2019-06-03 05:44:50 +00:00
|
|
|
// SPDX-License-Identifier: GPL-2.0-only
|
2013-05-30 07:50:12 +00:00
|
|
|
/*
|
|
|
|
* Driver for PCA9685 16-channel 12-bit PWM LED controller
|
|
|
|
*
|
|
|
|
* Copyright (C) 2013 Steffen Trumtrar <s.trumtrar@pengutronix.de>
|
pwm-pca9685: Support changing the output frequency
Previously, period_ns and duty_ns were only used to determine the
ratio of ON and OFF time, the default frequency of 200 Hz was never
changed.
The PCA9685 however is capable of changing the PWM output frequency,
which is expected when changing the period.
This patch configures the prescaler accordingly, using the formula
and notes provided in the PCA9685 datasheet.
Bounds checking for the minimum and maximum frequencies, last updated
in revision v.4 of said datasheet, is also added.
The prescaler is only touched if the period changed, because we have to
put the chip into sleep mode to unlock the prescale register.
If it is changed, the PWM output frequency changes for all outputs,
because there is one prescaler per chip. This is documented in the
PCA9685 datasheet and in the comments.
If the duty cycle is not changed at the same time as the period, then
we restart the PWM output using the duty cycle to period ratio from
before the period change.
When using LEDs for example, previously set brightness levels stay the
same when the frequency changes.
Cc: Thierry Reding <thierry.reding@gmail.com>
Cc: Steffen Trumtrar <s.trumtrar@pengutronix.de>
Signed-off-by: Clemens Gruber <clemens.gruber@pqgruber.com>
Signed-off-by: Thierry Reding <thierry.reding@gmail.com>
2015-07-23 15:19:02 +00:00
|
|
|
* Copyright (C) 2015 Clemens Gruber <clemens.gruber@pqgruber.com>
|
2013-05-30 07:50:12 +00:00
|
|
|
*
|
|
|
|
* based on the pwm-twl-led.c driver
|
|
|
|
*/
|
|
|
|
|
2015-10-07 10:18:49 +00:00
|
|
|
#include <linux/acpi.h>
|
2016-09-20 14:40:56 +00:00
|
|
|
#include <linux/gpio/driver.h>
|
2013-05-30 07:50:12 +00:00
|
|
|
#include <linux/i2c.h>
|
|
|
|
#include <linux/module.h>
|
2016-09-20 14:40:56 +00:00
|
|
|
#include <linux/mutex.h>
|
2013-05-30 07:50:12 +00:00
|
|
|
#include <linux/platform_device.h>
|
2015-10-07 10:18:49 +00:00
|
|
|
#include <linux/property.h>
|
2013-05-30 07:50:12 +00:00
|
|
|
#include <linux/pwm.h>
|
|
|
|
#include <linux/regmap.h>
|
|
|
|
#include <linux/slab.h>
|
pwm-pca9685: Support changing the output frequency
Previously, period_ns and duty_ns were only used to determine the
ratio of ON and OFF time, the default frequency of 200 Hz was never
changed.
The PCA9685 however is capable of changing the PWM output frequency,
which is expected when changing the period.
This patch configures the prescaler accordingly, using the formula
and notes provided in the PCA9685 datasheet.
Bounds checking for the minimum and maximum frequencies, last updated
in revision v.4 of said datasheet, is also added.
The prescaler is only touched if the period changed, because we have to
put the chip into sleep mode to unlock the prescale register.
If it is changed, the PWM output frequency changes for all outputs,
because there is one prescaler per chip. This is documented in the
PCA9685 datasheet and in the comments.
If the duty cycle is not changed at the same time as the period, then
we restart the PWM output using the duty cycle to period ratio from
before the period change.
When using LEDs for example, previously set brightness levels stay the
same when the frequency changes.
Cc: Thierry Reding <thierry.reding@gmail.com>
Cc: Steffen Trumtrar <s.trumtrar@pengutronix.de>
Signed-off-by: Clemens Gruber <clemens.gruber@pqgruber.com>
Signed-off-by: Thierry Reding <thierry.reding@gmail.com>
2015-07-23 15:19:02 +00:00
|
|
|
#include <linux/delay.h>
|
2017-04-13 12:58:11 +00:00
|
|
|
#include <linux/pm_runtime.h>
|
2020-04-01 17:01:06 +00:00
|
|
|
#include <linux/bitmap.h>
|
pwm-pca9685: Support changing the output frequency
Previously, period_ns and duty_ns were only used to determine the
ratio of ON and OFF time, the default frequency of 200 Hz was never
changed.
The PCA9685 however is capable of changing the PWM output frequency,
which is expected when changing the period.
This patch configures the prescaler accordingly, using the formula
and notes provided in the PCA9685 datasheet.
Bounds checking for the minimum and maximum frequencies, last updated
in revision v.4 of said datasheet, is also added.
The prescaler is only touched if the period changed, because we have to
put the chip into sleep mode to unlock the prescale register.
If it is changed, the PWM output frequency changes for all outputs,
because there is one prescaler per chip. This is documented in the
PCA9685 datasheet and in the comments.
If the duty cycle is not changed at the same time as the period, then
we restart the PWM output using the duty cycle to period ratio from
before the period change.
When using LEDs for example, previously set brightness levels stay the
same when the frequency changes.
Cc: Thierry Reding <thierry.reding@gmail.com>
Cc: Steffen Trumtrar <s.trumtrar@pengutronix.de>
Signed-off-by: Clemens Gruber <clemens.gruber@pqgruber.com>
Signed-off-by: Thierry Reding <thierry.reding@gmail.com>
2015-07-23 15:19:02 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Because the PCA9685 has only one prescaler per chip, changing the period of
|
|
|
|
* one channel affects the period of all 16 PWM outputs!
|
|
|
|
* However, the ratio between each configured duty cycle and the chip-wide
|
|
|
|
* period remains constant, because the OFF time is set in proportion to the
|
|
|
|
* counter range.
|
|
|
|
*/
|
2013-05-30 07:50:12 +00:00
|
|
|
|
|
|
|
#define PCA9685_MODE1 0x00
|
|
|
|
#define PCA9685_MODE2 0x01
|
|
|
|
#define PCA9685_SUBADDR1 0x02
|
|
|
|
#define PCA9685_SUBADDR2 0x03
|
|
|
|
#define PCA9685_SUBADDR3 0x04
|
|
|
|
#define PCA9685_ALLCALLADDR 0x05
|
|
|
|
#define PCA9685_LEDX_ON_L 0x06
|
|
|
|
#define PCA9685_LEDX_ON_H 0x07
|
|
|
|
#define PCA9685_LEDX_OFF_L 0x08
|
|
|
|
#define PCA9685_LEDX_OFF_H 0x09
|
|
|
|
|
|
|
|
#define PCA9685_ALL_LED_ON_L 0xFA
|
|
|
|
#define PCA9685_ALL_LED_ON_H 0xFB
|
|
|
|
#define PCA9685_ALL_LED_OFF_L 0xFC
|
|
|
|
#define PCA9685_ALL_LED_OFF_H 0xFD
|
|
|
|
#define PCA9685_PRESCALE 0xFE
|
|
|
|
|
pwm-pca9685: Support changing the output frequency
Previously, period_ns and duty_ns were only used to determine the
ratio of ON and OFF time, the default frequency of 200 Hz was never
changed.
The PCA9685 however is capable of changing the PWM output frequency,
which is expected when changing the period.
This patch configures the prescaler accordingly, using the formula
and notes provided in the PCA9685 datasheet.
Bounds checking for the minimum and maximum frequencies, last updated
in revision v.4 of said datasheet, is also added.
The prescaler is only touched if the period changed, because we have to
put the chip into sleep mode to unlock the prescale register.
If it is changed, the PWM output frequency changes for all outputs,
because there is one prescaler per chip. This is documented in the
PCA9685 datasheet and in the comments.
If the duty cycle is not changed at the same time as the period, then
we restart the PWM output using the duty cycle to period ratio from
before the period change.
When using LEDs for example, previously set brightness levels stay the
same when the frequency changes.
Cc: Thierry Reding <thierry.reding@gmail.com>
Cc: Steffen Trumtrar <s.trumtrar@pengutronix.de>
Signed-off-by: Clemens Gruber <clemens.gruber@pqgruber.com>
Signed-off-by: Thierry Reding <thierry.reding@gmail.com>
2015-07-23 15:19:02 +00:00
|
|
|
#define PCA9685_PRESCALE_MIN 0x03 /* => max. frequency of 1526 Hz */
|
|
|
|
#define PCA9685_PRESCALE_MAX 0xFF /* => min. frequency of 24 Hz */
|
|
|
|
|
|
|
|
#define PCA9685_COUNTER_RANGE 4096
|
|
|
|
#define PCA9685_DEFAULT_PERIOD 5000000 /* Default period_ns = 1/200 Hz */
|
|
|
|
#define PCA9685_OSC_CLOCK_MHZ 25 /* Internal oscillator with 25 MHz */
|
|
|
|
|
2013-05-30 07:50:12 +00:00
|
|
|
#define PCA9685_NUMREGS 0xFF
|
|
|
|
#define PCA9685_MAXCHAN 0x10
|
|
|
|
|
2020-08-28 12:14:14 +00:00
|
|
|
#define LED_FULL BIT(4)
|
2020-08-28 12:14:15 +00:00
|
|
|
#define MODE1_ALLCALL BIT(0)
|
|
|
|
#define MODE1_SUB3 BIT(1)
|
|
|
|
#define MODE1_SUB2 BIT(2)
|
|
|
|
#define MODE1_SUB1 BIT(3)
|
2020-08-28 12:14:14 +00:00
|
|
|
#define MODE1_SLEEP BIT(4)
|
|
|
|
#define MODE2_INVRT BIT(4)
|
|
|
|
#define MODE2_OUTDRV BIT(2)
|
2013-05-30 07:50:12 +00:00
|
|
|
|
|
|
|
#define LED_N_ON_H(N) (PCA9685_LEDX_ON_H + (4 * (N)))
|
|
|
|
#define LED_N_ON_L(N) (PCA9685_LEDX_ON_L + (4 * (N)))
|
|
|
|
#define LED_N_OFF_H(N) (PCA9685_LEDX_OFF_H + (4 * (N)))
|
|
|
|
#define LED_N_OFF_L(N) (PCA9685_LEDX_OFF_L + (4 * (N)))
|
|
|
|
|
|
|
|
struct pca9685 {
|
|
|
|
struct pwm_chip chip;
|
|
|
|
struct regmap *regmap;
|
pwm-pca9685: Support changing the output frequency
Previously, period_ns and duty_ns were only used to determine the
ratio of ON and OFF time, the default frequency of 200 Hz was never
changed.
The PCA9685 however is capable of changing the PWM output frequency,
which is expected when changing the period.
This patch configures the prescaler accordingly, using the formula
and notes provided in the PCA9685 datasheet.
Bounds checking for the minimum and maximum frequencies, last updated
in revision v.4 of said datasheet, is also added.
The prescaler is only touched if the period changed, because we have to
put the chip into sleep mode to unlock the prescale register.
If it is changed, the PWM output frequency changes for all outputs,
because there is one prescaler per chip. This is documented in the
PCA9685 datasheet and in the comments.
If the duty cycle is not changed at the same time as the period, then
we restart the PWM output using the duty cycle to period ratio from
before the period change.
When using LEDs for example, previously set brightness levels stay the
same when the frequency changes.
Cc: Thierry Reding <thierry.reding@gmail.com>
Cc: Steffen Trumtrar <s.trumtrar@pengutronix.de>
Signed-off-by: Clemens Gruber <clemens.gruber@pqgruber.com>
Signed-off-by: Thierry Reding <thierry.reding@gmail.com>
2015-07-23 15:19:02 +00:00
|
|
|
int period_ns;
|
2016-09-20 14:40:56 +00:00
|
|
|
#if IS_ENABLED(CONFIG_GPIOLIB)
|
|
|
|
struct mutex lock;
|
|
|
|
struct gpio_chip gpio;
|
2020-04-01 17:01:06 +00:00
|
|
|
DECLARE_BITMAP(pwms_inuse, PCA9685_MAXCHAN + 1);
|
2016-09-20 14:40:56 +00:00
|
|
|
#endif
|
2013-05-30 07:50:12 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
static inline struct pca9685 *to_pca(struct pwm_chip *chip)
|
|
|
|
{
|
|
|
|
return container_of(chip, struct pca9685, chip);
|
|
|
|
}
|
|
|
|
|
2016-09-20 14:40:56 +00:00
|
|
|
#if IS_ENABLED(CONFIG_GPIOLIB)
|
2020-04-01 17:01:06 +00:00
|
|
|
static bool pca9685_pwm_test_and_set_inuse(struct pca9685 *pca, int pwm_idx)
|
2016-09-20 14:40:56 +00:00
|
|
|
{
|
2020-04-01 17:01:06 +00:00
|
|
|
bool is_inuse;
|
2016-09-20 14:40:56 +00:00
|
|
|
|
|
|
|
mutex_lock(&pca->lock);
|
2020-04-01 17:01:06 +00:00
|
|
|
if (pwm_idx >= PCA9685_MAXCHAN) {
|
|
|
|
/*
|
2020-08-28 12:14:13 +00:00
|
|
|
* "All LEDs" channel:
|
2020-04-01 17:01:06 +00:00
|
|
|
* pretend already in use if any of the PWMs are requested
|
|
|
|
*/
|
|
|
|
if (!bitmap_empty(pca->pwms_inuse, PCA9685_MAXCHAN)) {
|
|
|
|
is_inuse = true;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/*
|
2020-08-28 12:14:13 +00:00
|
|
|
* Regular channel:
|
2020-04-01 17:01:06 +00:00
|
|
|
* pretend already in use if the "all LEDs" channel is requested
|
|
|
|
*/
|
|
|
|
if (test_bit(PCA9685_MAXCHAN, pca->pwms_inuse)) {
|
|
|
|
is_inuse = true;
|
|
|
|
goto out;
|
|
|
|
}
|
2016-09-20 14:40:56 +00:00
|
|
|
}
|
2020-04-01 17:01:06 +00:00
|
|
|
is_inuse = test_and_set_bit(pwm_idx, pca->pwms_inuse);
|
|
|
|
out:
|
2016-09-20 14:40:56 +00:00
|
|
|
mutex_unlock(&pca->lock);
|
2020-04-01 17:01:06 +00:00
|
|
|
return is_inuse;
|
2016-09-20 14:40:56 +00:00
|
|
|
}
|
|
|
|
|
2020-04-01 17:01:06 +00:00
|
|
|
static void pca9685_pwm_clear_inuse(struct pca9685 *pca, int pwm_idx)
|
2016-09-20 14:40:56 +00:00
|
|
|
{
|
|
|
|
mutex_lock(&pca->lock);
|
2020-04-01 17:01:06 +00:00
|
|
|
clear_bit(pwm_idx, pca->pwms_inuse);
|
|
|
|
mutex_unlock(&pca->lock);
|
|
|
|
}
|
2016-09-20 14:40:56 +00:00
|
|
|
|
2020-04-01 17:01:06 +00:00
|
|
|
static int pca9685_pwm_gpio_request(struct gpio_chip *gpio, unsigned int offset)
|
|
|
|
{
|
|
|
|
struct pca9685 *pca = gpiochip_get_data(gpio);
|
2016-09-20 14:40:56 +00:00
|
|
|
|
2020-04-01 17:01:06 +00:00
|
|
|
if (pca9685_pwm_test_and_set_inuse(pca, offset))
|
|
|
|
return -EBUSY;
|
|
|
|
pm_runtime_get_sync(pca->chip.dev);
|
|
|
|
return 0;
|
2016-09-20 14:40:56 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int pca9685_pwm_gpio_get(struct gpio_chip *gpio, unsigned int offset)
|
|
|
|
{
|
|
|
|
struct pca9685 *pca = gpiochip_get_data(gpio);
|
|
|
|
struct pwm_device *pwm = &pca->chip.pwms[offset];
|
|
|
|
unsigned int value;
|
|
|
|
|
|
|
|
regmap_read(pca->regmap, LED_N_ON_H(pwm->hwpwm), &value);
|
|
|
|
|
|
|
|
return value & LED_FULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void pca9685_pwm_gpio_set(struct gpio_chip *gpio, unsigned int offset,
|
|
|
|
int value)
|
|
|
|
{
|
|
|
|
struct pca9685 *pca = gpiochip_get_data(gpio);
|
|
|
|
struct pwm_device *pwm = &pca->chip.pwms[offset];
|
|
|
|
unsigned int on = value ? LED_FULL : 0;
|
|
|
|
|
|
|
|
/* Clear both OFF registers */
|
|
|
|
regmap_write(pca->regmap, LED_N_OFF_L(pwm->hwpwm), 0);
|
|
|
|
regmap_write(pca->regmap, LED_N_OFF_H(pwm->hwpwm), 0);
|
|
|
|
|
|
|
|
/* Set the full ON bit */
|
|
|
|
regmap_write(pca->regmap, LED_N_ON_H(pwm->hwpwm), on);
|
|
|
|
}
|
|
|
|
|
2017-04-13 12:58:11 +00:00
|
|
|
static void pca9685_pwm_gpio_free(struct gpio_chip *gpio, unsigned int offset)
|
|
|
|
{
|
|
|
|
struct pca9685 *pca = gpiochip_get_data(gpio);
|
|
|
|
|
|
|
|
pca9685_pwm_gpio_set(gpio, offset, 0);
|
|
|
|
pm_runtime_put(pca->chip.dev);
|
2020-04-01 17:01:06 +00:00
|
|
|
pca9685_pwm_clear_inuse(pca, offset);
|
2017-04-13 12:58:11 +00:00
|
|
|
}
|
|
|
|
|
2016-09-20 14:40:56 +00:00
|
|
|
static int pca9685_pwm_gpio_get_direction(struct gpio_chip *chip,
|
|
|
|
unsigned int offset)
|
|
|
|
{
|
|
|
|
/* Always out */
|
2020-03-11 15:52:20 +00:00
|
|
|
return GPIO_LINE_DIRECTION_OUT;
|
2016-09-20 14:40:56 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int pca9685_pwm_gpio_direction_input(struct gpio_chip *gpio,
|
|
|
|
unsigned int offset)
|
|
|
|
{
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int pca9685_pwm_gpio_direction_output(struct gpio_chip *gpio,
|
|
|
|
unsigned int offset, int value)
|
|
|
|
{
|
|
|
|
pca9685_pwm_gpio_set(gpio, offset, value);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The PCA9685 has a bit for turning the PWM output full off or on. Some
|
|
|
|
* boards like Intel Galileo actually uses these as normal GPIOs so we
|
|
|
|
* expose a GPIO chip here which can exclusively take over the underlying
|
|
|
|
* PWM channel.
|
|
|
|
*/
|
|
|
|
static int pca9685_pwm_gpio_probe(struct pca9685 *pca)
|
|
|
|
{
|
|
|
|
struct device *dev = pca->chip.dev;
|
|
|
|
|
|
|
|
mutex_init(&pca->lock);
|
|
|
|
|
|
|
|
pca->gpio.label = dev_name(dev);
|
|
|
|
pca->gpio.parent = dev;
|
|
|
|
pca->gpio.request = pca9685_pwm_gpio_request;
|
|
|
|
pca->gpio.free = pca9685_pwm_gpio_free;
|
|
|
|
pca->gpio.get_direction = pca9685_pwm_gpio_get_direction;
|
|
|
|
pca->gpio.direction_input = pca9685_pwm_gpio_direction_input;
|
|
|
|
pca->gpio.direction_output = pca9685_pwm_gpio_direction_output;
|
|
|
|
pca->gpio.get = pca9685_pwm_gpio_get;
|
|
|
|
pca->gpio.set = pca9685_pwm_gpio_set;
|
|
|
|
pca->gpio.base = -1;
|
|
|
|
pca->gpio.ngpio = PCA9685_MAXCHAN;
|
|
|
|
pca->gpio.can_sleep = true;
|
|
|
|
|
|
|
|
return devm_gpiochip_add_data(dev, &pca->gpio, pca);
|
|
|
|
}
|
|
|
|
#else
|
2020-04-01 17:01:06 +00:00
|
|
|
static inline bool pca9685_pwm_test_and_set_inuse(struct pca9685 *pca,
|
|
|
|
int pwm_idx)
|
2016-09-20 14:40:56 +00:00
|
|
|
{
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2020-04-01 17:01:06 +00:00
|
|
|
static inline void
|
|
|
|
pca9685_pwm_clear_inuse(struct pca9685 *pca, int pwm_idx)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2016-09-20 14:40:56 +00:00
|
|
|
static inline int pca9685_pwm_gpio_probe(struct pca9685 *pca)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2017-04-21 13:19:02 +00:00
|
|
|
static void pca9685_set_sleep_mode(struct pca9685 *pca, bool enable)
|
2017-04-13 12:58:11 +00:00
|
|
|
{
|
|
|
|
regmap_update_bits(pca->regmap, PCA9685_MODE1,
|
2017-04-21 13:19:02 +00:00
|
|
|
MODE1_SLEEP, enable ? MODE1_SLEEP : 0);
|
|
|
|
if (!enable) {
|
2017-04-13 12:58:11 +00:00
|
|
|
/* Wait 500us for the oscillator to be back up */
|
|
|
|
udelay(500);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-05-30 07:50:12 +00:00
|
|
|
static int pca9685_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
|
|
|
|
int duty_ns, int period_ns)
|
|
|
|
{
|
|
|
|
struct pca9685 *pca = to_pca(chip);
|
|
|
|
unsigned long long duty;
|
|
|
|
unsigned int reg;
|
pwm-pca9685: Support changing the output frequency
Previously, period_ns and duty_ns were only used to determine the
ratio of ON and OFF time, the default frequency of 200 Hz was never
changed.
The PCA9685 however is capable of changing the PWM output frequency,
which is expected when changing the period.
This patch configures the prescaler accordingly, using the formula
and notes provided in the PCA9685 datasheet.
Bounds checking for the minimum and maximum frequencies, last updated
in revision v.4 of said datasheet, is also added.
The prescaler is only touched if the period changed, because we have to
put the chip into sleep mode to unlock the prescale register.
If it is changed, the PWM output frequency changes for all outputs,
because there is one prescaler per chip. This is documented in the
PCA9685 datasheet and in the comments.
If the duty cycle is not changed at the same time as the period, then
we restart the PWM output using the duty cycle to period ratio from
before the period change.
When using LEDs for example, previously set brightness levels stay the
same when the frequency changes.
Cc: Thierry Reding <thierry.reding@gmail.com>
Cc: Steffen Trumtrar <s.trumtrar@pengutronix.de>
Signed-off-by: Clemens Gruber <clemens.gruber@pqgruber.com>
Signed-off-by: Thierry Reding <thierry.reding@gmail.com>
2015-07-23 15:19:02 +00:00
|
|
|
int prescale;
|
|
|
|
|
|
|
|
if (period_ns != pca->period_ns) {
|
|
|
|
prescale = DIV_ROUND_CLOSEST(PCA9685_OSC_CLOCK_MHZ * period_ns,
|
|
|
|
PCA9685_COUNTER_RANGE * 1000) - 1;
|
|
|
|
|
|
|
|
if (prescale >= PCA9685_PRESCALE_MIN &&
|
|
|
|
prescale <= PCA9685_PRESCALE_MAX) {
|
2017-04-13 12:58:11 +00:00
|
|
|
/*
|
2020-08-28 12:14:13 +00:00
|
|
|
* Putting the chip briefly into SLEEP mode
|
2017-04-13 12:58:11 +00:00
|
|
|
* at this point won't interfere with the
|
|
|
|
* pm_runtime framework, because the pm_runtime
|
|
|
|
* state is guaranteed active here.
|
|
|
|
*/
|
pwm-pca9685: Support changing the output frequency
Previously, period_ns and duty_ns were only used to determine the
ratio of ON and OFF time, the default frequency of 200 Hz was never
changed.
The PCA9685 however is capable of changing the PWM output frequency,
which is expected when changing the period.
This patch configures the prescaler accordingly, using the formula
and notes provided in the PCA9685 datasheet.
Bounds checking for the minimum and maximum frequencies, last updated
in revision v.4 of said datasheet, is also added.
The prescaler is only touched if the period changed, because we have to
put the chip into sleep mode to unlock the prescale register.
If it is changed, the PWM output frequency changes for all outputs,
because there is one prescaler per chip. This is documented in the
PCA9685 datasheet and in the comments.
If the duty cycle is not changed at the same time as the period, then
we restart the PWM output using the duty cycle to period ratio from
before the period change.
When using LEDs for example, previously set brightness levels stay the
same when the frequency changes.
Cc: Thierry Reding <thierry.reding@gmail.com>
Cc: Steffen Trumtrar <s.trumtrar@pengutronix.de>
Signed-off-by: Clemens Gruber <clemens.gruber@pqgruber.com>
Signed-off-by: Thierry Reding <thierry.reding@gmail.com>
2015-07-23 15:19:02 +00:00
|
|
|
/* Put chip into sleep mode */
|
2017-04-21 13:19:02 +00:00
|
|
|
pca9685_set_sleep_mode(pca, true);
|
pwm-pca9685: Support changing the output frequency
Previously, period_ns and duty_ns were only used to determine the
ratio of ON and OFF time, the default frequency of 200 Hz was never
changed.
The PCA9685 however is capable of changing the PWM output frequency,
which is expected when changing the period.
This patch configures the prescaler accordingly, using the formula
and notes provided in the PCA9685 datasheet.
Bounds checking for the minimum and maximum frequencies, last updated
in revision v.4 of said datasheet, is also added.
The prescaler is only touched if the period changed, because we have to
put the chip into sleep mode to unlock the prescale register.
If it is changed, the PWM output frequency changes for all outputs,
because there is one prescaler per chip. This is documented in the
PCA9685 datasheet and in the comments.
If the duty cycle is not changed at the same time as the period, then
we restart the PWM output using the duty cycle to period ratio from
before the period change.
When using LEDs for example, previously set brightness levels stay the
same when the frequency changes.
Cc: Thierry Reding <thierry.reding@gmail.com>
Cc: Steffen Trumtrar <s.trumtrar@pengutronix.de>
Signed-off-by: Clemens Gruber <clemens.gruber@pqgruber.com>
Signed-off-by: Thierry Reding <thierry.reding@gmail.com>
2015-07-23 15:19:02 +00:00
|
|
|
|
|
|
|
/* Change the chip-wide output frequency */
|
|
|
|
regmap_write(pca->regmap, PCA9685_PRESCALE, prescale);
|
|
|
|
|
|
|
|
/* Wake the chip up */
|
2017-04-21 13:19:02 +00:00
|
|
|
pca9685_set_sleep_mode(pca, false);
|
pwm-pca9685: Support changing the output frequency
Previously, period_ns and duty_ns were only used to determine the
ratio of ON and OFF time, the default frequency of 200 Hz was never
changed.
The PCA9685 however is capable of changing the PWM output frequency,
which is expected when changing the period.
This patch configures the prescaler accordingly, using the formula
and notes provided in the PCA9685 datasheet.
Bounds checking for the minimum and maximum frequencies, last updated
in revision v.4 of said datasheet, is also added.
The prescaler is only touched if the period changed, because we have to
put the chip into sleep mode to unlock the prescale register.
If it is changed, the PWM output frequency changes for all outputs,
because there is one prescaler per chip. This is documented in the
PCA9685 datasheet and in the comments.
If the duty cycle is not changed at the same time as the period, then
we restart the PWM output using the duty cycle to period ratio from
before the period change.
When using LEDs for example, previously set brightness levels stay the
same when the frequency changes.
Cc: Thierry Reding <thierry.reding@gmail.com>
Cc: Steffen Trumtrar <s.trumtrar@pengutronix.de>
Signed-off-by: Clemens Gruber <clemens.gruber@pqgruber.com>
Signed-off-by: Thierry Reding <thierry.reding@gmail.com>
2015-07-23 15:19:02 +00:00
|
|
|
|
|
|
|
pca->period_ns = period_ns;
|
|
|
|
} else {
|
|
|
|
dev_err(chip->dev,
|
|
|
|
"prescaler not set: period out of bounds!\n");
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-05-30 07:50:12 +00:00
|
|
|
if (duty_ns < 1) {
|
|
|
|
if (pwm->hwpwm >= PCA9685_MAXCHAN)
|
|
|
|
reg = PCA9685_ALL_LED_OFF_H;
|
|
|
|
else
|
|
|
|
reg = LED_N_OFF_H(pwm->hwpwm);
|
|
|
|
|
|
|
|
regmap_write(pca->regmap, reg, LED_FULL);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (duty_ns == period_ns) {
|
2015-07-23 15:19:01 +00:00
|
|
|
/* Clear both OFF registers */
|
|
|
|
if (pwm->hwpwm >= PCA9685_MAXCHAN)
|
|
|
|
reg = PCA9685_ALL_LED_OFF_L;
|
|
|
|
else
|
|
|
|
reg = LED_N_OFF_L(pwm->hwpwm);
|
|
|
|
|
|
|
|
regmap_write(pca->regmap, reg, 0x0);
|
|
|
|
|
|
|
|
if (pwm->hwpwm >= PCA9685_MAXCHAN)
|
|
|
|
reg = PCA9685_ALL_LED_OFF_H;
|
|
|
|
else
|
|
|
|
reg = LED_N_OFF_H(pwm->hwpwm);
|
|
|
|
|
|
|
|
regmap_write(pca->regmap, reg, 0x0);
|
|
|
|
|
|
|
|
/* Set the full ON bit */
|
2013-05-30 07:50:12 +00:00
|
|
|
if (pwm->hwpwm >= PCA9685_MAXCHAN)
|
|
|
|
reg = PCA9685_ALL_LED_ON_H;
|
|
|
|
else
|
|
|
|
reg = LED_N_ON_H(pwm->hwpwm);
|
|
|
|
|
|
|
|
regmap_write(pca->regmap, reg, LED_FULL);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
pwm-pca9685: Support changing the output frequency
Previously, period_ns and duty_ns were only used to determine the
ratio of ON and OFF time, the default frequency of 200 Hz was never
changed.
The PCA9685 however is capable of changing the PWM output frequency,
which is expected when changing the period.
This patch configures the prescaler accordingly, using the formula
and notes provided in the PCA9685 datasheet.
Bounds checking for the minimum and maximum frequencies, last updated
in revision v.4 of said datasheet, is also added.
The prescaler is only touched if the period changed, because we have to
put the chip into sleep mode to unlock the prescale register.
If it is changed, the PWM output frequency changes for all outputs,
because there is one prescaler per chip. This is documented in the
PCA9685 datasheet and in the comments.
If the duty cycle is not changed at the same time as the period, then
we restart the PWM output using the duty cycle to period ratio from
before the period change.
When using LEDs for example, previously set brightness levels stay the
same when the frequency changes.
Cc: Thierry Reding <thierry.reding@gmail.com>
Cc: Steffen Trumtrar <s.trumtrar@pengutronix.de>
Signed-off-by: Clemens Gruber <clemens.gruber@pqgruber.com>
Signed-off-by: Thierry Reding <thierry.reding@gmail.com>
2015-07-23 15:19:02 +00:00
|
|
|
duty = PCA9685_COUNTER_RANGE * (unsigned long long)duty_ns;
|
2013-05-30 07:50:12 +00:00
|
|
|
duty = DIV_ROUND_UP_ULL(duty, period_ns);
|
|
|
|
|
|
|
|
if (pwm->hwpwm >= PCA9685_MAXCHAN)
|
|
|
|
reg = PCA9685_ALL_LED_OFF_L;
|
|
|
|
else
|
|
|
|
reg = LED_N_OFF_L(pwm->hwpwm);
|
|
|
|
|
|
|
|
regmap_write(pca->regmap, reg, (int)duty & 0xff);
|
|
|
|
|
|
|
|
if (pwm->hwpwm >= PCA9685_MAXCHAN)
|
|
|
|
reg = PCA9685_ALL_LED_OFF_H;
|
|
|
|
else
|
|
|
|
reg = LED_N_OFF_H(pwm->hwpwm);
|
|
|
|
|
|
|
|
regmap_write(pca->regmap, reg, ((int)duty >> 8) & 0xf);
|
|
|
|
|
2015-07-23 15:19:01 +00:00
|
|
|
/* Clear the full ON bit, otherwise the set OFF time has no effect */
|
|
|
|
if (pwm->hwpwm >= PCA9685_MAXCHAN)
|
|
|
|
reg = PCA9685_ALL_LED_ON_H;
|
|
|
|
else
|
|
|
|
reg = LED_N_ON_H(pwm->hwpwm);
|
|
|
|
|
|
|
|
regmap_write(pca->regmap, reg, 0);
|
|
|
|
|
2013-05-30 07:50:12 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int pca9685_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
|
|
|
|
{
|
|
|
|
struct pca9685 *pca = to_pca(chip);
|
|
|
|
unsigned int reg;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The PWM subsystem does not support a pre-delay.
|
|
|
|
* So, set the ON-timeout to 0
|
|
|
|
*/
|
|
|
|
if (pwm->hwpwm >= PCA9685_MAXCHAN)
|
|
|
|
reg = PCA9685_ALL_LED_ON_L;
|
|
|
|
else
|
|
|
|
reg = LED_N_ON_L(pwm->hwpwm);
|
|
|
|
|
|
|
|
regmap_write(pca->regmap, reg, 0);
|
|
|
|
|
|
|
|
if (pwm->hwpwm >= PCA9685_MAXCHAN)
|
|
|
|
reg = PCA9685_ALL_LED_ON_H;
|
|
|
|
else
|
|
|
|
reg = LED_N_ON_H(pwm->hwpwm);
|
|
|
|
|
|
|
|
regmap_write(pca->regmap, reg, 0);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Clear the full-off bit.
|
|
|
|
* It has precedence over the others and must be off.
|
|
|
|
*/
|
|
|
|
if (pwm->hwpwm >= PCA9685_MAXCHAN)
|
|
|
|
reg = PCA9685_ALL_LED_OFF_H;
|
|
|
|
else
|
|
|
|
reg = LED_N_OFF_H(pwm->hwpwm);
|
|
|
|
|
|
|
|
regmap_update_bits(pca->regmap, reg, LED_FULL, 0x0);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void pca9685_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
|
|
|
|
{
|
|
|
|
struct pca9685 *pca = to_pca(chip);
|
|
|
|
unsigned int reg;
|
|
|
|
|
|
|
|
if (pwm->hwpwm >= PCA9685_MAXCHAN)
|
|
|
|
reg = PCA9685_ALL_LED_OFF_H;
|
|
|
|
else
|
|
|
|
reg = LED_N_OFF_H(pwm->hwpwm);
|
|
|
|
|
|
|
|
regmap_write(pca->regmap, reg, LED_FULL);
|
|
|
|
|
|
|
|
/* Clear the LED_OFF counter. */
|
|
|
|
if (pwm->hwpwm >= PCA9685_MAXCHAN)
|
|
|
|
reg = PCA9685_ALL_LED_OFF_L;
|
|
|
|
else
|
|
|
|
reg = LED_N_OFF_L(pwm->hwpwm);
|
|
|
|
|
|
|
|
regmap_write(pca->regmap, reg, 0x0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int pca9685_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
|
|
|
|
{
|
|
|
|
struct pca9685 *pca = to_pca(chip);
|
|
|
|
|
2020-04-01 17:01:06 +00:00
|
|
|
if (pca9685_pwm_test_and_set_inuse(pca, pwm->hwpwm))
|
2016-09-20 14:40:56 +00:00
|
|
|
return -EBUSY;
|
2017-04-13 12:58:11 +00:00
|
|
|
pm_runtime_get_sync(chip->dev);
|
2013-05-30 07:50:12 +00:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void pca9685_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
|
|
|
|
{
|
2020-04-01 17:01:06 +00:00
|
|
|
struct pca9685 *pca = to_pca(chip);
|
|
|
|
|
2017-04-13 12:58:11 +00:00
|
|
|
pca9685_pwm_disable(chip, pwm);
|
|
|
|
pm_runtime_put(chip->dev);
|
2020-04-01 17:01:06 +00:00
|
|
|
pca9685_pwm_clear_inuse(pca, pwm->hwpwm);
|
2013-05-30 07:50:12 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static const struct pwm_ops pca9685_pwm_ops = {
|
|
|
|
.enable = pca9685_pwm_enable,
|
|
|
|
.disable = pca9685_pwm_disable,
|
|
|
|
.config = pca9685_pwm_config,
|
|
|
|
.request = pca9685_pwm_request,
|
|
|
|
.free = pca9685_pwm_free,
|
2013-06-12 11:18:29 +00:00
|
|
|
.owner = THIS_MODULE,
|
2013-05-30 07:50:12 +00:00
|
|
|
};
|
|
|
|
|
2015-02-24 09:40:24 +00:00
|
|
|
static const struct regmap_config pca9685_regmap_i2c_config = {
|
2013-05-30 07:50:12 +00:00
|
|
|
.reg_bits = 8,
|
|
|
|
.val_bits = 8,
|
|
|
|
.max_register = PCA9685_NUMREGS,
|
|
|
|
.cache_type = REGCACHE_NONE,
|
|
|
|
};
|
|
|
|
|
|
|
|
static int pca9685_pwm_probe(struct i2c_client *client,
|
|
|
|
const struct i2c_device_id *id)
|
|
|
|
{
|
|
|
|
struct pca9685 *pca;
|
2020-08-28 12:14:15 +00:00
|
|
|
unsigned int reg;
|
2013-05-30 07:50:12 +00:00
|
|
|
int ret;
|
|
|
|
|
|
|
|
pca = devm_kzalloc(&client->dev, sizeof(*pca), GFP_KERNEL);
|
|
|
|
if (!pca)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
pca->regmap = devm_regmap_init_i2c(client, &pca9685_regmap_i2c_config);
|
|
|
|
if (IS_ERR(pca->regmap)) {
|
|
|
|
ret = PTR_ERR(pca->regmap);
|
|
|
|
dev_err(&client->dev, "Failed to initialize register map: %d\n",
|
|
|
|
ret);
|
|
|
|
return ret;
|
|
|
|
}
|
pwm-pca9685: Support changing the output frequency
Previously, period_ns and duty_ns were only used to determine the
ratio of ON and OFF time, the default frequency of 200 Hz was never
changed.
The PCA9685 however is capable of changing the PWM output frequency,
which is expected when changing the period.
This patch configures the prescaler accordingly, using the formula
and notes provided in the PCA9685 datasheet.
Bounds checking for the minimum and maximum frequencies, last updated
in revision v.4 of said datasheet, is also added.
The prescaler is only touched if the period changed, because we have to
put the chip into sleep mode to unlock the prescale register.
If it is changed, the PWM output frequency changes for all outputs,
because there is one prescaler per chip. This is documented in the
PCA9685 datasheet and in the comments.
If the duty cycle is not changed at the same time as the period, then
we restart the PWM output using the duty cycle to period ratio from
before the period change.
When using LEDs for example, previously set brightness levels stay the
same when the frequency changes.
Cc: Thierry Reding <thierry.reding@gmail.com>
Cc: Steffen Trumtrar <s.trumtrar@pengutronix.de>
Signed-off-by: Clemens Gruber <clemens.gruber@pqgruber.com>
Signed-off-by: Thierry Reding <thierry.reding@gmail.com>
2015-07-23 15:19:02 +00:00
|
|
|
pca->period_ns = PCA9685_DEFAULT_PERIOD;
|
2013-05-30 07:50:12 +00:00
|
|
|
|
|
|
|
i2c_set_clientdata(client, pca);
|
|
|
|
|
2020-08-28 12:14:15 +00:00
|
|
|
regmap_read(pca->regmap, PCA9685_MODE2, ®);
|
2013-05-30 07:50:12 +00:00
|
|
|
|
2015-10-07 10:18:49 +00:00
|
|
|
if (device_property_read_bool(&client->dev, "invert"))
|
2020-08-28 12:14:15 +00:00
|
|
|
reg |= MODE2_INVRT;
|
2013-05-30 07:50:12 +00:00
|
|
|
else
|
2020-08-28 12:14:15 +00:00
|
|
|
reg &= ~MODE2_INVRT;
|
2013-05-30 07:50:12 +00:00
|
|
|
|
2015-10-07 10:18:49 +00:00
|
|
|
if (device_property_read_bool(&client->dev, "open-drain"))
|
2020-08-28 12:14:15 +00:00
|
|
|
reg &= ~MODE2_OUTDRV;
|
2013-05-30 07:50:12 +00:00
|
|
|
else
|
2020-08-28 12:14:15 +00:00
|
|
|
reg |= MODE2_OUTDRV;
|
|
|
|
|
|
|
|
regmap_write(pca->regmap, PCA9685_MODE2, reg);
|
2013-05-30 07:50:12 +00:00
|
|
|
|
2020-08-28 12:14:15 +00:00
|
|
|
/* Disable all LED ALLCALL and SUBx addresses to avoid bus collisions */
|
|
|
|
regmap_read(pca->regmap, PCA9685_MODE1, ®);
|
|
|
|
reg &= ~(MODE1_ALLCALL | MODE1_SUB1 | MODE1_SUB2 | MODE1_SUB3);
|
|
|
|
regmap_write(pca->regmap, PCA9685_MODE1, reg);
|
2013-05-30 07:50:12 +00:00
|
|
|
|
2020-08-28 12:14:13 +00:00
|
|
|
/* Clear all "full off" bits */
|
2013-05-30 07:50:12 +00:00
|
|
|
regmap_write(pca->regmap, PCA9685_ALL_LED_OFF_L, 0);
|
|
|
|
regmap_write(pca->regmap, PCA9685_ALL_LED_OFF_H, 0);
|
|
|
|
|
|
|
|
pca->chip.ops = &pca9685_pwm_ops;
|
2020-08-28 12:14:13 +00:00
|
|
|
/* Add an extra channel for ALL_LED */
|
2013-05-30 07:50:12 +00:00
|
|
|
pca->chip.npwm = PCA9685_MAXCHAN + 1;
|
|
|
|
|
|
|
|
pca->chip.dev = &client->dev;
|
|
|
|
pca->chip.base = -1;
|
|
|
|
|
2016-09-20 14:40:56 +00:00
|
|
|
ret = pwmchip_add(&pca->chip);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
ret = pca9685_pwm_gpio_probe(pca);
|
2017-04-13 12:58:11 +00:00
|
|
|
if (ret < 0) {
|
2016-09-20 14:40:56 +00:00
|
|
|
pwmchip_remove(&pca->chip);
|
2017-04-13 12:58:11 +00:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2020-08-28 12:14:13 +00:00
|
|
|
/* The chip comes out of power-up in the active state */
|
2017-04-13 12:58:11 +00:00
|
|
|
pm_runtime_set_active(&client->dev);
|
|
|
|
/*
|
2020-08-28 12:14:13 +00:00
|
|
|
* Enable will put the chip into suspend, which is what we
|
2017-04-13 12:58:11 +00:00
|
|
|
* want as all outputs are disabled at this point
|
|
|
|
*/
|
|
|
|
pm_runtime_enable(&client->dev);
|
2016-09-20 14:40:56 +00:00
|
|
|
|
2017-04-13 12:58:11 +00:00
|
|
|
return 0;
|
2013-05-30 07:50:12 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int pca9685_pwm_remove(struct i2c_client *client)
|
|
|
|
{
|
|
|
|
struct pca9685 *pca = i2c_get_clientdata(client);
|
2017-04-13 12:58:11 +00:00
|
|
|
int ret;
|
2013-05-30 07:50:12 +00:00
|
|
|
|
2017-04-13 12:58:11 +00:00
|
|
|
ret = pwmchip_remove(&pca->chip);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
pm_runtime_disable(&client->dev);
|
|
|
|
return 0;
|
|
|
|
}
|
2013-05-30 07:50:12 +00:00
|
|
|
|
2020-03-11 15:43:49 +00:00
|
|
|
static int __maybe_unused pca9685_pwm_runtime_suspend(struct device *dev)
|
2017-04-13 12:58:11 +00:00
|
|
|
{
|
|
|
|
struct i2c_client *client = to_i2c_client(dev);
|
|
|
|
struct pca9685 *pca = i2c_get_clientdata(client);
|
|
|
|
|
2017-04-21 13:19:02 +00:00
|
|
|
pca9685_set_sleep_mode(pca, true);
|
2017-04-13 12:58:11 +00:00
|
|
|
return 0;
|
2013-05-30 07:50:12 +00:00
|
|
|
}
|
|
|
|
|
2020-03-11 15:43:49 +00:00
|
|
|
static int __maybe_unused pca9685_pwm_runtime_resume(struct device *dev)
|
2017-04-13 12:58:11 +00:00
|
|
|
{
|
|
|
|
struct i2c_client *client = to_i2c_client(dev);
|
|
|
|
struct pca9685 *pca = i2c_get_clientdata(client);
|
|
|
|
|
2017-04-21 13:19:02 +00:00
|
|
|
pca9685_set_sleep_mode(pca, false);
|
2017-04-13 12:58:11 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2013-05-30 07:50:12 +00:00
|
|
|
static const struct i2c_device_id pca9685_id[] = {
|
|
|
|
{ "pca9685", 0 },
|
|
|
|
{ /* sentinel */ },
|
|
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(i2c, pca9685_id);
|
|
|
|
|
2015-10-07 10:18:49 +00:00
|
|
|
#ifdef CONFIG_ACPI
|
|
|
|
static const struct acpi_device_id pca9685_acpi_ids[] = {
|
|
|
|
{ "INT3492", 0 },
|
|
|
|
{ /* sentinel */ },
|
|
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(acpi, pca9685_acpi_ids);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef CONFIG_OF
|
2013-05-30 07:50:12 +00:00
|
|
|
static const struct of_device_id pca9685_dt_ids[] = {
|
|
|
|
{ .compatible = "nxp,pca9685-pwm", },
|
|
|
|
{ /* sentinel */ }
|
|
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(of, pca9685_dt_ids);
|
2015-10-07 10:18:49 +00:00
|
|
|
#endif
|
2013-05-30 07:50:12 +00:00
|
|
|
|
2017-04-13 12:58:11 +00:00
|
|
|
static const struct dev_pm_ops pca9685_pwm_pm = {
|
|
|
|
SET_RUNTIME_PM_OPS(pca9685_pwm_runtime_suspend,
|
|
|
|
pca9685_pwm_runtime_resume, NULL)
|
|
|
|
};
|
|
|
|
|
2013-05-30 07:50:12 +00:00
|
|
|
static struct i2c_driver pca9685_i2c_driver = {
|
|
|
|
.driver = {
|
|
|
|
.name = "pca9685-pwm",
|
2015-10-07 10:18:49 +00:00
|
|
|
.acpi_match_table = ACPI_PTR(pca9685_acpi_ids),
|
|
|
|
.of_match_table = of_match_ptr(pca9685_dt_ids),
|
2017-04-13 12:58:11 +00:00
|
|
|
.pm = &pca9685_pwm_pm,
|
2013-05-30 07:50:12 +00:00
|
|
|
},
|
|
|
|
.probe = pca9685_pwm_probe,
|
|
|
|
.remove = pca9685_pwm_remove,
|
|
|
|
.id_table = pca9685_id,
|
|
|
|
};
|
|
|
|
|
|
|
|
module_i2c_driver(pca9685_i2c_driver);
|
|
|
|
|
|
|
|
MODULE_AUTHOR("Steffen Trumtrar <s.trumtrar@pengutronix.de>");
|
|
|
|
MODULE_DESCRIPTION("PWM driver for PCA9685");
|
|
|
|
MODULE_LICENSE("GPL");
|