unlock_out;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* some gate clocks have special needs during the disable-unused
|
|
|
|
* sequence. call .disable_unused if available, otherwise fall
|
|
|
|
* back to .disable
|
|
|
|
*/
|
|
|
|
if (clk_core_is_enabled(core)) {
|
|
|
|
trace_clk_disable(core);
|
|
|
|
if (core->ops->disable_unused)
|
|
|
|
core->ops->disable_unused(core->hw);
|
|
|
|
else if (core->ops->disable)
|
|
|
|
core->ops->disable(core->hw);
|
|
|
|
trace_clk_disable_complete(core);
|
|
|
|
}
|
|
|
|
|
|
|
|
unlock_out:
|
|
|
|
clk_enable_unlock(flags);
|
2017-08-21 08:04:59 +00:00
|
|
|
clk_pm_runtime_put(core);
|
|
|
|
unprepare_out:
|
clk: core: support clocks which requires parents enable (part 1)
On Freescale i.MX7D platform, all clocks operations, including
enable/disable, rate change and re-parent, requires its parent
clock enable. Current clock core can not support it well.
This patch introduce a new flag CLK_OPS_PARENT_ENABLE to handle this
special case in clock core that enable its parent clock firstly for
each operation and disable it later after operation complete.
The patch part 1 fixes the possible disabling clocks while its parent
is off during kernel booting phase in clk_disable_unused_subtree().
Before the completion of kernel booting, clock tree is still not built
completely, there may be a case that the child clock is on but its
parent is off which could be caused by either HW initial reset state
or bootloader initialization.
Taking bootloader as an example, we may enable all clocks in HW by default.
And during kernel booting time, the parent clock could be disabled in its
driver probe due to calling clk_prepare_enable and clk_disable_unprepare.
Because it's child clock is only enabled in HW while its SW usecount
in clock tree is still 0, so clk_disable of parent clock will gate
the parent clock in both HW and SW usecount ultimately. Then there will
be a child clock is still on in HW but its parent is already off.
Later in clk_disable_unused(), this clock disable accessing while its
parent off will cause system hang due to the limitation of HW which
must require its parent on.
This patch simply enables the parent clock first before disabling
if flag CLK_OPS_PARENT_ENABLE is set in clk_disable_unused_subtree().
This is a simple solution and only affects booting time.
After kernel booting up the clock tree is already created, there will
be no case that child is off but its parent is off.
So no need do this checking for normal clk_disable() later.
Cc: Michael Turquette <mturquette@baylibre.com>
Cc: Stephen Boyd <sboyd@codeaurora.org>
Cc: Shawn Guo <shawnguo@kernel.org>
Signed-off-by: Dong Aisheng <aisheng.dong@nxp.com>
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
2016-06-30 09:31:13 +00:00
|
|
|
if (core->flags & CLK_OPS_PARENT_ENABLE)
|
|
|
|
clk_core_disable_unprepare(core->parent);
|
2016-06-30 09:31:12 +00:00
|
|
|
}
|
|
|
|
|
2019-10-04 09:48:25 +00:00
|
|
|
static bool clk_ignore_unused __initdata;
|
2016-06-30 09:31:12 +00:00
|
|
|
static int __init clk_ignore_unused_setup(char *__unused)
|
|
|
|
{
|
|
|
|
clk_ignore_unused = true;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
__setup("clk_ignore_unused", clk_ignore_unused_setup);
|
|
|
|
|
2019-10-04 09:48:25 +00:00
|
|
|
static int __init clk_disable_unused(void)
|
2016-06-30 09:31:12 +00:00
|
|
|
{
|
|
|
|
struct clk_core *core;
|
|
|
|
|
|
|
|
if (clk_ignore_unused) {
|
|
|
|
pr_warn("clk: Not disabling unused clocks\n");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2023-03-07 13:29:28 +00:00
|
|
|
pr_info("clk: Disabling unused clocks\n");
|
|
|
|
|
2016-06-30 09:31:12 +00:00
|
|
|
clk_prepare_lock();
|
|
|
|
|
|
|
|
hlist_for_each_entry(core, &clk_root_list, child_node)
|
|
|
|
clk_disable_unused_subtree(core);
|
|
|
|
|
|
|
|
hlist_for_each_entry(core, &clk_orphan_list, child_node)
|
|
|
|
clk_disable_unused_subtree(core);
|
|
|
|
|
|
|
|
hlist_for_each_entry(core, &clk_root_list, child_node)
|
|
|
|
clk_unprepare_unused_subtree(core);
|
|
|
|
|
|
|
|
hlist_for_each_entry(core, &clk_orphan_list, child_node)
|
|
|
|
clk_unprepare_unused_subtree(core);
|
|
|
|
|
|
|
|
clk_prepare_unlock();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
late_initcall_sync(clk_disable_unused);
|
|
|
|
|
2017-12-01 21:51:54 +00:00
|
|
|
static int clk_core_determine_round_nolock(struct clk_core *core,
|
|
|
|
struct clk_rate_request *req)
|
2013-03-12 19:26:02 +00:00
|
|
|
{
|
2015-07-07 18:48:08 +00:00
|
|
|
long rate;
|
2015-04-30 21:43:22 +00:00
|
|
|
|
|
|
|
lockdep_assert_held(&prepare_lock);
|
2013-03-12 19:26:02 +00:00
|
|
|
|
2015-04-30 20:54:13 +00:00
|
|
|
if (!core)
|
2015-04-30 21:43:22 +00:00
|
|
|
return 0;
|
2013-03-12 19:26:02 +00:00
|
|
|
|
2022-08-16 11:25:08 +00:00
|
|
|
/*
|
|
|
|
* Some clock providers hand-craft their clk_rate_requests and
|
|
|
|
* might not fill min_rate and max_rate.
|
|
|
|
*
|
|
|
|
* If it's the case, clamping the rate is equivalent to setting
|
|
|
|
* the rate to 0 which is bad. Skip the clamping but complain so
|
|
|
|
* that it gets fixed, hopefully.
|
|
|
|
*/
|
|
|
|
if (!req->min_rate && !req->max_rate)
|
|
|
|
pr_warn("%s: %s: clk_rate_request has initialized min or max rate.\n",
|
|
|
|
__func__, core->name);
|
|
|
|
else
|
|
|
|
req->rate = clamp(req->rate, req->min_rate, req->max_rate);
|
2022-02-25 14:35:26 +00:00
|
|
|
|
2017-12-01 21:51:59 +00:00
|
|
|
/*
|
2021-03-26 12:08:33 +00:00
|
|
|
* At this point, core protection will be disabled
|
2017-12-01 21:51:59 +00:00
|
|
|
* - if the provider is not protected at all
|
|
|
|
* - if the calling consumer is the only one which has exclusivity
|
|
|
|
* over the provider
|
|
|
|
*/
|
2017-12-01 21:51:56 +00:00
|
|
|
if (clk_core_rate_is_protected(core)) {
|
|
|
|
req->rate = core->rate;
|
|
|
|
} else if (core->ops->determine_rate) {
|
2015-07-07 18:48:08 +00:00
|
|
|
return core->ops->determine_rate(core->hw, req);
|
|
|
|
} else if (core->ops->round_rate) {
|
|
|
|
rate = core->ops->round_rate(core->hw, req->rate,
|
|
|
|
&req->best_parent_rate);
|
|
|
|
if (rate < 0)
|
|
|
|
return rate;
|
|
|
|
|
|
|
|
req->rate = rate;
|
|
|
|
} else {
|
2017-12-01 21:51:54 +00:00
|
|
|
return -EINVAL;
|
2015-07-07 18:48:08 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
2013-03-12 19:26:02 +00:00
|
|
|
}
|
|
|
|
|
2017-12-01 21:51:54 +00:00
|
|
|
static void clk_core_init_rate_req(struct clk_core * const core,
|
2022-08-16 11:25:19 +00:00
|
|
|
struct clk_rate_request *req,
|
|
|
|
unsigned long rate)
|
2017-12-01 21:51:54 +00:00
|
|
|
{
|
|
|
|
struct clk_core *parent;
|
|
|
|
|
2022-10-18 13:52:57 +00:00
|
|
|
if (WARN_ON(!req))
|
2017-12-01 21:51:54 +00:00
|
|
|
return;
|
|
|
|
|
2022-08-16 11:25:27 +00:00
|
|
|
memset(req, 0, sizeof(*req));
|
2022-10-18 13:52:58 +00:00
|
|
|
req->max_rate = ULONG_MAX;
|
2022-08-16 11:25:27 +00:00
|
|
|
|
2022-10-18 13:52:57 +00:00
|
|
|
if (!core)
|
|
|
|
return;
|
|
|
|
|
2022-10-26 13:46:58 +00:00
|
|
|
req->core = core;
|
2022-08-16 11:25:19 +00:00
|
|
|
req->rate = rate;
|
2022-08-16 11:25:22 +00:00
|
|
|
clk_core_get_boundaries(core, &req->min_rate, &req->max_rate);
|
2022-08-16 11:25:19 +00:00
|
|
|
|
2017-12-01 21:51:54 +00:00
|
|
|
parent = core->parent;
|
|
|
|
if (parent) {
|
|
|
|
req->best_parent_hw = parent->hw;
|
|
|
|
req->best_parent_rate = parent->rate;
|
|
|
|
} else {
|
|
|
|
req->best_parent_hw = NULL;
|
|
|
|
req->best_parent_rate = 0;
|
2015-07-07 18:48:08 +00:00
|
|
|
}
|
2017-12-01 21:51:54 +00:00
|
|
|
}
|
2015-07-07 18:48:08 +00:00
|
|
|
|
2022-08-16 11:25:21 +00:00
|
|
|
/**
|
|
|
|
* clk_hw_init_rate_request - Initializes a clk_rate_request
|
|
|
|
* @hw: the clk for which we want to submit a rate request
|
|
|
|
* @req: the clk_rate_request structure we want to initialise
|
|
|
|
* @rate: the rate which is to be requested
|
|
|
|
*
|
|
|
|
* Initializes a clk_rate_request structure to submit to
|
|
|
|
* __clk_determine_rate() or similar functions.
|
|
|
|
*/
|
|
|
|
void clk_hw_init_rate_request(const struct clk_hw *hw,
|
|
|
|
struct clk_rate_request *req,
|
|
|
|
unsigned long rate)
|
|
|
|
{
|
|
|
|
if (WARN_ON(!hw || !req))
|
|
|
|
return;
|
|
|
|
|
|
|
|
clk_core_init_rate_req(hw->core, req, rate);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(clk_hw_init_rate_request);
|
|
|
|
|
clk: Stop forwarding clk_rate_requests to the parent
If the clock cannot modify its rate and has CLK_SET_RATE_PARENT,
clk_mux_determine_rate_flags(), clk_core_round_rate_nolock() and a
number of drivers will forward the clk_rate_request to the parent clock.
clk_core_round_rate_nolock() will pass the pointer directly, which means
that we pass a clk_rate_request to the parent that has the rate,
min_rate and max_rate of the child, and the best_parent_rate and
best_parent_hw fields will be relative to the child as well, so will
point to our current clock and its rate. The most common case for
CLK_SET_RATE_PARENT is that the child and parent clock rates will be
equal, so the rate field isn't a worry, but the other fields are.
Similarly, if the parent clock driver ever modifies the best_parent_rate
or best_parent_hw, this will be applied to the child once the call to
clk_core_round_rate_nolock() is done. best_parent_hw is probably not
going to be a valid parent, and best_parent_rate might lead to a parent
rate change different to the one that was initially computed.
clk_mux_determine_rate_flags() and the affected drivers will copy the
request before forwarding it to the parents, so they won't be affected
by the latter issue, but the former is still going to be there and will
lead to erroneous data and context being passed to the various clock
drivers in the same sub-tree.
Let's create two new functions, clk_core_forward_rate_req() and
clk_hw_forward_rate_request() for the framework and the clock providers
that will copy a request from a child clock and update the context to
match the parent's. We also update the relevant call sites in the
framework and drivers to use that new function.
Let's also add a test to make sure we avoid regressions there.
Tested-by: Alexander Stein <alexander.stein@ew.tq-group.com> # imx8mp
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com> # exynos4210, meson g12b
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
Link: https://lore.kernel.org/r/20220816112530.1837489-22-maxime@cerno.tech
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-08-16 11:25:26 +00:00
|
|
|
/**
|
|
|
|
* clk_hw_forward_rate_request - Forwards a clk_rate_request to a clock's parent
|
|
|
|
* @hw: the original clock that got the rate request
|
|
|
|
* @old_req: the original clk_rate_request structure we want to forward
|
|
|
|
* @parent: the clk we want to forward @old_req to
|
|
|
|
* @req: the clk_rate_request structure we want to initialise
|
|
|
|
* @parent_rate: The rate which is to be requested to @parent
|
|
|
|
*
|
|
|
|
* Initializes a clk_rate_request structure to submit to a clock parent
|
|
|
|
* in __clk_determine_rate() or similar functions.
|
|
|
|
*/
|
|
|
|
void clk_hw_forward_rate_request(const struct clk_hw *hw,
|
|
|
|
const struct clk_rate_request *old_req,
|
|
|
|
const struct clk_hw *parent,
|
|
|
|
struct clk_rate_request *req,
|
|
|
|
unsigned long parent_rate)
|
|
|
|
{
|
|
|
|
if (WARN_ON(!hw || !old_req || !parent || !req))
|
|
|
|
return;
|
|
|
|
|
|
|
|
clk_core_forward_rate_req(hw->core, old_req,
|
|
|
|
parent->core, req,
|
|
|
|
parent_rate);
|
|
|
|
}
|
2023-05-05 11:25:03 +00:00
|
|
|
EXPORT_SYMBOL_GPL(clk_hw_forward_rate_request);
|
clk: Stop forwarding clk_rate_requests to the parent
If the clock cannot modify its rate and has CLK_SET_RATE_PARENT,
clk_mux_determine_rate_flags(), clk_core_round_rate_nolock() and a
number of drivers will forward the clk_rate_request to the parent clock.
clk_core_round_rate_nolock() will pass the pointer directly, which means
that we pass a clk_rate_request to the parent that has the rate,
min_rate and max_rate of the child, and the best_parent_rate and
best_parent_hw fields will be relative to the child as well, so will
point to our current clock and its rate. The most common case for
CLK_SET_RATE_PARENT is that the child and parent clock rates will be
equal, so the rate field isn't a worry, but the other fields are.
Similarly, if the parent clock driver ever modifies the best_parent_rate
or best_parent_hw, this will be applied to the child once the call to
clk_core_round_rate_nolock() is done. best_parent_hw is probably not
going to be a valid parent, and best_parent_rate might lead to a parent
rate change different to the one that was initially computed.
clk_mux_determine_rate_flags() and the affected drivers will copy the
request before forwarding it to the parents, so they won't be affected
by the latter issue, but the former is still going to be there and will
lead to erroneous data and context being passed to the various clock
drivers in the same sub-tree.
Let's create two new functions, clk_core_forward_rate_req() and
clk_hw_forward_rate_request() for the framework and the clock providers
that will copy a request from a child clock and update the context to
match the parent's. We also update the relevant call sites in the
framework and drivers to use that new function.
Let's also add a test to make sure we avoid regressions there.
Tested-by: Alexander Stein <alexander.stein@ew.tq-group.com> # imx8mp
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com> # exynos4210, meson g12b
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
Link: https://lore.kernel.org/r/20220816112530.1837489-22-maxime@cerno.tech
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-08-16 11:25:26 +00:00
|
|
|
|
2017-12-01 21:51:54 +00:00
|
|
|
static bool clk_core_can_round(struct clk_core * const core)
|
|
|
|
{
|
2019-06-17 12:02:48 +00:00
|
|
|
return core->ops->determine_rate || core->ops->round_rate;
|
2017-12-01 21:51:54 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int clk_core_round_rate_nolock(struct clk_core *core,
|
|
|
|
struct clk_rate_request *req)
|
|
|
|
{
|
clk: Stop forwarding clk_rate_requests to the parent
If the clock cannot modify its rate and has CLK_SET_RATE_PARENT,
clk_mux_determine_rate_flags(), clk_core_round_rate_nolock() and a
number of drivers will forward the clk_rate_request to the parent clock.
clk_core_round_rate_nolock() will pass the pointer directly, which means
that we pass a clk_rate_request to the parent that has the rate,
min_rate and max_rate of the child, and the best_parent_rate and
best_parent_hw fields will be relative to the child as well, so will
point to our current clock and its rate. The most common case for
CLK_SET_RATE_PARENT is that the child and parent clock rates will be
equal, so the rate field isn't a worry, but the other fields are.
Similarly, if the parent clock driver ever modifies the best_parent_rate
or best_parent_hw, this will be applied to the child once the call to
clk_core_round_rate_nolock() is done. best_parent_hw is probably not
going to be a valid parent, and best_parent_rate might lead to a parent
rate change different to the one that was initially computed.
clk_mux_determine_rate_flags() and the affected drivers will copy the
request before forwarding it to the parents, so they won't be affected
by the latter issue, but the former is still going to be there and will
lead to erroneous data and context being passed to the various clock
drivers in the same sub-tree.
Let's create two new functions, clk_core_forward_rate_req() and
clk_hw_forward_rate_request() for the framework and the clock providers
that will copy a request from a child clock and update the context to
match the parent's. We also update the relevant call sites in the
framework and drivers to use that new function.
Let's also add a test to make sure we avoid regressions there.
Tested-by: Alexander Stein <alexander.stein@ew.tq-group.com> # imx8mp
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com> # exynos4210, meson g12b
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
Link: https://lore.kernel.org/r/20220816112530.1837489-22-maxime@cerno.tech
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-08-16 11:25:26 +00:00
|
|
|
int ret;
|
|
|
|
|
2017-12-01 21:51:54 +00:00
|
|
|
lockdep_assert_held(&prepare_lock);
|
|
|
|
|
2018-02-14 13:43:35 +00:00
|
|
|
if (!core) {
|
|
|
|
req->rate = 0;
|
2017-12-01 21:51:54 +00:00
|
|
|
return 0;
|
2018-02-14 13:43:35 +00:00
|
|
|
}
|
2015-07-07 18:48:08 +00:00
|
|
|
|
2017-12-01 21:51:54 +00:00
|
|
|
if (clk_core_can_round(core))
|
|
|
|
return clk_core_determine_round_nolock(core, req);
|
clk: Stop forwarding clk_rate_requests to the parent
If the clock cannot modify its rate and has CLK_SET_RATE_PARENT,
clk_mux_determine_rate_flags(), clk_core_round_rate_nolock() and a
number of drivers will forward the clk_rate_request to the parent clock.
clk_core_round_rate_nolock() will pass the pointer directly, which means
that we pass a clk_rate_request to the parent that has the rate,
min_rate and max_rate of the child, and the best_parent_rate and
best_parent_hw fields will be relative to the child as well, so will
point to our current clock and its rate. The most common case for
CLK_SET_RATE_PARENT is that the child and parent clock rates will be
equal, so the rate field isn't a worry, but the other fields are.
Similarly, if the parent clock driver ever modifies the best_parent_rate
or best_parent_hw, this will be applied to the child once the call to
clk_core_round_rate_nolock() is done. best_parent_hw is probably not
going to be a valid parent, and best_parent_rate might lead to a parent
rate change different to the one that was initially computed.
clk_mux_determine_rate_flags() and the affected drivers will copy the
request before forwarding it to the parents, so they won't be affected
by the latter issue, but the former is still going to be there and will
lead to erroneous data and context being passed to the various clock
drivers in the same sub-tree.
Let's create two new functions, clk_core_forward_rate_req() and
clk_hw_forward_rate_request() for the framework and the clock providers
that will copy a request from a child clock and update the context to
match the parent's. We also update the relevant call sites in the
framework and drivers to use that new function.
Let's also add a test to make sure we avoid regressions there.
Tested-by: Alexander Stein <alexander.stein@ew.tq-group.com> # imx8mp
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com> # exynos4210, meson g12b
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
Link: https://lore.kernel.org/r/20220816112530.1837489-22-maxime@cerno.tech
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-08-16 11:25:26 +00:00
|
|
|
|
|
|
|
if (core->flags & CLK_SET_RATE_PARENT) {
|
|
|
|
struct clk_rate_request parent_req;
|
|
|
|
|
|
|
|
clk_core_forward_rate_req(core, req, core->parent, &parent_req, req->rate);
|
2022-10-26 13:46:59 +00:00
|
|
|
|
|
|
|
trace_clk_rate_request_start(&parent_req);
|
|
|
|
|
clk: Stop forwarding clk_rate_requests to the parent
If the clock cannot modify its rate and has CLK_SET_RATE_PARENT,
clk_mux_determine_rate_flags(), clk_core_round_rate_nolock() and a
number of drivers will forward the clk_rate_request to the parent clock.
clk_core_round_rate_nolock() will pass the pointer directly, which means
that we pass a clk_rate_request to the parent that has the rate,
min_rate and max_rate of the child, and the best_parent_rate and
best_parent_hw fields will be relative to the child as well, so will
point to our current clock and its rate. The most common case for
CLK_SET_RATE_PARENT is that the child and parent clock rates will be
equal, so the rate field isn't a worry, but the other fields are.
Similarly, if the parent clock driver ever modifies the best_parent_rate
or best_parent_hw, this will be applied to the child once the call to
clk_core_round_rate_nolock() is done. best_parent_hw is probably not
going to be a valid parent, and best_parent_rate might lead to a parent
rate change different to the one that was initially computed.
clk_mux_determine_rate_flags() and the affected drivers will copy the
request before forwarding it to the parents, so they won't be affected
by the latter issue, but the former is still going to be there and will
lead to erroneous data and context being passed to the various clock
drivers in the same sub-tree.
Let's create two new functions, clk_core_forward_rate_req() and
clk_hw_forward_rate_request() for the framework and the clock providers
that will copy a request from a child clock and update the context to
match the parent's. We also update the relevant call sites in the
framework and drivers to use that new function.
Let's also add a test to make sure we avoid regressions there.
Tested-by: Alexander Stein <alexander.stein@ew.tq-group.com> # imx8mp
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com> # exynos4210, meson g12b
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
Link: https://lore.kernel.org/r/20220816112530.1837489-22-maxime@cerno.tech
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-08-16 11:25:26 +00:00
|
|
|
ret = clk_core_round_rate_nolock(core->parent, &parent_req);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2022-10-26 13:46:59 +00:00
|
|
|
trace_clk_rate_request_done(&parent_req);
|
|
|
|
|
clk: Stop forwarding clk_rate_requests to the parent
If the clock cannot modify its rate and has CLK_SET_RATE_PARENT,
clk_mux_determine_rate_flags(), clk_core_round_rate_nolock() and a
number of drivers will forward the clk_rate_request to the parent clock.
clk_core_round_rate_nolock() will pass the pointer directly, which means
that we pass a clk_rate_request to the parent that has the rate,
min_rate and max_rate of the child, and the best_parent_rate and
best_parent_hw fields will be relative to the child as well, so will
point to our current clock and its rate. The most common case for
CLK_SET_RATE_PARENT is that the child and parent clock rates will be
equal, so the rate field isn't a worry, but the other fields are.
Similarly, if the parent clock driver ever modifies the best_parent_rate
or best_parent_hw, this will be applied to the child once the call to
clk_core_round_rate_nolock() is done. best_parent_hw is probably not
going to be a valid parent, and best_parent_rate might lead to a parent
rate change different to the one that was initially computed.
clk_mux_determine_rate_flags() and the affected drivers will copy the
request before forwarding it to the parents, so they won't be affected
by the latter issue, but the former is still going to be there and will
lead to erroneous data and context being passed to the various clock
drivers in the same sub-tree.
Let's create two new functions, clk_core_forward_rate_req() and
clk_hw_forward_rate_request() for the framework and the clock providers
that will copy a request from a child clock and update the context to
match the parent's. We also update the relevant call sites in the
framework and drivers to use that new function.
Let's also add a test to make sure we avoid regressions there.
Tested-by: Alexander Stein <alexander.stein@ew.tq-group.com> # imx8mp
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com> # exynos4210, meson g12b
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
Link: https://lore.kernel.org/r/20220816112530.1837489-22-maxime@cerno.tech
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-08-16 11:25:26 +00:00
|
|
|
req->best_parent_rate = parent_req.rate;
|
|
|
|
req->rate = parent_req.rate;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
2017-12-01 21:51:54 +00:00
|
|
|
|
|
|
|
req->rate = core->rate;
|
2015-07-07 18:48:08 +00:00
|
|
|
return 0;
|
2013-03-12 19:26:02 +00:00
|
|
|
}
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/**
|
|
|
|
* __clk_determine_rate - get the closest rate actually supported by a clock
|
|
|
|
* @hw: determine the rate of this clock
|
2016-06-13 11:34:21 +00:00
|
|
|
* @req: target rate request
|
2015-04-30 21:43:22 +00:00
|
|
|
*
|
2015-04-30 22:11:31 +00:00
|
|
|
* Useful for clk_ops such as .set_rate and .determine_rate.
|
2015-04-30 21:43:22 +00:00
|
|
|
*/
|
2015-07-07 18:48:08 +00:00
|
|
|
int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
|
2015-01-23 11:03:30 +00:00
|
|
|
{
|
2015-07-07 18:48:08 +00:00
|
|
|
if (!hw) {
|
|
|
|
req->rate = 0;
|
2015-04-30 21:43:22 +00:00
|
|
|
return 0;
|
2015-07-07 18:48:08 +00:00
|
|
|
}
|
2015-01-23 11:03:30 +00:00
|
|
|
|
2015-07-07 18:48:08 +00:00
|
|
|
return clk_core_round_rate_nolock(hw->core, req);
|
2015-01-23 11:03:30 +00:00
|
|
|
}
|
2015-04-30 21:43:22 +00:00
|
|
|
EXPORT_SYMBOL_GPL(__clk_determine_rate);
|
2015-01-23 11:03:30 +00:00
|
|
|
|
2020-06-11 02:19:41 +00:00
|
|
|
/**
|
|
|
|
* clk_hw_round_rate() - round the given rate for a hw clk
|
|
|
|
* @hw: the hw clk for which we are rounding a rate
|
|
|
|
* @rate: the rate which is to be rounded
|
|
|
|
*
|
|
|
|
* Takes in a rate as input and rounds it to a rate that the clk can actually
|
|
|
|
* use.
|
|
|
|
*
|
|
|
|
* Context: prepare_lock must be held.
|
|
|
|
* For clk providers to call from within clk_ops such as .round_rate,
|
|
|
|
* .determine_rate.
|
|
|
|
*
|
|
|
|
* Return: returns rounded rate of hw clk if clk supports round_rate operation
|
|
|
|
* else returns the parent rate.
|
|
|
|
*/
|
2015-06-25 22:55:14 +00:00
|
|
|
unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
struct clk_rate_request req;
|
|
|
|
|
clk: Move clk_core_init_rate_req() from clk_core_round_rate_nolock() to its caller
The clk_rate_request structure is used internally as an argument for
the clk_core_determine_round_nolock() and clk_core_round_rate_nolock().
In both cases, the clk_core_init_rate_req() function is used to
initialize the clk_rate_request structure.
However, the expectation on who gets to call that function is
inconsistent between those two functions. Indeed,
clk_core_determine_round_nolock() will assume the structure is properly
initialized and will just use it.
On the other hand, clk_core_round_rate_nolock() will call
clk_core_init_rate_req() itself, expecting the caller to have filled
only a minimal set of parameters (rate, min_rate and max_rate).
If we ignore the calling convention inconsistency, this leads to a
second inconsistency for drivers:
* If they get called by the framework through
clk_core_round_rate_nolock(), the rate, min_rate and max_rate
fields will be filled by the caller, and the best_parent_rate and
best_parent_hw fields will get filled by clk_core_init_rate_req().
* If they get called by a driver through __clk_determine_rate (and
thus clk_core_round_rate_nolock), only best_parent_rate and
best_parent_hw are being explicitly set by the framework. Even
though we can reasonably expect rate to be set, only one of the 6
in-tree users explicitly set min_rate and max_rate.
* If they get called by the framework through
clk_core_determine_round_nolock(), then we have two callpaths.
Either it will be called by clk_core_round_rate_nolock() itself, or
it will be called by clk_calc_new_rates(), which will properly
initialize rate, min_rate, max_rate itself, and best_parent_rate
and best_parent_hw through clk_core_init_rate_req().
Even though the first and third case seems equivalent, they aren't when
the clock has CLK_SET_RATE_PARENT. Indeed, in such a case
clk_core_round_rate_nolock() will call itself on the current parent
clock with the same clk_rate_request structure.
The clk_core_init_rate_req() function will then be called on the parent
clock, with the child clk_rate_request pointer and will fill the
best_parent_rate and best_parent_hw fields with the parent context.
When the whole recursion stops and the call returns, the initial caller
will end up with a clk_rate_request structure with some information of
the child clock (rate, min_rate, max_rate) and some others of the last
clock up the tree whose child had CLK_SET_RATE_PARENT (best_parent_hw,
best_parent_rate).
In the most common case, best_parent_rate is going to be equal on all
the parent clocks so it's not a big deal. However, best_parent_hw is
going to point to a clock that never has been a valid parent for that
clock which is definitely confusing.
In order to fix the calling inconsistency, let's move the
clk_core_init_rate_req() calls to the callers, which will also help a
bit with the clk_core_round_rate_nolock() recursion.
Tested-by: Alexander Stein <alexander.stein@ew.tq-group.com> # imx8mp
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com> # exynos4210, meson g12b
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
Link: https://lore.kernel.org/r/20220816112530.1837489-16-maxime@cerno.tech
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-08-16 11:25:20 +00:00
|
|
|
clk_core_init_rate_req(hw->core, &req, rate);
|
2015-06-25 22:55:14 +00:00
|
|
|
|
2022-10-26 13:46:59 +00:00
|
|
|
trace_clk_rate_request_start(&req);
|
|
|
|
|
2015-06-25 22:55:14 +00:00
|
|
|
ret = clk_core_round_rate_nolock(hw->core, &req);
|
|
|
|
if (ret)
|
|
|
|
return 0;
|
|
|
|
|
2022-10-26 13:46:59 +00:00
|
|
|
trace_clk_rate_request_done(&req);
|
|
|
|
|
2015-06-25 22:55:14 +00:00
|
|
|
return req.rate;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(clk_hw_round_rate);
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/**
|
|
|
|
* clk_round_rate - round the given rate for a clk
|
|
|
|
* @clk: the clk for which we are rounding a rate
|
|
|
|
* @rate: the rate which is to be rounded
|
|
|
|
*
|
|
|
|
* Takes in a rate as input and rounds it to a rate that the clk can actually
|
|
|
|
* use which is then returned. If clk doesn't support round_rate operation
|
|
|
|
* then the parent rate is returned.
|
|
|
|
*/
|
|
|
|
long clk_round_rate(struct clk *clk, unsigned long rate)
|
2015-01-23 11:03:30 +00:00
|
|
|
{
|
2015-06-26 00:24:15 +00:00
|
|
|
struct clk_rate_request req;
|
|
|
|
int ret;
|
2015-04-30 21:43:22 +00:00
|
|
|
|
2015-01-23 11:03:30 +00:00
|
|
|
if (!clk)
|
2015-04-30 21:43:22 +00:00
|
|
|
return 0;
|
2015-01-23 11:03:30 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
clk_prepare_lock();
|
2015-06-26 00:24:15 +00:00
|
|
|
|
2017-12-01 21:51:59 +00:00
|
|
|
if (clk->exclusive_count)
|
|
|
|
clk_core_rate_unprotect(clk->core);
|
|
|
|
|
clk: Move clk_core_init_rate_req() from clk_core_round_rate_nolock() to its caller
The clk_rate_request structure is used internally as an argument for
the clk_core_determine_round_nolock() and clk_core_round_rate_nolock().
In both cases, the clk_core_init_rate_req() function is used to
initialize the clk_rate_request structure.
However, the expectation on who gets to call that function is
inconsistent between those two functions. Indeed,
clk_core_determine_round_nolock() will assume the structure is properly
initialized and will just use it.
On the other hand, clk_core_round_rate_nolock() will call
clk_core_init_rate_req() itself, expecting the caller to have filled
only a minimal set of parameters (rate, min_rate and max_rate).
If we ignore the calling convention inconsistency, this leads to a
second inconsistency for drivers:
* If they get called by the framework through
clk_core_round_rate_nolock(), the rate, min_rate and max_rate
fields will be filled by the caller, and the best_parent_rate and
best_parent_hw fields will get filled by clk_core_init_rate_req().
* If they get called by a driver through __clk_determine_rate (and
thus clk_core_round_rate_nolock), only best_parent_rate and
best_parent_hw are being explicitly set by the framework. Even
though we can reasonably expect rate to be set, only one of the 6
in-tree users explicitly set min_rate and max_rate.
* If they get called by the framework through
clk_core_determine_round_nolock(), then we have two callpaths.
Either it will be called by clk_core_round_rate_nolock() itself, or
it will be called by clk_calc_new_rates(), which will properly
initialize rate, min_rate, max_rate itself, and best_parent_rate
and best_parent_hw through clk_core_init_rate_req().
Even though the first and third case seems equivalent, they aren't when
the clock has CLK_SET_RATE_PARENT. Indeed, in such a case
clk_core_round_rate_nolock() will call itself on the current parent
clock with the same clk_rate_request structure.
The clk_core_init_rate_req() function will then be called on the parent
clock, with the child clk_rate_request pointer and will fill the
best_parent_rate and best_parent_hw fields with the parent context.
When the whole recursion stops and the call returns, the initial caller
will end up with a clk_rate_request structure with some information of
the child clock (rate, min_rate, max_rate) and some others of the last
clock up the tree whose child had CLK_SET_RATE_PARENT (best_parent_hw,
best_parent_rate).
In the most common case, best_parent_rate is going to be equal on all
the parent clocks so it's not a big deal. However, best_parent_hw is
going to point to a clock that never has been a valid parent for that
clock which is definitely confusing.
In order to fix the calling inconsistency, let's move the
clk_core_init_rate_req() calls to the callers, which will also help a
bit with the clk_core_round_rate_nolock() recursion.
Tested-by: Alexander Stein <alexander.stein@ew.tq-group.com> # imx8mp
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com> # exynos4210, meson g12b
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
Link: https://lore.kernel.org/r/20220816112530.1837489-16-maxime@cerno.tech
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-08-16 11:25:20 +00:00
|
|
|
clk_core_init_rate_req(clk->core, &req, rate);
|
2015-06-26 00:24:15 +00:00
|
|
|
|
2022-10-26 13:46:59 +00:00
|
|
|
trace_clk_rate_request_start(&req);
|
|
|
|
|
2015-06-26 00:24:15 +00:00
|
|
|
ret = clk_core_round_rate_nolock(clk->core, &req);
|
2017-12-01 21:51:59 +00:00
|
|
|
|
2022-10-26 13:46:59 +00:00
|
|
|
trace_clk_rate_request_done(&req);
|
|
|
|
|
2017-12-01 21:51:59 +00:00
|
|
|
if (clk->exclusive_count)
|
|
|
|
clk_core_rate_protect(clk->core);
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
clk_prepare_unlock();
|
|
|
|
|
2015-06-26 00:24:15 +00:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
return req.rate;
|
2015-01-23 11:03:30 +00:00
|
|
|
}
|
2015-04-30 21:43:22 +00:00
|
|
|
EXPORT_SYMBOL_GPL(clk_round_rate);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/**
|
|
|
|
* __clk_notify - call clk notifier chain
|
|
|
|
* @core: clk that is changing rate
|
|
|
|
* @msg: clk notifier type (see include/linux/clk.h)
|
|
|
|
* @old_rate: old clk rate
|
|
|
|
* @new_rate: new clk rate
|
|
|
|
*
|
|
|
|
* Triggers a notifier call chain on the clk rate-change notification
|
|
|
|
* for 'clk'. Passes a pointer to the struct clk and the previous
|
|
|
|
* and current rates to the notifier callback. Intended to be called by
|
|
|
|
* internal clock code only. Returns NOTIFY_DONE from the last driver
|
|
|
|
* called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
|
|
|
|
* a driver returns that.
|
|
|
|
*/
|
|
|
|
static int __clk_notify(struct clk_core *core, unsigned long msg,
|
|
|
|
unsigned long old_rate, unsigned long new_rate)
|
2012-03-16 06:11:19 +00:00
|
|
|
{
|
2015-04-30 21:43:22 +00:00
|
|
|
struct clk_notifier *cn;
|
|
|
|
struct clk_notifier_data cnd;
|
|
|
|
int ret = NOTIFY_DONE;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
cnd.old_rate = old_rate;
|
|
|
|
cnd.new_rate = new_rate;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
list_for_each_entry(cn, &clk_notifier_list, node) {
|
|
|
|
if (cn->clk->core == core) {
|
|
|
|
cnd.clk = cn->clk;
|
|
|
|
ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
|
|
|
|
&cnd);
|
2017-03-21 10:16:26 +00:00
|
|
|
if (ret & NOTIFY_STOP_MASK)
|
|
|
|
return ret;
|
2015-04-30 21:43:22 +00:00
|
|
|
}
|
2012-03-16 06:11:19 +00:00
|
|
|
}
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
return ret;
|
2012-03-16 06:11:19 +00:00
|
|
|
}
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/**
|
|
|
|
* __clk_recalc_accuracies
|
|
|
|
* @core: first clk in the subtree
|
|
|
|
*
|
|
|
|
* Walks the subtree of clks starting with clk and recalculates accuracies as
|
|
|
|
* it goes. Note that if a clk does not implement the .recalc_accuracy
|
2015-04-30 22:11:31 +00:00
|
|
|
* callback then it is assumed that the clock will take on the accuracy of its
|
2015-04-30 21:43:22 +00:00
|
|
|
* parent.
|
|
|
|
*/
|
|
|
|
static void __clk_recalc_accuracies(struct clk_core *core)
|
2012-03-16 06:11:19 +00:00
|
|
|
{
|
2015-04-30 21:43:22 +00:00
|
|
|
unsigned long parent_accuracy = 0;
|
|
|
|
struct clk_core *child;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
lockdep_assert_held(&prepare_lock);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if (core->parent)
|
|
|
|
parent_accuracy = core->parent->accuracy;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if (core->ops->recalc_accuracy)
|
|
|
|
core->accuracy = core->ops->recalc_accuracy(core->hw,
|
|
|
|
parent_accuracy);
|
|
|
|
else
|
|
|
|
core->accuracy = parent_accuracy;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
hlist_for_each_entry(child, &core->children, child_node)
|
|
|
|
__clk_recalc_accuracies(child);
|
2012-03-16 06:11:19 +00:00
|
|
|
}
|
|
|
|
|
2020-02-05 23:28:01 +00:00
|
|
|
static long clk_core_get_accuracy_recalc(struct clk_core *core)
|
2013-07-29 11:25:02 +00:00
|
|
|
{
|
2015-04-30 21:43:22 +00:00
|
|
|
if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
|
|
|
|
__clk_recalc_accuracies(core);
|
2015-01-20 02:05:28 +00:00
|
|
|
|
2020-02-05 23:28:01 +00:00
|
|
|
return clk_core_get_accuracy_no_lock(core);
|
2013-07-29 11:25:02 +00:00
|
|
|
}
|
2015-01-20 02:05:28 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/**
|
|
|
|
* clk_get_accuracy - return the accuracy of clk
|
|
|
|
* @clk: the clk whose accuracy is being returned
|
|
|
|
*
|
|
|
|
* Simply returns the cached accuracy of the clk, unless
|
|
|
|
* CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
|
|
|
|
* issued.
|
|
|
|
* If clk is NULL then returns 0.
|
|
|
|
*/
|
|
|
|
long clk_get_accuracy(struct clk *clk)
|
2015-01-23 11:03:30 +00:00
|
|
|
{
|
2020-02-05 23:28:01 +00:00
|
|
|
long accuracy;
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if (!clk)
|
|
|
|
return 0;
|
2015-01-23 11:03:30 +00:00
|
|
|
|
2020-02-05 23:28:01 +00:00
|
|
|
clk_prepare_lock();
|
|
|
|
accuracy = clk_core_get_accuracy_recalc(clk->core);
|
|
|
|
clk_prepare_unlock();
|
|
|
|
|
|
|
|
return accuracy;
|
2015-01-23 11:03:30 +00:00
|
|
|
}
|
2015-04-30 21:43:22 +00:00
|
|
|
EXPORT_SYMBOL_GPL(clk_get_accuracy);
|
2015-01-23 11:03:30 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
static unsigned long clk_recalc(struct clk_core *core,
|
|
|
|
unsigned long parent_rate)
|
2015-01-23 11:03:31 +00:00
|
|
|
{
|
2017-08-21 08:04:59 +00:00
|
|
|
unsigned long rate = parent_rate;
|
|
|
|
|
|
|
|
if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
|
|
|
|
rate = core->ops->recalc_rate(core->hw, parent_rate);
|
|
|
|
clk_pm_runtime_put(core);
|
|
|
|
}
|
|
|
|
return rate;
|
2015-01-23 11:03:31 +00:00
|
|
|
}
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/**
|
|
|
|
* __clk_recalc_rates
|
|
|
|
* @core: first clk in the subtree
|
clk: Update req_rate on __clk_recalc_rates()
Commit cb1b1dd96241 ("clk: Set req_rate on reparenting") introduced a
new function, clk_core_update_orphan_child_rates(), that updates the
req_rate field on reparenting.
It turns out that that function will interfere with the clock notifying
done by __clk_recalc_rates(). This ends up reporting the new rate in
both the old_rate and new_rate fields of struct clk_notifier_data.
Since clk_core_update_orphan_child_rates() is basically
__clk_recalc_rates() without the notifiers, and with the req_rate field
update, we can drop clk_core_update_orphan_child_rates() entirely, and
make __clk_recalc_rates() update req_rate.
However, __clk_recalc_rates() is being called in several code paths:
when retrieving a rate (most likely through clk_get_rate()), when changing
parents (through clk_set_rate() or clk_hw_reparent()), or when updating
the orphan status (through clk_core_reparent_orphans_nolock(), called at
registration).
Updating req_rate on reparenting or initialisation makes sense, but we
shouldn't do it on clk_get_rate(). Thus an extra flag has been added to
update or not req_rate depending on the context.
Fixes: cb1b1dd96241 ("clk: Set req_rate on reparenting")
Link: https://lore.kernel.org/linux-clk/0acc7217-762c-7c0d-45a0-55c384824ce4@samsung.com/
Link: https://lore.kernel.org/linux-clk/Y0QNSx+ZgqKSvPOC@sirena.org.uk/
Reported-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reported-by: Mark Brown <broonie@kernel.org>
Suggested-by: Stephen Boyd <sboyd@kernel.org>
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
Link: https://lore.kernel.org/r/20221010-rpi-clk-fixes-again-v1-1-d87ba82ac404@cerno.tech
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-10-10 14:47:38 +00:00
|
|
|
* @update_req: Whether req_rate should be updated with the new rate
|
2015-04-30 21:43:22 +00:00
|
|
|
* @msg: notification type (see include/linux/clk.h)
|
|
|
|
*
|
|
|
|
* Walks the subtree of clks starting with clk and recalculates rates as it
|
|
|
|
* goes. Note that if a clk does not implement the .recalc_rate callback then
|
|
|
|
* it is assumed that the clock will take on the rate of its parent.
|
|
|
|
*
|
|
|
|
* clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
|
|
|
|
* if necessary.
|
2015-01-20 02:05:28 +00:00
|
|
|
*/
|
clk: Update req_rate on __clk_recalc_rates()
Commit cb1b1dd96241 ("clk: Set req_rate on reparenting") introduced a
new function, clk_core_update_orphan_child_rates(), that updates the
req_rate field on reparenting.
It turns out that that function will interfere with the clock notifying
done by __clk_recalc_rates(). This ends up reporting the new rate in
both the old_rate and new_rate fields of struct clk_notifier_data.
Since clk_core_update_orphan_child_rates() is basically
__clk_recalc_rates() without the notifiers, and with the req_rate field
update, we can drop clk_core_update_orphan_child_rates() entirely, and
make __clk_recalc_rates() update req_rate.
However, __clk_recalc_rates() is being called in several code paths:
when retrieving a rate (most likely through clk_get_rate()), when changing
parents (through clk_set_rate() or clk_hw_reparent()), or when updating
the orphan status (through clk_core_reparent_orphans_nolock(), called at
registration).
Updating req_rate on reparenting or initialisation makes sense, but we
shouldn't do it on clk_get_rate(). Thus an extra flag has been added to
update or not req_rate depending on the context.
Fixes: cb1b1dd96241 ("clk: Set req_rate on reparenting")
Link: https://lore.kernel.org/linux-clk/0acc7217-762c-7c0d-45a0-55c384824ce4@samsung.com/
Link: https://lore.kernel.org/linux-clk/Y0QNSx+ZgqKSvPOC@sirena.org.uk/
Reported-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reported-by: Mark Brown <broonie@kernel.org>
Suggested-by: Stephen Boyd <sboyd@kernel.org>
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
Link: https://lore.kernel.org/r/20221010-rpi-clk-fixes-again-v1-1-d87ba82ac404@cerno.tech
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-10-10 14:47:38 +00:00
|
|
|
static void __clk_recalc_rates(struct clk_core *core, bool update_req,
|
|
|
|
unsigned long msg)
|
2015-01-20 02:05:28 +00:00
|
|
|
{
|
2015-04-30 21:43:22 +00:00
|
|
|
unsigned long old_rate;
|
|
|
|
unsigned long parent_rate = 0;
|
|
|
|
struct clk_core *child;
|
2013-07-29 11:25:02 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
lockdep_assert_held(&prepare_lock);
|
2015-01-20 02:05:28 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
old_rate = core->rate;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if (core->parent)
|
|
|
|
parent_rate = core->parent->rate;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
core->rate = clk_recalc(core, parent_rate);
|
clk: Update req_rate on __clk_recalc_rates()
Commit cb1b1dd96241 ("clk: Set req_rate on reparenting") introduced a
new function, clk_core_update_orphan_child_rates(), that updates the
req_rate field on reparenting.
It turns out that that function will interfere with the clock notifying
done by __clk_recalc_rates(). This ends up reporting the new rate in
both the old_rate and new_rate fields of struct clk_notifier_data.
Since clk_core_update_orphan_child_rates() is basically
__clk_recalc_rates() without the notifiers, and with the req_rate field
update, we can drop clk_core_update_orphan_child_rates() entirely, and
make __clk_recalc_rates() update req_rate.
However, __clk_recalc_rates() is being called in several code paths:
when retrieving a rate (most likely through clk_get_rate()), when changing
parents (through clk_set_rate() or clk_hw_reparent()), or when updating
the orphan status (through clk_core_reparent_orphans_nolock(), called at
registration).
Updating req_rate on reparenting or initialisation makes sense, but we
shouldn't do it on clk_get_rate(). Thus an extra flag has been added to
update or not req_rate depending on the context.
Fixes: cb1b1dd96241 ("clk: Set req_rate on reparenting")
Link: https://lore.kernel.org/linux-clk/0acc7217-762c-7c0d-45a0-55c384824ce4@samsung.com/
Link: https://lore.kernel.org/linux-clk/Y0QNSx+ZgqKSvPOC@sirena.org.uk/
Reported-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reported-by: Mark Brown <broonie@kernel.org>
Suggested-by: Stephen Boyd <sboyd@kernel.org>
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
Link: https://lore.kernel.org/r/20221010-rpi-clk-fixes-again-v1-1-d87ba82ac404@cerno.tech
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-10-10 14:47:38 +00:00
|
|
|
if (update_req)
|
|
|
|
core->req_rate = core->rate;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/*
|
|
|
|
* ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
|
|
|
|
* & ABORT_RATE_CHANGE notifiers
|
|
|
|
*/
|
|
|
|
if (core->notifier_count && msg)
|
|
|
|
__clk_notify(core, msg, old_rate, core->rate);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
hlist_for_each_entry(child, &core->children, child_node)
|
clk: Update req_rate on __clk_recalc_rates()
Commit cb1b1dd96241 ("clk: Set req_rate on reparenting") introduced a
new function, clk_core_update_orphan_child_rates(), that updates the
req_rate field on reparenting.
It turns out that that function will interfere with the clock notifying
done by __clk_recalc_rates(). This ends up reporting the new rate in
both the old_rate and new_rate fields of struct clk_notifier_data.
Since clk_core_update_orphan_child_rates() is basically
__clk_recalc_rates() without the notifiers, and with the req_rate field
update, we can drop clk_core_update_orphan_child_rates() entirely, and
make __clk_recalc_rates() update req_rate.
However, __clk_recalc_rates() is being called in several code paths:
when retrieving a rate (most likely through clk_get_rate()), when changing
parents (through clk_set_rate() or clk_hw_reparent()), or when updating
the orphan status (through clk_core_reparent_orphans_nolock(), called at
registration).
Updating req_rate on reparenting or initialisation makes sense, but we
shouldn't do it on clk_get_rate(). Thus an extra flag has been added to
update or not req_rate depending on the context.
Fixes: cb1b1dd96241 ("clk: Set req_rate on reparenting")
Link: https://lore.kernel.org/linux-clk/0acc7217-762c-7c0d-45a0-55c384824ce4@samsung.com/
Link: https://lore.kernel.org/linux-clk/Y0QNSx+ZgqKSvPOC@sirena.org.uk/
Reported-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reported-by: Mark Brown <broonie@kernel.org>
Suggested-by: Stephen Boyd <sboyd@kernel.org>
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
Link: https://lore.kernel.org/r/20221010-rpi-clk-fixes-again-v1-1-d87ba82ac404@cerno.tech
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-10-10 14:47:38 +00:00
|
|
|
__clk_recalc_rates(child, update_req, msg);
|
2015-04-30 21:43:22 +00:00
|
|
|
}
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2020-02-05 23:28:01 +00:00
|
|
|
static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
|
2015-04-30 21:43:22 +00:00
|
|
|
{
|
|
|
|
if (core && (core->flags & CLK_GET_RATE_NOCACHE))
|
clk: Update req_rate on __clk_recalc_rates()
Commit cb1b1dd96241 ("clk: Set req_rate on reparenting") introduced a
new function, clk_core_update_orphan_child_rates(), that updates the
req_rate field on reparenting.
It turns out that that function will interfere with the clock notifying
done by __clk_recalc_rates(). This ends up reporting the new rate in
both the old_rate and new_rate fields of struct clk_notifier_data.
Since clk_core_update_orphan_child_rates() is basically
__clk_recalc_rates() without the notifiers, and with the req_rate field
update, we can drop clk_core_update_orphan_child_rates() entirely, and
make __clk_recalc_rates() update req_rate.
However, __clk_recalc_rates() is being called in several code paths:
when retrieving a rate (most likely through clk_get_rate()), when changing
parents (through clk_set_rate() or clk_hw_reparent()), or when updating
the orphan status (through clk_core_reparent_orphans_nolock(), called at
registration).
Updating req_rate on reparenting or initialisation makes sense, but we
shouldn't do it on clk_get_rate(). Thus an extra flag has been added to
update or not req_rate depending on the context.
Fixes: cb1b1dd96241 ("clk: Set req_rate on reparenting")
Link: https://lore.kernel.org/linux-clk/0acc7217-762c-7c0d-45a0-55c384824ce4@samsung.com/
Link: https://lore.kernel.org/linux-clk/Y0QNSx+ZgqKSvPOC@sirena.org.uk/
Reported-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reported-by: Mark Brown <broonie@kernel.org>
Suggested-by: Stephen Boyd <sboyd@kernel.org>
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
Link: https://lore.kernel.org/r/20221010-rpi-clk-fixes-again-v1-1-d87ba82ac404@cerno.tech
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-10-10 14:47:38 +00:00
|
|
|
__clk_recalc_rates(core, false, 0);
|
2015-04-30 21:43:22 +00:00
|
|
|
|
2020-02-05 23:28:01 +00:00
|
|
|
return clk_core_get_rate_nolock(core);
|
2012-03-16 06:11:19 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2015-04-30 21:43:22 +00:00
|
|
|
* clk_get_rate - return the rate of clk
|
|
|
|
* @clk: the clk whose rate is being returned
|
2012-03-16 06:11:19 +00:00
|
|
|
*
|
2015-04-30 21:43:22 +00:00
|
|
|
* Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
|
2022-08-16 11:25:10 +00:00
|
|
|
* is set, which means a recalc_rate will be issued. Can be called regardless of
|
|
|
|
* the clock enabledness. If clk is NULL, or if an error occurred, then returns
|
|
|
|
* 0.
|
2012-03-16 06:11:19 +00:00
|
|
|
*/
|
2015-04-30 21:43:22 +00:00
|
|
|
unsigned long clk_get_rate(struct clk *clk)
|
2012-03-16 06:11:19 +00:00
|
|
|
{
|
2020-02-05 23:28:01 +00:00
|
|
|
unsigned long rate;
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if (!clk)
|
|
|
|
return 0;
|
2014-03-26 23:06:37 +00:00
|
|
|
|
2020-02-05 23:28:01 +00:00
|
|
|
clk_prepare_lock();
|
|
|
|
rate = clk_core_get_rate_recalc(clk->core);
|
|
|
|
clk_prepare_unlock();
|
|
|
|
|
|
|
|
return rate;
|
2012-03-16 06:11:19 +00:00
|
|
|
}
|
2015-04-30 21:43:22 +00:00
|
|
|
EXPORT_SYMBOL_GPL(clk_get_rate);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
static int clk_fetch_parent_index(struct clk_core *core,
|
|
|
|
struct clk_core *parent)
|
2012-03-16 06:11:19 +00:00
|
|
|
{
|
2015-04-30 21:43:22 +00:00
|
|
|
int i;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-12-28 10:23:08 +00:00
|
|
|
if (!parent)
|
|
|
|
return -EINVAL;
|
|
|
|
|
2018-12-21 00:31:00 +00:00
|
|
|
for (i = 0; i < core->num_parents; i++) {
|
2019-04-30 17:22:30 +00:00
|
|
|
/* Found it first try! */
|
2019-04-12 18:31:47 +00:00
|
|
|
if (core->parents[i].core == parent)
|
2015-04-30 21:43:22 +00:00
|
|
|
return i;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2019-04-30 17:22:30 +00:00
|
|
|
/* Something else is here, so keep looking */
|
2019-04-12 18:31:47 +00:00
|
|
|
if (core->parents[i].core)
|
2018-12-21 00:31:00 +00:00
|
|
|
continue;
|
|
|
|
|
2019-04-30 17:22:30 +00:00
|
|
|
/* Maybe core hasn't been cached but the hw is all we know? */
|
|
|
|
if (core->parents[i].hw) {
|
|
|
|
if (core->parents[i].hw == parent->hw)
|
|
|
|
break;
|
|
|
|
|
|
|
|
/* Didn't match, but we're expecting a clk_hw */
|
|
|
|
continue;
|
2018-12-21 00:31:00 +00:00
|
|
|
}
|
2019-04-30 17:22:30 +00:00
|
|
|
|
|
|
|
/* Maybe it hasn't been cached (clk_set_parent() path) */
|
|
|
|
if (parent == clk_core_get(core, i))
|
|
|
|
break;
|
|
|
|
|
|
|
|
/* Fallback to comparing globally unique names */
|
2019-08-15 22:31:55 +00:00
|
|
|
if (core->parents[i].name &&
|
|
|
|
!strcmp(parent->name, core->parents[i].name))
|
2019-04-30 17:22:30 +00:00
|
|
|
break;
|
2018-12-21 00:31:00 +00:00
|
|
|
}
|
|
|
|
|
2019-04-30 17:22:30 +00:00
|
|
|
if (i == core->num_parents)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
core->parents[i].core = parent;
|
|
|
|
return i;
|
2012-03-16 06:11:19 +00:00
|
|
|
}
|
|
|
|
|
2019-08-16 19:41:52 +00:00
|
|
|
/**
|
|
|
|
* clk_hw_get_parent_index - return the index of the parent clock
|
|
|
|
* @hw: clk_hw associated with the clk being consumed
|
|
|
|
*
|
|
|
|
* Fetches and returns the index of parent clock. Returns -EINVAL if the given
|
|
|
|
* clock does not have a current parent.
|
|
|
|
*/
|
|
|
|
int clk_hw_get_parent_index(struct clk_hw *hw)
|
|
|
|
{
|
|
|
|
struct clk_hw *parent = clk_hw_get_parent(hw);
|
|
|
|
|
|
|
|
if (WARN_ON(parent == NULL))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
return clk_fetch_parent_index(hw->core, parent->core);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
|
|
|
|
|
2015-04-22 20:53:05 +00:00
|
|
|
/*
|
|
|
|
* Update the orphan status of @core and all its children.
|
|
|
|
*/
|
|
|
|
static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
|
|
|
|
{
|
|
|
|
struct clk_core *child;
|
|
|
|
|
|
|
|
core->orphan = is_orphan;
|
|
|
|
|
|
|
|
hlist_for_each_entry(child, &core->children, child_node)
|
|
|
|
clk_core_update_orphan_status(child, is_orphan);
|
|
|
|
}
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
|
2012-03-16 06:11:19 +00:00
|
|
|
{
|
2015-04-22 20:53:05 +00:00
|
|
|
bool was_orphan = core->orphan;
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
hlist_del(&core->child_node);
|
2015-01-23 11:03:30 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if (new_parent) {
|
2015-04-22 20:53:05 +00:00
|
|
|
bool becomes_orphan = new_parent->orphan;
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/* avoid duplicate POST_RATE_CHANGE notifications */
|
|
|
|
if (new_parent->new_child == core)
|
|
|
|
new_parent->new_child = NULL;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
hlist_add_head(&core->child_node, &new_parent->children);
|
2015-04-22 20:53:05 +00:00
|
|
|
|
|
|
|
if (was_orphan != becomes_orphan)
|
|
|
|
clk_core_update_orphan_status(core, becomes_orphan);
|
2015-04-30 21:43:22 +00:00
|
|
|
} else {
|
|
|
|
hlist_add_head(&core->child_node, &clk_orphan_list);
|
2015-04-22 20:53:05 +00:00
|
|
|
if (!was_orphan)
|
|
|
|
clk_core_update_orphan_status(core, true);
|
2015-04-30 21:43:22 +00:00
|
|
|
}
|
2015-02-02 22:37:41 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
core->parent = new_parent;
|
2015-01-23 11:03:30 +00:00
|
|
|
}
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
static struct clk_core *__clk_set_parent_before(struct clk_core *core,
|
|
|
|
struct clk_core *parent)
|
2012-03-16 06:11:19 +00:00
|
|
|
{
|
|
|
|
unsigned long flags;
|
2015-04-30 21:43:22 +00:00
|
|
|
struct clk_core *old_parent = core->parent;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/*
|
2016-06-30 09:31:14 +00:00
|
|
|
* 1. enable parents for CLK_OPS_PARENT_ENABLE clock
|
|
|
|
*
|
|
|
|
* 2. Migrate prepare state between parents and prevent race with
|
2015-04-30 21:43:22 +00:00
|
|
|
* clk_enable().
|
|
|
|
*
|
|
|
|
* If the clock is not prepared, then a race with
|
|
|
|
* clk_enable/disable() is impossible since we already have the
|
|
|
|
* prepare lock (future calls to clk_enable() need to be preceded by
|
|
|
|
* a clk_prepare()).
|
|
|
|
*
|
|
|
|
* If the clock is prepared, migrate the prepared state to the new
|
|
|
|
* parent and also protect against a race with clk_enable() by
|
|
|
|
* forcing the clock and the new parent on. This ensures that all
|
|
|
|
* future calls to clk_enable() are practically NOPs with respect to
|
|
|
|
* hardware and software states.
|
|
|
|
*
|
|
|
|
* See also: Comment for clk_set_parent() below.
|
|
|
|
*/
|
2016-06-30 09:31:14 +00:00
|
|
|
|
|
|
|
/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
|
|
|
|
if (core->flags & CLK_OPS_PARENT_ENABLE) {
|
|
|
|
clk_core_prepare_enable(old_parent);
|
|
|
|
clk_core_prepare_enable(parent);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* migrate prepare count if > 0 */
|
2015-04-30 21:43:22 +00:00
|
|
|
if (core->prepare_count) {
|
2016-06-30 09:31:14 +00:00
|
|
|
clk_core_prepare_enable(parent);
|
|
|
|
clk_core_enable_lock(core);
|
2015-04-30 21:43:22 +00:00
|
|
|
}
|
2014-03-26 23:06:37 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/* update the clk tree topology */
|
2013-03-28 20:59:01 +00:00
|
|
|
flags = clk_enable_lock();
|
2015-04-30 21:43:22 +00:00
|
|
|
clk_reparent(core, parent);
|
2013-03-28 20:59:01 +00:00
|
|
|
clk_enable_unlock(flags);
|
2015-04-30 21:43:22 +00:00
|
|
|
|
|
|
|
return old_parent;
|
2012-03-16 06:11:19 +00:00
|
|
|
}
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
static void __clk_set_parent_after(struct clk_core *core,
|
|
|
|
struct clk_core *parent,
|
|
|
|
struct clk_core *old_parent)
|
2012-03-16 06:11:19 +00:00
|
|
|
{
|
2015-04-30 21:43:22 +00:00
|
|
|
/*
|
|
|
|
* Finish the migration of prepare state and undo the changes done
|
|
|
|
* for preventing a race with clk_enable().
|
|
|
|
*/
|
|
|
|
if (core->prepare_count) {
|
2016-06-30 09:31:14 +00:00
|
|
|
clk_core_disable_lock(core);
|
|
|
|
clk_core_disable_unprepare(old_parent);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
|
|
|
|
if (core->flags & CLK_OPS_PARENT_ENABLE) {
|
|
|
|
clk_core_disable_unprepare(parent);
|
|
|
|
clk_core_disable_unprepare(old_parent);
|
2015-04-30 21:43:22 +00:00
|
|
|
}
|
|
|
|
}
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
|
|
|
|
u8 p_index)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
int ret = 0;
|
|
|
|
struct clk_core *old_parent;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
old_parent = __clk_set_parent_before(core, parent);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
trace_clk_set_parent(core, parent);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/* change clock input source */
|
|
|
|
if (parent && core->ops->set_parent)
|
|
|
|
ret = core->ops->set_parent(core->hw, p_index);
|
2015-02-02 22:37:41 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
trace_clk_set_parent_complete(core, parent);
|
2015-02-02 22:37:41 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if (ret) {
|
|
|
|
flags = clk_enable_lock();
|
|
|
|
clk_reparent(core, old_parent);
|
|
|
|
clk_enable_unlock(flags);
|
clk: Set req_rate on reparenting
If a non-rate clock started by default with a parent that never
registered, core->req_rate will be 0. The expectation is that whenever
the parent will be registered, req_rate will be updated with the new
value that has just been computed.
However, if that clock is a mux, clk_set_parent() can also make that
clock no longer orphan. In this case however, we never update req_rate.
The natural solution to this would be to update core->rate and
core->req_rate in clk_reparent() by calling clk_recalc().
However, this doesn't work in all cases. Indeed, clk_recalc() is called
by __clk_set_parent_before(), __clk_set_parent() and
clk_core_reparent(). Both __clk_set_parent_before() and __clk_set_parent
will call clk_recalc() with the enable_lock taken through a call to
clk_enable_lock(), the underlying locking primitive being a spinlock.
clk_recalc() calls the backing driver .recalc_rate hook, and that
implementation might sleep if the underlying device uses a bus with
accesses that might sleep, such as i2c.
In such a situation, we would end up sleeping while holding a spinlock,
and thus in an atomic section.
In order to work around this, we can move the core->rate and
core->req_rate update to the clk_recalc() calling sites, after the
enable_lock has been released if it was taken.
The only situation that could still be problematic is the
clk_core_reparent() -> clk_reparent() case that doesn't have any
locking. clk_core_reparent() is itself called by clk_hw_reparent(),
which is then called by 4 drivers:
* clk-stm32mp1.c, stm32/clk-stm32-core.c and tegra/clk-tegra210-emc.c
use it in their set_parent implementation. The set_parent hook is
only called by __clk_set_parent() and clk_change_rate(), both of
them calling it without the enable_lock taken.
* clk/tegra/clk-tegra124-emc.c calls it as part of its set_rate
implementation. set_rate is only called by clk_change_rate(), again
without the enable_lock taken.
In both cases we can't end up in a situation where the clk_hw_reparent()
caller would hold a spinlock, so it seems like this is a good
workaround.
Let's also add some unit tests to make sure we cover the original bug.
Tested-by: Alexander Stein <alexander.stein@ew.tq-group.com> # imx8mp
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com> # exynos4210, meson g12b
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
Link: https://lore.kernel.org/r/20220816112530.1837489-14-maxime@cerno.tech
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-08-16 11:25:18 +00:00
|
|
|
|
2015-07-28 13:19:41 +00:00
|
|
|
__clk_set_parent_after(core, old_parent, parent);
|
2015-02-02 22:37:41 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
return ret;
|
2012-03-16 06:11:19 +00:00
|
|
|
}
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
__clk_set_parent_after(core, parent, old_parent);
|
|
|
|
|
2012-03-16 06:11:19 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2015-04-30 21:43:22 +00:00
|
|
|
* __clk_speculate_rates
|
|
|
|
* @core: first clk in the subtree
|
|
|
|
* @parent_rate: the "future" rate of clk's parent
|
2012-03-16 06:11:19 +00:00
|
|
|
*
|
2015-04-30 21:43:22 +00:00
|
|
|
* Walks the subtree of clks starting with clk, speculating rates as it
|
|
|
|
* goes and firing off PRE_RATE_CHANGE notifications as necessary.
|
|
|
|
*
|
|
|
|
* Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
|
|
|
|
* pre-rate change notifications and returns early if no clks in the
|
|
|
|
* subtree have subscribed to the notifications. Note that if a clk does not
|
|
|
|
* implement the .recalc_rate callback then it is assumed that the clock will
|
|
|
|
* take on the rate of its parent.
|
2012-03-16 06:11:19 +00:00
|
|
|
*/
|
2015-04-30 21:43:22 +00:00
|
|
|
static int __clk_speculate_rates(struct clk_core *core,
|
|
|
|
unsigned long parent_rate)
|
2012-03-16 06:11:19 +00:00
|
|
|
{
|
2015-04-30 21:43:22 +00:00
|
|
|
struct clk_core *child;
|
|
|
|
unsigned long new_rate;
|
|
|
|
int ret = NOTIFY_DONE;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
lockdep_assert_held(&prepare_lock);
|
2015-04-30 21:02:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
new_rate = clk_recalc(core, parent_rate);
|
|
|
|
|
|
|
|
/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
|
|
|
|
if (core->notifier_count)
|
|
|
|
ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
|
|
|
|
|
|
|
|
if (ret & NOTIFY_STOP_MASK) {
|
|
|
|
pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
|
|
|
|
__func__, core->name, ret);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
hlist_for_each_entry(child, &core->children, child_node) {
|
|
|
|
ret = __clk_speculate_rates(child, new_rate);
|
|
|
|
if (ret & NOTIFY_STOP_MASK)
|
|
|
|
break;
|
|
|
|
}
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
out:
|
2012-03-16 06:11:19 +00:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
|
|
|
|
struct clk_core *new_parent, u8 p_index)
|
2012-03-16 06:11:19 +00:00
|
|
|
{
|
2015-04-30 21:43:22 +00:00
|
|
|
struct clk_core *child;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
core->new_rate = new_rate;
|
|
|
|
core->new_parent = new_parent;
|
|
|
|
core->new_parent_index = p_index;
|
|
|
|
/* include clk in new parent's PRE_RATE_CHANGE notifications */
|
|
|
|
core->new_child = NULL;
|
|
|
|
if (new_parent && new_parent != core->parent)
|
|
|
|
new_parent->new_child = core;
|
2015-01-09 08:28:10 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
hlist_for_each_entry(child, &core->children, child_node) {
|
|
|
|
child->new_rate = clk_recalc(child, new_rate);
|
|
|
|
clk_calc_subtree(child, child->new_rate, NULL, 0);
|
|
|
|
}
|
|
|
|
}
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/*
|
|
|
|
* calculate the new rates returning the topmost clock that has to be
|
|
|
|
* changed.
|
|
|
|
*/
|
|
|
|
static struct clk_core *clk_calc_new_rates(struct clk_core *core,
|
|
|
|
unsigned long rate)
|
|
|
|
{
|
|
|
|
struct clk_core *top = core;
|
|
|
|
struct clk_core *old_parent, *parent;
|
|
|
|
unsigned long best_parent_rate = 0;
|
|
|
|
unsigned long new_rate;
|
|
|
|
unsigned long min_rate;
|
|
|
|
unsigned long max_rate;
|
|
|
|
int p_index = 0;
|
|
|
|
long ret;
|
|
|
|
|
|
|
|
/* sanity */
|
|
|
|
if (IS_ERR_OR_NULL(core))
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
/* save parent rate, if it exists */
|
|
|
|
parent = old_parent = core->parent;
|
2013-07-29 11:25:00 +00:00
|
|
|
if (parent)
|
2015-04-30 21:43:22 +00:00
|
|
|
best_parent_rate = parent->rate;
|
2013-07-29 11:25:00 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
clk_core_get_boundaries(core, &min_rate, &max_rate);
|
|
|
|
|
|
|
|
/* find the closest rate and parent clk/rate */
|
2017-12-01 21:51:54 +00:00
|
|
|
if (clk_core_can_round(core)) {
|
2015-07-07 18:48:08 +00:00
|
|
|
struct clk_rate_request req;
|
|
|
|
|
2022-08-16 11:25:19 +00:00
|
|
|
clk_core_init_rate_req(core, &req, rate);
|
2017-12-01 21:51:54 +00:00
|
|
|
|
2022-10-26 13:46:59 +00:00
|
|
|
trace_clk_rate_request_start(&req);
|
|
|
|
|
2017-12-01 21:51:54 +00:00
|
|
|
ret = clk_core_determine_round_nolock(core, &req);
|
2015-04-30 21:43:22 +00:00
|
|
|
if (ret < 0)
|
|
|
|
return NULL;
|
2015-01-23 11:03:31 +00:00
|
|
|
|
2022-10-26 13:46:59 +00:00
|
|
|
trace_clk_rate_request_done(&req);
|
|
|
|
|
2015-07-07 18:48:08 +00:00
|
|
|
best_parent_rate = req.best_parent_rate;
|
|
|
|
new_rate = req.rate;
|
|
|
|
parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
|
2015-01-23 11:03:30 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if (new_rate < min_rate || new_rate > max_rate)
|
|
|
|
return NULL;
|
|
|
|
} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
|
|
|
|
/* pass-through clock without adjustable parent */
|
|
|
|
core->new_rate = core->rate;
|
|
|
|
return NULL;
|
|
|
|
} else {
|
|
|
|
/* pass-through clock with adjustable parent */
|
|
|
|
top = clk_calc_new_rates(parent, rate);
|
|
|
|
new_rate = parent->new_rate;
|
|
|
|
goto out;
|
|
|
|
}
|
2015-01-23 11:03:31 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/* some clocks must be gated to change parent */
|
|
|
|
if (parent != old_parent &&
|
|
|
|
(core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
|
|
|
|
pr_debug("%s: %s not gated but wants to reparent\n",
|
|
|
|
__func__, core->name);
|
|
|
|
return NULL;
|
|
|
|
}
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/* try finding the new parent index */
|
|
|
|
if (parent && core->num_parents > 1) {
|
|
|
|
p_index = clk_fetch_parent_index(core, parent);
|
|
|
|
if (p_index < 0) {
|
|
|
|
pr_debug("%s: clk %s can not be parent of clk %s\n",
|
|
|
|
__func__, parent->name, core->name);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
}
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
|
|
|
|
best_parent_rate != parent->rate)
|
|
|
|
top = clk_calc_new_rates(parent, best_parent_rate);
|
2015-01-23 11:03:30 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
out:
|
|
|
|
clk_calc_subtree(core, new_rate, parent, p_index);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
return top;
|
2012-03-16 06:11:19 +00:00
|
|
|
}
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/*
|
|
|
|
* Notify about rate changes in a subtree. Always walk down the whole tree
|
|
|
|
* so that in case of an error we can walk down the whole tree again and
|
|
|
|
* abort the change.
|
2012-03-16 06:11:19 +00:00
|
|
|
*/
|
2015-04-30 21:43:22 +00:00
|
|
|
static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
|
|
|
|
unsigned long event)
|
2012-03-16 06:11:19 +00:00
|
|
|
{
|
2015-04-30 21:43:22 +00:00
|
|
|
struct clk_core *child, *tmp_clk, *fail_clk = NULL;
|
2012-03-16 06:11:19 +00:00
|
|
|
int ret = NOTIFY_DONE;
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if (core->rate == core->new_rate)
|
|
|
|
return NULL;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if (core->notifier_count) {
|
|
|
|
ret = __clk_notify(core, event, core->rate, core->new_rate);
|
|
|
|
if (ret & NOTIFY_STOP_MASK)
|
|
|
|
fail_clk = core;
|
2012-03-16 06:11:19 +00:00
|
|
|
}
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
hlist_for_each_entry(child, &core->children, child_node) {
|
|
|
|
/* Skip children who will be reparented to another clock */
|
|
|
|
if (child->new_parent && child->new_parent != core)
|
|
|
|
continue;
|
|
|
|
tmp_clk = clk_propagate_rate_change(child, event);
|
|
|
|
if (tmp_clk)
|
|
|
|
fail_clk = tmp_clk;
|
|
|
|
}
|
2013-12-21 09:34:47 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/* handle the new child who might not be in core->children yet */
|
|
|
|
if (core->new_child) {
|
|
|
|
tmp_clk = clk_propagate_rate_change(core->new_child, event);
|
|
|
|
if (tmp_clk)
|
|
|
|
fail_clk = tmp_clk;
|
|
|
|
}
|
2013-12-21 09:34:47 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
return fail_clk;
|
2013-12-21 09:34:47 +00:00
|
|
|
}
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/*
|
|
|
|
* walk down a subtree and set the new rates notifying the rate
|
|
|
|
* change on the way
|
|
|
|
*/
|
|
|
|
static void clk_change_rate(struct clk_core *core)
|
2015-01-23 11:03:30 +00:00
|
|
|
{
|
2015-04-30 21:43:22 +00:00
|
|
|
struct clk_core *child;
|
|
|
|
struct hlist_node *tmp;
|
|
|
|
unsigned long old_rate;
|
|
|
|
unsigned long best_parent_rate = 0;
|
|
|
|
bool skip_set_rate = false;
|
|
|
|
struct clk_core *old_parent;
|
2016-06-30 09:31:14 +00:00
|
|
|
struct clk_core *parent = NULL;
|
2015-01-23 11:03:30 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
old_rate = core->rate;
|
2015-01-23 11:03:30 +00:00
|
|
|
|
2016-06-30 09:31:14 +00:00
|
|
|
if (core->new_parent) {
|
|
|
|
parent = core->new_parent;
|
2015-04-30 21:43:22 +00:00
|
|
|
best_parent_rate = core->new_parent->rate;
|
2016-06-30 09:31:14 +00:00
|
|
|
} else if (core->parent) {
|
|
|
|
parent = core->parent;
|
2015-04-30 21:43:22 +00:00
|
|
|
best_parent_rate = core->parent->rate;
|
2016-06-30 09:31:14 +00:00
|
|
|
}
|
2015-01-23 11:03:30 +00:00
|
|
|
|
2017-11-30 12:14:51 +00:00
|
|
|
if (clk_pm_runtime_get(core))
|
|
|
|
return;
|
|
|
|
|
2015-12-22 21:27:58 +00:00
|
|
|
if (core->flags & CLK_SET_RATE_UNGATE) {
|
|
|
|
clk_core_prepare(core);
|
2021-03-05 00:33:34 +00:00
|
|
|
clk_core_enable_lock(core);
|
2015-12-22 21:27:58 +00:00
|
|
|
}
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if (core->new_parent && core->new_parent != core->parent) {
|
|
|
|
old_parent = __clk_set_parent_before(core, core->new_parent);
|
|
|
|
trace_clk_set_parent(core, core->new_parent);
|
2013-12-21 09:34:47 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if (core->ops->set_rate_and_parent) {
|
|
|
|
skip_set_rate = true;
|
|
|
|
core->ops->set_rate_and_parent(core->hw, core->new_rate,
|
|
|
|
best_parent_rate,
|
|
|
|
core->new_parent_index);
|
|
|
|
} else if (core->ops->set_parent) {
|
|
|
|
core->ops->set_parent(core->hw, core->new_parent_index);
|
|
|
|
}
|
2013-12-21 09:34:47 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
trace_clk_set_parent_complete(core, core->new_parent);
|
|
|
|
__clk_set_parent_after(core, core->new_parent, old_parent);
|
|
|
|
}
|
2014-03-26 23:06:36 +00:00
|
|
|
|
2016-06-30 09:31:14 +00:00
|
|
|
if (core->flags & CLK_OPS_PARENT_ENABLE)
|
|
|
|
clk_core_prepare_enable(parent);
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
trace_clk_set_rate(core, core->new_rate);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if (!skip_set_rate && core->ops->set_rate)
|
|
|
|
core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
|
2015-01-09 08:28:10 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
trace_clk_set_rate_complete(core, core->new_rate);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
core->rate = clk_recalc(core, best_parent_rate);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-12-22 21:27:58 +00:00
|
|
|
if (core->flags & CLK_SET_RATE_UNGATE) {
|
2021-03-05 00:33:34 +00:00
|
|
|
clk_core_disable_lock(core);
|
2015-12-22 21:27:58 +00:00
|
|
|
clk_core_unprepare(core);
|
|
|
|
}
|
|
|
|
|
2016-06-30 09:31:14 +00:00
|
|
|
if (core->flags & CLK_OPS_PARENT_ENABLE)
|
|
|
|
clk_core_disable_unprepare(parent);
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if (core->notifier_count && old_rate != core->rate)
|
|
|
|
__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-06-20 19:18:03 +00:00
|
|
|
if (core->flags & CLK_RECALC_NEW_RATES)
|
|
|
|
(void)clk_calc_new_rates(core, core->new_rate);
|
2015-04-03 16:43:44 +00:00
|
|
|
|
2012-03-16 06:11:19 +00:00
|
|
|
/*
|
2015-04-30 21:43:22 +00:00
|
|
|
* Use safe iteration, as change_rate can actually swap parents
|
|
|
|
* for certain clock types.
|
2012-03-16 06:11:19 +00:00
|
|
|
*/
|
2015-04-30 21:43:22 +00:00
|
|
|
hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
|
|
|
|
/* Skip children who will be reparented to another clock */
|
|
|
|
if (child->new_parent && child->new_parent != core)
|
|
|
|
continue;
|
|
|
|
clk_change_rate(child);
|
|
|
|
}
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/* handle the new child who might not be in core->children yet */
|
|
|
|
if (core->new_child)
|
|
|
|
clk_change_rate(core->new_child);
|
2017-11-30 12:14:51 +00:00
|
|
|
|
|
|
|
clk_pm_runtime_put(core);
|
2012-03-16 06:11:19 +00:00
|
|
|
}
|
|
|
|
|
2017-12-01 21:51:55 +00:00
|
|
|
static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
|
|
|
|
unsigned long req_rate)
|
|
|
|
{
|
2017-12-01 21:51:56 +00:00
|
|
|
int ret, cnt;
|
2017-12-01 21:51:55 +00:00
|
|
|
struct clk_rate_request req;
|
|
|
|
|
|
|
|
lockdep_assert_held(&prepare_lock);
|
|
|
|
|
|
|
|
if (!core)
|
|
|
|
return 0;
|
|
|
|
|
2017-12-01 21:51:56 +00:00
|
|
|
/* simulate what the rate would be if it could be freely set */
|
|
|
|
cnt = clk_core_rate_nuke_protect(core);
|
|
|
|
if (cnt < 0)
|
|
|
|
return cnt;
|
|
|
|
|
clk: Move clk_core_init_rate_req() from clk_core_round_rate_nolock() to its caller
The clk_rate_request structure is used internally as an argument for
the clk_core_determine_round_nolock() and clk_core_round_rate_nolock().
In both cases, the clk_core_init_rate_req() function is used to
initialize the clk_rate_request structure.
However, the expectation on who gets to call that function is
inconsistent between those two functions. Indeed,
clk_core_determine_round_nolock() will assume the structure is properly
initialized and will just use it.
On the other hand, clk_core_round_rate_nolock() will call
clk_core_init_rate_req() itself, expecting the caller to have filled
only a minimal set of parameters (rate, min_rate and max_rate).
If we ignore the calling convention inconsistency, this leads to a
second inconsistency for drivers:
* If they get called by the framework through
clk_core_round_rate_nolock(), the rate, min_rate and max_rate
fields will be filled by the caller, and the best_parent_rate and
best_parent_hw fields will get filled by clk_core_init_rate_req().
* If they get called by a driver through __clk_determine_rate (and
thus clk_core_round_rate_nolock), only best_parent_rate and
best_parent_hw are being explicitly set by the framework. Even
though we can reasonably expect rate to be set, only one of the 6
in-tree users explicitly set min_rate and max_rate.
* If they get called by the framework through
clk_core_determine_round_nolock(), then we have two callpaths.
Either it will be called by clk_core_round_rate_nolock() itself, or
it will be called by clk_calc_new_rates(), which will properly
initialize rate, min_rate, max_rate itself, and best_parent_rate
and best_parent_hw through clk_core_init_rate_req().
Even though the first and third case seems equivalent, they aren't when
the clock has CLK_SET_RATE_PARENT. Indeed, in such a case
clk_core_round_rate_nolock() will call itself on the current parent
clock with the same clk_rate_request structure.
The clk_core_init_rate_req() function will then be called on the parent
clock, with the child clk_rate_request pointer and will fill the
best_parent_rate and best_parent_hw fields with the parent context.
When the whole recursion stops and the call returns, the initial caller
will end up with a clk_rate_request structure with some information of
the child clock (rate, min_rate, max_rate) and some others of the last
clock up the tree whose child had CLK_SET_RATE_PARENT (best_parent_hw,
best_parent_rate).
In the most common case, best_parent_rate is going to be equal on all
the parent clocks so it's not a big deal. However, best_parent_hw is
going to point to a clock that never has been a valid parent for that
clock which is definitely confusing.
In order to fix the calling inconsistency, let's move the
clk_core_init_rate_req() calls to the callers, which will also help a
bit with the clk_core_round_rate_nolock() recursion.
Tested-by: Alexander Stein <alexander.stein@ew.tq-group.com> # imx8mp
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com> # exynos4210, meson g12b
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
Link: https://lore.kernel.org/r/20220816112530.1837489-16-maxime@cerno.tech
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-08-16 11:25:20 +00:00
|
|
|
clk_core_init_rate_req(core, &req, req_rate);
|
2017-12-01 21:51:55 +00:00
|
|
|
|
2022-10-26 13:46:59 +00:00
|
|
|
trace_clk_rate_request_start(&req);
|
|
|
|
|
2017-12-01 21:51:55 +00:00
|
|
|
ret = clk_core_round_rate_nolock(core, &req);
|
|
|
|
|
2022-10-26 13:46:59 +00:00
|
|
|
trace_clk_rate_request_done(&req);
|
|
|
|
|
2017-12-01 21:51:56 +00:00
|
|
|
/* restore the protection */
|
|
|
|
clk_core_rate_restore_protect(core, cnt);
|
|
|
|
|
2017-12-01 21:51:55 +00:00
|
|
|
return ret ? 0 : req.rate;
|
2012-03-16 06:11:19 +00:00
|
|
|
}
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
static int clk_core_set_rate_nolock(struct clk_core *core,
|
|
|
|
unsigned long req_rate)
|
2012-08-31 12:21:28 +00:00
|
|
|
{
|
2015-04-30 21:43:22 +00:00
|
|
|
struct clk_core *top, *fail_clk;
|
2017-12-01 21:51:55 +00:00
|
|
|
unsigned long rate;
|
2022-06-30 15:12:05 +00:00
|
|
|
int ret;
|
2012-08-31 12:21:28 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if (!core)
|
|
|
|
return 0;
|
2012-08-31 12:21:28 +00:00
|
|
|
|
2017-12-01 21:51:55 +00:00
|
|
|
rate = clk_core_req_round_rate_nolock(core, req_rate);
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/* bail early if nothing to do */
|
|
|
|
if (rate == clk_core_get_rate_nolock(core))
|
|
|
|
return 0;
|
2012-08-31 12:21:28 +00:00
|
|
|
|
2017-12-01 21:51:56 +00:00
|
|
|
/* fail on a direct rate set of a protected provider */
|
|
|
|
if (clk_core_rate_is_protected(core))
|
|
|
|
return -EBUSY;
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/* calculate new rates and get the topmost changed clock */
|
2017-12-01 21:51:55 +00:00
|
|
|
top = clk_calc_new_rates(core, req_rate);
|
2015-04-30 21:43:22 +00:00
|
|
|
if (!top)
|
|
|
|
return -EINVAL;
|
|
|
|
|
2017-08-21 08:04:59 +00:00
|
|
|
ret = clk_pm_runtime_get(core);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/* notify that we are about to change rates */
|
|
|
|
fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
|
|
|
|
if (fail_clk) {
|
|
|
|
pr_debug("%s: failed to set %s rate\n", __func__,
|
|
|
|
fail_clk->name);
|
|
|
|
clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
|
2017-08-21 08:04:59 +00:00
|
|
|
ret = -EBUSY;
|
|
|
|
goto err;
|
2015-04-30 21:43:22 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* change the rates */
|
|
|
|
clk_change_rate(top);
|
|
|
|
|
|
|
|
core->req_rate = req_rate;
|
2017-08-21 08:04:59 +00:00
|
|
|
err:
|
|
|
|
clk_pm_runtime_put(core);
|
2015-04-30 21:43:22 +00:00
|
|
|
|
2017-08-21 08:04:59 +00:00
|
|
|
return ret;
|
2012-08-31 12:21:28 +00:00
|
|
|
}
|
2015-01-23 11:03:30 +00:00
|
|
|
|
|
|
|
/**
|
2015-04-30 21:43:22 +00:00
|
|
|
* clk_set_rate - specify a new rate for clk
|
|
|
|
* @clk: the clk whose rate is being changed
|
|
|
|
* @rate: the new rate for clk
|
2015-01-23 11:03:30 +00:00
|
|
|
*
|
2015-04-30 21:43:22 +00:00
|
|
|
* In the simplest case clk_set_rate will only adjust the rate of clk.
|
|
|
|
*
|
|
|
|
* Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
|
|
|
|
* propagate up to clk's parent; whether or not this happens depends on the
|
|
|
|
* outcome of clk's .round_rate implementation. If *parent_rate is unchanged
|
|
|
|
* after calling .round_rate then upstream parent propagation is ignored. If
|
|
|
|
* *parent_rate comes back with a new rate for clk's parent then we propagate
|
|
|
|
* up to clk's parent and set its rate. Upward propagation will continue
|
|
|
|
* until either a clk does not support the CLK_SET_RATE_PARENT flag or
|
|
|
|
* .round_rate stops requesting changes to clk's parent_rate.
|
|
|
|
*
|
|
|
|
* Rate changes are accomplished via tree traversal that also recalculates the
|
|
|
|
* rates for the clocks and fires off POST_RATE_CHANGE notifiers.
|
|
|
|
*
|
|
|
|
* Returns 0 on success, -EERROR otherwise.
|
2015-01-23 11:03:30 +00:00
|
|
|
*/
|
2015-04-30 21:43:22 +00:00
|
|
|
int clk_set_rate(struct clk *clk, unsigned long rate)
|
2015-01-23 11:03:30 +00:00
|
|
|
{
|
2015-04-30 21:43:22 +00:00
|
|
|
int ret;
|
|
|
|
|
2015-01-23 11:03:30 +00:00
|
|
|
if (!clk)
|
|
|
|
return 0;
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/* prevent racing with updates to the clock topology */
|
|
|
|
clk_prepare_lock();
|
2013-09-29 00:37:16 +00:00
|
|
|
|
2017-12-01 21:51:59 +00:00
|
|
|
if (clk->exclusive_count)
|
|
|
|
clk_core_rate_unprotect(clk->core);
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
ret = clk_core_set_rate_nolock(clk->core, rate);
|
2013-09-29 00:37:16 +00:00
|
|
|
|
2017-12-01 21:51:59 +00:00
|
|
|
if (clk->exclusive_count)
|
|
|
|
clk_core_rate_protect(clk->core);
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
clk_prepare_unlock();
|
2013-07-29 11:24:59 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
return ret;
|
2013-07-29 11:24:59 +00:00
|
|
|
}
|
2015-04-30 21:43:22 +00:00
|
|
|
EXPORT_SYMBOL_GPL(clk_set_rate);
|
2013-07-29 11:24:59 +00:00
|
|
|
|
2017-12-01 21:51:59 +00:00
|
|
|
/**
|
2019-06-17 13:56:02 +00:00
|
|
|
* clk_set_rate_exclusive - specify a new rate and get exclusive control
|
2017-12-01 21:51:59 +00:00
|
|
|
* @clk: the clk whose rate is being changed
|
|
|
|
* @rate: the new rate for clk
|
|
|
|
*
|
|
|
|
* This is a combination of clk_set_rate() and clk_rate_exclusive_get()
|
|
|
|
* within a critical section
|
|
|
|
*
|
|
|
|
* This can be used initially to ensure that at least 1 consumer is
|
2019-06-17 13:56:02 +00:00
|
|
|
* satisfied when several consumers are competing for exclusivity over the
|
2017-12-01 21:51:59 +00:00
|
|
|
* same clock provider.
|
|
|
|
*
|
|
|
|
* The exclusivity is not applied if setting the rate failed.
|
|
|
|
*
|
|
|
|
* Calls to clk_rate_exclusive_get() should be balanced with calls to
|
|
|
|
* clk_rate_exclusive_put().
|
|
|
|
*
|
|
|
|
* Returns 0 on success, -EERROR otherwise.
|
|
|
|
*/
|
|
|
|
int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (!clk)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* prevent racing with updates to the clock topology */
|
|
|
|
clk_prepare_lock();
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The temporary protection removal is not here, on purpose
|
|
|
|
* This function is meant to be used instead of clk_rate_protect,
|
|
|
|
* so before the consumer code path protect the clock provider
|
|
|
|
*/
|
|
|
|
|
|
|
|
ret = clk_core_set_rate_nolock(clk->core, rate);
|
|
|
|
if (!ret) {
|
|
|
|
clk_core_rate_protect(clk->core);
|
|
|
|
clk->exclusive_count++;
|
|
|
|
}
|
|
|
|
|
|
|
|
clk_prepare_unlock();
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
|
|
|
|
|
2022-08-16 11:25:07 +00:00
|
|
|
static int clk_set_rate_range_nolock(struct clk *clk,
|
|
|
|
unsigned long min,
|
|
|
|
unsigned long max)
|
2013-07-29 11:24:59 +00:00
|
|
|
{
|
2015-04-30 21:43:22 +00:00
|
|
|
int ret = 0;
|
2017-12-01 21:52:00 +00:00
|
|
|
unsigned long old_min, old_max, rate;
|
2013-07-29 11:24:59 +00:00
|
|
|
|
2022-08-16 11:25:07 +00:00
|
|
|
lockdep_assert_held(&prepare_lock);
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if (!clk)
|
|
|
|
return 0;
|
2013-08-29 11:10:51 +00:00
|
|
|
|
2020-12-07 10:50:50 +00:00
|
|
|
trace_clk_set_rate_range(clk->core, min, max);
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if (min > max) {
|
|
|
|
pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
|
|
|
|
__func__, clk->core->name, clk->dev_id, clk->con_id,
|
|
|
|
min, max);
|
|
|
|
return -EINVAL;
|
2013-08-29 11:10:51 +00:00
|
|
|
}
|
2013-07-29 11:24:59 +00:00
|
|
|
|
2017-12-01 21:51:59 +00:00
|
|
|
if (clk->exclusive_count)
|
|
|
|
clk_core_rate_unprotect(clk->core);
|
|
|
|
|
2017-12-01 21:52:00 +00:00
|
|
|
/* Save the current values in case we need to rollback the change */
|
|
|
|
old_min = clk->min_rate;
|
|
|
|
old_max = clk->max_rate;
|
|
|
|
clk->min_rate = min;
|
|
|
|
clk->max_rate = max;
|
|
|
|
|
clk: Enforce that disjoints limits are invalid
If we were to have two users of the same clock, doing something like:
clk_set_rate_range(user1, 1000, 2000);
clk_set_rate_range(user2, 3000, 4000);
The second call would fail with -EINVAL, preventing from getting in a
situation where we end up with impossible limits.
However, this is never explicitly checked against and enforced, and
works by relying on an undocumented behaviour of clk_set_rate().
Indeed, on the first clk_set_rate_range will make sure the current clock
rate is within the new range, so it will be between 1000 and 2000Hz. On
the second clk_set_rate_range(), it will consider (rightfully), that our
current clock is outside of the 3000-4000Hz range, and will call
clk_core_set_rate_nolock() to set it to 3000Hz.
clk_core_set_rate_nolock() will then call clk_calc_new_rates() that will
eventually check that our rate 3000Hz rate is outside the min 3000Hz max
2000Hz range, will bail out, the error will propagate and we'll
eventually return -EINVAL.
This solely relies on the fact that clk_calc_new_rates(), and in
particular clk_core_determine_round_nolock(), won't modify the new rate
allowing the error to be reported. That assumption won't be true for all
drivers, and most importantly we'll break that assumption in a later
patch.
It can also be argued that we shouldn't even reach the point where we're
calling clk_core_set_rate_nolock().
Let's make an explicit check for disjoints range before we're doing
anything.
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
Link: https://lore.kernel.org/r/20220225143534.405820-4-maxime@cerno.tech
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-02-25 14:35:25 +00:00
|
|
|
if (!clk_core_check_boundaries(clk->core, min, max)) {
|
|
|
|
ret = -EINVAL;
|
|
|
|
goto out;
|
|
|
|
}
|
2017-12-01 21:52:00 +00:00
|
|
|
|
2022-08-16 11:25:17 +00:00
|
|
|
rate = clk->core->req_rate;
|
|
|
|
if (clk->core->flags & CLK_GET_RATE_NOCACHE)
|
|
|
|
rate = clk_core_get_rate_recalc(clk->core);
|
|
|
|
|
2022-02-25 14:35:28 +00:00
|
|
|
/*
|
|
|
|
* Since the boundaries have been changed, let's give the
|
|
|
|
* opportunity to the provider to adjust the clock rate based on
|
|
|
|
* the new boundaries.
|
|
|
|
*
|
|
|
|
* We also need to handle the case where the clock is currently
|
|
|
|
* outside of the boundaries. Clamping the last requested rate
|
|
|
|
* to the current minimum and maximum will also handle this.
|
|
|
|
*
|
|
|
|
* FIXME:
|
|
|
|
* There is a catch. It may fail for the usual reason (clock
|
|
|
|
* broken, clock protected, etc) but also because:
|
|
|
|
* - round_rate() was not favorable and fell on the wrong
|
|
|
|
* side of the boundary
|
|
|
|
* - the determine_rate() callback does not really check for
|
|
|
|
* this corner case when determining the rate
|
|
|
|
*/
|
2022-08-16 11:25:17 +00:00
|
|
|
rate = clamp(rate, min, max);
|
2022-02-25 14:35:28 +00:00
|
|
|
ret = clk_core_set_rate_nolock(clk->core, rate);
|
|
|
|
if (ret) {
|
|
|
|
/* rollback the changes */
|
|
|
|
clk->min_rate = old_min;
|
|
|
|
clk->max_rate = old_max;
|
2013-07-29 11:24:59 +00:00
|
|
|
}
|
|
|
|
|
clk: Enforce that disjoints limits are invalid
If we were to have two users of the same clock, doing something like:
clk_set_rate_range(user1, 1000, 2000);
clk_set_rate_range(user2, 3000, 4000);
The second call would fail with -EINVAL, preventing from getting in a
situation where we end up with impossible limits.
However, this is never explicitly checked against and enforced, and
works by relying on an undocumented behaviour of clk_set_rate().
Indeed, on the first clk_set_rate_range will make sure the current clock
rate is within the new range, so it will be between 1000 and 2000Hz. On
the second clk_set_rate_range(), it will consider (rightfully), that our
current clock is outside of the 3000-4000Hz range, and will call
clk_core_set_rate_nolock() to set it to 3000Hz.
clk_core_set_rate_nolock() will then call clk_calc_new_rates() that will
eventually check that our rate 3000Hz rate is outside the min 3000Hz max
2000Hz range, will bail out, the error will propagate and we'll
eventually return -EINVAL.
This solely relies on the fact that clk_calc_new_rates(), and in
particular clk_core_determine_round_nolock(), won't modify the new rate
allowing the error to be reported. That assumption won't be true for all
drivers, and most importantly we'll break that assumption in a later
patch.
It can also be argued that we shouldn't even reach the point where we're
calling clk_core_set_rate_nolock().
Let's make an explicit check for disjoints range before we're doing
anything.
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
Link: https://lore.kernel.org/r/20220225143534.405820-4-maxime@cerno.tech
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-02-25 14:35:25 +00:00
|
|
|
out:
|
2017-12-01 21:51:59 +00:00
|
|
|
if (clk->exclusive_count)
|
|
|
|
clk_core_rate_protect(clk->core);
|
|
|
|
|
2022-08-16 11:25:07 +00:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* clk_set_rate_range - set a rate range for a clock source
|
|
|
|
* @clk: clock source
|
|
|
|
* @min: desired minimum clock rate in Hz, inclusive
|
|
|
|
* @max: desired maximum clock rate in Hz, inclusive
|
|
|
|
*
|
|
|
|
* Return: 0 for success or negative errno on failure.
|
|
|
|
*/
|
|
|
|
int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (!clk)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
clk_prepare_lock();
|
|
|
|
|
|
|
|
ret = clk_set_rate_range_nolock(clk, min, max);
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
clk_prepare_unlock();
|
2013-07-29 11:24:59 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
return ret;
|
2014-01-15 18:47:22 +00:00
|
|
|
}
|
2015-04-30 21:43:22 +00:00
|
|
|
EXPORT_SYMBOL_GPL(clk_set_rate_range);
|
2014-01-15 18:47:22 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/**
|
|
|
|
* clk_set_min_rate - set a minimum clock rate for a clock source
|
|
|
|
* @clk: clock source
|
|
|
|
* @rate: desired minimum clock rate in Hz, inclusive
|
|
|
|
*
|
|
|
|
* Returns success (0) or negative errno.
|
|
|
|
*/
|
|
|
|
int clk_set_min_rate(struct clk *clk, unsigned long rate)
|
2014-01-15 18:47:22 +00:00
|
|
|
{
|
2015-04-30 21:43:22 +00:00
|
|
|
if (!clk)
|
|
|
|
return 0;
|
|
|
|
|
2020-12-07 10:50:50 +00:00
|
|
|
trace_clk_set_min_rate(clk->core, rate);
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
return clk_set_rate_range(clk, rate, clk->max_rate);
|
2014-01-15 18:47:22 +00:00
|
|
|
}
|
2015-04-30 21:43:22 +00:00
|
|
|
EXPORT_SYMBOL_GPL(clk_set_min_rate);
|
2014-01-15 18:47:22 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/**
|
|
|
|
* clk_set_max_rate - set a maximum clock rate for a clock source
|
|
|
|
* @clk: clock source
|
|
|
|
* @rate: desired maximum clock rate in Hz, inclusive
|
|
|
|
*
|
|
|
|
* Returns success (0) or negative errno.
|
|
|
|
*/
|
|
|
|
int clk_set_max_rate(struct clk *clk, unsigned long rate)
|
2014-01-15 18:47:22 +00:00
|
|
|
{
|
2015-04-30 21:43:22 +00:00
|
|
|
if (!clk)
|
|
|
|
return 0;
|
2013-07-29 11:24:59 +00:00
|
|
|
|
2020-12-07 10:50:50 +00:00
|
|
|
trace_clk_set_max_rate(clk->core, rate);
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
return clk_set_rate_range(clk, clk->min_rate, rate);
|
2013-07-29 11:24:59 +00:00
|
|
|
}
|
2015-04-30 21:43:22 +00:00
|
|
|
EXPORT_SYMBOL_GPL(clk_set_max_rate);
|
2013-07-29 11:24:59 +00:00
|
|
|
|
2012-03-16 06:11:19 +00:00
|
|
|
/**
|
2015-04-30 21:43:22 +00:00
|
|
|
* clk_get_parent - return the parent of a clk
|
|
|
|
* @clk: the clk whose parent gets returned
|
2012-03-16 06:11:19 +00:00
|
|
|
*
|
2015-04-30 21:43:22 +00:00
|
|
|
* Simply returns clk->parent. Returns NULL if clk is NULL.
|
2012-03-16 06:11:19 +00:00
|
|
|
*/
|
2015-04-30 21:43:22 +00:00
|
|
|
struct clk *clk_get_parent(struct clk *clk)
|
2012-03-16 06:11:19 +00:00
|
|
|
{
|
2015-04-30 21:43:22 +00:00
|
|
|
struct clk *parent;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-06-26 00:24:15 +00:00
|
|
|
if (!clk)
|
|
|
|
return NULL;
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
clk_prepare_lock();
|
2015-06-26 00:24:15 +00:00
|
|
|
/* TODO: Create a per-user clk and change callers to call clk_put */
|
|
|
|
parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
|
2015-04-30 21:43:22 +00:00
|
|
|
clk_prepare_unlock();
|
2015-01-09 08:28:10 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
return parent;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(clk_get_parent);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
static struct clk_core *__clk_init_parent(struct clk_core *core)
|
|
|
|
{
|
2015-12-28 10:23:04 +00:00
|
|
|
u8 index = 0;
|
2015-04-30 21:43:22 +00:00
|
|
|
|
2016-02-09 11:19:14 +00:00
|
|
|
if (core->num_parents > 1 && core->ops->get_parent)
|
2015-12-28 10:23:04 +00:00
|
|
|
index = core->ops->get_parent(core->hw);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-12-28 10:23:04 +00:00
|
|
|
return clk_core_get_parent_by_index(core, index);
|
2012-03-16 06:11:19 +00:00
|
|
|
}
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
static void clk_core_reparent(struct clk_core *core,
|
|
|
|
struct clk_core *new_parent)
|
2012-03-16 06:11:19 +00:00
|
|
|
{
|
2015-04-30 21:43:22 +00:00
|
|
|
clk_reparent(core, new_parent);
|
|
|
|
__clk_recalc_accuracies(core);
|
clk: Update req_rate on __clk_recalc_rates()
Commit cb1b1dd96241 ("clk: Set req_rate on reparenting") introduced a
new function, clk_core_update_orphan_child_rates(), that updates the
req_rate field on reparenting.
It turns out that that function will interfere with the clock notifying
done by __clk_recalc_rates(). This ends up reporting the new rate in
both the old_rate and new_rate fields of struct clk_notifier_data.
Since clk_core_update_orphan_child_rates() is basically
__clk_recalc_rates() without the notifiers, and with the req_rate field
update, we can drop clk_core_update_orphan_child_rates() entirely, and
make __clk_recalc_rates() update req_rate.
However, __clk_recalc_rates() is being called in several code paths:
when retrieving a rate (most likely through clk_get_rate()), when changing
parents (through clk_set_rate() or clk_hw_reparent()), or when updating
the orphan status (through clk_core_reparent_orphans_nolock(), called at
registration).
Updating req_rate on reparenting or initialisation makes sense, but we
shouldn't do it on clk_get_rate(). Thus an extra flag has been added to
update or not req_rate depending on the context.
Fixes: cb1b1dd96241 ("clk: Set req_rate on reparenting")
Link: https://lore.kernel.org/linux-clk/0acc7217-762c-7c0d-45a0-55c384824ce4@samsung.com/
Link: https://lore.kernel.org/linux-clk/Y0QNSx+ZgqKSvPOC@sirena.org.uk/
Reported-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reported-by: Mark Brown <broonie@kernel.org>
Suggested-by: Stephen Boyd <sboyd@kernel.org>
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
Link: https://lore.kernel.org/r/20221010-rpi-clk-fixes-again-v1-1-d87ba82ac404@cerno.tech
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-10-10 14:47:38 +00:00
|
|
|
__clk_recalc_rates(core, true, POST_RATE_CHANGE);
|
2012-03-16 06:11:19 +00:00
|
|
|
}
|
|
|
|
|
2015-03-11 10:34:25 +00:00
|
|
|
void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
|
|
|
|
{
|
|
|
|
if (!hw)
|
|
|
|
return;
|
|
|
|
|
|
|
|
clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
|
|
|
|
}
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/**
|
|
|
|
* clk_has_parent - check if a clock is a possible parent for another
|
|
|
|
* @clk: clock source
|
|
|
|
* @parent: parent clock source
|
|
|
|
*
|
|
|
|
* This function can be used in drivers that need to check that a clock can be
|
|
|
|
* the parent of another without actually changing the parent.
|
|
|
|
*
|
|
|
|
* Returns true if @parent is a possible parent for @clk, false otherwise.
|
2012-03-16 06:11:19 +00:00
|
|
|
*/
|
2022-08-16 11:25:25 +00:00
|
|
|
bool clk_has_parent(const struct clk *clk, const struct clk *parent)
|
2012-03-16 06:11:19 +00:00
|
|
|
{
|
2015-04-30 21:43:22 +00:00
|
|
|
/* NULL clocks should be nops, so return success if either is NULL. */
|
|
|
|
if (!clk || !parent)
|
|
|
|
return true;
|
2012-03-26 21:45:36 +00:00
|
|
|
|
2022-08-16 11:25:24 +00:00
|
|
|
return clk_core_has_parent(clk->core, parent->core);
|
2015-04-30 21:43:22 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(clk_has_parent);
|
2015-03-29 01:48:48 +00:00
|
|
|
|
2017-12-01 21:51:52 +00:00
|
|
|
static int clk_core_set_parent_nolock(struct clk_core *core,
|
|
|
|
struct clk_core *parent)
|
2015-04-30 21:43:22 +00:00
|
|
|
{
|
|
|
|
int ret = 0;
|
|
|
|
int p_index = 0;
|
|
|
|
unsigned long p_rate = 0;
|
|
|
|
|
2017-12-01 21:51:52 +00:00
|
|
|
lockdep_assert_held(&prepare_lock);
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if (!core)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (core->parent == parent)
|
2017-12-01 21:51:52 +00:00
|
|
|
return 0;
|
2015-04-30 21:43:22 +00:00
|
|
|
|
2019-08-17 06:35:59 +00:00
|
|
|
/* verify ops for multi-parent clks */
|
2017-12-01 21:51:52 +00:00
|
|
|
if (core->num_parents > 1 && !core->ops->set_parent)
|
|
|
|
return -EPERM;
|
2012-03-26 21:45:36 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/* check that we are allowed to re-parent if the clock is in use */
|
2017-12-01 21:51:52 +00:00
|
|
|
if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
|
|
|
|
return -EBUSY;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2017-12-01 21:51:56 +00:00
|
|
|
if (clk_core_rate_is_protected(core))
|
|
|
|
return -EBUSY;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2013-07-29 11:25:00 +00:00
|
|
|
/* try finding the new parent index */
|
2015-04-30 21:43:22 +00:00
|
|
|
if (parent) {
|
2015-04-30 20:54:13 +00:00
|
|
|
p_index = clk_fetch_parent_index(core, parent);
|
2013-09-29 00:37:14 +00:00
|
|
|
if (p_index < 0) {
|
2013-07-29 11:25:00 +00:00
|
|
|
pr_debug("%s: clk %s can not be parent of clk %s\n",
|
2015-04-30 21:43:22 +00:00
|
|
|
__func__, parent->name, core->name);
|
2017-12-01 21:51:52 +00:00
|
|
|
return p_index;
|
2013-07-29 11:25:00 +00:00
|
|
|
}
|
2015-12-28 10:23:10 +00:00
|
|
|
p_rate = parent->rate;
|
2012-03-16 06:11:19 +00:00
|
|
|
}
|
|
|
|
|
2017-08-21 08:04:59 +00:00
|
|
|
ret = clk_pm_runtime_get(core);
|
|
|
|
if (ret)
|
2017-12-01 21:51:52 +00:00
|
|
|
return ret;
|
2017-08-21 08:04:59 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/* propagate PRE_RATE_CHANGE notifications */
|
|
|
|
ret = __clk_speculate_rates(core, p_rate);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/* abort if a driver objects */
|
|
|
|
if (ret & NOTIFY_STOP_MASK)
|
2017-08-21 08:04:59 +00:00
|
|
|
goto runtime_put;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/* do the re-parent */
|
|
|
|
ret = __clk_set_parent(core, parent, p_index);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/* propagate rate an accuracy recalculation accordingly */
|
|
|
|
if (ret) {
|
clk: Update req_rate on __clk_recalc_rates()
Commit cb1b1dd96241 ("clk: Set req_rate on reparenting") introduced a
new function, clk_core_update_orphan_child_rates(), that updates the
req_rate field on reparenting.
It turns out that that function will interfere with the clock notifying
done by __clk_recalc_rates(). This ends up reporting the new rate in
both the old_rate and new_rate fields of struct clk_notifier_data.
Since clk_core_update_orphan_child_rates() is basically
__clk_recalc_rates() without the notifiers, and with the req_rate field
update, we can drop clk_core_update_orphan_child_rates() entirely, and
make __clk_recalc_rates() update req_rate.
However, __clk_recalc_rates() is being called in several code paths:
when retrieving a rate (most likely through clk_get_rate()), when changing
parents (through clk_set_rate() or clk_hw_reparent()), or when updating
the orphan status (through clk_core_reparent_orphans_nolock(), called at
registration).
Updating req_rate on reparenting or initialisation makes sense, but we
shouldn't do it on clk_get_rate(). Thus an extra flag has been added to
update or not req_rate depending on the context.
Fixes: cb1b1dd96241 ("clk: Set req_rate on reparenting")
Link: https://lore.kernel.org/linux-clk/0acc7217-762c-7c0d-45a0-55c384824ce4@samsung.com/
Link: https://lore.kernel.org/linux-clk/Y0QNSx+ZgqKSvPOC@sirena.org.uk/
Reported-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reported-by: Mark Brown <broonie@kernel.org>
Suggested-by: Stephen Boyd <sboyd@kernel.org>
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
Link: https://lore.kernel.org/r/20221010-rpi-clk-fixes-again-v1-1-d87ba82ac404@cerno.tech
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-10-10 14:47:38 +00:00
|
|
|
__clk_recalc_rates(core, true, ABORT_RATE_CHANGE);
|
2015-04-30 21:43:22 +00:00
|
|
|
} else {
|
clk: Update req_rate on __clk_recalc_rates()
Commit cb1b1dd96241 ("clk: Set req_rate on reparenting") introduced a
new function, clk_core_update_orphan_child_rates(), that updates the
req_rate field on reparenting.
It turns out that that function will interfere with the clock notifying
done by __clk_recalc_rates(). This ends up reporting the new rate in
both the old_rate and new_rate fields of struct clk_notifier_data.
Since clk_core_update_orphan_child_rates() is basically
__clk_recalc_rates() without the notifiers, and with the req_rate field
update, we can drop clk_core_update_orphan_child_rates() entirely, and
make __clk_recalc_rates() update req_rate.
However, __clk_recalc_rates() is being called in several code paths:
when retrieving a rate (most likely through clk_get_rate()), when changing
parents (through clk_set_rate() or clk_hw_reparent()), or when updating
the orphan status (through clk_core_reparent_orphans_nolock(), called at
registration).
Updating req_rate on reparenting or initialisation makes sense, but we
shouldn't do it on clk_get_rate(). Thus an extra flag has been added to
update or not req_rate depending on the context.
Fixes: cb1b1dd96241 ("clk: Set req_rate on reparenting")
Link: https://lore.kernel.org/linux-clk/0acc7217-762c-7c0d-45a0-55c384824ce4@samsung.com/
Link: https://lore.kernel.org/linux-clk/Y0QNSx+ZgqKSvPOC@sirena.org.uk/
Reported-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reported-by: Mark Brown <broonie@kernel.org>
Suggested-by: Stephen Boyd <sboyd@kernel.org>
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
Link: https://lore.kernel.org/r/20221010-rpi-clk-fixes-again-v1-1-d87ba82ac404@cerno.tech
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-10-10 14:47:38 +00:00
|
|
|
__clk_recalc_rates(core, true, POST_RATE_CHANGE);
|
2015-04-30 21:43:22 +00:00
|
|
|
__clk_recalc_accuracies(core);
|
2012-03-16 06:11:19 +00:00
|
|
|
}
|
|
|
|
|
2017-08-21 08:04:59 +00:00
|
|
|
runtime_put:
|
|
|
|
clk_pm_runtime_put(core);
|
2013-07-29 11:25:00 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
return ret;
|
|
|
|
}
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2019-07-31 08:40:16 +00:00
|
|
|
int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
|
|
|
|
{
|
|
|
|
return clk_core_set_parent_nolock(hw->core, parent->core);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(clk_hw_set_parent);
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/**
|
|
|
|
* clk_set_parent - switch the parent of a mux clk
|
|
|
|
* @clk: the mux clk whose input we are switching
|
|
|
|
* @parent: the new input to clk
|
|
|
|
*
|
|
|
|
* Re-parent clk to use parent as its new input source. If clk is in
|
|
|
|
* prepared state, the clk will get enabled for the duration of this call. If
|
|
|
|
* that's not acceptable for a specific clk (Eg: the consumer can't handle
|
|
|
|
* that, the reparenting is glitchy in hardware, etc), use the
|
|
|
|
* CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
|
|
|
|
*
|
|
|
|
* After successfully changing clk's parent clk_set_parent will update the
|
|
|
|
* clk topology, sysfs topology and propagate rate recalculation via
|
|
|
|
* __clk_recalc_rates.
|
|
|
|
*
|
|
|
|
* Returns 0 on success, -EERROR otherwise.
|
|
|
|
*/
|
|
|
|
int clk_set_parent(struct clk *clk, struct clk *parent)
|
|
|
|
{
|
2017-12-01 21:51:52 +00:00
|
|
|
int ret;
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if (!clk)
|
|
|
|
return 0;
|
|
|
|
|
2017-12-01 21:51:52 +00:00
|
|
|
clk_prepare_lock();
|
2017-12-01 21:51:59 +00:00
|
|
|
|
|
|
|
if (clk->exclusive_count)
|
|
|
|
clk_core_rate_unprotect(clk->core);
|
|
|
|
|
2017-12-01 21:51:52 +00:00
|
|
|
ret = clk_core_set_parent_nolock(clk->core,
|
|
|
|
parent ? parent->core : NULL);
|
2017-12-01 21:51:59 +00:00
|
|
|
|
|
|
|
if (clk->exclusive_count)
|
|
|
|
clk_core_rate_protect(clk->core);
|
|
|
|
|
2017-12-01 21:51:52 +00:00
|
|
|
clk_prepare_unlock();
|
|
|
|
|
|
|
|
return ret;
|
2012-03-16 06:11:19 +00:00
|
|
|
}
|
2015-04-30 21:43:22 +00:00
|
|
|
EXPORT_SYMBOL_GPL(clk_set_parent);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2017-12-01 21:51:53 +00:00
|
|
|
static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
|
|
|
|
{
|
|
|
|
int ret = -EINVAL;
|
|
|
|
|
|
|
|
lockdep_assert_held(&prepare_lock);
|
|
|
|
|
|
|
|
if (!core)
|
|
|
|
return 0;
|
|
|
|
|
2017-12-01 21:51:56 +00:00
|
|
|
if (clk_core_rate_is_protected(core))
|
|
|
|
return -EBUSY;
|
|
|
|
|
2017-12-01 21:51:53 +00:00
|
|
|
trace_clk_set_phase(core, degrees);
|
|
|
|
|
2018-03-08 06:49:41 +00:00
|
|
|
if (core->ops->set_phase) {
|
2017-12-01 21:51:53 +00:00
|
|
|
ret = core->ops->set_phase(core->hw, degrees);
|
2018-03-08 06:49:41 +00:00
|
|
|
if (!ret)
|
|
|
|
core->phase = degrees;
|
|
|
|
}
|
2017-12-01 21:51:53 +00:00
|
|
|
|
|
|
|
trace_clk_set_phase_complete(core, degrees);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/**
|
|
|
|
* clk_set_phase - adjust the phase shift of a clock signal
|
|
|
|
* @clk: clock signal source
|
|
|
|
* @degrees: number of degrees the signal is shifted
|
|
|
|
*
|
|
|
|
* Shifts the phase of a clock signal by the specified
|
|
|
|
* degrees. Returns 0 on success, -EERROR otherwise.
|
|
|
|
*
|
|
|
|
* This function makes no distinction about the input or reference
|
|
|
|
* signal that we adjust the clock signal phase against. For example
|
|
|
|
* phase locked-loop clock signal generators we may shift phase with
|
|
|
|
* respect to feedback clock signal input, but for other cases the
|
|
|
|
* clock phase may be shifted with respect to some other, unspecified
|
|
|
|
* signal.
|
|
|
|
*
|
|
|
|
* Additionally the concept of phase shift does not propagate through
|
|
|
|
* the clock tree hierarchy, which sets it apart from clock rates and
|
|
|
|
* clock accuracy. A parent clock phase attribute does not have an
|
|
|
|
* impact on the phase attribute of a child clock.
|
2012-03-16 06:11:19 +00:00
|
|
|
*/
|
2015-04-30 21:43:22 +00:00
|
|
|
int clk_set_phase(struct clk *clk, int degrees)
|
2012-03-16 06:11:19 +00:00
|
|
|
{
|
2017-12-01 21:51:53 +00:00
|
|
|
int ret;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if (!clk)
|
|
|
|
return 0;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/* sanity check degrees */
|
|
|
|
degrees %= 360;
|
|
|
|
if (degrees < 0)
|
|
|
|
degrees += 360;
|
2012-06-08 13:04:06 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
clk_prepare_lock();
|
2014-01-15 18:47:22 +00:00
|
|
|
|
2017-12-01 21:51:59 +00:00
|
|
|
if (clk->exclusive_count)
|
|
|
|
clk_core_rate_unprotect(clk->core);
|
2014-01-15 18:47:22 +00:00
|
|
|
|
2017-12-01 21:51:53 +00:00
|
|
|
ret = clk_core_set_phase_nolock(clk->core, degrees);
|
2014-01-15 18:47:22 +00:00
|
|
|
|
2017-12-01 21:51:59 +00:00
|
|
|
if (clk->exclusive_count)
|
|
|
|
clk_core_rate_protect(clk->core);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
clk_prepare_unlock();
|
2015-02-02 22:37:41 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(clk_set_phase);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
static int clk_core_get_phase(struct clk_core *core)
|
|
|
|
{
|
|
|
|
int ret;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2020-02-05 23:27:59 +00:00
|
|
|
lockdep_assert_held(&prepare_lock);
|
|
|
|
if (!core->ops->get_phase)
|
|
|
|
return 0;
|
|
|
|
|
clk: Don't show the incorrect clock phase
It's found that the clock phase output from clk_summary is
wrong compared to the actual phase reading from the register.
cat /sys/kernel/debug/clk/clk_summary | grep sdio_sample
sdio_sample 0 1 0 50000000 0 -22
It exposes an issue that clk core, clk_core_get_phase, always
returns the cached core->phase which should be either updated
by calling clk_set_phase or directly from the first place the
clk was registered.
When registering the clk, the core->phase geting from ->get_phase()
may return negative value indicating error. This is quite common
since the clk's phase may be highly related to its parent chain,
but it was temporarily orphan when registered, since its parent
chains hadn't be ready at that time, so the clk drivers decide to
return error in this case. However, if no clk_set_phase is called or
maybe the ->set_phase() isn't even implemented, the core->phase would
never be updated. This is wrong, and we should try to update it when
all its parent chains are settled down, like the way of updating clock
rate for that. But it's not deserved to complicate the code now and
just update it anyway when calling clk_core_get_phase, which would be
much simple and enough.
Signed-off-by: Shawn Lin <shawn.lin@rock-chips.com>
Acked-by: Jerome Brunet <jbrunet@baylibre.com>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2018-03-14 00:28:31 +00:00
|
|
|
/* Always try to update cached phase if possible */
|
2020-02-05 23:27:59 +00:00
|
|
|
ret = core->ops->get_phase(core->hw);
|
|
|
|
if (ret >= 0)
|
|
|
|
core->phase = ret;
|
2013-07-29 11:25:00 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
return ret;
|
2012-03-16 06:11:19 +00:00
|
|
|
}
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/**
|
|
|
|
* clk_get_phase - return the phase shift of a clock signal
|
|
|
|
* @clk: clock signal source
|
|
|
|
*
|
|
|
|
* Returns the phase shift of a clock node in degrees, otherwise returns
|
|
|
|
* -EERROR.
|
|
|
|
*/
|
|
|
|
int clk_get_phase(struct clk *clk)
|
2015-01-23 11:03:31 +00:00
|
|
|
{
|
2020-02-05 23:27:59 +00:00
|
|
|
int ret;
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
if (!clk)
|
2015-01-23 11:03:31 +00:00
|
|
|
return 0;
|
|
|
|
|
2020-02-05 23:27:59 +00:00
|
|
|
clk_prepare_lock();
|
|
|
|
ret = clk_core_get_phase(clk->core);
|
|
|
|
clk_prepare_unlock();
|
|
|
|
|
|
|
|
return ret;
|
2015-04-30 21:43:22 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(clk_get_phase);
|
2015-01-23 11:03:31 +00:00
|
|
|
|
clk: add duty cycle support
Add the possibility to apply and query the clock signal duty cycle ratio.
This is useful when the duty cycle of the clock signal depends on some
other parameters controlled by the clock framework.
For example, the duty cycle of a divider may depends on the raw divider
setting (ratio = N / div) , which is controlled by the CCF. In such case,
going through the pwm framework to control the duty cycle ratio of this
clock would be a burden.
A clock provider is not required to implement the operation to set and get
the duty cycle. If it does not implement .get_duty_cycle(), the ratio is
assumed to be 50%.
This change also adds a new flag, CLK_DUTY_CYCLE_PARENT. This flag should
be used to indicate that a clock, such as gates and muxes, may inherit
the duty cycle ratio of its parent clock. If a clock does not provide a
get_duty_cycle() callback and has CLK_DUTY_CYCLE_PARENT, then the call
will be directly forwarded to its parent clock, if any. For
set_duty_cycle(), the clock should also have CLK_SET_RATE_PARENT for the
call to be forwarded
Signed-off-by: Jerome Brunet <jbrunet@baylibre.com>
Signed-off-by: Michael Turquette <mturquette@baylibre.com>
Link: lkml.kernel.org/r/20180619144141.8506-1-jbrunet@baylibre.com
2018-06-19 14:41:41 +00:00
|
|
|
static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
|
|
|
|
{
|
|
|
|
/* Assume a default value of 50% */
|
|
|
|
core->duty.num = 1;
|
|
|
|
core->duty.den = 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
|
|
|
|
|
|
|
|
static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
|
|
|
|
{
|
|
|
|
struct clk_duty *duty = &core->duty;
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
if (!core->ops->get_duty_cycle)
|
|
|
|
return clk_core_update_duty_cycle_parent_nolock(core);
|
|
|
|
|
|
|
|
ret = core->ops->get_duty_cycle(core->hw, duty);
|
|
|
|
if (ret)
|
|
|
|
goto reset;
|
|
|
|
|
|
|
|
/* Don't trust the clock provider too much */
|
|
|
|
if (duty->den == 0 || duty->num > duty->den) {
|
|
|
|
ret = -EINVAL;
|
|
|
|
goto reset;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
reset:
|
|
|
|
clk_core_reset_duty_cycle_nolock(core);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
|
|
|
|
{
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
if (core->parent &&
|
|
|
|
core->flags & CLK_DUTY_CYCLE_PARENT) {
|
|
|
|
ret = clk_core_update_duty_cycle_nolock(core->parent);
|
|
|
|
memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
|
|
|
|
} else {
|
|
|
|
clk_core_reset_duty_cycle_nolock(core);
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
|
|
|
|
struct clk_duty *duty);
|
|
|
|
|
|
|
|
static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
|
|
|
|
struct clk_duty *duty)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
lockdep_assert_held(&prepare_lock);
|
|
|
|
|
|
|
|
if (clk_core_rate_is_protected(core))
|
|
|
|
return -EBUSY;
|
|
|
|
|
|
|
|
trace_clk_set_duty_cycle(core, duty);
|
|
|
|
|
|
|
|
if (!core->ops->set_duty_cycle)
|
|
|
|
return clk_core_set_duty_cycle_parent_nolock(core, duty);
|
|
|
|
|
|
|
|
ret = core->ops->set_duty_cycle(core->hw, duty);
|
|
|
|
if (!ret)
|
|
|
|
memcpy(&core->duty, duty, sizeof(*duty));
|
|
|
|
|
|
|
|
trace_clk_set_duty_cycle_complete(core, duty);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
|
|
|
|
struct clk_duty *duty)
|
|
|
|
{
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
if (core->parent &&
|
|
|
|
core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
|
|
|
|
ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
|
|
|
|
memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
|
|
|
|
* @clk: clock signal source
|
|
|
|
* @num: numerator of the duty cycle ratio to be applied
|
|
|
|
* @den: denominator of the duty cycle ratio to be applied
|
|
|
|
*
|
|
|
|
* Apply the duty cycle ratio if the ratio is valid and the clock can
|
|
|
|
* perform this operation
|
|
|
|
*
|
|
|
|
* Returns (0) on success, a negative errno otherwise.
|
|
|
|
*/
|
|
|
|
int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
struct clk_duty duty;
|
|
|
|
|
|
|
|
if (!clk)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* sanity check the ratio */
|
|
|
|
if (den == 0 || num > den)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
duty.num = num;
|
|
|
|
duty.den = den;
|
|
|
|
|
|
|
|
clk_prepare_lock();
|
|
|
|
|
|
|
|
if (clk->exclusive_count)
|
|
|
|
clk_core_rate_unprotect(clk->core);
|
|
|
|
|
|
|
|
ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
|
|
|
|
|
|
|
|
if (clk->exclusive_count)
|
|
|
|
clk_core_rate_protect(clk->core);
|
|
|
|
|
|
|
|
clk_prepare_unlock();
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
|
|
|
|
|
|
|
|
static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
|
|
|
|
unsigned int scale)
|
|
|
|
{
|
|
|
|
struct clk_duty *duty = &core->duty;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
clk_prepare_lock();
|
|
|
|
|
|
|
|
ret = clk_core_update_duty_cycle_nolock(core);
|
|
|
|
if (!ret)
|
|
|
|
ret = mult_frac(scale, duty->num, duty->den);
|
|
|
|
|
|
|
|
clk_prepare_unlock();
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
|
|
|
|
* @clk: clock signal source
|
|
|
|
* @scale: scaling factor to be applied to represent the ratio as an integer
|
|
|
|
*
|
|
|
|
* Returns the duty cycle ratio of a clock node multiplied by the provided
|
|
|
|
* scaling factor, or negative errno on error.
|
|
|
|
*/
|
|
|
|
int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
|
|
|
|
{
|
|
|
|
if (!clk)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
return clk_core_get_scaled_duty_cycle(clk->core, scale);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/**
|
|
|
|
* clk_is_match - check if two clk's point to the same hardware clock
|
|
|
|
* @p: clk compared against q
|
|
|
|
* @q: clk compared against p
|
|
|
|
*
|
|
|
|
* Returns true if the two struct clk pointers both point to the same hardware
|
|
|
|
* clock node. Put differently, returns true if struct clk *p and struct clk *q
|
|
|
|
* share the same struct clk_core object.
|
|
|
|
*
|
|
|
|
* Returns false otherwise. Note that two NULL clks are treated as matching.
|
|
|
|
*/
|
|
|
|
bool clk_is_match(const struct clk *p, const struct clk *q)
|
|
|
|
{
|
|
|
|
/* trivial case: identical struct clk's or both NULL */
|
|
|
|
if (p == q)
|
|
|
|
return true;
|
2015-01-23 11:03:31 +00:00
|
|
|
|
2015-10-29 19:55:00 +00:00
|
|
|
/* true if clk->core pointers match. Avoid dereferencing garbage */
|
2015-04-30 21:43:22 +00:00
|
|
|
if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
|
|
|
|
if (p->core == q->core)
|
|
|
|
return true;
|
2015-01-23 11:03:31 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(clk_is_match);
|
2015-01-23 11:03:31 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/*** debugfs support ***/
|
2015-01-23 11:03:31 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
|
|
#include <linux/debugfs.h>
|
2015-01-23 11:03:31 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
static struct dentry *rootdir;
|
|
|
|
static int inited = 0;
|
|
|
|
static DEFINE_MUTEX(clk_debug_lock);
|
|
|
|
static HLIST_HEAD(clk_debug_list);
|
2015-01-23 11:03:31 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
static struct hlist_head *orphan_list[] = {
|
|
|
|
&clk_orphan_list,
|
|
|
|
NULL,
|
|
|
|
};
|
|
|
|
|
|
|
|
static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
|
|
|
|
int level)
|
2012-03-16 06:11:19 +00:00
|
|
|
{
|
2020-02-05 23:27:59 +00:00
|
|
|
int phase;
|
|
|
|
|
|
|
|
seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ",
|
2015-04-30 21:43:22 +00:00
|
|
|
level * 3 + 1, "",
|
|
|
|
30 - level * 3, c->name,
|
2017-12-01 21:51:56 +00:00
|
|
|
c->enable_count, c->prepare_count, c->protect_count,
|
2020-02-05 23:28:01 +00:00
|
|
|
clk_core_get_rate_recalc(c),
|
|
|
|
clk_core_get_accuracy_recalc(c));
|
2020-02-05 23:27:59 +00:00
|
|
|
|
|
|
|
phase = clk_core_get_phase(c);
|
|
|
|
if (phase >= 0)
|
|
|
|
seq_printf(s, "%5d", phase);
|
|
|
|
else
|
|
|
|
seq_puts(s, "-----");
|
|
|
|
|
2020-11-15 20:34:32 +00:00
|
|
|
seq_printf(s, " %6d", clk_core_get_scaled_duty_cycle(c, 100000));
|
|
|
|
|
|
|
|
if (c->ops->is_enabled)
|
|
|
|
seq_printf(s, " %9c\n", clk_core_is_enabled(c) ? 'Y' : 'N');
|
|
|
|
else if (!c->ops->enable)
|
|
|
|
seq_printf(s, " %9c\n", 'Y');
|
|
|
|
else
|
|
|
|
seq_printf(s, " %9c\n", '?');
|
2015-04-30 21:43:22 +00:00
|
|
|
}
|
2013-08-22 06:58:09 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
|
|
|
|
int level)
|
|
|
|
{
|
|
|
|
struct clk_core *child;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2021-12-20 16:43:55 +00:00
|
|
|
clk_pm_runtime_get(c);
|
2015-04-30 21:43:22 +00:00
|
|
|
clk_summary_show_one(s, c, level);
|
2021-12-20 16:43:55 +00:00
|
|
|
clk_pm_runtime_put(c);
|
2012-04-11 10:33:42 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
hlist_for_each_entry(child, &c->children, child_node)
|
|
|
|
clk_summary_show_subtree(s, child, level + 1);
|
2015-01-23 11:03:31 +00:00
|
|
|
}
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
static int clk_summary_show(struct seq_file *s, void *data)
|
2015-01-23 11:03:31 +00:00
|
|
|
{
|
2015-04-30 21:43:22 +00:00
|
|
|
struct clk_core *c;
|
2023-03-16 07:58:26 +00:00
|
|
|
struct hlist_head **lists = s->private;
|
2015-01-23 11:03:31 +00:00
|
|
|
|
2020-11-15 20:34:32 +00:00
|
|
|
seq_puts(s, " enable prepare protect duty hardware\n");
|
|
|
|
seq_puts(s, " clock count count count rate accuracy phase cycle enable\n");
|
|
|
|
seq_puts(s, "-------------------------------------------------------------------------------------------------------\n");
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-01-23 11:03:31 +00:00
|
|
|
clk_prepare_lock();
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
for (; *lists; lists++)
|
|
|
|
hlist_for_each_entry(c, *lists, child_node)
|
|
|
|
clk_summary_show_subtree(s, c, 0);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2013-03-28 20:59:01 +00:00
|
|
|
clk_prepare_unlock();
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
return 0;
|
2012-03-16 06:11:19 +00:00
|
|
|
}
|
2018-02-14 15:48:00 +00:00
|
|
|
DEFINE_SHOW_ATTRIBUTE(clk_summary);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
|
|
|
|
{
|
2020-02-05 23:27:59 +00:00
|
|
|
int phase;
|
2019-07-02 13:27:09 +00:00
|
|
|
unsigned long min_rate, max_rate;
|
|
|
|
|
|
|
|
clk_core_get_boundaries(c, &min_rate, &max_rate);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-29 16:36:43 +00:00
|
|
|
/* This should be JSON format, i.e. elements separated with a comma */
|
2015-04-30 21:43:22 +00:00
|
|
|
seq_printf(s, "\"%s\": { ", c->name);
|
|
|
|
seq_printf(s, "\"enable_count\": %d,", c->enable_count);
|
|
|
|
seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
|
2017-12-01 21:51:56 +00:00
|
|
|
seq_printf(s, "\"protect_count\": %d,", c->protect_count);
|
2020-02-05 23:28:01 +00:00
|
|
|
seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
|
2019-07-02 13:27:09 +00:00
|
|
|
seq_printf(s, "\"min_rate\": %lu,", min_rate);
|
|
|
|
seq_printf(s, "\"max_rate\": %lu,", max_rate);
|
2020-02-05 23:28:01 +00:00
|
|
|
seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
|
2020-02-05 23:27:59 +00:00
|
|
|
phase = clk_core_get_phase(c);
|
|
|
|
if (phase >= 0)
|
|
|
|
seq_printf(s, "\"phase\": %d,", phase);
|
clk: add duty cycle support
Add the possibility to apply and query the clock signal duty cycle ratio.
This is useful when the duty cycle of the clock signal depends on some
other parameters controlled by the clock framework.
For example, the duty cycle of a divider may depends on the raw divider
setting (ratio = N / div) , which is controlled by the CCF. In such case,
going through the pwm framework to control the duty cycle ratio of this
clock would be a burden.
A clock provider is not required to implement the operation to set and get
the duty cycle. If it does not implement .get_duty_cycle(), the ratio is
assumed to be 50%.
This change also adds a new flag, CLK_DUTY_CYCLE_PARENT. This flag should
be used to indicate that a clock, such as gates and muxes, may inherit
the duty cycle ratio of its parent clock. If a clock does not provide a
get_duty_cycle() callback and has CLK_DUTY_CYCLE_PARENT, then the call
will be directly forwarded to its parent clock, if any. For
set_duty_cycle(), the clock should also have CLK_SET_RATE_PARENT for the
call to be forwarded
Signed-off-by: Jerome Brunet <jbrunet@baylibre.com>
Signed-off-by: Michael Turquette <mturquette@baylibre.com>
Link: lkml.kernel.org/r/20180619144141.8506-1-jbrunet@baylibre.com
2018-06-19 14:41:41 +00:00
|
|
|
seq_printf(s, "\"duty_cycle\": %u",
|
|
|
|
clk_core_get_scaled_duty_cycle(c, 100000));
|
2012-03-16 06:11:19 +00:00
|
|
|
}
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
|
2012-03-16 06:11:19 +00:00
|
|
|
{
|
2015-04-30 21:43:22 +00:00
|
|
|
struct clk_core *child;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
clk_dump_one(s, c, level);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
hlist_for_each_entry(child, &c->children, child_node) {
|
2017-04-20 06:45:43 +00:00
|
|
|
seq_putc(s, ',');
|
2015-04-30 21:43:22 +00:00
|
|
|
clk_dump_subtree(s, child, level + 1);
|
2012-03-16 06:11:19 +00:00
|
|
|
}
|
|
|
|
|
2017-04-20 06:45:43 +00:00
|
|
|
seq_putc(s, '}');
|
2012-03-16 06:11:19 +00:00
|
|
|
}
|
|
|
|
|
2018-02-14 15:48:00 +00:00
|
|
|
static int clk_dump_show(struct seq_file *s, void *data)
|
2015-01-21 16:13:00 +00:00
|
|
|
{
|
2015-04-30 21:43:22 +00:00
|
|
|
struct clk_core *c;
|
|
|
|
bool first_node = true;
|
2023-03-16 07:58:26 +00:00
|
|
|
struct hlist_head **lists = s->private;
|
2015-01-21 16:13:00 +00:00
|
|
|
|
2017-04-20 06:45:43 +00:00
|
|
|
seq_putc(s, '{');
|
2015-04-30 21:43:22 +00:00
|
|
|
clk_prepare_lock();
|
2015-01-23 11:03:30 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
for (; *lists; lists++) {
|
|
|
|
hlist_for_each_entry(c, *lists, child_node) {
|
|
|
|
if (!first_node)
|
2017-04-20 06:45:43 +00:00
|
|
|
seq_putc(s, ',');
|
2015-04-30 21:43:22 +00:00
|
|
|
first_node = false;
|
|
|
|
clk_dump_subtree(s, c, 0);
|
|
|
|
}
|
|
|
|
}
|
2015-01-21 16:13:00 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
clk_prepare_unlock();
|
2015-01-21 16:13:00 +00:00
|
|
|
|
2015-05-01 14:48:37 +00:00
|
|
|
seq_puts(s, "}\n");
|
2015-04-30 21:43:22 +00:00
|
|
|
return 0;
|
2015-01-21 16:13:00 +00:00
|
|
|
}
|
2018-02-14 15:48:00 +00:00
|
|
|
DEFINE_SHOW_ATTRIBUTE(clk_dump);
|
2013-08-22 06:58:09 +00:00
|
|
|
|
2019-08-28 13:23:06 +00:00
|
|
|
#undef CLOCK_ALLOW_WRITE_DEBUGFS
|
|
|
|
#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
|
|
|
|
/*
|
|
|
|
* This can be dangerous, therefore don't provide any real compile time
|
|
|
|
* configuration option for this feature.
|
|
|
|
* People who want to use this will need to modify the source code directly.
|
|
|
|
*/
|
|
|
|
static int clk_rate_set(void *data, u64 val)
|
|
|
|
{
|
|
|
|
struct clk_core *core = data;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
clk_prepare_lock();
|
|
|
|
ret = clk_core_set_rate_nolock(core, val);
|
|
|
|
clk_prepare_unlock();
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
#define clk_rate_mode 0644
|
2020-06-30 00:30:24 +00:00
|
|
|
|
|
|
|
static int clk_prepare_enable_set(void *data, u64 val)
|
|
|
|
{
|
|
|
|
struct clk_core *core = data;
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
if (val)
|
|
|
|
ret = clk_prepare_enable(core->hw->clk);
|
|
|
|
else
|
|
|
|
clk_disable_unprepare(core->hw->clk);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int clk_prepare_enable_get(void *data, u64 *val)
|
|
|
|
{
|
|
|
|
struct clk_core *core = data;
|
|
|
|
|
|
|
|
*val = core->enable_count && core->prepare_count;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
|
|
|
|
clk_prepare_enable_set, "%llu\n");
|
|
|
|
|
2019-08-28 13:23:06 +00:00
|
|
|
#else
|
|
|
|
#define clk_rate_set NULL
|
|
|
|
#define clk_rate_mode 0444
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static int clk_rate_get(void *data, u64 *val)
|
|
|
|
{
|
|
|
|
struct clk_core *core = data;
|
|
|
|
|
2021-10-11 11:27:19 +00:00
|
|
|
clk_prepare_lock();
|
|
|
|
*val = clk_core_get_rate_recalc(core);
|
|
|
|
clk_prepare_unlock();
|
|
|
|
|
2019-08-28 13:23:06 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
|
|
|
|
|
2018-01-03 11:06:16 +00:00
|
|
|
static const struct {
|
|
|
|
unsigned long flag;
|
|
|
|
const char *name;
|
|
|
|
} clk_flags[] = {
|
2018-07-06 15:16:54 +00:00
|
|
|
#define ENTRY(f) { f, #f }
|
2018-01-03 11:06:16 +00:00
|
|
|
ENTRY(CLK_SET_RATE_GATE),
|
|
|
|
ENTRY(CLK_SET_PARENT_GATE),
|
|
|
|
ENTRY(CLK_SET_RATE_PARENT),
|
|
|
|
ENTRY(CLK_IGNORE_UNUSED),
|
|
|
|
ENTRY(CLK_GET_RATE_NOCACHE),
|
|
|
|
ENTRY(CLK_SET_RATE_NO_REPARENT),
|
|
|
|
ENTRY(CLK_GET_ACCURACY_NOCACHE),
|
|
|
|
ENTRY(CLK_RECALC_NEW_RATES),
|
|
|
|
ENTRY(CLK_SET_RATE_UNGATE),
|
|
|
|
ENTRY(CLK_IS_CRITICAL),
|
|
|
|
ENTRY(CLK_OPS_PARENT_ENABLE),
|
clk: add duty cycle support
Add the possibility to apply and query the clock signal duty cycle ratio.
This is useful when the duty cycle of the clock signal depends on some
other parameters controlled by the clock framework.
For example, the duty cycle of a divider may depends on the raw divider
setting (ratio = N / div) , which is controlled by the CCF. In such case,
going through the pwm framework to control the duty cycle ratio of this
clock would be a burden.
A clock provider is not required to implement the operation to set and get
the duty cycle. If it does not implement .get_duty_cycle(), the ratio is
assumed to be 50%.
This change also adds a new flag, CLK_DUTY_CYCLE_PARENT. This flag should
be used to indicate that a clock, such as gates and muxes, may inherit
the duty cycle ratio of its parent clock. If a clock does not provide a
get_duty_cycle() callback and has CLK_DUTY_CYCLE_PARENT, then the call
will be directly forwarded to its parent clock, if any. For
set_duty_cycle(), the clock should also have CLK_SET_RATE_PARENT for the
call to be forwarded
Signed-off-by: Jerome Brunet <jbrunet@baylibre.com>
Signed-off-by: Michael Turquette <mturquette@baylibre.com>
Link: lkml.kernel.org/r/20180619144141.8506-1-jbrunet@baylibre.com
2018-06-19 14:41:41 +00:00
|
|
|
ENTRY(CLK_DUTY_CYCLE_PARENT),
|
2018-01-03 11:06:16 +00:00
|
|
|
#undef ENTRY
|
|
|
|
};
|
|
|
|
|
2018-02-14 15:48:00 +00:00
|
|
|
static int clk_flags_show(struct seq_file *s, void *data)
|
2018-01-03 11:06:16 +00:00
|
|
|
{
|
|
|
|
struct clk_core *core = s->private;
|
|
|
|
unsigned long flags = core->flags;
|
|
|
|
unsigned int i;
|
|
|
|
|
|
|
|
for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
|
|
|
|
if (flags & clk_flags[i].flag) {
|
|
|
|
seq_printf(s, "%s\n", clk_flags[i].name);
|
|
|
|
flags &= ~clk_flags[i].flag;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (flags) {
|
|
|
|
/* Unknown flags */
|
|
|
|
seq_printf(s, "0x%lx\n", flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
2018-02-14 15:48:00 +00:00
|
|
|
DEFINE_SHOW_ATTRIBUTE(clk_flags);
|
2018-01-03 11:06:16 +00:00
|
|
|
|
2019-06-25 03:01:55 +00:00
|
|
|
static void possible_parent_show(struct seq_file *s, struct clk_core *core,
|
|
|
|
unsigned int i, char terminator)
|
2017-03-21 13:20:31 +00:00
|
|
|
{
|
2019-05-03 03:15:09 +00:00
|
|
|
struct clk_core *parent;
|
2017-03-21 13:20:31 +00:00
|
|
|
|
2019-05-03 03:15:09 +00:00
|
|
|
/*
|
|
|
|
* Go through the following options to fetch a parent's name.
|
|
|
|
*
|
|
|
|
* 1. Fetch the registered parent clock and use its name
|
|
|
|
* 2. Use the global (fallback) name if specified
|
|
|
|
* 3. Use the local fw_name if provided
|
|
|
|
* 4. Fetch parent clock's clock-output-name if DT index was set
|
|
|
|
*
|
|
|
|
* This may still fail in some cases, such as when the parent is
|
|
|
|
* specified directly via a struct clk_hw pointer, but it isn't
|
|
|
|
* registered (yet).
|
|
|
|
*/
|
|
|
|
parent = clk_core_get_parent_by_index(core, i);
|
|
|
|
if (parent)
|
2019-07-01 20:20:40 +00:00
|
|
|
seq_puts(s, parent->name);
|
2019-05-03 03:15:09 +00:00
|
|
|
else if (core->parents[i].name)
|
2019-07-01 20:20:40 +00:00
|
|
|
seq_puts(s, core->parents[i].name);
|
2019-05-03 03:15:09 +00:00
|
|
|
else if (core->parents[i].fw_name)
|
|
|
|
seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
|
|
|
|
else if (core->parents[i].index >= 0)
|
2019-07-01 20:20:40 +00:00
|
|
|
seq_puts(s,
|
|
|
|
of_clk_get_parent_name(core->of_node,
|
|
|
|
core->parents[i].index));
|
2019-05-03 03:15:09 +00:00
|
|
|
else
|
|
|
|
seq_puts(s, "(missing)");
|
2017-03-21 13:20:31 +00:00
|
|
|
|
2019-06-25 03:01:55 +00:00
|
|
|
seq_putc(s, terminator);
|
|
|
|
}
|
|
|
|
|
2018-02-14 15:48:00 +00:00
|
|
|
static int possible_parents_show(struct seq_file *s, void *data)
|
2017-03-21 13:20:31 +00:00
|
|
|
{
|
|
|
|
struct clk_core *core = s->private;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < core->num_parents - 1; i++)
|
2019-06-25 03:01:55 +00:00
|
|
|
possible_parent_show(s, core, i, ' ');
|
2017-03-21 13:20:31 +00:00
|
|
|
|
2019-06-25 03:01:55 +00:00
|
|
|
possible_parent_show(s, core, i, '\n');
|
2017-03-21 13:20:31 +00:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
2018-02-14 15:48:00 +00:00
|
|
|
DEFINE_SHOW_ATTRIBUTE(possible_parents);
|
2017-03-21 13:20:31 +00:00
|
|
|
|
2019-06-10 11:06:38 +00:00
|
|
|
static int current_parent_show(struct seq_file *s, void *data)
|
|
|
|
{
|
|
|
|
struct clk_core *core = s->private;
|
|
|
|
|
|
|
|
if (core->parent)
|
|
|
|
seq_printf(s, "%s\n", core->parent->name);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
DEFINE_SHOW_ATTRIBUTE(current_parent);
|
|
|
|
|
2021-10-13 17:20:42 +00:00
|
|
|
#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
|
|
|
|
static ssize_t current_parent_write(struct file *file, const char __user *ubuf,
|
|
|
|
size_t count, loff_t *ppos)
|
|
|
|
{
|
|
|
|
struct seq_file *s = file->private_data;
|
|
|
|
struct clk_core *core = s->private;
|
|
|
|
struct clk_core *parent;
|
|
|
|
u8 idx;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
err = kstrtou8_from_user(ubuf, count, 0, &idx);
|
|
|
|
if (err < 0)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
parent = clk_core_get_parent_by_index(core, idx);
|
|
|
|
if (!parent)
|
|
|
|
return -ENOENT;
|
|
|
|
|
|
|
|
clk_prepare_lock();
|
|
|
|
err = clk_core_set_parent_nolock(core, parent);
|
|
|
|
clk_prepare_unlock();
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
return count;
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct file_operations current_parent_rw_fops = {
|
|
|
|
.open = current_parent_open,
|
|
|
|
.write = current_parent_write,
|
|
|
|
.read = seq_read,
|
|
|
|
.llseek = seq_lseek,
|
|
|
|
.release = single_release,
|
|
|
|
};
|
|
|
|
#endif
|
|
|
|
|
clk: add duty cycle support
Add the possibility to apply and query the clock signal duty cycle ratio.
This is useful when the duty cycle of the clock signal depends on some
other parameters controlled by the clock framework.
For example, the duty cycle of a divider may depends on the raw divider
setting (ratio = N / div) , which is controlled by the CCF. In such case,
going through the pwm framework to control the duty cycle ratio of this
clock would be a burden.
A clock provider is not required to implement the operation to set and get
the duty cycle. If it does not implement .get_duty_cycle(), the ratio is
assumed to be 50%.
This change also adds a new flag, CLK_DUTY_CYCLE_PARENT. This flag should
be used to indicate that a clock, such as gates and muxes, may inherit
the duty cycle ratio of its parent clock. If a clock does not provide a
get_duty_cycle() callback and has CLK_DUTY_CYCLE_PARENT, then the call
will be directly forwarded to its parent clock, if any. For
set_duty_cycle(), the clock should also have CLK_SET_RATE_PARENT for the
call to be forwarded
Signed-off-by: Jerome Brunet <jbrunet@baylibre.com>
Signed-off-by: Michael Turquette <mturquette@baylibre.com>
Link: lkml.kernel.org/r/20180619144141.8506-1-jbrunet@baylibre.com
2018-06-19 14:41:41 +00:00
|
|
|
static int clk_duty_cycle_show(struct seq_file *s, void *data)
|
|
|
|
{
|
|
|
|
struct clk_core *core = s->private;
|
|
|
|
struct clk_duty *duty = &core->duty;
|
|
|
|
|
|
|
|
seq_printf(s, "%u/%u\n", duty->num, duty->den);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
|
|
|
|
|
2019-07-02 13:27:09 +00:00
|
|
|
static int clk_min_rate_show(struct seq_file *s, void *data)
|
|
|
|
{
|
|
|
|
struct clk_core *core = s->private;
|
|
|
|
unsigned long min_rate, max_rate;
|
|
|
|
|
|
|
|
clk_prepare_lock();
|
|
|
|
clk_core_get_boundaries(core, &min_rate, &max_rate);
|
|
|
|
clk_prepare_unlock();
|
|
|
|
seq_printf(s, "%lu\n", min_rate);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
|
|
|
|
|
|
|
|
static int clk_max_rate_show(struct seq_file *s, void *data)
|
|
|
|
{
|
|
|
|
struct clk_core *core = s->private;
|
|
|
|
unsigned long min_rate, max_rate;
|
|
|
|
|
|
|
|
clk_prepare_lock();
|
|
|
|
clk_core_get_boundaries(core, &min_rate, &max_rate);
|
|
|
|
clk_prepare_unlock();
|
|
|
|
seq_printf(s, "%lu\n", max_rate);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
|
|
|
|
|
2018-05-29 16:08:00 +00:00
|
|
|
static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
|
2015-04-30 21:43:22 +00:00
|
|
|
{
|
2018-05-29 16:08:00 +00:00
|
|
|
struct dentry *root;
|
2015-02-02 22:11:25 +00:00
|
|
|
|
2018-05-29 16:08:00 +00:00
|
|
|
if (!core || !pdentry)
|
|
|
|
return;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2018-05-29 16:08:00 +00:00
|
|
|
root = debugfs_create_dir(core->name, pdentry);
|
|
|
|
core->dentry = root;
|
2017-03-21 13:20:31 +00:00
|
|
|
|
2019-08-28 13:23:06 +00:00
|
|
|
debugfs_create_file("clk_rate", clk_rate_mode, root, core,
|
|
|
|
&clk_rate_fops);
|
2019-07-02 13:27:09 +00:00
|
|
|
debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
|
|
|
|
debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
|
2018-05-29 16:08:00 +00:00
|
|
|
debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
|
|
|
|
debugfs_create_u32("clk_phase", 0444, root, &core->phase);
|
|
|
|
debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
|
|
|
|
debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
|
|
|
|
debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
|
|
|
|
debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
|
|
|
|
debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
|
clk: add duty cycle support
Add the possibility to apply and query the clock signal duty cycle ratio.
This is useful when the duty cycle of the clock signal depends on some
other parameters controlled by the clock framework.
For example, the duty cycle of a divider may depends on the raw divider
setting (ratio = N / div) , which is controlled by the CCF. In such case,
going through the pwm framework to control the duty cycle ratio of this
clock would be a burden.
A clock provider is not required to implement the operation to set and get
the duty cycle. If it does not implement .get_duty_cycle(), the ratio is
assumed to be 50%.
This change also adds a new flag, CLK_DUTY_CYCLE_PARENT. This flag should
be used to indicate that a clock, such as gates and muxes, may inherit
the duty cycle ratio of its parent clock. If a clock does not provide a
get_duty_cycle() callback and has CLK_DUTY_CYCLE_PARENT, then the call
will be directly forwarded to its parent clock, if any. For
set_duty_cycle(), the clock should also have CLK_SET_RATE_PARENT for the
call to be forwarded
Signed-off-by: Jerome Brunet <jbrunet@baylibre.com>
Signed-off-by: Michael Turquette <mturquette@baylibre.com>
Link: lkml.kernel.org/r/20180619144141.8506-1-jbrunet@baylibre.com
2018-06-19 14:41:41 +00:00
|
|
|
debugfs_create_file("clk_duty_cycle", 0444, root, core,
|
|
|
|
&clk_duty_cycle_fops);
|
2020-06-30 00:30:24 +00:00
|
|
|
#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
|
|
|
|
debugfs_create_file("clk_prepare_enable", 0644, root, core,
|
|
|
|
&clk_prepare_enable_fops);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2021-10-13 17:20:42 +00:00
|
|
|
if (core->num_parents > 1)
|
|
|
|
debugfs_create_file("clk_parent", 0644, root, core,
|
|
|
|
¤t_parent_rw_fops);
|
|
|
|
else
|
|
|
|
#endif
|
2019-06-10 11:06:38 +00:00
|
|
|
if (core->num_parents > 0)
|
|
|
|
debugfs_create_file("clk_parent", 0444, root, core,
|
|
|
|
¤t_parent_fops);
|
|
|
|
|
2018-05-29 16:08:00 +00:00
|
|
|
if (core->num_parents > 1)
|
|
|
|
debugfs_create_file("clk_possible_parents", 0444, root, core,
|
|
|
|
&possible_parents_fops);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2018-05-29 16:08:00 +00:00
|
|
|
if (core->ops->debug_init)
|
|
|
|
core->ops->debug_init(core->hw, core->dentry);
|
2012-03-16 06:11:19 +00:00
|
|
|
}
|
2015-01-23 11:03:30 +00:00
|
|
|
|
|
|
|
/**
|
2015-04-30 22:11:31 +00:00
|
|
|
* clk_debug_register - add a clk node to the debugfs clk directory
|
|
|
|
* @core: the clk being added to the debugfs clk directory
|
2015-01-23 11:03:30 +00:00
|
|
|
*
|
2015-04-30 22:11:31 +00:00
|
|
|
* Dynamically adds a clk to the debugfs clk directory if debugfs has been
|
|
|
|
* initialized. Otherwise it bails out early since the debugfs clk directory
|
2015-04-30 21:43:22 +00:00
|
|
|
* will be created lazily by clk_debug_init as part of a late_initcall.
|
2015-01-23 11:03:30 +00:00
|
|
|
*/
|
2018-05-29 16:08:00 +00:00
|
|
|
static void clk_debug_register(struct clk_core *core)
|
2015-01-23 11:03:30 +00:00
|
|
|
{
|
2015-04-30 21:43:22 +00:00
|
|
|
mutex_lock(&clk_debug_lock);
|
|
|
|
hlist_add_head(&core->debug_node, &clk_debug_list);
|
2018-01-04 00:44:37 +00:00
|
|
|
if (inited)
|
2018-05-29 16:08:00 +00:00
|
|
|
clk_debug_create_one(core, rootdir);
|
2015-04-30 21:43:22 +00:00
|
|
|
mutex_unlock(&clk_debug_lock);
|
2015-01-23 11:03:30 +00:00
|
|
|
}
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/**
|
2015-04-30 22:11:31 +00:00
|
|
|
* clk_debug_unregister - remove a clk node from the debugfs clk directory
|
|
|
|
* @core: the clk being removed from the debugfs clk directory
|
2014-02-19 05:21:25 +00:00
|
|
|
*
|
2015-04-30 22:11:31 +00:00
|
|
|
* Dynamically removes a clk and all its child nodes from the
|
|
|
|
* debugfs clk directory if clk->dentry points to debugfs created by
|
2016-02-22 23:43:41 +00:00
|
|
|
* clk_debug_register in __clk_core_init.
|
2014-02-19 05:21:25 +00:00
|
|
|
*/
|
2015-04-30 21:43:22 +00:00
|
|
|
static void clk_debug_unregister(struct clk_core *core)
|
2014-02-19 05:21:25 +00:00
|
|
|
{
|
2015-04-30 21:43:22 +00:00
|
|
|
mutex_lock(&clk_debug_lock);
|
|
|
|
hlist_del_init(&core->debug_node);
|
|
|
|
debugfs_remove_recursive(core->dentry);
|
|
|
|
core->dentry = NULL;
|
|
|
|
mutex_unlock(&clk_debug_lock);
|
|
|
|
}
|
2014-02-19 05:21:25 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
/**
|
2015-04-30 22:11:31 +00:00
|
|
|
* clk_debug_init - lazily populate the debugfs clk directory
|
2015-04-30 21:43:22 +00:00
|
|
|
*
|
2015-04-30 22:11:31 +00:00
|
|
|
* clks are often initialized very early during boot before memory can be
|
|
|
|
* dynamically allocated and well before debugfs is setup. This function
|
|
|
|
* populates the debugfs clk directory once at boot-time when we know that
|
|
|
|
* debugfs is setup. It should only be called once at boot-time, all other clks
|
|
|
|
* added dynamically will be done so with clk_debug_register.
|
2015-04-30 21:43:22 +00:00
|
|
|
*/
|
|
|
|
static int __init clk_debug_init(void)
|
|
|
|
{
|
|
|
|
struct clk_core *core;
|
2015-02-02 22:37:41 +00:00
|
|
|
|
2021-12-10 01:34:05 +00:00
|
|
|
#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
|
|
|
|
pr_warn("\n");
|
|
|
|
pr_warn("********************************************************************\n");
|
|
|
|
pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n");
|
|
|
|
pr_warn("** **\n");
|
|
|
|
pr_warn("** WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n");
|
|
|
|
pr_warn("** **\n");
|
|
|
|
pr_warn("** This means that this kernel is built to expose clk operations **\n");
|
|
|
|
pr_warn("** such as parent or rate setting, enabling, disabling, etc. **\n");
|
|
|
|
pr_warn("** to userspace, which may compromise security on your system. **\n");
|
|
|
|
pr_warn("** **\n");
|
|
|
|
pr_warn("** If you see this message and you are not debugging the **\n");
|
|
|
|
pr_warn("** kernel, report this immediately to your vendor! **\n");
|
|
|
|
pr_warn("** **\n");
|
|
|
|
pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n");
|
|
|
|
pr_warn("********************************************************************\n");
|
|
|
|
#endif
|
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
rootdir = debugfs_create_dir("clk", NULL);
|
2014-02-19 05:21:25 +00:00
|
|
|
|
2018-05-29 16:08:00 +00:00
|
|
|
debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
|
|
|
|
&clk_summary_fops);
|
|
|
|
debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
|
|
|
|
&clk_dump_fops);
|
|
|
|
debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
|
|
|
|
&clk_summary_fops);
|
|
|
|
debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
|
|
|
|
&clk_dump_fops);
|
2014-02-19 05:21:25 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
mutex_lock(&clk_debug_lock);
|
|
|
|
hlist_for_each_entry(core, &clk_debug_list, debug_node)
|
|
|
|
clk_debug_create_one(core, rootdir);
|
2014-02-19 05:21:25 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
inited = 1;
|
|
|
|
mutex_unlock(&clk_debug_lock);
|
2014-02-19 05:21:25 +00:00
|
|
|
|
2015-04-30 21:43:22 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
late_initcall(clk_debug_init);
|
|
|
|
#else
|
2018-05-29 16:08:00 +00:00
|
|
|
static inline void clk_debug_register(struct clk_core *core) { }
|
2015-04-30 21:43:22 +00:00
|
|
|
static inline void clk_debug_unregister(struct clk_core *core)
|
2015-02-25 17:11:01 +00:00
|
|
|
{
|
|
|
|
}
|
2015-04-30 21:43:22 +00:00
|
|
|
#endif
|
2015-02-25 17:11:01 +00:00
|
|
|
|
2019-12-03 08:08:05 +00:00
|
|
|
static void clk_core_reparent_orphans_nolock(void)
|
|
|
|
{
|
|
|
|
struct clk_core *orphan;
|
|
|
|
struct hlist_node *tmp2;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* walk the list of orphan clocks and reparent any that newly finds a
|
|
|
|
* parent.
|
|
|
|
*/
|
|
|
|
hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
|
|
|
|
struct clk_core *parent = __clk_init_parent(orphan);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We need to use __clk_set_parent_before() and _after() to
|
2022-08-11 14:00:30 +00:00
|
|
|
* properly migrate any prepare/enable count of the orphan
|
2019-12-03 08:08:05 +00:00
|
|
|
* clock. This is important for CLK_IS_CRITICAL clocks, which
|
|
|
|
* are enabled during init but might not have a parent yet.
|
|
|
|
*/
|
|
|
|
if (parent) {
|
|
|
|
/* update the clk tree topology */
|
|
|
|
__clk_set_parent_before(orphan, parent);
|
|
|
|
__clk_set_parent_after(orphan, parent, NULL);
|
|
|
|
__clk_recalc_accuracies(orphan);
|
clk: Update req_rate on __clk_recalc_rates()
Commit cb1b1dd96241 ("clk: Set req_rate on reparenting") introduced a
new function, clk_core_update_orphan_child_rates(), that updates the
req_rate field on reparenting.
It turns out that that function will interfere with the clock notifying
done by __clk_recalc_rates(). This ends up reporting the new rate in
both the old_rate and new_rate fields of struct clk_notifier_data.
Since clk_core_update_orphan_child_rates() is basically
__clk_recalc_rates() without the notifiers, and with the req_rate field
update, we can drop clk_core_update_orphan_child_rates() entirely, and
make __clk_recalc_rates() update req_rate.
However, __clk_recalc_rates() is being called in several code paths:
when retrieving a rate (most likely through clk_get_rate()), when changing
parents (through clk_set_rate() or clk_hw_reparent()), or when updating
the orphan status (through clk_core_reparent_orphans_nolock(), called at
registration).
Updating req_rate on reparenting or initialisation makes sense, but we
shouldn't do it on clk_get_rate(). Thus an extra flag has been added to
update or not req_rate depending on the context.
Fixes: cb1b1dd96241 ("clk: Set req_rate on reparenting")
Link: https://lore.kernel.org/linux-clk/0acc7217-762c-7c0d-45a0-55c384824ce4@samsung.com/
Link: https://lore.kernel.org/linux-clk/Y0QNSx+ZgqKSvPOC@sirena.org.uk/
Reported-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reported-by: Mark Brown <broonie@kernel.org>
Suggested-by: Stephen Boyd <sboyd@kernel.org>
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
Link: https://lore.kernel.org/r/20221010-rpi-clk-fixes-again-v1-1-d87ba82ac404@cerno.tech
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-10-10 14:47:38 +00:00
|
|
|
__clk_recalc_rates(orphan, true, 0);
|
2022-03-25 16:11:42 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* __clk_init_parent() will set the initial req_rate to
|
|
|
|
* 0 if the clock doesn't have clk_ops::recalc_rate and
|
|
|
|
* is an orphan when it's registered.
|
|
|
|
*
|
|
|
|
* 'req_rate' is used by clk_set_rate_range() and
|
|
|
|
* clk_put() to trigger a clk_set_rate() call whenever
|
|
|
|
* the boundaries are modified. Let's make sure
|
|
|
|
* 'req_rate' is set to something non-zero so that
|
|
|
|
* clk_set_rate_range() doesn't drop the frequency.
|
|
|
|
*/
|
|
|
|
orphan->req_rate = orphan->rate;
|
2019-12-03 08:08:05 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-03-16 06:11:19 +00:00
|
|
|
/**
|
2015-12-28 10:22:57 +00:00
|
|
|
* __clk_core_init - initialize the data structures in a struct clk_core
|
2015-12-28 10:22:56 +00:00
|
|
|
* @core: clk_core being initialized
|
2012-03-16 06:11:19 +00:00
|
|
|
*
|
2015-01-23 11:03:30 +00:00
|
|
|
* Initializes the lists in struct clk_core, queries the hardware for the
|
2012-03-16 06:11:19 +00:00
|
|
|
* parent and rate and sets them both.
|
|
|
|
*/
|
2015-12-28 10:22:57 +00:00
|
|
|
static int __clk_core_init(struct clk_core *core)
|
2012-03-16 06:11:19 +00:00
|
|
|
{
|
2019-04-12 18:31:47 +00:00
|
|
|
int ret;
|
2020-02-05 23:28:00 +00:00
|
|
|
struct clk_core *parent;
|
2015-01-23 11:03:31 +00:00
|
|
|
unsigned long rate;
|
2020-02-25 13:42:48 +00:00
|
|
|
int phase;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2013-03-28 20:59:01 +00:00
|
|
|
clk_prepare_lock();
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2021-11-09 04:34:38 +00:00
|
|
|
/*
|
|
|
|
* Set hw->core after grabbing the prepare_lock to synchronize with
|
|
|
|
* callers of clk_core_fill_parent_index() where we treat hw->core
|
|
|
|
* being NULL as the clk not being registered yet. This is crucial so
|
|
|
|
* that clks aren't parented until their parent is fully registered.
|
|
|
|
*/
|
|
|
|
core->hw->core = core;
|
|
|
|
|
2017-08-21 08:04:59 +00:00
|
|
|
ret = clk_pm_runtime_get(core);
|
|
|
|
if (ret)
|
|
|
|
goto unlock;
|
|
|
|
|
2012-03-16 06:11:19 +00:00
|
|
|
/* check to see if a clock with this name is already registered */
|
2015-04-30 20:54:13 +00:00
|
|
|
if (clk_core_lookup(core->name)) {
|
2012-03-29 21:30:40 +00:00
|
|
|
pr_debug("%s: clk %s already initialized\n",
|
2015-04-30 20:54:13 +00:00
|
|
|
__func__, core->name);
|
2012-03-29 21:30:40 +00:00
|
|
|
ret = -EEXIST;
|
2012-03-16 06:11:19 +00:00
|
|
|
goto out;
|
2012-03-29 21:30:40 +00:00
|
|
|
}
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2018-05-08 18:14:57 +00:00
|
|
|
/* check that clk_ops are sane. See Documentation/driver-api/clk.rst */
|
2015-04-30 20:54:13 +00:00
|
|
|
if (core->ops->set_rate &&
|
|
|
|
!((core->ops->round_rate || core->ops->determine_rate) &&
|
|
|
|
core->ops->recalc_rate)) {
|
2015-12-28 10:23:03 +00:00
|
|
|
pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
|
|
|
|
__func__, core->name);
|
2012-03-29 21:30:40 +00:00
|
|
|
ret = -EINVAL;
|
2012-03-26 23:15:52 +00:00
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
2015-04-30 20:54:13 +00:00
|
|
|
if (core->ops->set_parent && !core->ops->get_parent) {
|
2015-12-28 10:23:03 +00:00
|
|
|
pr_err("%s: %s must implement .get_parent & .set_parent\n",
|
|
|
|
__func__, core->name);
|
2012-03-29 21:30:40 +00:00
|
|
|
ret = -EINVAL;
|
2012-03-26 23:15:52 +00:00
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
2023-05-05 11:26:10 +00:00
|
|
|
if (core->ops->set_parent && !core->ops->determine_rate) {
|
|
|
|
pr_err("%s: %s must implement .set_parent & .determine_rate\n",
|
|
|
|
__func__, core->name);
|
|
|
|
ret = -EINVAL;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
2015-12-28 10:23:04 +00:00
|
|
|
if (core->num_parents > 1 && !core->ops->get_parent) {
|
|
|
|
pr_err("%s: %s must implement .get_parent as it has multi parents\n",
|
|
|
|
__func__, core->name);
|
|
|
|
ret = -EINVAL;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
2015-04-30 20:54:13 +00:00
|
|
|
if (core->ops->set_rate_and_parent &&
|
|
|
|
!(core->ops->set_parent && core->ops->set_rate)) {
|
2015-12-28 10:23:03 +00:00
|
|
|
pr_err("%s: %s must implement .set_parent & .set_rate\n",
|
2015-04-30 20:54:13 +00:00
|
|
|
__func__, core->name);
|
2014-01-15 18:47:22 +00:00
|
|
|
ret = -EINVAL;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
2019-09-24 12:39:52 +00:00
|
|
|
/*
|
|
|
|
* optional platform-specific magic
|
|
|
|
*
|
|
|
|
* The .init callback is not used by any of the basic clock types, but
|
2019-09-24 12:39:53 +00:00
|
|
|
* exists for weird hardware that must perform initialization magic for
|
|
|
|
* CCF to get an accurate view of clock for any other callbacks. It may
|
|
|
|
* also be used needs to perform dynamic allocations. Such allocation
|
|
|
|
* must be freed in the terminate() callback.
|
|
|
|
* This callback shall not be used to initialize the parameters state,
|
|
|
|
* such as rate, parent, etc ...
|
2019-09-24 12:39:52 +00:00
|
|
|
*
|
|
|
|
* If it exist, this callback should called before any other callback of
|
|
|
|
* the clock
|
|
|
|
*/
|
2019-09-24 12:39:53 +00:00
|
|
|
if (core->ops->init) {
|
|
|
|
ret = core->ops->init(core->hw);
|
|
|
|
if (ret)
|
|
|
|
goto out;
|
|
|
|
}
|
2019-09-24 12:39:52 +00:00
|
|
|
|
2020-02-05 23:28:00 +00:00
|
|
|
parent = core->parent = __clk_init_parent(core);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
|
|
|
/*
|
2016-02-22 23:43:41 +00:00
|
|
|
* Populate core->parent if parent has already been clk_core_init'd. If
|
|
|
|
* parent has not yet been clk_core_init'd then place clk in the orphan
|
2016-02-03 01:24:56 +00:00
|
|
|
* list. If clk doesn't have any parents then place it in the root
|
2012-03-16 06:11:19 +00:00
|
|
|
* clk list.
|
|
|
|
*
|
|
|
|
* Every time a new clk is clk_init'd then we walk the list of orphan
|
|
|
|
* clocks and re-parent any that are children of the clock currently
|
|
|
|
* being clk_init'd.
|
|
|
|
*/
|
2020-02-05 23:28:00 +00:00
|
|
|
if (parent) {
|
|
|
|
hlist_add_head(&core->child_node, &parent->children);
|
|
|
|
core->orphan = parent->orphan;
|
2016-02-03 01:24:56 +00:00
|
|
|
} else if (!core->num_parents) {
|
2015-04-30 20:54:13 +00:00
|
|
|
hlist_add_head(&core->child_node, &clk_root_list);
|
2015-04-22 20:53:05 +00:00
|
|
|
core->orphan = false;
|
|
|
|
} else {
|
2015-04-30 20:54:13 +00:00
|
|
|
hlist_add_head(&core->child_node, &clk_orphan_list);
|
2015-04-22 20:53:05 +00:00
|
|
|
core->orphan = true;
|
|
|
|
}
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2013-12-21 09:34:47 +00:00
|
|
|
/*
|
|
|
|
* Set clk's accuracy. The preferred method is to use
|
|
|
|
* .recalc_accuracy. For simple clocks and lazy developers the default
|
|
|
|
* fallback is to use the parent's accuracy. If a clock doesn't have a
|
|
|
|
* parent (or is orphaned) then accuracy is set to zero (perfect
|
|
|
|
* clock).
|
|
|
|
*/
|
2015-04-30 20:54:13 +00:00
|
|
|
if (core->ops->recalc_accuracy)
|
|
|
|
core->accuracy = core->ops->recalc_accuracy(core->hw,
|
2020-02-05 23:28:01 +00:00
|
|
|
clk_core_get_accuracy_no_lock(parent));
|
2020-02-05 23:28:00 +00:00
|
|
|
else if (parent)
|
|
|
|
core->accuracy = parent->accuracy;
|
2013-12-21 09:34:47 +00:00
|
|
|
else
|
2015-04-30 20:54:13 +00:00
|
|
|
core->accuracy = 0;
|
2013-12-21 09:34:47 +00:00
|
|
|
|
2014-07-14 11:53:27 +00:00
|
|
|
/*
|
2020-02-05 23:27:59 +00:00
|
|
|
* Set clk's phase by clk_core_get_phase() caching the phase.
|
2014-07-14 11:53:27 +00:00
|
|
|
* Since a phase is by definition relative to its parent, just
|
|
|
|
* query the current clock phase, or just assume it's in phase.
|
|
|
|
*/
|
2020-02-25 13:42:48 +00:00
|
|
|
phase = clk_core_get_phase(core);
|
|
|
|
if (phase < 0) {
|
|
|
|
ret = phase;
|
2020-02-05 23:28:02 +00:00
|
|
|
pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
|
|
|
|
core->name);
|
|
|
|
goto out;
|
|
|
|
}
|
2014-07-14 11:53:27 +00:00
|
|
|
|
clk: add duty cycle support
Add the possibility to apply and query the clock signal duty cycle ratio.
This is useful when the duty cycle of the clock signal depends on some
other parameters controlled by the clock framework.
For example, the duty cycle of a divider may depends on the raw divider
setting (ratio = N / div) , which is controlled by the CCF. In such case,
going through the pwm framework to control the duty cycle ratio of this
clock would be a burden.
A clock provider is not required to implement the operation to set and get
the duty cycle. If it does not implement .get_duty_cycle(), the ratio is
assumed to be 50%.
This change also adds a new flag, CLK_DUTY_CYCLE_PARENT. This flag should
be used to indicate that a clock, such as gates and muxes, may inherit
the duty cycle ratio of its parent clock. If a clock does not provide a
get_duty_cycle() callback and has CLK_DUTY_CYCLE_PARENT, then the call
will be directly forwarded to its parent clock, if any. For
set_duty_cycle(), the clock should also have CLK_SET_RATE_PARENT for the
call to be forwarded
Signed-off-by: Jerome Brunet <jbrunet@baylibre.com>
Signed-off-by: Michael Turquette <mturquette@baylibre.com>
Link: lkml.kernel.org/r/20180619144141.8506-1-jbrunet@baylibre.com
2018-06-19 14:41:41 +00:00
|
|
|
/*
|
|
|
|
* Set clk's duty cycle.
|
|
|
|
*/
|
|
|
|
clk_core_update_duty_cycle_nolock(core);
|
|
|
|
|
2012-03-16 06:11:19 +00:00
|
|
|
/*
|
|
|
|
* Set clk's rate. The preferred method is to use .recalc_rate. For
|
|
|
|
* simple clocks and lazy developers the default fallback is to use the
|
|
|
|
* parent's rate. If a clock doesn't have a parent (or is orphaned)
|
|
|
|
* then rate is set to zero.
|
|
|
|
*/
|
2015-04-30 20:54:13 +00:00
|
|
|
if (core->ops->recalc_rate)
|
|
|
|
rate = core->ops->recalc_rate(core->hw,
|
2020-02-05 23:28:00 +00:00
|
|
|
clk_core_get_rate_nolock(parent));
|
|
|
|
else if (parent)
|
|
|
|
rate = parent->rate;
|
2012-03-16 06:11:19 +00:00
|
|
|
else
|
2015-01-23 11:03:31 +00:00
|
|
|
rate = 0;
|
2015-04-30 20:54:13 +00:00
|
|
|
core->rate = core->req_rate = rate;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
clk: migrate the count of orphaned clocks at init
The orphan clocks reparents should migrate any existing count from the
orphan clock to its new acestor clocks, otherwise we may have
inconsistent counts in the tree and end-up with gated critical clocks
Assuming we have two clocks, A and B.
* Clock A has CLK_IS_CRITICAL flag set.
* Clock B is an ancestor of A which can gate. Clock B gate is left
enabled by the bootloader.
Step 1: Clock A is registered. Since it is a critical clock, it is
enabled. The clock being still an orphan, no parent are enabled.
Step 2: Clock B is registered and reparented to clock A (potentially
through several other clocks). We are now in situation where the enable
count of clock A is 1 while the enable count of its ancestors is 0, which
is not good.
Step 3: in lateinit, clk_disable_unused() is called, the enable_count of
clock B being 0, clock B is gated and and critical clock A actually gets
disabled.
This situation was found while adding fdiv_clk gates to the meson8b
platform. These clocks parent clk81 critical clock, which is the mother
of all peripheral clocks in this system. Because of the issue described
here, the system is crashing when clk_disable_unused() is called.
The situation is solved by reverting
commit f8f8f1d04494 ("clk: Don't touch hardware when reparenting during registration").
To avoid breaking again the situation described in this commit
description, enabling critical clock should be done before walking the
orphan list. This way, a parent critical clock may not be accidentally
disabled due to the CLK_OPS_PARENT_ENABLE mechanism.
Fixes: f8f8f1d04494 ("clk: Don't touch hardware when reparenting during registration")
Cc: Stephen Boyd <sboyd@codeaurora.org>
Cc: Shawn Guo <shawnguo@kernel.org>
Cc: Dong Aisheng <aisheng.dong@nxp.com>
Signed-off-by: Jerome Brunet <jbrunet@baylibre.com>
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Tested-by: Heiko Stuebner <heiko@sntech.de>
Signed-off-by: Michael Turquette <mturquette@baylibre.com>
2018-02-14 13:43:36 +00:00
|
|
|
/*
|
|
|
|
* Enable CLK_IS_CRITICAL clocks so newly added critical clocks
|
|
|
|
* don't get accidentally disabled when walking the orphan tree and
|
|
|
|
* reparenting clocks
|
|
|
|
*/
|
|
|
|
if (core->flags & CLK_IS_CRITICAL) {
|
2019-12-25 16:34:29 +00:00
|
|
|
ret = clk_core_prepare(core);
|
2019-12-26 22:09:27 +00:00
|
|
|
if (ret) {
|
|
|
|
pr_warn("%s: critical clk '%s' failed to prepare\n",
|
|
|
|
__func__, core->name);
|
2019-12-25 16:34:29 +00:00
|
|
|
goto out;
|
2019-12-26 22:09:27 +00:00
|
|
|
}
|
clk: migrate the count of orphaned clocks at init
The orphan clocks reparents should migrate any existing count from the
orphan clock to its new acestor clocks, otherwise we may have
inconsistent counts in the tree and end-up with gated critical clocks
Assuming we have two clocks, A and B.
* Clock A has CLK_IS_CRITICAL flag set.
* Clock B is an ancestor of A which can gate. Clock B gate is left
enabled by the bootloader.
Step 1: Clock A is registered. Since it is a critical clock, it is
enabled. The clock being still an orphan, no parent are enabled.
Step 2: Clock B is registered and reparented to clock A (potentially
through several other clocks). We are now in situation where the enable
count of clock A is 1 while the enable count of its ancestors is 0, which
is not good.
Step 3: in lateinit, clk_disable_unused() is called, the enable_count of
clock B being 0, clock B is gated and and critical clock A actually gets
disabled.
This situation was found while adding fdiv_clk gates to the meson8b
platform. These clocks parent clk81 critical clock, which is the mother
of all peripheral clocks in this system. Because of the issue described
here, the system is crashing when clk_disable_unused() is called.
The situation is solved by reverting
commit f8f8f1d04494 ("clk: Don't touch hardware when reparenting during registration").
To avoid breaking again the situation described in this commit
description, enabling critical clock should be done before walking the
orphan list. This way, a parent critical clock may not be accidentally
disabled due to the CLK_OPS_PARENT_ENABLE mechanism.
Fixes: f8f8f1d04494 ("clk: Don't touch hardware when reparenting during registration")
Cc: Stephen Boyd <sboyd@codeaurora.org>
Cc: Shawn Guo <shawnguo@kernel.org>
Cc: Dong Aisheng <aisheng.dong@nxp.com>
Signed-off-by: Jerome Brunet <jbrunet@baylibre.com>
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Tested-by: Heiko Stuebner <heiko@sntech.de>
Signed-off-by: Michael Turquette <mturquette@baylibre.com>
2018-02-14 13:43:36 +00:00
|
|
|
|
2021-03-05 00:33:34 +00:00
|
|
|
ret = clk_core_enable_lock(core);
|
2019-12-25 16:34:29 +00:00
|
|
|
if (ret) {
|
2019-12-26 22:09:27 +00:00
|
|
|
pr_warn("%s: critical clk '%s' failed to enable\n",
|
|
|
|
__func__, core->name);
|
2019-12-25 16:34:29 +00:00
|
|
|
clk_core_unprepare(core);
|
|
|
|
goto out;
|
|
|
|
}
|
clk: migrate the count of orphaned clocks at init
The orphan clocks reparents should migrate any existing count from the
orphan clock to its new acestor clocks, otherwise we may have
inconsistent counts in the tree and end-up with gated critical clocks
Assuming we have two clocks, A and B.
* Clock A has CLK_IS_CRITICAL flag set.
* Clock B is an ancestor of A which can gate. Clock B gate is left
enabled by the bootloader.
Step 1: Clock A is registered. Since it is a critical clock, it is
enabled. The clock being still an orphan, no parent are enabled.
Step 2: Clock B is registered and reparented to clock A (potentially
through several other clocks). We are now in situation where the enable
count of clock A is 1 while the enable count of its ancestors is 0, which
is not good.
Step 3: in lateinit, clk_disable_unused() is called, the enable_count of
clock B being 0, clock B is gated and and critical clock A actually gets
disabled.
This situation was found while adding fdiv_clk gates to the meson8b
platform. These clocks parent clk81 critical clock, which is the mother
of all peripheral clocks in this system. Because of the issue described
here, the system is crashing when clk_disable_unused() is called.
The situation is solved by reverting
commit f8f8f1d04494 ("clk: Don't touch hardware when reparenting during registration").
To avoid breaking again the situation described in this commit
description, enabling critical clock should be done before walking the
orphan list. This way, a parent critical clock may not be accidentally
disabled due to the CLK_OPS_PARENT_ENABLE mechanism.
Fixes: f8f8f1d04494 ("clk: Don't touch hardware when reparenting during registration")
Cc: Stephen Boyd <sboyd@codeaurora.org>
Cc: Shawn Guo <shawnguo@kernel.org>
Cc: Dong Aisheng <aisheng.dong@nxp.com>
Signed-off-by: Jerome Brunet <jbrunet@baylibre.com>
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Tested-by: Heiko Stuebner <heiko@sntech.de>
Signed-off-by: Michael Turquette <mturquette@baylibre.com>
2018-02-14 13:43:36 +00:00
|
|
|
}
|
|
|
|
|
2019-12-03 08:08:05 +00:00
|
|
|
clk_core_reparent_orphans_nolock();
|
clk: clock multiplexers may register out of order
When a clock, C is initialised any orphan clocks listing C as
a possible parent are reparented to it regardless of the
parent requested by the orphan's get_parent() operation.
This means that multiplexers registered before their parents
are reparented to the first parent subsequently declared,
regardless of the selection made by the hardware registers.
For example:
static const char *sel[] = { "srcA", "srcB", "dummy", "srcC" };
child = clk_register_mux(NULL, "child", sel, ARRAY_SIZE(sel), ...);
clk_register_fixed(NULL, "dummy", ...);
clk_register_fixed(NULL, "srcA", ...);
clk_register_fixed(NULL, "srcB", ...);
clk_register_fixed(NULL, "srcC", ...);
Causes child's parent to always be "dummy".
To fix this, when an orphanned clock has a get_parent() operation,
only reparent to the clock indicated by get_parent().
Signed-off-by: Martin Fuzzey <mfuzzey@parkeon.com>
Signed-off-by: Mike Turquette <mturquette@linaro.org>
[mturquette@linaro.org: improve $SUBJECT]
2012-11-22 19:15:05 +00:00
|
|
|
|
2015-04-30 20:54:13 +00:00
|
|
|
kref_init(&core->ref);
|
2012-03-16 06:11:19 +00:00
|
|
|
out:
|
2017-08-21 08:04:59 +00:00
|
|
|
clk_pm_runtime_put(core);
|
|
|
|
unlock:
|
2021-11-09 04:34:38 +00:00
|
|
|
if (ret) {
|
2020-05-05 14:09:53 +00:00
|
|
|
hlist_del_init(&core->child_node);
|
2021-11-09 04:34:38 +00:00
|
|
|
core->hw->core = NULL;
|
|
|
|
}
|
2020-05-05 14:09:53 +00:00
|
|
|
|
2013-03-28 20:59:01 +00:00
|
|
|
clk_prepare_unlock();
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2014-12-12 23:04:16 +00:00
|
|
|
if (!ret)
|
2015-04-30 20:54:13 +00:00
|
|
|
clk_debug_register(core);
|
2014-12-12 23:04:16 +00:00
|
|
|
|
2012-03-29 21:30:40 +00:00
|
|
|
return ret;
|
2012-03-16 06:11:19 +00:00
|
|
|
}
|
|
|
|
|
2018-12-11 16:32:04 +00:00
|
|
|
/**
|
|
|
|
* clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
|
|
|
|
* @core: clk to add consumer to
|
|
|
|
* @clk: consumer to link to a clk
|
|
|
|
*/
|
|
|
|
static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
|
|
|
|
{
|
|
|
|
clk_prepare_lock();
|
|
|
|
hlist_add_head(&clk->clks_node, &core->clks);
|
|
|
|
clk_prepare_unlock();
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
|
|
|
|
* @clk: consumer to unlink
|
|
|
|
*/
|
|
|
|
static void clk_core_unlink_consumer(struct clk *clk)
|
|
|
|
{
|
|
|
|
lockdep_assert_held(&prepare_lock);
|
|
|
|
hlist_del(&clk->clks_node);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
|
|
|
|
* @core: clk to allocate a consumer for
|
|
|
|
* @dev_id: string describing device name
|
|
|
|
* @con_id: connection ID string on device
|
|
|
|
*
|
|
|
|
* Returns: clk consumer left unlinked from the consumer list
|
|
|
|
*/
|
|
|
|
static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
|
2015-01-23 11:03:30 +00:00
|
|
|
const char *con_id)
|
2012-04-26 05:58:56 +00:00
|
|
|
{
|
|
|
|
struct clk *clk;
|
|
|
|
|
2015-01-23 11:03:30 +00:00
|
|
|
clk = kzalloc(sizeof(*clk), GFP_KERNEL);
|
|
|
|
if (!clk)
|
|
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
|
2018-12-11 16:32:04 +00:00
|
|
|
clk->core = core;
|
2015-01-23 11:03:30 +00:00
|
|
|
clk->dev_id = dev_id;
|
2017-02-20 13:20:56 +00:00
|
|
|
clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
|
2015-01-23 11:03:31 +00:00
|
|
|
clk->max_rate = ULONG_MAX;
|
|
|
|
|
2012-04-26 05:58:56 +00:00
|
|
|
return clk;
|
|
|
|
}
|
2015-01-23 11:03:30 +00:00
|
|
|
|
2018-12-11 16:32:04 +00:00
|
|
|
/**
|
|
|
|
* free_clk - Free a clk consumer
|
|
|
|
* @clk: clk consumer to free
|
|
|
|
*
|
|
|
|
* Note, this assumes the clk has been unlinked from the clk_core consumer
|
|
|
|
* list.
|
|
|
|
*/
|
|
|
|
static void free_clk(struct clk *clk)
|
2015-01-23 11:03:31 +00:00
|
|
|
{
|
2017-02-20 13:20:56 +00:00
|
|
|
kfree_const(clk->con_id);
|
2015-01-23 11:03:31 +00:00
|
|
|
kfree(clk);
|
|
|
|
}
|
2012-04-26 05:58:56 +00:00
|
|
|
|
2018-12-11 16:32:04 +00:00
|
|
|
/**
|
|
|
|
* clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
|
|
|
|
* a clk_hw
|
2018-12-11 16:34:16 +00:00
|
|
|
* @dev: clk consumer device
|
2018-12-11 16:32:04 +00:00
|
|
|
* @hw: clk_hw associated with the clk being consumed
|
|
|
|
* @dev_id: string describing device name
|
|
|
|
* @con_id: connection ID string on device
|
|
|
|
*
|
|
|
|
* This is the main function used to create a clk pointer for use by clk
|
|
|
|
* consumers. It connects a consumer to the clk_core and clk_hw structures
|
|
|
|
* used by the framework and clk provider respectively.
|
|
|
|
*/
|
2018-12-11 16:34:16 +00:00
|
|
|
struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
|
2018-12-11 16:32:04 +00:00
|
|
|
const char *dev_id, const char *con_id)
|
|
|
|
{
|
|
|
|
struct clk *clk;
|
|
|
|
struct clk_core *core;
|
|
|
|
|
|
|
|
/* This is to allow this function to be chained to others */
|
|
|
|
if (IS_ERR_OR_NULL(hw))
|
|
|
|
return ERR_CAST(hw);
|
|
|
|
|
|
|
|
core = hw->core;
|
|
|
|
clk = alloc_clk(core, dev_id, con_id);
|
|
|
|
if (IS_ERR(clk))
|
|
|
|
return clk;
|
2018-12-11 16:34:16 +00:00
|
|
|
clk->dev = dev;
|
2018-12-11 16:32:04 +00:00
|
|
|
|
|
|
|
if (!try_module_get(core->owner)) {
|
|
|
|
free_clk(clk);
|
|
|
|
return ERR_PTR(-ENOENT);
|
|
|
|
}
|
|
|
|
|
|
|
|
kref_get(&core->ref);
|
|
|
|
clk_core_link_consumer(core, clk);
|
|
|
|
|
|
|
|
return clk;
|
|
|
|
}
|
|
|
|
|
2020-10-21 16:21:46 +00:00
|
|
|
/**
|
|
|
|
* clk_hw_get_clk - get clk consumer given an clk_hw
|
|
|
|
* @hw: clk_hw associated with the clk being consumed
|
|
|
|
* @con_id: connection ID string on device
|
|
|
|
*
|
|
|
|
* Returns: new clk consumer
|
|
|
|
* This is the function to be used by providers which need
|
|
|
|
* to get a consumer clk and act on the clock element
|
|
|
|
* Calls to this function must be balanced with calls clk_put()
|
|
|
|
*/
|
|
|
|
struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id)
|
|
|
|
{
|
|
|
|
struct device *dev = hw->core->dev;
|
2022-02-25 14:35:23 +00:00
|
|
|
const char *name = dev ? dev_name(dev) : NULL;
|
2020-10-21 16:21:46 +00:00
|
|
|
|
2022-02-25 14:35:23 +00:00
|
|
|
return clk_hw_create_clk(dev, hw, name, con_id);
|
2020-10-21 16:21:46 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(clk_hw_get_clk);
|
|
|
|
|
2019-04-12 18:31:47 +00:00
|
|
|
static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
|
2012-03-16 06:11:19 +00:00
|
|
|
{
|
2019-04-12 18:31:47 +00:00
|
|
|
const char *dst;
|
|
|
|
|
|
|
|
if (!src) {
|
|
|
|
if (must_exist)
|
|
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
|
|
|
|
if (!dst)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2019-07-31 19:35:17 +00:00
|
|
|
static int clk_core_populate_parent_map(struct clk_core *core,
|
|
|
|
const struct clk_init_data *init)
|
2019-04-12 18:31:47 +00:00
|
|
|
{
|
|
|
|
u8 num_parents = init->num_parents;
|
|
|
|
const char * const *parent_names = init->parent_names;
|
|
|
|
const struct clk_hw **parent_hws = init->parent_hws;
|
|
|
|
const struct clk_parent_data *parent_data = init->parent_data;
|
|
|
|
int i, ret = 0;
|
|
|
|
struct clk_parent_map *parents, *parent;
|
|
|
|
|
|
|
|
if (!num_parents)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Avoid unnecessary string look-ups of clk_core's possible parents by
|
|
|
|
* having a cache of names/clk_hw pointers to clk_core pointers.
|
|
|
|
*/
|
|
|
|
parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
|
|
|
|
core->parents = parents;
|
|
|
|
if (!parents)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
/* Copy everything over because it might be __initdata */
|
|
|
|
for (i = 0, parent = parents; i < num_parents; i++, parent++) {
|
2019-04-12 18:31:49 +00:00
|
|
|
parent->index = -1;
|
2019-04-12 18:31:47 +00:00
|
|
|
if (parent_names) {
|
|
|
|
/* throw a WARN if any entries are NULL */
|
|
|
|
WARN(!parent_names[i],
|
|
|
|
"%s: invalid NULL in %s's .parent_names\n",
|
|
|
|
__func__, core->name);
|
|
|
|
ret = clk_cpy_name(&parent->name, parent_names[i],
|
|
|
|
true);
|
|
|
|
} else if (parent_data) {
|
|
|
|
parent->hw = parent_data[i].hw;
|
2019-04-12 18:31:49 +00:00
|
|
|
parent->index = parent_data[i].index;
|
2019-04-12 18:31:47 +00:00
|
|
|
ret = clk_cpy_name(&parent->fw_name,
|
|
|
|
parent_data[i].fw_name, false);
|
|
|
|
if (!ret)
|
|
|
|
ret = clk_cpy_name(&parent->name,
|
|
|
|
parent_data[i].name,
|
|
|
|
false);
|
|
|
|
} else if (parent_hws) {
|
|
|
|
parent->hw = parent_hws[i];
|
|
|
|
} else {
|
|
|
|
ret = -EINVAL;
|
|
|
|
WARN(1, "Must specify parents if num_parents > 0\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ret) {
|
|
|
|
do {
|
|
|
|
kfree_const(parents[i].name);
|
|
|
|
kfree_const(parents[i].fw_name);
|
|
|
|
} while (--i >= 0);
|
|
|
|
kfree(parents);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void clk_core_free_parent_map(struct clk_core *core)
|
|
|
|
{
|
|
|
|
int i = core->num_parents;
|
|
|
|
|
|
|
|
if (!core->num_parents)
|
|
|
|
return;
|
|
|
|
|
|
|
|
while (--i >= 0) {
|
|
|
|
kfree_const(core->parents[i].name);
|
|
|
|
kfree_const(core->parents[i].fw_name);
|
|
|
|
}
|
|
|
|
|
|
|
|
kfree(core->parents);
|
|
|
|
}
|
|
|
|
|
2019-04-12 18:31:46 +00:00
|
|
|
static struct clk *
|
|
|
|
__clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
|
2012-03-16 06:11:19 +00:00
|
|
|
{
|
2019-04-12 18:31:47 +00:00
|
|
|
int ret;
|
2015-04-30 20:54:13 +00:00
|
|
|
struct clk_core *core;
|
2019-07-31 19:35:17 +00:00
|
|
|
const struct clk_init_data *init = hw->init;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The init data is not supposed to be used outside of registration path.
|
|
|
|
* Set it to NULL so that provider drivers can't use it either and so that
|
|
|
|
* we catch use of hw->init early on in the core.
|
|
|
|
*/
|
|
|
|
hw->init = NULL;
|
2014-04-18 23:29:42 +00:00
|
|
|
|
2015-04-30 20:54:13 +00:00
|
|
|
core = kzalloc(sizeof(*core), GFP_KERNEL);
|
|
|
|
if (!core) {
|
2014-04-18 23:29:42 +00:00
|
|
|
ret = -ENOMEM;
|
|
|
|
goto fail_out;
|
|
|
|
}
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2019-07-31 19:35:17 +00:00
|
|
|
core->name = kstrdup_const(init->name, GFP_KERNEL);
|
2015-04-30 20:54:13 +00:00
|
|
|
if (!core->name) {
|
2012-04-26 05:58:56 +00:00
|
|
|
ret = -ENOMEM;
|
|
|
|
goto fail_name;
|
|
|
|
}
|
2017-12-19 08:33:29 +00:00
|
|
|
|
2019-07-31 19:35:17 +00:00
|
|
|
if (WARN_ON(!init->ops)) {
|
2017-12-19 08:33:29 +00:00
|
|
|
ret = -EINVAL;
|
|
|
|
goto fail_ops;
|
|
|
|
}
|
2019-07-31 19:35:17 +00:00
|
|
|
core->ops = init->ops;
|
2017-12-19 08:33:29 +00:00
|
|
|
|
2017-08-21 08:04:59 +00:00
|
|
|
if (dev && pm_runtime_enabled(dev))
|
2018-12-04 19:24:37 +00:00
|
|
|
core->rpm_enabled = true;
|
|
|
|
core->dev = dev;
|
2019-04-12 18:31:46 +00:00
|
|
|
core->of_node = np;
|
2013-08-24 18:10:41 +00:00
|
|
|
if (dev && dev->driver)
|
2015-04-30 20:54:13 +00:00
|
|
|
core->owner = dev->driver->owner;
|
|
|
|
core->hw = hw;
|
2019-07-31 19:35:17 +00:00
|
|
|
core->flags = init->flags;
|
|
|
|
core->num_parents = init->num_parents;
|
2015-07-16 19:50:27 +00:00
|
|
|
core->min_rate = 0;
|
|
|
|
core->max_rate = ULONG_MAX;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2019-07-31 19:35:17 +00:00
|
|
|
ret = clk_core_populate_parent_map(core, init);
|
2019-04-12 18:31:47 +00:00
|
|
|
if (ret)
|
2015-12-28 10:23:00 +00:00
|
|
|
goto fail_parents;
|
|
|
|
|
2015-04-30 20:54:13 +00:00
|
|
|
INIT_HLIST_HEAD(&core->clks);
|
2015-01-23 11:03:31 +00:00
|
|
|
|
2018-12-11 16:32:04 +00:00
|
|
|
/*
|
|
|
|
* Don't call clk_hw_create_clk() here because that would pin the
|
|
|
|
* provider module to itself and prevent it from ever being removed.
|
|
|
|
*/
|
|
|
|
hw->clk = alloc_clk(core, NULL, NULL);
|
2015-01-23 11:03:30 +00:00
|
|
|
if (IS_ERR(hw->clk)) {
|
|
|
|
ret = PTR_ERR(hw->clk);
|
2019-04-12 18:31:47 +00:00
|
|
|
goto fail_create_clk;
|
2015-01-23 11:03:30 +00:00
|
|
|
}
|
|
|
|
|
2021-11-09 04:34:38 +00:00
|
|
|
clk_core_link_consumer(core, hw->clk);
|
2018-12-11 16:32:04 +00:00
|
|
|
|
2015-12-28 10:22:57 +00:00
|
|
|
ret = __clk_core_init(core);
|
2012-03-29 21:30:40 +00:00
|
|
|
if (!ret)
|
2015-01-23 11:03:30 +00:00
|
|
|
return hw->clk;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2018-12-11 16:32:04 +00:00
|
|
|
clk_prepare_lock();
|
|
|
|
clk_core_unlink_consumer(hw->clk);
|
|
|
|
clk_prepare_unlock();
|
|
|
|
|
|
|
|
free_clk(hw->clk);
|
2015-01-23 11:03:30 +00:00
|
|
|
hw->clk = NULL;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2019-04-12 18:31:47 +00:00
|
|
|
fail_create_clk:
|
|
|
|
clk_core_free_parent_map(core);
|
2015-12-28 10:23:00 +00:00
|
|
|
fail_parents:
|
2017-12-19 08:33:29 +00:00
|
|
|
fail_ops:
|
2015-04-30 20:54:13 +00:00
|
|
|
kfree_const(core->name);
|
2012-04-26 05:58:56 +00:00
|
|
|
fail_name:
|
2015-04-30 20:54:13 +00:00
|
|
|
kfree(core);
|
2012-03-29 21:30:40 +00:00
|
|
|
fail_out:
|
|
|
|
return ERR_PTR(ret);
|
2012-03-16 06:11:19 +00:00
|
|
|
}
|
2019-04-12 18:31:44 +00:00
|
|
|
|
2019-12-30 18:29:35 +00:00
|
|
|
/**
|
|
|
|
* dev_or_parent_of_node() - Get device node of @dev or @dev's parent
|
|
|
|
* @dev: Device to get device node of
|
|
|
|
*
|
|
|
|
* Return: device node pointer of @dev, or the device node pointer of
|
|
|
|
* @dev->parent if dev doesn't have a device node, or NULL if neither
|
|
|
|
* @dev or @dev->parent have a device node.
|
|
|
|
*/
|
|
|
|
static struct device_node *dev_or_parent_of_node(struct device *dev)
|
|
|
|
{
|
|
|
|
struct device_node *np;
|
|
|
|
|
|
|
|
if (!dev)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
np = dev_of_node(dev);
|
|
|
|
if (!np)
|
|
|
|
np = dev_of_node(dev->parent);
|
|
|
|
|
|
|
|
return np;
|
|
|
|
}
|
|
|
|
|
2019-04-12 18:31:44 +00:00
|
|
|
/**
|
|
|
|
* clk_register - allocate a new clock, register it and return an opaque cookie
|
|
|
|
* @dev: device that is registering this clock
|
|
|
|
* @hw: link to hardware-specific clock data
|
|
|
|
*
|
2019-05-07 18:46:13 +00:00
|
|
|
* clk_register is the *deprecated* interface for populating the clock tree with
|
|
|
|
* new clock nodes. Use clk_hw_register() instead.
|
|
|
|
*
|
|
|
|
* Returns: a pointer to the newly allocated struct clk which
|
2019-04-12 18:31:44 +00:00
|
|
|
* cannot be dereferenced by driver code but may be used in conjunction with the
|
|
|
|
* rest of the clock API. In the event of an error clk_register will return an
|
|
|
|
* error code; drivers must test for an error code after calling clk_register.
|
|
|
|
*/
|
|
|
|
struct clk *clk_register(struct device *dev, struct clk_hw *hw)
|
|
|
|
{
|
2019-12-30 18:29:35 +00:00
|
|
|
return __clk_register(dev, dev_or_parent_of_node(dev), hw);
|
2019-04-12 18:31:44 +00:00
|
|
|
}
|
2012-03-16 06:11:19 +00:00
|
|
|
EXPORT_SYMBOL_GPL(clk_register);
|
|
|
|
|
2016-02-06 01:02:52 +00:00
|
|
|
/**
|
|
|
|
* clk_hw_register - register a clk_hw and return an error code
|
|
|
|
* @dev: device that is registering this clock
|
|
|
|
* @hw: link to hardware-specific clock data
|
|
|
|
*
|
|
|
|
* clk_hw_register is the primary interface for populating the clock tree with
|
|
|
|
* new clock nodes. It returns an integer equal to zero indicating success or
|
|
|
|
* less than zero indicating failure. Drivers must test for an error code after
|
|
|
|
* calling clk_hw_register().
|
|
|
|
*/
|
|
|
|
int clk_hw_register(struct device *dev, struct clk_hw *hw)
|
|
|
|
{
|
2019-12-30 18:29:35 +00:00
|
|
|
return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
|
|
|
|
hw));
|
2016-02-06 01:02:52 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(clk_hw_register);
|
|
|
|
|
2019-04-12 18:31:46 +00:00
|
|
|
/*
|
|
|
|
* of_clk_hw_register - register a clk_hw and return an error code
|
|
|
|
* @node: device_node of device that is registering this clock
|
|
|
|
* @hw: link to hardware-specific clock data
|
|
|
|
*
|
|
|
|
* of_clk_hw_register() is the primary interface for populating the clock tree
|
|
|
|
* with new clock nodes when a struct device is not available, but a struct
|
|
|
|
* device_node is. It returns an integer equal to zero indicating success or
|
|
|
|
* less than zero indicating failure. Drivers must test for an error code after
|
|
|
|
* calling of_clk_hw_register().
|
|
|
|
*/
|
|
|
|
int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
|
|
|
|
{
|
|
|
|
return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(of_clk_hw_register);
|
|
|
|
|
2015-04-30 22:11:31 +00:00
|
|
|
/* Free memory allocated for a clock. */
|
2013-08-24 13:00:10 +00:00
|
|
|
static void __clk_release(struct kref *ref)
|
|
|
|
{
|
2015-04-30 20:54:13 +00:00
|
|
|
struct clk_core *core = container_of(ref, struct clk_core, ref);
|
2013-08-24 13:00:10 +00:00
|
|
|
|
2015-01-09 08:28:10 +00:00
|
|
|
lockdep_assert_held(&prepare_lock);
|
|
|
|
|
2019-04-12 18:31:47 +00:00
|
|
|
clk_core_free_parent_map(core);
|
2015-04-30 20:54:13 +00:00
|
|
|
kfree_const(core->name);
|
|
|
|
kfree(core);
|
2013-08-24 13:00:10 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Empty clk_ops for unregistered clocks. These are used temporarily
|
|
|
|
* after clk_unregister() was called on a clock and until last clock
|
|
|
|
* consumer calls clk_put() and the struct clk object is freed.
|
|
|
|
*/
|
|
|
|
static int clk_nodrv_prepare_enable(struct clk_hw *hw)
|
|
|
|
{
|
|
|
|
return -ENXIO;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
|
|
|
|
{
|
|
|
|
WARN_ON_ONCE(1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
|
|
|
|
unsigned long parent_rate)
|
|
|
|
{
|
|
|
|
return -ENXIO;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
|
|
|
|
{
|
|
|
|
return -ENXIO;
|
|
|
|
}
|
|
|
|
|
2023-05-05 11:25:08 +00:00
|
|
|
static int clk_nodrv_determine_rate(struct clk_hw *hw,
|
|
|
|
struct clk_rate_request *req)
|
|
|
|
{
|
|
|
|
return -ENXIO;
|
|
|
|
}
|
|
|
|
|
2013-08-24 13:00:10 +00:00
|
|
|
static const struct clk_ops clk_nodrv_ops = {
|
|
|
|
.enable = clk_nodrv_prepare_enable,
|
|
|
|
.disable = clk_nodrv_disable_unprepare,
|
|
|
|
.prepare = clk_nodrv_prepare_enable,
|
|
|
|
.unprepare = clk_nodrv_disable_unprepare,
|
2023-05-05 11:25:08 +00:00
|
|
|
.determine_rate = clk_nodrv_determine_rate,
|
2013-08-24 13:00:10 +00:00
|
|
|
.set_rate = clk_nodrv_set_rate,
|
|
|
|
.set_parent = clk_nodrv_set_parent,
|
|
|
|
};
|
|
|
|
|
2019-08-28 18:19:59 +00:00
|
|
|
static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
|
2022-02-17 22:05:54 +00:00
|
|
|
const struct clk_core *target)
|
2019-08-28 18:19:59 +00:00
|
|
|
{
|
|
|
|
int i;
|
|
|
|
struct clk_core *child;
|
|
|
|
|
|
|
|
for (i = 0; i < root->num_parents; i++)
|
|
|
|
if (root->parents[i].core == target)
|
|
|
|
root->parents[i].core = NULL;
|
|
|
|
|
|
|
|
hlist_for_each_entry(child, &root->children, child_node)
|
|
|
|
clk_core_evict_parent_cache_subtree(child, target);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Remove this clk from all parent caches */
|
|
|
|
static void clk_core_evict_parent_cache(struct clk_core *core)
|
|
|
|
{
|
2022-02-17 22:05:53 +00:00
|
|
|
const struct hlist_head **lists;
|
2019-08-28 18:19:59 +00:00
|
|
|
struct clk_core *root;
|
|
|
|
|
|
|
|
lockdep_assert_held(&prepare_lock);
|
|
|
|
|
|
|
|
for (lists = all_lists; *lists; lists++)
|
|
|
|
hlist_for_each_entry(root, *lists, child_node)
|
|
|
|
clk_core_evict_parent_cache_subtree(root, core);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
2012-04-18 08:07:12 +00:00
|
|
|
/**
|
|
|
|
* clk_unregister - unregister a currently registered clock
|
|
|
|
* @clk: clock to unregister
|
|
|
|
*/
|
2013-08-24 13:00:10 +00:00
|
|
|
void clk_unregister(struct clk *clk)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
2019-09-24 12:39:54 +00:00
|
|
|
const struct clk_ops *ops;
|
2013-08-24 13:00:10 +00:00
|
|
|
|
2014-09-05 06:37:49 +00:00
|
|
|
if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
|
|
|
|
return;
|
|
|
|
|
2015-01-23 11:03:30 +00:00
|
|
|
clk_debug_unregister(clk->core);
|
2013-08-24 13:00:10 +00:00
|
|
|
|
|
|
|
clk_prepare_lock();
|
|
|
|
|
2019-09-24 12:39:54 +00:00
|
|
|
ops = clk->core->ops;
|
|
|
|
if (ops == &clk_nodrv_ops) {
|
2015-01-23 11:03:30 +00:00
|
|
|
pr_err("%s: unregistered clock: %s\n", __func__,
|
|
|
|
clk->core->name);
|
2016-01-30 15:12:04 +00:00
|
|
|
goto unlock;
|
2013-08-24 13:00:10 +00:00
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Assign empty clock ops for consumers that might still hold
|
|
|
|
* a reference to this clock.
|
|
|
|
*/
|
|
|
|
flags = clk_enable_lock();
|
2015-01-23 11:03:30 +00:00
|
|
|
clk->core->ops = &clk_nodrv_ops;
|
2013-08-24 13:00:10 +00:00
|
|
|
clk_enable_unlock(flags);
|
|
|
|
|
2019-09-24 12:39:54 +00:00
|
|
|
if (ops->terminate)
|
|
|
|
ops->terminate(clk->core->hw);
|
|
|
|
|
2015-01-23 11:03:30 +00:00
|
|
|
if (!hlist_empty(&clk->core->children)) {
|
|
|
|
struct clk_core *child;
|
2014-04-18 23:29:43 +00:00
|
|
|
struct hlist_node *t;
|
2013-08-24 13:00:10 +00:00
|
|
|
|
|
|
|
/* Reparent all children to the orphan list. */
|
2015-01-23 11:03:30 +00:00
|
|
|
hlist_for_each_entry_safe(child, t, &clk->core->children,
|
|
|
|
child_node)
|
2017-12-01 21:51:52 +00:00
|
|
|
clk_core_set_parent_nolock(child, NULL);
|
2013-08-24 13:00:10 +00:00
|
|
|
}
|
|
|
|
|
2019-08-28 18:19:59 +00:00
|
|
|
clk_core_evict_parent_cache(clk->core);
|
|
|
|
|
2015-01-23 11:03:30 +00:00
|
|
|
hlist_del_init(&clk->core->child_node);
|
2013-08-24 13:00:10 +00:00
|
|
|
|
2015-01-23 11:03:30 +00:00
|
|
|
if (clk->core->prepare_count)
|
2013-08-24 13:00:10 +00:00
|
|
|
pr_warn("%s: unregistering prepared clock: %s\n",
|
2015-01-23 11:03:30 +00:00
|
|
|
__func__, clk->core->name);
|
2017-12-01 21:51:56 +00:00
|
|
|
|
|
|
|
if (clk->core->protect_count)
|
|
|
|
pr_warn("%s: unregistering protected clock: %s\n",
|
|
|
|
__func__, clk->core->name);
|
|
|
|
|
2015-01-23 11:03:30 +00:00
|
|
|
kref_put(&clk->core->ref, __clk_release);
|
2019-10-22 07:11:53 +00:00
|
|
|
free_clk(clk);
|
2016-01-30 15:12:04 +00:00
|
|
|
unlock:
|
2013-08-24 13:00:10 +00:00
|
|
|
clk_prepare_unlock();
|
|
|
|
}
|
2012-04-18 08:07:12 +00:00
|
|
|
EXPORT_SYMBOL_GPL(clk_unregister);
|
|
|
|
|
2016-02-06 01:02:52 +00:00
|
|
|
/**
|
|
|
|
* clk_hw_unregister - unregister a currently registered clk_hw
|
|
|
|
* @hw: hardware-specific clock data to unregister
|
|
|
|
*/
|
|
|
|
void clk_hw_unregister(struct clk_hw *hw)
|
|
|
|
{
|
|
|
|
clk_unregister(hw->clk);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(clk_hw_unregister);
|
|
|
|
|
2020-10-21 16:21:45 +00:00
|
|
|
static void devm_clk_unregister_cb(struct device *dev, void *res)
|
2012-09-24 20:38:04 +00:00
|
|
|
{
|
2014-04-18 23:29:42 +00:00
|
|
|
clk_unregister(*(struct clk **)res);
|
2012-09-24 20:38:04 +00:00
|
|
|
}
|
|
|
|
|
2020-10-21 16:21:45 +00:00
|
|
|
static void devm_clk_hw_unregister_cb(struct device *dev, void *res)
|
2016-02-06 01:02:52 +00:00
|
|
|
{
|
|
|
|
clk_hw_unregister(*(struct clk_hw **)res);
|
|
|
|
}
|
|
|
|
|
2012-09-24 20:38:04 +00:00
|
|
|
/**
|
|
|
|
* devm_clk_register - resource managed clk_register()
|
|
|
|
* @dev: device that is registering this clock
|
|
|
|
* @hw: link to hardware-specific clock data
|
|
|
|
*
|
2018-12-11 18:49:40 +00:00
|
|
|
* Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
|
|
|
|
*
|
|
|
|
* Clocks returned from this function are automatically clk_unregister()ed on
|
|
|
|
* driver detach. See clk_register() for more information.
|
2012-09-24 20:38:04 +00:00
|
|
|
*/
|
|
|
|
struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
|
|
|
|
{
|
|
|
|
struct clk *clk;
|
2014-04-18 23:29:42 +00:00
|
|
|
struct clk **clkp;
|
2012-09-24 20:38:04 +00:00
|
|
|
|
2020-10-21 16:21:45 +00:00
|
|
|
clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL);
|
2014-04-18 23:29:42 +00:00
|
|
|
if (!clkp)
|
2012-09-24 20:38:04 +00:00
|
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
|
2014-04-18 23:29:42 +00:00
|
|
|
clk = clk_register(dev, hw);
|
|
|
|
if (!IS_ERR(clk)) {
|
|
|
|
*clkp = clk;
|
|
|
|
devres_add(dev, clkp);
|
2012-09-24 20:38:04 +00:00
|
|
|
} else {
|
2014-04-18 23:29:42 +00:00
|
|
|
devres_free(clkp);
|
2012-09-24 20:38:04 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return clk;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(devm_clk_register);
|
|
|
|
|
2016-02-06 01:02:52 +00:00
|
|
|
/**
|
|
|
|
* devm_clk_hw_register - resource managed clk_hw_register()
|
|
|
|
* @dev: device that is registering this clock
|
|
|
|
* @hw: link to hardware-specific clock data
|
|
|
|
*
|
2016-05-01 10:56:08 +00:00
|
|
|
* Managed clk_hw_register(). Clocks registered by this function are
|
2016-02-06 01:02:52 +00:00
|
|
|
* automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
|
|
|
|
* for more information.
|
|
|
|
*/
|
|
|
|
int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
|
|
|
|
{
|
|
|
|
struct clk_hw **hwp;
|
|
|
|
int ret;
|
|
|
|
|
2020-10-21 16:21:45 +00:00
|
|
|
hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL);
|
2016-02-06 01:02:52 +00:00
|
|
|
if (!hwp)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
ret = clk_hw_register(dev, hw);
|
|
|
|
if (!ret) {
|
|
|
|
*hwp = hw;
|
|
|
|
devres_add(dev, hwp);
|
|
|
|
} else {
|
|
|
|
devres_free(hwp);
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(devm_clk_hw_register);
|
|
|
|
|
2020-10-21 16:21:46 +00:00
|
|
|
static void devm_clk_release(struct device *dev, void *res)
|
|
|
|
{
|
|
|
|
clk_put(*(struct clk **)res);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* devm_clk_hw_get_clk - resource managed clk_hw_get_clk()
|
|
|
|
* @dev: device that is registering this clock
|
|
|
|
* @hw: clk_hw associated with the clk being consumed
|
|
|
|
* @con_id: connection ID string on device
|
|
|
|
*
|
|
|
|
* Managed clk_hw_get_clk(). Clocks got with this function are
|
|
|
|
* automatically clk_put() on driver detach. See clk_put()
|
|
|
|
* for more information.
|
|
|
|
*/
|
|
|
|
struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw,
|
|
|
|
const char *con_id)
|
|
|
|
{
|
|
|
|
struct clk *clk;
|
|
|
|
struct clk **clkp;
|
|
|
|
|
|
|
|
/* This should not happen because it would mean we have drivers
|
|
|
|
* passing around clk_hw pointers instead of having the caller use
|
|
|
|
* proper clk_get() style APIs
|
|
|
|
*/
|
|
|
|
WARN_ON_ONCE(dev != hw->core->dev);
|
|
|
|
|
|
|
|
clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
|
|
|
|
if (!clkp)
|
|
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
|
|
|
|
clk = clk_hw_get_clk(hw, con_id);
|
|
|
|
if (!IS_ERR(clk)) {
|
|
|
|
*clkp = clk;
|
|
|
|
devres_add(dev, clkp);
|
|
|
|
} else {
|
|
|
|
devres_free(clkp);
|
|
|
|
}
|
|
|
|
|
|
|
|
return clk;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk);
|
|
|
|
|
2013-08-24 18:10:41 +00:00
|
|
|
/*
|
|
|
|
* clkdev helpers
|
|
|
|
*/
|
|
|
|
|
|
|
|
void __clk_put(struct clk *clk)
|
|
|
|
{
|
2014-12-02 07:54:19 +00:00
|
|
|
struct module *owner;
|
|
|
|
|
2014-01-07 12:03:43 +00:00
|
|
|
if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
|
2013-08-24 18:10:41 +00:00
|
|
|
return;
|
|
|
|
|
2013-08-24 13:00:10 +00:00
|
|
|
clk_prepare_lock();
|
2015-01-23 11:03:31 +00:00
|
|
|
|
2017-12-01 21:51:59 +00:00
|
|
|
/*
|
|
|
|
* Before calling clk_put, all calls to clk_rate_exclusive_get() from a
|
|
|
|
* given user should be balanced with calls to clk_rate_exclusive_put()
|
|
|
|
* and by that same consumer
|
|
|
|
*/
|
|
|
|
if (WARN_ON(clk->exclusive_count)) {
|
|
|
|
/* We voiced our concern, let's sanitize the situation */
|
|
|
|
clk->core->protect_count -= (clk->exclusive_count - 1);
|
|
|
|
clk_core_rate_unprotect(clk->core);
|
|
|
|
clk->exclusive_count = 0;
|
|
|
|
}
|
|
|
|
|
2015-02-06 19:42:44 +00:00
|
|
|
hlist_del(&clk->clks_node);
|
2022-08-16 11:25:07 +00:00
|
|
|
|
|
|
|
/* If we had any boundaries on that clock, let's drop them. */
|
|
|
|
if (clk->min_rate > 0 || clk->max_rate < ULONG_MAX)
|
|
|
|
clk_set_rate_range_nolock(clk, 0, ULONG_MAX);
|
2015-02-06 14:13:01 +00:00
|
|
|
|
2015-01-23 11:03:31 +00:00
|
|
|
owner = clk->core->owner;
|
|
|
|
kref_put(&clk->core->ref, __clk_release);
|
|
|
|
|
2013-08-24 13:00:10 +00:00
|
|
|
clk_prepare_unlock();
|
|
|
|
|
2014-12-02 07:54:19 +00:00
|
|
|
module_put(owner);
|
2015-01-23 11:03:30 +00:00
|
|
|
|
2018-12-11 16:32:04 +00:00
|
|
|
free_clk(clk);
|
2013-08-24 18:10:41 +00:00
|
|
|
}
|
|
|
|
|
2012-03-16 06:11:19 +00:00
|
|
|
/*** clk rate change notifiers ***/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* clk_notifier_register - add a clk rate change notifier
|
|
|
|
* @clk: struct clk * to watch
|
|
|
|
* @nb: struct notifier_block * with callback info
|
|
|
|
*
|
|
|
|
* Request notification when clk's rate changes. This uses an SRCU
|
|
|
|
* notifier because we want it to block and notifier unregistrations are
|
|
|
|
* uncommon. The callbacks associated with the notifier must not
|
|
|
|
* re-enter into the clk framework by calling any top-level clk APIs;
|
|
|
|
* this will cause a nested prepare_lock mutex.
|
|
|
|
*
|
2015-11-30 07:40:51 +00:00
|
|
|
* In all notification cases (pre, post and abort rate change) the original
|
|
|
|
* clock rate is passed to the callback via struct clk_notifier_data.old_rate
|
|
|
|
* and the new frequency is passed via struct clk_notifier_data.new_rate.
|
2012-03-16 06:11:19 +00:00
|
|
|
*
|
|
|
|
* clk_notifier_register() must be called from non-atomic context.
|
|
|
|
* Returns -EINVAL if called with null arguments, -ENOMEM upon
|
|
|
|
* allocation failure; otherwise, passes along the return value of
|
|
|
|
* srcu_notifier_chain_register().
|
|
|
|
*/
|
|
|
|
int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
|
|
|
|
{
|
|
|
|
struct clk_notifier *cn;
|
|
|
|
int ret = -ENOMEM;
|
|
|
|
|
|
|
|
if (!clk || !nb)
|
|
|
|
return -EINVAL;
|
|
|
|
|
2013-03-28 20:59:01 +00:00
|
|
|
clk_prepare_lock();
|
2012-03-16 06:11:19 +00:00
|
|
|
|
|
|
|
/* search the list of notifiers for this clk */
|
|
|
|
list_for_each_entry(cn, &clk_notifier_list, node)
|
|
|
|
if (cn->clk == clk)
|
2021-04-01 22:51:48 +00:00
|
|
|
goto found;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
|
|
|
/* if clk wasn't in the notifier list, allocate new clk_notifier */
|
2021-04-01 22:51:48 +00:00
|
|
|
cn = kzalloc(sizeof(*cn), GFP_KERNEL);
|
|
|
|
if (!cn)
|
|
|
|
goto out;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2021-04-01 22:51:48 +00:00
|
|
|
cn->clk = clk;
|
|
|
|
srcu_init_notifier_head(&cn->notifier_head);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2021-04-01 22:51:48 +00:00
|
|
|
list_add(&cn->node, &clk_notifier_list);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2021-04-01 22:51:48 +00:00
|
|
|
found:
|
2012-03-16 06:11:19 +00:00
|
|
|
ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
|
|
|
|
|
2015-01-23 11:03:30 +00:00
|
|
|
clk->core->notifier_count++;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
|
|
|
out:
|
2013-03-28 20:59:01 +00:00
|
|
|
clk_prepare_unlock();
|
2012-03-16 06:11:19 +00:00
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(clk_notifier_register);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* clk_notifier_unregister - remove a clk rate change notifier
|
|
|
|
* @clk: struct clk *
|
|
|
|
* @nb: struct notifier_block * with callback info
|
|
|
|
*
|
|
|
|
* Request no further notification for changes to 'clk' and frees memory
|
|
|
|
* allocated in clk_notifier_register.
|
|
|
|
*
|
|
|
|
* Returns -EINVAL if called with null arguments; otherwise, passes
|
|
|
|
* along the return value of srcu_notifier_chain_unregister().
|
|
|
|
*/
|
|
|
|
int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
|
|
|
|
{
|
2021-04-01 22:51:49 +00:00
|
|
|
struct clk_notifier *cn;
|
|
|
|
int ret = -ENOENT;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
|
|
|
if (!clk || !nb)
|
|
|
|
return -EINVAL;
|
|
|
|
|
2013-03-28 20:59:01 +00:00
|
|
|
clk_prepare_lock();
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2021-04-01 22:51:49 +00:00
|
|
|
list_for_each_entry(cn, &clk_notifier_list, node) {
|
|
|
|
if (cn->clk == clk) {
|
|
|
|
ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2021-04-01 22:51:49 +00:00
|
|
|
clk->core->notifier_count--;
|
2012-03-16 06:11:19 +00:00
|
|
|
|
2021-04-01 22:51:49 +00:00
|
|
|
/* XXX the notifier code should handle this better */
|
|
|
|
if (!cn->notifier_head.head) {
|
|
|
|
srcu_cleanup_notifier_head(&cn->notifier_head);
|
|
|
|
list_del(&cn->node);
|
|
|
|
kfree(cn);
|
|
|
|
}
|
|
|
|
break;
|
2012-03-16 06:11:19 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-03-28 20:59:01 +00:00
|
|
|
clk_prepare_unlock();
|
2012-03-16 06:11:19 +00:00
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(clk_notifier_unregister);
|
2012-04-09 19:50:06 +00:00
|
|
|
|
2020-10-21 16:38:46 +00:00
|
|
|
struct clk_notifier_devres {
|
|
|
|
struct clk *clk;
|
|
|
|
struct notifier_block *nb;
|
|
|
|
};
|
|
|
|
|
|
|
|
static void devm_clk_notifier_release(struct device *dev, void *res)
|
|
|
|
{
|
|
|
|
struct clk_notifier_devres *devres = res;
|
|
|
|
|
|
|
|
clk_notifier_unregister(devres->clk, devres->nb);
|
|
|
|
}
|
|
|
|
|
|
|
|
int devm_clk_notifier_register(struct device *dev, struct clk *clk,
|
|
|
|
struct notifier_block *nb)
|
|
|
|
{
|
|
|
|
struct clk_notifier_devres *devres;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
devres = devres_alloc(devm_clk_notifier_release,
|
|
|
|
sizeof(*devres), GFP_KERNEL);
|
|
|
|
|
|
|
|
if (!devres)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
ret = clk_notifier_register(clk, nb);
|
|
|
|
if (!ret) {
|
|
|
|
devres->clk = clk;
|
|
|
|
devres->nb = nb;
|
2023-06-19 03:22:53 +00:00
|
|
|
devres_add(dev, devres);
|
2020-10-21 16:38:46 +00:00
|
|
|
} else {
|
|
|
|
devres_free(devres);
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(devm_clk_notifier_register);
|
|
|
|
|
2012-04-09 19:50:06 +00:00
|
|
|
#ifdef CONFIG_OF
|
2019-12-18 17:56:21 +00:00
|
|
|
static void clk_core_reparent_orphans(void)
|
|
|
|
{
|
|
|
|
clk_prepare_lock();
|
|
|
|
clk_core_reparent_orphans_nolock();
|
|
|
|
clk_prepare_unlock();
|
|
|
|
}
|
|
|
|
|
2012-04-09 19:50:06 +00:00
|
|
|
/**
|
|
|
|
* struct of_clk_provider - Clock provider registration structure
|
|
|
|
* @link: Entry in global list of clock providers
|
|
|
|
* @node: Pointer to device tree node of clock provider
|
|
|
|
* @get: Get clock callback. Returns NULL or a struct clk for the
|
|
|
|
* given clock specifier
|
2020-06-22 09:09:35 +00:00
|
|
|
* @get_hw: Get clk_hw callback. Returns NULL, ERR_PTR or a
|
|
|
|
* struct clk_hw for the given clock specifier
|
2012-04-09 19:50:06 +00:00
|
|
|
* @data: context pointer to be passed into @get callback
|
|
|
|
*/
|
|
|
|
struct of_clk_provider {
|
|
|
|
struct list_head link;
|
|
|
|
|
|
|
|
struct device_node *node;
|
|
|
|
struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
|
2016-02-06 01:38:26 +00:00
|
|
|
struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
|
2012-04-09 19:50:06 +00:00
|
|
|
void *data;
|
|
|
|
};
|
|
|
|
|
2019-05-24 00:11:57 +00:00
|
|
|
extern struct of_device_id __clk_of_table;
|
2013-01-04 07:00:52 +00:00
|
|
|
static const struct of_device_id __clk_of_table_sentinel
|
2020-10-22 02:36:07 +00:00
|
|
|
__used __section("__clk_of_table_end");
|
2013-01-04 07:00:52 +00:00
|
|
|
|
2012-04-09 19:50:06 +00:00
|
|
|
static LIST_HEAD(of_clk_providers);
|
2013-08-23 15:03:43 +00:00
|
|
|
static DEFINE_MUTEX(of_clk_mutex);
|
|
|
|
|
2012-04-09 19:50:06 +00:00
|
|
|
struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
|
|
|
|
void *data)
|
|
|
|
{
|
|
|
|
return data;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
|
|
|
|
|
2016-02-06 01:38:26 +00:00
|
|
|
struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
|
|
|
|
{
|
|
|
|
return data;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
|
|
|
|
|
2012-08-22 13:36:27 +00:00
|
|
|
struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
|
|
|
|
{
|
|
|
|
struct clk_onecell_data *clk_data = data;
|
|
|
|
unsigned int idx = clkspec->args[0];
|
|
|
|
|
|
|
|
if (idx >= clk_data->clk_num) {
|
2015-10-16 15:12:32 +00:00
|
|
|
pr_err("%s: invalid clock index %u\n", __func__, idx);
|
2012-08-22 13:36:27 +00:00
|
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
}
|
|
|
|
|
|
|
|
return clk_data->clks[idx];
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
|
|
|
|
|
2016-02-06 01:38:26 +00:00
|
|
|
struct clk_hw *
|
|
|
|
of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
|
|
|
|
{
|
|
|
|
struct clk_hw_onecell_data *hw_data = data;
|
|
|
|
unsigned int idx = clkspec->args[0];
|
|
|
|
|
|
|
|
if (idx >= hw_data->num) {
|
|
|
|
pr_err("%s: invalid index %u\n", __func__, idx);
|
|
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
}
|
|
|
|
|
|
|
|
return hw_data->hws[idx];
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
|
|
|
|
|
2012-04-09 19:50:06 +00:00
|
|
|
/**
|
|
|
|
* of_clk_add_provider() - Register a clock provider for a node
|
|
|
|
* @np: Device node pointer associated with clock provider
|
|
|
|
* @clk_src_get: callback for decoding clock
|
|
|
|
* @data: context pointer for @clk_src_get callback.
|
2018-12-11 18:49:40 +00:00
|
|
|
*
|
|
|
|
* This function is *deprecated*. Use of_clk_add_hw_provider() instead.
|
2012-04-09 19:50:06 +00:00
|
|
|
*/
|
|
|
|
int of_clk_add_provider(struct device_node *np,
|
|
|
|
struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
|
|
|
|
void *data),
|
|
|
|
void *data)
|
|
|
|
{
|
|
|
|
struct of_clk_provider *cp;
|
2014-06-18 15:29:32 +00:00
|
|
|
int ret;
|
2012-04-09 19:50:06 +00:00
|
|
|
|
2021-04-26 06:56:18 +00:00
|
|
|
if (!np)
|
|
|
|
return 0;
|
|
|
|
|
2017-04-20 07:30:52 +00:00
|
|
|
cp = kzalloc(sizeof(*cp), GFP_KERNEL);
|
2012-04-09 19:50:06 +00:00
|
|
|
if (!cp)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
cp->node = of_node_get(np);
|
|
|
|
cp->data = data;
|
|
|
|
cp->get = clk_src_get;
|
|
|
|
|
2013-08-23 15:03:43 +00:00
|
|
|
mutex_lock(&of_clk_mutex);
|
2012-04-09 19:50:06 +00:00
|
|
|
list_add(&cp->link, &of_clk_providers);
|
2013-08-23 15:03:43 +00:00
|
|
|
mutex_unlock(&of_clk_mutex);
|
2017-07-18 21:42:52 +00:00
|
|
|
pr_debug("Added clock from %pOF\n", np);
|
2012-04-09 19:50:06 +00:00
|
|
|
|
2019-12-03 08:08:05 +00:00
|
|
|
clk_core_reparent_orphans();
|
|
|
|
|
2014-06-18 15:29:32 +00:00
|
|
|
ret = of_clk_set_defaults(np, true);
|
|
|
|
if (ret < 0)
|
|
|
|
of_clk_del_provider(np);
|
|
|
|
|
2021-02-05 22:26:44 +00:00
|
|
|
fwnode_dev_initialized(&np->fwnode, true);
|
|
|
|
|
2014-06-18 15:29:32 +00:00
|
|
|
return ret;
|
2012-04-09 19:50:06 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(of_clk_add_provider);
|
|
|
|
|
2016-02-06 01:38:26 +00:00
|
|
|
/**
|
|
|
|
* of_clk_add_hw_provider() - Register a clock provider for a node
|
|
|
|
* @np: Device node pointer associated with clock provider
|
|
|
|
* @get: callback for decoding clk_hw
|
|
|
|
* @data: context pointer for @get callback.
|
|
|
|
*/
|
|
|
|
int of_clk_add_hw_provider(struct device_node *np,
|
|
|
|
struct clk_hw *(*get)(struct of_phandle_args *clkspec,
|
|
|
|
void *data),
|
|
|
|
void *data)
|
|
|
|
{
|
|
|
|
struct of_clk_provider *cp;
|
|
|
|
int ret;
|
|
|
|
|
2021-04-26 06:56:18 +00:00
|
|
|
if (!np)
|
|
|
|
return 0;
|
|
|
|
|
2016-02-06 01:38:26 +00:00
|
|
|
cp = kzalloc(sizeof(*cp), GFP_KERNEL);
|
|
|
|
if (!cp)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
cp->node = of_node_get(np);
|
|
|
|
cp->data = data;
|
|
|
|
cp->get_hw = get;
|
|
|
|
|
|
|
|
mutex_lock(&of_clk_mutex);
|
|
|
|
list_add(&cp->link, &of_clk_providers);
|
|
|
|
mutex_unlock(&of_clk_mutex);
|
2017-07-18 21:42:52 +00:00
|
|
|
pr_debug("Added clk_hw provider from %pOF\n", np);
|
2016-02-06 01:38:26 +00:00
|
|
|
|
2019-12-03 08:08:05 +00:00
|
|
|
clk_core_reparent_orphans();
|
|
|
|
|
2016-02-06 01:38:26 +00:00
|
|
|
ret = of_clk_set_defaults(np, true);
|
|
|
|
if (ret < 0)
|
|
|
|
of_clk_del_provider(np);
|
|
|
|
|
2021-02-10 11:44:35 +00:00
|
|
|
fwnode_dev_initialized(&np->fwnode, true);
|
|
|
|
|
2016-02-06 01:38:26 +00:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
|
|
|
|
|
2017-09-01 23:16:40 +00:00
|
|
|
static void devm_of_clk_release_provider(struct device *dev, void *res)
|
|
|
|
{
|
|
|
|
of_clk_del_provider(*(struct device_node **)res);
|
|
|
|
}
|
|
|
|
|
2018-12-04 11:34:53 +00:00
|
|
|
/*
|
|
|
|
* We allow a child device to use its parent device as the clock provider node
|
|
|
|
* for cases like MFD sub-devices where the child device driver wants to use
|
|
|
|
* devm_*() APIs but not list the device in DT as a sub-node.
|
|
|
|
*/
|
|
|
|
static struct device_node *get_clk_provider_node(struct device *dev)
|
|
|
|
{
|
|
|
|
struct device_node *np, *parent_np;
|
|
|
|
|
|
|
|
np = dev->of_node;
|
|
|
|
parent_np = dev->parent ? dev->parent->of_node : NULL;
|
|
|
|
|
2023-03-10 14:47:01 +00:00
|
|
|
if (!of_property_present(np, "#clock-cells"))
|
|
|
|
if (of_property_present(parent_np, "#clock-cells"))
|
2018-12-04 11:34:53 +00:00
|
|
|
np = parent_np;
|
|
|
|
|
|
|
|
return np;
|
|
|
|
}
|
|
|
|
|
2018-12-04 11:33:48 +00:00
|
|
|
/**
|
|
|
|
* devm_of_clk_add_hw_provider() - Managed clk provider node registration
|
|
|
|
* @dev: Device acting as the clock provider (used for DT node and lifetime)
|
|
|
|
* @get: callback for decoding clk_hw
|
|
|
|
* @data: context pointer for @get callback
|
|
|
|
*
|
2018-12-04 11:34:53 +00:00
|
|
|
* Registers clock provider for given device's node. If the device has no DT
|
|
|
|
* node or if the device node lacks of clock provider information (#clock-cells)
|
|
|
|
* then the parent device's node is scanned for this information. If parent node
|
|
|
|
* has the #clock-cells then it is used in registration. Provider is
|
|
|
|
* automatically released at device exit.
|
2018-12-04 11:33:48 +00:00
|
|
|
*
|
|
|
|
* Return: 0 on success or an errno on failure.
|
|
|
|
*/
|
2017-09-01 23:16:40 +00:00
|
|
|
int devm_of_clk_add_hw_provider(struct device *dev,
|
|
|
|
struct clk_hw *(*get)(struct of_phandle_args *clkspec,
|
|
|
|
void *data),
|
|
|
|
void *data)
|
|
|
|
{
|
|
|
|
struct device_node **ptr, *np;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
|
|
|
|
GFP_KERNEL);
|
|
|
|
if (!ptr)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
2018-12-04 11:34:53 +00:00
|
|
|
np = get_clk_provider_node(dev);
|
2017-09-01 23:16:40 +00:00
|
|
|
ret = of_clk_add_hw_provider(np, get, data);
|
|
|
|
if (!ret) {
|
|
|
|
*ptr = np;
|
|
|
|
devres_add(dev, ptr);
|
|
|
|
} else {
|
|
|
|
devres_free(ptr);
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
|
|
|
|
|
2012-04-09 19:50:06 +00:00
|
|
|
/**
|
|
|
|
* of_clk_del_provider() - Remove a previously registered clock provider
|
|
|
|
* @np: Device node pointer associated with clock provider
|
|
|
|
*/
|
|
|
|
void of_clk_del_provider(struct device_node *np)
|
|
|
|
{
|
|
|
|
struct of_clk_provider *cp;
|
|
|
|
|
2021-04-26 06:56:18 +00:00
|
|
|
if (!np)
|
|
|
|
return;
|
|
|
|
|
2013-08-23 15:03:43 +00:00
|
|
|
mutex_lock(&of_clk_mutex);
|
2012-04-09 19:50:06 +00:00
|
|
|
list_for_each_entry(cp, &of_clk_providers, link) {
|
|
|
|
if (cp->node == np) {
|
|
|
|
list_del(&cp->link);
|
2021-02-05 22:26:44 +00:00
|
|
|
fwnode_dev_initialized(&np->fwnode, false);
|
2012-04-09 19:50:06 +00:00
|
|
|
of_node_put(cp->node);
|
|
|
|
kfree(cp);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2013-08-23 15:03:43 +00:00
|
|
|
mutex_unlock(&of_clk_mutex);
|
2012-04-09 19:50:06 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(of_clk_del_provider);
|
|
|
|
|
2019-08-26 21:20:42 +00:00
|
|
|
/**
|
|
|
|
* of_parse_clkspec() - Parse a DT clock specifier for a given device node
|
|
|
|
* @np: device node to parse clock specifier from
|
|
|
|
* @index: index of phandle to parse clock out of. If index < 0, @name is used
|
|
|
|
* @name: clock name to find and parse. If name is NULL, the index is used
|
|
|
|
* @out_args: Result of parsing the clock specifier
|
|
|
|
*
|
|
|
|
* Parses a device node's "clocks" and "clock-names" properties to find the
|
|
|
|
* phandle and cells for the index or name that is desired. The resulting clock
|
|
|
|
* specifier is placed into @out_args, or an errno is returned when there's a
|
|
|
|
* parsing error. The @index argument is ignored if @name is non-NULL.
|
|
|
|
*
|
|
|
|
* Example:
|
|
|
|
*
|
|
|
|
* phandle1: clock-controller@1 {
|
|
|
|
* #clock-cells = <2>;
|
|
|
|
* }
|
|
|
|
*
|
|
|
|
* phandle2: clock-controller@2 {
|
|
|
|
* #clock-cells = <1>;
|
|
|
|
* }
|
|
|
|
*
|
|
|
|
* clock-consumer@3 {
|
|
|
|
* clocks = <&phandle1 1 2 &phandle2 3>;
|
|
|
|
* clock-names = "name1", "name2";
|
|
|
|
* }
|
|
|
|
*
|
|
|
|
* To get a device_node for `clock-controller@2' node you may call this
|
|
|
|
* function a few different ways:
|
|
|
|
*
|
|
|
|
* of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
|
|
|
|
* of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
|
|
|
|
* of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
|
|
|
|
*
|
|
|
|
* Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
|
|
|
|
* if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
|
|
|
|
* the "clock-names" property of @np.
|
2019-03-08 18:35:01 +00:00
|
|
|
*/
|
2018-12-19 23:09:14 +00:00
|
|
|
static int of_parse_clkspec(const struct device_node *np, int index,
|
|
|
|
const char *name, struct of_phandle_args *out_args)
|
2018-12-19 18:59:55 +00:00
|
|
|
{
|
|
|
|
int ret = -ENOENT;
|
|
|
|
|
|
|
|
/* Walk up the tree of devices looking for a clock property that matches */
|
|
|
|
while (np) {
|
|
|
|
/*
|
|
|
|
* For named clocks, first look up the name in the
|
|
|
|
* "clock-names" property. If it cannot be found, then index
|
|
|
|
* will be an error code and of_parse_phandle_with_args() will
|
|
|
|
* return -EINVAL.
|
|
|
|
*/
|
|
|
|
if (name)
|
|
|
|
index = of_property_match_string(np, "clock-names", name);
|
|
|
|
ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
|
|
|
|
index, out_args);
|
|
|
|
if (!ret)
|
|
|
|
break;
|
|
|
|
if (name && index >= 0)
|
|
|
|
break;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* No matching clock found on this node. If the parent node
|
|
|
|
* has a "clock-ranges" property, then we can try one of its
|
|
|
|
* clocks.
|
|
|
|
*/
|
|
|
|
np = np->parent;
|
|
|
|
if (np && !of_get_property(np, "clock-ranges", NULL))
|
|
|
|
break;
|
|
|
|
index = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2016-02-06 01:38:26 +00:00
|
|
|
static struct clk_hw *
|
|
|
|
__of_clk_get_hw_from_provider(struct of_clk_provider *provider,
|
|
|
|
struct of_phandle_args *clkspec)
|
|
|
|
{
|
|
|
|
struct clk *clk;
|
|
|
|
|
2016-08-25 20:35:36 +00:00
|
|
|
if (provider->get_hw)
|
|
|
|
return provider->get_hw(clkspec, provider->data);
|
2016-02-06 01:38:26 +00:00
|
|
|
|
2016-08-25 20:35:36 +00:00
|
|
|
clk = provider->get(clkspec, provider->data);
|
|
|
|
if (IS_ERR(clk))
|
|
|
|
return ERR_CAST(clk);
|
|
|
|
return __clk_get_hw(clk);
|
2016-02-06 01:38:26 +00:00
|
|
|
}
|
|
|
|
|
2018-12-19 23:09:14 +00:00
|
|
|
static struct clk_hw *
|
|
|
|
of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
|
2012-04-09 19:50:06 +00:00
|
|
|
{
|
|
|
|
struct of_clk_provider *provider;
|
2018-12-11 16:32:04 +00:00
|
|
|
struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
|
2012-04-09 19:50:06 +00:00
|
|
|
|
2015-02-05 23:39:11 +00:00
|
|
|
if (!clkspec)
|
|
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
|
|
|
|
mutex_lock(&of_clk_mutex);
|
2012-04-09 19:50:06 +00:00
|
|
|
list_for_each_entry(provider, &of_clk_providers, link) {
|
2016-08-15 21:32:23 +00:00
|
|
|
if (provider->node == clkspec->np) {
|
2016-02-06 01:38:26 +00:00
|
|
|
hw = __of_clk_get_hw_from_provider(provider, clkspec);
|
2018-12-11 16:32:04 +00:00
|
|
|
if (!IS_ERR(hw))
|
|
|
|
break;
|
2015-02-06 19:42:43 +00:00
|
|
|
}
|
2012-04-09 19:50:06 +00:00
|
|
|
}
|
2015-02-05 23:39:11 +00:00
|
|
|
mutex_unlock(&of_clk_mutex);
|
2013-08-23 15:03:43 +00:00
|
|
|
|
2018-12-19 18:59:55 +00:00
|
|
|
return hw;
|
2013-08-23 15:03:43 +00:00
|
|
|
}
|
|
|
|
|
2015-02-05 23:39:11 +00:00
|
|
|
/**
|
|
|
|
* of_clk_get_from_provider() - Lookup a clock from a clock provider
|
|
|
|
* @clkspec: pointer to a clock specifier data structure
|
|
|
|
*
|
|
|
|
* This function looks up a struct clk from the registered list of clock
|
|
|
|
* providers, an input is a clock specifier data structure as returned
|
|
|
|
* from the of_parse_phandle_with_args() function call.
|
|
|
|
*/
|
2013-08-23 15:03:43 +00:00
|
|
|
struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
|
|
|
|
{
|
2018-12-19 18:59:55 +00:00
|
|
|
struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
|
|
|
|
|
2018-12-11 16:34:16 +00:00
|
|
|
return clk_hw_create_clk(NULL, hw, NULL, __func__);
|
2012-04-09 19:50:06 +00:00
|
|
|
}
|
2016-02-12 18:50:16 +00:00
|
|
|
EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
|
2012-04-09 19:50:06 +00:00
|
|
|
|
2018-12-19 23:09:14 +00:00
|
|
|
struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
|
|
|
|
const char *con_id)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
struct clk_hw *hw;
|
|
|
|
struct of_phandle_args clkspec;
|
|
|
|
|
|
|
|
ret = of_parse_clkspec(np, index, con_id, &clkspec);
|
|
|
|
if (ret)
|
|
|
|
return ERR_PTR(ret);
|
|
|
|
|
|
|
|
hw = of_clk_get_hw_from_clkspec(&clkspec);
|
|
|
|
of_node_put(clkspec.np);
|
|
|
|
|
|
|
|
return hw;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct clk *__of_clk_get(struct device_node *np,
|
|
|
|
int index, const char *dev_id,
|
|
|
|
const char *con_id)
|
|
|
|
{
|
|
|
|
struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
|
|
|
|
|
|
|
|
return clk_hw_create_clk(NULL, hw, dev_id, con_id);
|
|
|
|
}
|
|
|
|
|
|
|
|
struct clk *of_clk_get(struct device_node *np, int index)
|
|
|
|
{
|
|
|
|
return __of_clk_get(np, index, np->full_name, NULL);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(of_clk_get);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
|
|
|
|
* @np: pointer to clock consumer node
|
|
|
|
* @name: name of consumer's clock input, or NULL for the first clock reference
|
|
|
|
*
|
|
|
|
* This function parses the clocks and clock-names properties,
|
|
|
|
* and uses them to look up the struct clk from the registered list of clock
|
|
|
|
* providers.
|
|
|
|
*/
|
|
|
|
struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
|
|
|
|
{
|
|
|
|
if (!np)
|
|
|
|
return ERR_PTR(-ENOENT);
|
|
|
|
|
2019-03-06 07:18:28 +00:00
|
|
|
return __of_clk_get(np, 0, np->full_name, name);
|
2018-12-19 23:09:14 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(of_clk_get_by_name);
|
|
|
|
|
2016-02-19 23:52:32 +00:00
|
|
|
/**
|
|
|
|
* of_clk_get_parent_count() - Count the number of clocks a device node has
|
|
|
|
* @np: device node to count
|
|
|
|
*
|
|
|
|
* Returns: The number of clocks that are possible parents of this node
|
|
|
|
*/
|
2020-02-12 09:43:17 +00:00
|
|
|
unsigned int of_clk_get_parent_count(const struct device_node *np)
|
2013-10-08 06:12:13 +00:00
|
|
|
{
|
2016-02-19 23:52:32 +00:00
|
|
|
int count;
|
|
|
|
|
|
|
|
count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
|
|
|
|
if (count < 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
return count;
|
2013-10-08 06:12:13 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
|
|
|
|
|
2020-02-12 09:43:17 +00:00
|
|
|
const char *of_clk_get_parent_name(const struct device_node *np, int index)
|
2012-04-09 19:50:06 +00:00
|
|
|
{
|
|
|
|
struct of_phandle_args clkspec;
|
2014-02-13 18:02:49 +00:00
|
|
|
struct property *prop;
|
2012-04-09 19:50:06 +00:00
|
|
|
const char *clk_name;
|
2014-02-13 18:02:49 +00:00
|
|
|
const __be32 *vp;
|
|
|
|
u32 pv;
|
2012-04-09 19:50:06 +00:00
|
|
|
int rc;
|
2014-02-13 18:02:49 +00:00
|
|
|
int count;
|
2015-10-14 21:03:07 +00:00
|
|
|
struct clk *clk;
|
2012-04-09 19:50:06 +00:00
|
|
|
|
|
|
|
rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
|
|
|
|
&clkspec);
|
|
|
|
if (rc)
|
|
|
|
return NULL;
|
|
|
|
|
2014-02-13 18:02:49 +00:00
|
|
|
index = clkspec.args_count ? clkspec.args[0] : 0;
|
|
|
|
count = 0;
|
|
|
|
|
|
|
|
/* if there is an indices property, use it to transfer the index
|
|
|
|
* specified into an array offset for the clock-output-names property.
|
|
|
|
*/
|
|
|
|
of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
|
|
|
|
if (index == pv) {
|
|
|
|
index = count;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
count++;
|
|
|
|
}
|
clk: let of_clk_get_parent_name() fail for invalid clock-indices
Currently, of_clk_get_parent_name() returns a wrong parent clock name
when "clock-indices" property exists and the target index is not
found in the property. In this case, NULL should be returned.
For example,
oscillator {
compatible = "myclocktype";
#clock-cells = <1>;
clock-indices = <1>, <3>;
clock-output-names = "clka", "clkb";
};
consumer {
compatible = "myclockconsumer";
clocks = <&oscillator 0>, <&oscillator 1>;
};
Currently, of_clk_get_parent_name(consumer_np, 0) returns "clka"
(and of_clk_get_parent_name(consumer_np, 1) also returns "clka",
this is correct). Because the "clock-indices" in the clock parent
does not contain <0>, of_clk_get_parent_name(consumer_np, 0) should
return NULL.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
2015-12-03 02:20:35 +00:00
|
|
|
/* We went off the end of 'clock-indices' without finding it */
|
|
|
|
if (prop && !vp)
|
|
|
|
return NULL;
|
2014-02-13 18:02:49 +00:00
|
|
|
|
2012-04-09 19:50:06 +00:00
|
|
|
if (of_property_read_string_index(clkspec.np, "clock-output-names",
|
2014-02-13 18:02:49 +00:00
|
|
|
index,
|
2015-10-14 21:03:07 +00:00
|
|
|
&clk_name) < 0) {
|
|
|
|
/*
|
|
|
|
* Best effort to get the name if the clock has been
|
|
|
|
* registered with the framework. If the clock isn't
|
|
|
|
* registered, we return the node name as the name of
|
|
|
|
* the clock as long as #clock-cells = 0.
|
|
|
|
*/
|
|
|
|
clk = of_clk_get_from_provider(&clkspec);
|
|
|
|
if (IS_ERR(clk)) {
|
|
|
|
if (clkspec.args_count == 0)
|
|
|
|
clk_name = clkspec.np->name;
|
|
|
|
else
|
|
|
|
clk_name = NULL;
|
|
|
|
} else {
|
|
|
|
clk_name = __clk_get_name(clk);
|
|
|
|
clk_put(clk);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-04-09 19:50:06 +00:00
|
|
|
|
|
|
|
of_node_put(clkspec.np);
|
|
|
|
return clk_name;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
|
|
|
|
|
2015-06-05 16:26:13 +00:00
|
|
|
/**
|
|
|
|
* of_clk_parent_fill() - Fill @parents with names of @np's parents and return
|
|
|
|
* number of parents
|
|
|
|
* @np: Device node pointer associated with clock provider
|
|
|
|
* @parents: pointer to char array that hold the parents' names
|
|
|
|
* @size: size of the @parents array
|
|
|
|
*
|
|
|
|
* Return: number of parents for the clock node.
|
|
|
|
*/
|
|
|
|
int of_clk_parent_fill(struct device_node *np, const char **parents,
|
|
|
|
unsigned int size)
|
|
|
|
{
|
|
|
|
unsigned int i = 0;
|
|
|
|
|
|
|
|
while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
|
|
|
|
i++;
|
|
|
|
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(of_clk_parent_fill);
|
|
|
|
|
2014-02-24 18:10:13 +00:00
|
|
|
struct clock_provider {
|
2018-04-10 13:06:05 +00:00
|
|
|
void (*clk_init_cb)(struct device_node *);
|
2014-02-24 18:10:13 +00:00
|
|
|
struct device_node *np;
|
|
|
|
struct list_head node;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This function looks for a parent clock. If there is one, then it
|
|
|
|
* checks that the provider for this parent clock was initialized, in
|
|
|
|
* this case the parent clock will be ready.
|
|
|
|
*/
|
|
|
|
static int parent_ready(struct device_node *np)
|
|
|
|
{
|
|
|
|
int i = 0;
|
|
|
|
|
|
|
|
while (true) {
|
|
|
|
struct clk *clk = of_clk_get(np, i);
|
|
|
|
|
|
|
|
/* this parent is ready we can check the next one */
|
|
|
|
if (!IS_ERR(clk)) {
|
|
|
|
clk_put(clk);
|
|
|
|
i++;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* at least one parent is not ready, we exit now */
|
|
|
|
if (PTR_ERR(clk) == -EPROBE_DEFER)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Here we make assumption that the device tree is
|
|
|
|
* written correctly. So an error means that there is
|
|
|
|
* no more parent. As we didn't exit yet, then the
|
|
|
|
* previous parent are ready. If there is no clock
|
|
|
|
* parent, no need to wait for them, then we can
|
|
|
|
* consider their absence as being ready
|
|
|
|
*/
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-02-11 21:19:11 +00:00
|
|
|
/**
|
|
|
|
* of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
|
|
|
|
* @np: Device node pointer associated with clock provider
|
|
|
|
* @index: clock index
|
2018-01-03 11:06:14 +00:00
|
|
|
* @flags: pointer to top-level framework flags
|
2016-02-11 21:19:11 +00:00
|
|
|
*
|
|
|
|
* Detects if the clock-critical property exists and, if so, sets the
|
|
|
|
* corresponding CLK_IS_CRITICAL flag.
|
|
|
|
*
|
|
|
|
* Do not use this function. It exists only for legacy Device Tree
|
|
|
|
* bindings, such as the one-clock-per-node style that are outdated.
|
|
|
|
* Those bindings typically put all clock data into .dts and the Linux
|
|
|
|
* driver has no clock data, thus making it impossible to set this flag
|
|
|
|
* correctly from the driver. Only those drivers may call
|
|
|
|
* of_clk_detect_critical from their setup functions.
|
|
|
|
*
|
|
|
|
* Return: error code or zero on success
|
|
|
|
*/
|
2019-12-06 13:34:14 +00:00
|
|
|
int of_clk_detect_critical(struct device_node *np, int index,
|
|
|
|
unsigned long *flags)
|
2016-02-11 21:19:11 +00:00
|
|
|
{
|
|
|
|
struct property *prop;
|
|
|
|
const __be32 *cur;
|
|
|
|
uint32_t idx;
|
|
|
|
|
|
|
|
if (!np || !flags)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
|
|
|
|
if (index == idx)
|
|
|
|
*flags |= CLK_IS_CRITICAL;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2012-04-09 19:50:06 +00:00
|
|
|
/**
|
|
|
|
* of_clk_init() - Scan and init clock providers from the DT
|
|
|
|
* @matches: array of compatible values and init functions for providers.
|
|
|
|
*
|
2014-02-24 18:10:13 +00:00
|
|
|
* This function scans the device tree for matching clock providers
|
2014-03-27 11:08:36 +00:00
|
|
|
* and calls their initialization functions. It also does it by trying
|
2014-02-24 18:10:13 +00:00
|
|
|
* to follow the dependencies.
|
2012-04-09 19:50:06 +00:00
|
|
|
*/
|
|
|
|
void __init of_clk_init(const struct of_device_id *matches)
|
|
|
|
{
|
2013-08-22 16:31:31 +00:00
|
|
|
const struct of_device_id *match;
|
2012-04-09 19:50:06 +00:00
|
|
|
struct device_node *np;
|
2014-02-24 18:10:13 +00:00
|
|
|
struct clock_provider *clk_provider, *next;
|
|
|
|
bool is_init_done;
|
|
|
|
bool force = false;
|
2015-07-06 23:50:00 +00:00
|
|
|
LIST_HEAD(clk_provider_list);
|
2012-04-09 19:50:06 +00:00
|
|
|
|
2013-01-04 07:00:52 +00:00
|
|
|
if (!matches)
|
2013-10-22 08:39:36 +00:00
|
|
|
matches = &__clk_of_table;
|
2013-01-04 07:00:52 +00:00
|
|
|
|
2014-02-24 18:10:13 +00:00
|
|
|
/* First prepare the list of the clocks providers */
|
2013-08-22 16:31:31 +00:00
|
|
|
for_each_matching_node_and_match(np, matches, &match) {
|
2015-07-06 23:48:19 +00:00
|
|
|
struct clock_provider *parent;
|
|
|
|
|
2016-02-26 15:54:31 +00:00
|
|
|
if (!of_device_is_available(np))
|
|
|
|
continue;
|
|
|
|
|
2015-07-06 23:48:19 +00:00
|
|
|
parent = kzalloc(sizeof(*parent), GFP_KERNEL);
|
|
|
|
if (!parent) {
|
|
|
|
list_for_each_entry_safe(clk_provider, next,
|
|
|
|
&clk_provider_list, node) {
|
|
|
|
list_del(&clk_provider->node);
|
2015-10-21 20:41:36 +00:00
|
|
|
of_node_put(clk_provider->np);
|
2015-07-06 23:48:19 +00:00
|
|
|
kfree(clk_provider);
|
|
|
|
}
|
2015-10-21 20:41:36 +00:00
|
|
|
of_node_put(np);
|
2015-07-06 23:48:19 +00:00
|
|
|
return;
|
|
|
|
}
|
2014-02-24 18:10:13 +00:00
|
|
|
|
|
|
|
parent->clk_init_cb = match->data;
|
2015-10-21 20:41:36 +00:00
|
|
|
parent->np = of_node_get(np);
|
2014-03-27 10:43:32 +00:00
|
|
|
list_add_tail(&parent->node, &clk_provider_list);
|
2014-02-24 18:10:13 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
while (!list_empty(&clk_provider_list)) {
|
|
|
|
is_init_done = false;
|
|
|
|
list_for_each_entry_safe(clk_provider, next,
|
|
|
|
&clk_provider_list, node) {
|
|
|
|
if (force || parent_ready(clk_provider->np)) {
|
2014-06-18 15:29:32 +00:00
|
|
|
|
2016-07-05 16:23:32 +00:00
|
|
|
/* Don't populate platform devices */
|
|
|
|
of_node_set_flag(clk_provider->np,
|
|
|
|
OF_POPULATED);
|
|
|
|
|
2014-02-24 18:10:13 +00:00
|
|
|
clk_provider->clk_init_cb(clk_provider->np);
|
2014-06-18 15:29:32 +00:00
|
|
|
of_clk_set_defaults(clk_provider->np, true);
|
|
|
|
|
2014-02-24 18:10:13 +00:00
|
|
|
list_del(&clk_provider->node);
|
2015-10-21 20:41:36 +00:00
|
|
|
of_node_put(clk_provider->np);
|
2014-02-24 18:10:13 +00:00
|
|
|
kfree(clk_provider);
|
|
|
|
is_init_done = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2014-03-27 11:08:36 +00:00
|
|
|
* We didn't manage to initialize any of the
|
2014-02-24 18:10:13 +00:00
|
|
|
* remaining providers during the last loop, so now we
|
|
|
|
* initialize all the remaining ones unconditionally
|
|
|
|
* in case the clock parent was not mandatory
|
|
|
|
*/
|
|
|
|
if (!is_init_done)
|
|
|
|
force = true;
|
2012-04-09 19:50:06 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|